The present disclosure is generally concerned with sporting equipment and, in particular, with a remote release snowboard binding and associated controls.
A number of advances have been made over the years to improve the safety and functionality of snowboard bindings. However, those bindings still suffer from some shortcomings both in terms of their safety and convenience of use.
For example, circumstances sometimes occur in which a rider is involved in an incident such as a crash that, while not harmful in itself, may nonetheless place the rider in danger. By way of illustration, a rider may get stuck in a tree well simply by riding too close to a tree. Although there may have been no crash, or only a minor crash, and possibly only a minor fall involved, it is well known that tree wells can be dangerous and, as such, the rider who falls into one may be in a potentially life threatening situation.
A significant part of the danger posed by tree wells is that it can be quite difficult for the rider to extricate himself, and riders have been known to suffocate, or die of hypothermia, in the attempt. Escape from a tree well may be complicated significantly by the fact that the boots of the rider are still attached to his snowboard. This is because conventional snowboard bindings are fixed to the snowboard, such as by way of fasteners, and the rider can only get out of the bindings by releasing the buckles that hold the boot of the rider in the binding. Such snowboard bindings are not designed, or intended, to automatically release the rider from the snowboard. As well, it is not uncommon fora rider to end up in a head-down orientation in a tree well. When the rider is positioned in this way, it may be difficult, or impossible, for the rider to reach and release the binding.
Moreover, the rider may be in an awkward position that makes it difficult or impossible to reach the bindings and unbuckle them. Thus, in this scenario, the snowboard binding may impair, or even prevent, the rider from escaping his predicament. This could be particularly problematic, for example, in a backcountry scenario where there may be few other people nearby who could readily lend assistance to the trapped rider.
As a further illustrative example of some shortcomings of conventional snowboard bindings, it is not uncommon for novice riders, in particular, to get their snowboard caught on a chair, rope, tow, tram, gondola, or other equipment when the rider is loading or unloading. Because the lift typically cannot stop immediately, the rider may find himself being dragged, pulled, or flipped by his snowboard for some distance. In some cases, the forces involved may be significant enough to cause injury to the rider.
Other shortcomings of typical snowboard bindings may be more a matter of convenience than safety. For example, when novice riders, particularly younger riders, crash or fall, they are still connected to their snowboard. It can be difficult for these riders to get back on their feet and begin riding again. This is particularly so if the rider should happen to fall in relatively deep snow.
Moreover, even if a rider is experienced, it is not uncommon for riders to be involved in crashes or falls. If such a crash or fall occurs in deep snow, for example, it can be quite difficult and time consuming for the rider to dig out and return to riding if the board is still attached to the boots of the rider, as is typically the case. Likewise, if a user is caught in an avalanche, it may be desirable to be able to release the snowboard as quickly as possible so as to increase the chances of the rider for survival.
In view of problems such as those noted, and others, what is needed is a snowboard binding configured to enable the rider to release himself from the snowboard at any time on his initiative. As well, the snowboard binding should be configured to release the user from the snowboard with little or no effort on the part of the user. For example, the user should not have to operate any of the buckles of the snowboard binding to be released from the snowboard. Moreover, the snowboard binding should enable the boot of the rider to remain buckled into a portion of the binding both during and after release of the rider from the snowboard. Finally, the snowboard binding should be compatible with contemporary snowboard designs so that it can be used without requiring significant modifications to the snowboard.
The present disclosure is generally concerned with snow sport devices and associated bindings. One particular, but non-limiting, example of a snow sport device is a snowboard that includes snowboard bindings and, more particularly, snowboard bindings that can release a snowboard at any time upon the initiative of the user. That is, when the snowboard is released, the snowboard is no longer connected, either directly or indirectly, to the user. To illustrate, the user can pick up and carry the snowboard after the snowboard has been released. This release function of the snowboard binding can be effected remotely by a user and/or another.
More particularly, example embodiments within the scope of this disclosure may include one or more of the following elements, in any combination: a snowboard binding configured and operable to enable a user to release a snowboard at any time upon the initiative of the user, and the binding is configured to be only manually actuated; a snowboard binding configured and operable to enable a user to release a snowboard at any time upon the initiative of the user, and the binding is configured to be manually actuated by way of a cable and handle assembly; a snowboard binding configured and operable to enable a user to release a snowboard at any time upon the initiative of the user, and the binding is configured to be electronically and/or manually actuated; a snowboard binding configured and operable to enable a user to release a snowboard at any time upon the initiative of the user, and the binding is configured to be only electronically actuated; a snowboard binding configured and operable to enable a user to release a snowboard at any time upon the initiative of the user; a snowboard binding configured and operable to enable a user to release a snowboard at any time upon actuation of a wireless remote control that is in operable communication with the snowboard binding; a snowboard binding that comprises a retention and release assembly and a boot interface portion; a retention and release assembly and boot interface portion configured to releasably engage each other; a retention and release assembly and boot interface portion configured to releasably engage each other, and the retention and release assembly is operable with a wireless remote control; a boot interface portion; a boot interface portion configured to releasably engage with a retention and release assembly; a boot interface portion that includes one or more straps, buckles and/or other adjustable and/or nonadjustable retention devices operable to releasably secure a portion of a boot in the boot interface portion; a boot interface portion configured for rotational motion relative to a retention and release assembly; a retention and release assembly configured to interface with a snowboard; a retention and release assembly configured to interface with a binding mounting mechanism of a snowboard; a retention and release assembly configured to connect to a one or more corresponding structures of a snowboard; a retention and release assembly configured so that a boot interface portion can engage with, and disengage from, the retention and release assembly by way of a rotational movement of the boot interface portion; a retention and release assembly configured to releasably lock together with a boot interface portion; a retention and release assembly that is compatible for attachment to a snowboard that has a mounting channel; a wireless remote control device operable by a user to operate a retention and release assembly of a snowboard binding so as to enable the snowboard to be released by the user; a snowboard binding including electronics, which may be actuated remotely by a user, that are operable to emit an active locator signal perceptible by a user; a snowboard binding including electronics, which may or may not be actuated remotely by a user, that are operable to emit an active locator signal perceptible by an electronic signal detection device, such as an RF beacon; a snowboard binding including electronics, which may be actuated remotely by a user, that are operable to emit an active locator signal, and the active locator signal is any one or more of a visual signal, an audible signal, or an RF signal; a snowboard binding that includes a passive reflector which returns a signal upon receipt of an RF signal at a surface of the passive reflector; a snowboard binding that includes a passive reflector and also includes electronics, which may be actuated remotely by a user, that are operable to emit an active locator signal perceptible by a user; a snowboard with one, or two, snowboard bindings; and, a snowboard with any of the following combinations of binding types—2 electronically actuated, or 2 manually actuated, or 1 manually actuated and 1 electronically actuated, or 1 manually actuated and 1 conventional binding, or 1 electronically actuated and 1 conventional binding.
Following is a list of various example embodiments of the invention. It should be noted that such embodiments, and the other embodiments disclosed herein, do not constitute an exhaustive summary of all possible embodiments, nor does this summary constitute an exhaustive list of all aspects of any particular embodiment(s). Rather, this summary simply presents selected aspects of some example embodiments. It should be noted that nothing herein should be construed as constituting an essential or indispensable element of any invention or embodiment. Rather, and as the person of ordinary skill in the art will readily appreciate, various aspects of the disclosed embodiments may be combined in a variety of ways so as to define yet further embodiments. Such further embodiments are considered as being within the scope of this disclosure. As well, none of the embodiments embraced within the scope of this disclosure should be construed as resolving, or being limited to the resolution of, any particular problem(s). Nor should such embodiments be construed to implement, or be limited to implementation of, any particular effect(s).
In a first example embodiment, a binding for a snow sport device includes a boot interface portion and a remotely operable retention and release assembly, and the boot interface portion and the retention and release assembly are configured to releasably engage each other.
In a second example embodiment, a snowboard binding includes a boot interface portion and a remotely operable retention and release assembly, and the boot interface portion and the retention and release assembly are configured to releasably engage each other.
In a third example embodiment, a snowboard binding includes a boot interface portion and a remotely operable retention and release assembly, and the boot interface portion and the retention and release assembly are configured to releasably engage each other, and the boot interface portion is configured to removably receive a portion of a boot, and the retention and release assembly is configured to be mounted to a snowboard.
In a fourth example embodiment, a snowboard binding includes a boot interface portion and a remotely operable retention and release assembly, the boot interface portion and the retention and release assembly are configured to rotatably engage with, and disengage from, each other.
In a fifth example embodiment, a snowboard binding includes a boot interface portion and a remotely operable retention and release assembly that are configured to releasably engage each other such that rotation of the boot interface portion in a first direction engages the boot interface portion with the retention and release assembly, and rotation of the boot interface portion in a second direction disengages the boot interface portion from the retention and release assembly.
In a sixth example embodiment, a snowboard binding includes a boot interface portion and a retention and release assembly configured to releasably engage each other, and the retention and release assembly is remotely operable by a wireless electronic device.
In a seventh example embodiment, a snow sport device includes one or more bindings, and one or more of the bindings includes a boot interface portion and a remotely operable retention and release assembly mounted to the snow sport device, and the boot interface portion and the retention and release assembly are configured to releasably engage each other.
In an eighth example embodiment, a snowboard includes one or more bindings, and one or more of the bindings includes a boot interface portion and a remotely operable retention and release assembly mounted to the snowboard, and the boot interface portion and the retention and release assembly are configured to releasably engage each other.
In a ninth example embodiment, a snowboard includes one or more snowboard bindings, and one or more of the snowboard bindings includes a boot interface portion and a remotely operable retention and release assembly mounted to the snowboard, and the boot interface portion and the retention and release assembly are configured to releasably engage each other, and the retention and release assembly is remotely operable by a wireless electronic device.
In a tenth example embodiment, a snowboard includes one or more snowboard bindings, and one or more of the snowboard bindings includes a boot interface portion and a remotely operable retention and release assembly that are configured to releasably engage each other such that rotation of the boot interface portion in a first direction engages the boot interface portion with the retention and release assembly, and rotation of the boot interface portion in a second direction disengages the boot interface portion from the retention and release assembly.
In a eleventh example embodiment, a snowboard includes one or more bindings, and the snowboard includes one or more binding mounting devices, each in the form of one of a 2×4 bolt mounting pattern, a 4×4 bolt mounting pattern, a diamond shaped 3D bolt mounting pattern, or a channel system comprising 2 channels, and one or more of the bindings includes a boot interface portion and a remotely operable retention and release assembly mounted to the split board, and the boot interface portion and the retention and release assembly are configured to releasably engage each other.
In a twelfth example embodiment, a split board includes one or more bindings, and one or more of the bindings includes a boot interface portion and a remotely operable retention and release assembly mounted to the split board, and the boot interface portion and the retention and release assembly are configured to releasably engage each other.
In a thirteenth example embodiment, a snowboard binding includes a boot interface portion and a manually operable retention and release assembly, and the boot interface portion and the retention and release assembly are configured to releasably engage each other.
In a fourteenth example embodiment, a snowboard binding includes a boot interface portion and a manually operable retention and release assembly, and the boot interface portion and the retention and release assembly are configured to releasably engage each other, and the manually operable retention and release assembly includes a cable operably connected to one or more other components of the retention and release assembly and the cable is connected to a handle that may be connected to the boot interface portion and that is arranged to be grasped by a user such that the user can move the cable.
The appended drawings contain figures of example embodiments to further illustrate and clarify various aspects of the present invention. It will be appreciated that these drawings depict only example embodiments of the invention and are not intended to limit its scope. Aspects of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings.
In general, embodiments of the invention are concerned with snow sport devices and associated bindings. One particular, but non-limiting, example of a snow sport device is a snowboard that includes a pair of snowboard bindings, each of which can accommodate a respective boot of a user and, more particularly, snowboard bindings that can release a snowboard at any time upon the initiative of the user. This release function of the snowboard binding can be effected remotely by a user with a wireless remote control. The remote control can be implemented in a variety of mechanisms, such as a key fob or smartphone, for example.
The snowboard binding may include a boot interface portion with buckles, clips and/or other retention devices that enable a user to removably retain his boot in the boot interface portion. The boot interface portion may include a spring-loaded pin that is biased so as to extend out of the boot interface portion and configured to be removably received in a corresponding recess defined by the retention and release assembly so that when the pin is so received, the boot interface portion and the retention and release assembly are locked together. In an alternative embodiment, the pin and recess arrangement is reversed so that the spring-loaded pin is included in the retention and release assembly and the recess is defined in the boot interface portion.
The retention and release assembly is configured to be attached to the upper surface of a snowboard by way of a mounting mechanism that is included as part of the snowboard. A generally circular housing is provided that houses the electronics for remote control of the retention and release assembly, and also houses a motor that is operable to effect motion of a plunger configured for reciprocal motion within the recess in which the spring-loaded pin is received so as to engage the spring-loaded pin of the boot interface portion. The housing includes a flange that engages corresponding structure of the boot interface portion so that the boot interface portion can rotate relative to the retention and release assembly when the boot interface portion and retention and release assembly are unlocked from each other.
In operation, a user can place the boot interface portion, within which his boot has been secured, on the housing so that the flange of the housing engages corresponding structure of the boot interface portion. As the user rotates the boot interface portion by movement of his foot, the spring-loaded pin of the boot interface portion is brought into alignment with, and extends into, the recess of the retention and release assembly housing, thus locking the boot interface position relative to the housing. After this operation is repeated for the other boot, the rider is locked to the snowboard. Note that in some alternative embodiments, only one of the snowboard bindings is configured to enable the boot interface portion to lock to, and release from, the snowboard, and the other snowboard binding is permanently fixed to the snowboard.
When the rider is ready to release the snowboard, actuation of the wireless remote control causes the motor to extend the plunger, which is in contact with the spring-loaded pin, thereby overcoming the bias imposed on the spring-loaded pin to move the spring-loaded pin into a position where it is fully received in the boot interface portion. A limit switch in the housing causes the operation of the motor to cease once the plunger has been extended as described. When the spring-loaded pin has been pushed back into the boot interface portion, the boot interface portion is then free to rotate relative to the retention and release assembly, and the user can then effect release of the snowboard by a short twist of the boot interface portion. To reattach the boot interface portion to the retention and release assembly, the user can actuate the remote control to reset the retention and release assembly by causing the motor to retract the plunger so that the spring-loaded pin can again be accommodated in the recess in which the plunger operates. The limit switch causes operation of the motor to stop once the plunger has been retracted fully.
Advantageously, embodiments of the invention enable a user to effect a positive locking of the boot interface portion to the retention and release assembly. This locking operation can be performed by the user solely as a manual process without requiring use of the wireless remote control. As well, the user can quickly and easily release the snowboard by simply actuating the wireless remote control and giving a short twist of his foot. Further, embodiments of the invention can be employed with known snowboard binding mounting mechanisms. Another advantage of the disclosed embodiments is that the bindings provide a significant level of convenience for the user in that the user can quickly, easily, and reliably, release one foot from the snowboard when the need arises, such as when a user is getting ready to ride a ski lift for example, or when a user needs to push himself through a flat spot in the terrain, for example.
In general, the snowboard bindings, snowboards, and remote control devices disclosed herein, may be constructed with a variety of components and materials including, but not limited to, adhesives, plastic, rubber, metal, fiberglass, composites, polytetrafluouroethylene (PTFE), carbon fiber, and any combination of these. Suitable metals may include brass, steel, titanium, aluminum, and aluminum alloys, although the skilled person will understand that a variety of other metals may be employed as well and the scope of the invention is not limited to the foregoing examples. These construction materials can be employed in connection with a variety of processes including, but not limited to, machining, injection molding, or die casting.
Depending upon the material(s) employed in the construction of the snowboards, snowboard bindings, and remote control devices, a variety of methods and components may be used to connect, releasably or permanently, various elements of the aforementioned devices. For example, the various elements of a snowboard binding within the scope of this disclosure may be attached to each other by any one or more of processes such as welding or brazing, and/or mechanically by way of fasteners such as bolts, screws, pins, and rivets, for example.
Some, none, or all of portions of a one or more of the snowboard, snowboard bindings, and remote control mechanisms and their components may be coated with paint, super-hydrophobic coatings, or other materials. At least some of such materials may serve to help prevent, or reduce, rust and corrosion. Surface treatments and textures may also be applied to portions of the snowboards, snowboard bindings, and remote control mechanisms. Such surface treatments can be configured and employed for circumstances where low friction is required between moving or movable parts, and also where relatively high friction, or resistance to motion, is required between moving or movable parts.
In at least some embodiments, the binding is configured so that the rear foot of the user is releasable, while the front foot is fixed to the snowboard. In other embodiments, the binding is configured so that the front foot of the user is releasable, while the rear foot is fixed to the snowboard. In still other embodiments, the bindings are configured so that both feet of the user are releasable from the snowboard.
With reference now to
With continued reference to
As best shown in
The retention elements 204 are configured and arranged so that they cannot be pulled vertically out of the channel 202. In some cases, the retention elements 204 and channel 202 include respective teeth that engage with each other when the retention elements 204 are tightened so that the retention elements 204 cannot slide along the channel 202.
With particular reference to
Turning now to
As disclosed herein, the boot interface portion 500 may be made in whole or in part of plastic, and the boot interface portion 500 may have an integral, single piece construction. The baseplate 402 may be made in whole or in part of metal, such as aluminum or an aluminum alloy for example.
As best shown in
With continuing reference to
Turning now to
Moreover, because the recess 511 of the sole 506 is closed at one side by a sidewall 512 (see
With particular reference now to
In some embodiments, respective indexing or alignment marks (not shown) can be provided on the boot interface portion 500 and on the retention and release assembly 400, such as on the baseplate 402. Such indexing marks may enable the user to visually confirm whether or not the boot interface portion 500 and the retention and release assembly 400 are locked together. Additionally, or alternatively, the binding 300 may include one or more lights, such as an LED, that indicate whether or not the boot interface portion 500 and the retention and release assembly 400 are locked together. For example, a red LED indicates that locking has not occurred, while a green LED indicates that locking is complete. Such lights can be mounted in any suitable location where they would be visible to the user. Another example of a feature that may be included in any of the disclosed embodiments is a device for emitting one or more sounds, such as when battery power drops below a specified level, when a remote control has been turned on/off, when a user needs to locate his board in a rack at a ski resort, or in conjunction with the operation of an electronic anti-theft lock which may be integrated into a snowboard binding. Such a device may be electrically connected to, and may communicate with, a remote control device and/or to a retention and release assembly of a snowboard binding.
With reference now to
In general, the retention mechanism 450 includes a plunger 452 configured for reciprocal motion under the influence of a motor 454 that is electrically powered by a power source 456 such as a battery. The motor 454 is held in position by a motor clamp 458. A cross pin 460 in the plunger 452 carries a limit switch actuator 462 that is configured to interface with a limit switch 464. The cross pin 460 is also operable to stop, or prevent, counter-rotation of the plunger 452. Circuitry 600, which is configured for wireless communication with one or more external electronic devices, such as a remote control for example, is connected with the power source 456, motor 454, and the limit switch 464. Further details concerning the configuration and operation of the circuitry 600, which forms part of a control system, are provided in
With particular reference to the motor 454 and plunger 452, the motor 454 may include a threaded shaft that engages a corresponding threaded hole in the rear of the plunger 452 so that as the motor 454 shaft rotates, the plunger 452 is advanced or retracted depending upon the direction of the rotation of the motor 454 shaft. As noted above, the plunger 452 includes cross pin 460 that carries limit switch actuator 462 and is arranged transverse to a longitudinal axis BB defined by the plunger 452. Thus, as the plunger 452 moves back and forth along axis BB, the cross pin 460 moves in unison with the plunger 452. In some embodiments, a sealing element 461, which may be made of rubber, silicone, or other suitable compliant materials, is provided in the wall 408 about the plunger 452 so as to help prevent the ingress of snow, ice, water and other foreign materials to the housing 406.
The motion of the cross pin 460 causes a corresponding back and forth motion of the limit switch actuator 462 that is carried by the cross pin 460. In general, the limit switch actuator 462 interfaces with the limit switch 464, which may be a 2 position limit switch. When actuated, the limit switch 464 cuts power to the motor 454 so that movement of the plunger 452, connected to the motor 454, ceases. In more detail, the limit switch 464 includes a switch arm 464a that interacts with limit switch actuator 462 such that power to the motor 454 will be cut by the limit switch 464 when the limit switch actuator 462 and, accordingly, the plunger 452, assumes one or the other of first and second prescribed positions between which the plunger 452 moves under the influence of the motor 454. More specifically, movement of the limit switch actuator 462 causes a corresponding movement of the switch arm 464a of the limit switch 464, and when the switch arm 464a is moved by the limit switch actuator 462 to either of a first (see
In the first prescribed position, the terminal end of the plunger 452 is generally flush with the outer surface of the wall 408, thus preventing the spring loaded pin 514 of the boot interface portion 500 from entering the bore 418 within which the plunger 452 travels. Because the spring loaded pin 514 is not disposed in the bore 418, the boot interface portion 500 is in an unlocked state with respect to the retention and release assembly 400, and can thus rotate relative to, and be disengaged from, the retention and release assembly 400. In the second prescribed position, the terminal end of the plunger 452 has been retracted with the bore 418, so that a space is defined in the bore 418 between the outer surface of the wall 408 and the terminal end of the plunger 452. This space is able to accommodate a portion of the spring loaded pin 514 of the boot interface portion 500. Because the spring loaded pin 514 is partly disposed in the bore 418, the boot interface portion 500 is in a locked state with respect to the retention and release assembly 400, and in that state, cannot rotate relative to, or be disengaged from, the retention and release assembly 400.
With more particular reference to the limit switch actuator 462 and limit switch 464, when the limit switch actuator 462 moves into a position that corresponds to either the first or second prescribed position, the limit switch actuator 462 carried by the plunger 452 physically engages an electromechanical element, that is, the switch arm 464a, of the limit switch 464 which then opens the switch, cutting power to the motor 454. Thus, once the plunger 452 is in either of the two prescribed positions, the motor 454 ceases operation, and the plunger 452 stops moving, because the limit switch 464 has cut power to the motor 454.
When the user wants to release the snowboard, the user may employ a wireless remote control device to cause the circuitry 600 to activate the motor 454 by enabling power from the power source 456 to be supplied to the motor 454. The motor 454 then moves the plunger 452, which is then in the second prescribed position, to the first prescribed position, thus unlocking the boot interface portion 500 from the retention and release assembly 400 as described above, at which point the power to the motor 454 is cut by the limit switch 464. In some embodiments, a timer circuit can be included as part of the circuitry 600 so that after a set period of time, such as about 10 seconds for example, power is again supplied to the motor 454 which then moves the plunger 452 back to the retracted, second prescribed, position, at which point the power to the motor 454 is again cut by the limit switch 464.
With reference now to
To reengage the boot interface portion 500 with the retention and release assembly 400 prior to riding, the user can slide the boot interface portion 500 into engagement with the retention and release assembly 400 in the direction indicated in
With attention now to
The CC1310 device is a Sub-1-GHz device of cost-effective, ultralow power wireless microcontrollers. The CC1310 device combines a flexible, very low power RF transceiver with a powerful 48-MHz Cortex-M3 microcontroller in a platform supporting multiple physical layers and RF standards. As well, a dedicated radio controller (Cortex-M0) handles low-level RF protocol commands that are stored in ROM or RAM, thus ensuring ultralow power and flexibility. The CC1310 device has excellent sensitivity and robustness (selectivity and blocking) performance. The CC1310 device is a highly integrated, true single-chip solution incorporating a complete RF system and an on-chip DC-DC converter. Sensors can be handled in a very low-power manner by a dedicated autonomous ultralow power microcontroller that can be configured to handle analog and digital sensors. Thus, the main microcontroller (Cortex-M3) is able to maximize sleep time. The CC1310 power and clock management and radio systems require specific configuration and handling by software to operate correctly. This has been implemented in the TI microcontroller operating system (RTOS), which may be used for all application development on the microcontroller 602.
With continued reference to
The control system 600 further includes a buck-boost converter 606 which is operable to supply a fixed regulated voltage required for the control system 600, whether the control system is digital or analog. The buck-boost controller integrated circuit input voltage is taken from any power source that is able to operate over a wide range of voltages, such as those supplied by a chemical battery for example.
The power source 608 for the control system 600 may be a battery, such as a chemical based lithium-ion battery for example. All electrical/electronic systems on the remote release binding are powered by the battery 608. Other power sources may alternatively be used however, as can other battery chemistries. As well, super capacitors can be used to supply part or all of the power needed by the control system 600.
The control system 600 further includes a battery charger 610 having an associated charging port 612. In some embodiments, the battery charger 610 takes the form of the MikroElektronika MCP73871 device (PID: MIKROE-2858), which is a fully integrated linear solution for system load sharing and Li-Ion/Li-Polymer battery charge management with AC-DC wall adapter and USB port power source selection. The battery charger 610 is also capable of autonomous power source selection between an external input and the battery 608. Along with its relatively small physical size, the low number of required external components makes the MCP73871 device ideally suited for portable applications. As such, the battery charger 610 is well suited for use with the remote release snowboard binding embodiments disclosed herein.
As disclosed elsewhere herein, the control system 600 includes a limit switch 614 (denoted at 464 in
Finally, the example control system 600 includes a DC/DC converter 620 (motor power). In order to drive the motor 616 with an adequate amount of torque, the DC/DC converter 620 is used to boost the battery 608 voltage to the voltage needed to drive the motor 616.
Directing attention now to
In general, embodiments of the remote control device 700 and retention and release assembly 400 can communicate wirelessly with each other using any suitable wireless communication protocol or standard. In some embodiments, communication between the remote control device 700 and the retention and release assembly 400 can use radio frequency (RF) communication, or Bluetooth® technology and specifications, such as the Bluetooth Low Energy (BLE) standard for example. In at least some embodiments, the retention and release assembly 400 and the remote control system 800 operate in a client-server/peripheral (respectively) relationship. Embodiments of the remote control system 800 can be operated on the initiative of the user such that the user can activate the retention and release assembly 400 to release the boot interface portion 500 from the retention and release assembly 400 at any time that the user desires.
In at least some embodiments, activation of the wireless communication between the remote control device 700 and the retention and release assembly 400 can be implemented by way of an application (“App”), such as a smartphone App for example. Thus, when a device including the App, such as a smartphone or other device, pairs with the retention and release assembly 400, the user can use the App to control the operation of the retention and release assembly 400. Correspondingly, the smartphone and/or processors and devices can be configured to communicate using wireless communication protocols, such as the IEEE 802.11X protocols, or the Bluetooth protocol.
Turning now to
In operation, the user can move, such as by rotating, the trap door 704b against the bias imposed by the biasing element 704c to the position shown in
With reference finally to
In embodiments that employ a rechargeable battery, a controller 804 may be provided that can be accessed by a charging port 806, which can be a USB connection, for example. The controller 804 can be an LiPo controller in the form of a stand-alone system load sharing and Li-Ion/Li-Polymer battery charge management controller. This control block employs a constant current/constant voltage (CC/CV) charge algorithm with selectable charge termination point. As well, the LiPo controller provides LiPo battery status to a micro-controller 808. The micro-controller (uC+BLE) 808 can include a single micro-controller and Blue Tooth Low Energy and has a System On Chip (SOC) configuration. Finally, the LiPo controller 804 is supplied charge current or power from the charging port 806.
The remote control system 800 can additionally include a buck-boost converter 810 that produces a DC output of 3.3V. The output voltage magnitude is either greater than or less than the input voltage magnitude which is supplied from the power source 802. This supplies a regulated 3.3Vdc to the microcontroller 808 and other support circuitry. The buck-boost converter 810 can be omitted in embodiments that do not use a rechargeable battery as a power source.
In the example of
In some embodiments of the remote control system 800, such as where the remote control system 800 is included in a fob for example, an accelerometer 814 is provided that interfaces with the microcontroller 808 via a two wire interface (TWI). The accelerometer 814 enables a user to initiate various functions simply by tapping the fob, or other device, a certain number of times. For example, tapping the buttons 816 of the fob 700 a programmed number of times produces an input to the accelerometer 814 which is then used to initiate the boot interface portion release function. In this particular example, a hand held fob may have a single button 816, which can be used to activate the boot interface release function.
Finally, and as suggested earlier, the remote control system 800, regardless of whether it is employed in a hand-held device such as a fob, or in a key fob 700, may include one or more antennas 818. In general, the antennas 818 enable wireless communication between the remote control system 800 and a corresponding retention and release assembly.
Directing attention now to
The snowboard binding 900 includes a boot interface portion 902 to which a retention and release assembly 904 is attached. The retention and release assembly 904 includes a housing 904a that is configured to releasably engage a baseplate 906 which is attachable to a snowboard (not shown). The baseplate 906 may include various openings 906a, such as holes, slots, and/or grooves, to enable the attachment of the baseplate to a snowboard. The baseplate 906 also includes a pin 906b that is at least partly disposed in an associated bore 906c. More specifically, the pin 906b is biased by a biasing element (not shown), such as a spring for example, which causes the pin 906b to protrude out of the bore 906c. As shown, the pin 906b may be chamfered at its terminal end.
The housing 904a includes a bore 904b in which a plunger 904c is disposed for reciprocal motion, similar to the plunger 452/bore 418 arrangement disclosed elsewhere herein. The configuration and operation of the plunger 904c and bore 904b may be similar, or identical, to that of the plunger 452 and bore 418, respectively. Thus, for example, some or all of the components of the retention and release assembly 400 may be employed in connection with the plunger 904c.
In operation, the boot of the user is releasably retained in the boot interface portion 902 and the user can then place the boot interface portion 902 onto the baseplate 906 so that the flange 904d is positioned in the undercut 906d defined by the baseplate 906. The flange 904d/undercut 906d arrangement helps to retain the boot interface portion 902 from pulling out of the baseplate 906. Once the boot interface portion 902 is correctly positioned relative to the baseplate 906, the user can rotate the boot interface portion 902 until the protruding pin 906b of the baseplate 906 is received in the bore 904b of the housing 904. The chamfered end of the pin 906b enables the housing 904a to rotate into position without catching on the pin 906b. When the pin 906b is received in the bore 904b, the boot interface portion 902 is locked in position and the user is ready to ride. Further, when the pin 906b is received in the bore 904b, the terminal end of the pin 906b may be positioned near, or may be in contact with, a terminal end of the plunger 904c.
When the user wants to disengage from the snowboard, the user can operate the remote control, which causes the plunger 904c to move within the bore 904b, specifically, pushing the pin 906b out of the bore 904b until the terminal end of the plunger 904c is flush, or nearly so, with the outer wall 904e of the housing 904. As a result of this motion of the plunger 904c, the pin 906b is moved out of the bore 904b and the housing 904 is once again free to rotate relative to the baseplate 906. The user can then rotate the boot interface portion 902 relative to the baseplate 906, and then remove the boot interface portion 902 from the baseplate 906.
With attention now to
With attention first to
In general, the cable 1002 can be routed in any suitable manner that tends to prevent interference between the cable 1002 and other components of the snowboard binding 1000. As well, the cable 1002 should be routed in such a way that it is not unduly exposed to damage or impacts. Further, it may be desirable to make the cable 1002 run as short as possible, while still providing the necessary functionality.
Thus, in the example embodiment of
As generally indicated in
With continued reference to
In operation, the pin 1012 is biased by the spring 1014 into a default extended position in which a portion of the pin 1012 is slidingly received in a corresponding bore (not shown) defined by housing of a retention and release assembly, such as the bore 904b of the housing 904a, for example. When the pin 1012 is so disposed, the boot interface portion 1006 is locked to the retention and release assembly.
The bias imposed by the spring 1014 can be overcome, and the boot interface portion 1006 released from the retention and release assembly (not shown), when the user pulls on the handle 1004 that is attached to the cable 1002, thereby retracting the pin 1012 from the aforementioned bore. When the pin 1012 has been retracted, the user can then rotate the boot interface portion 1006 and remove the boot interface portion 1006 from the retention and release assembly.
Thus, in this embodiment, there may be no need for a plunger in the bore or for any moving parts in the housing that defines the bore, since the pin 1012 is affirmatively retracted from the bore by the user, rather than being pushed out of the bore by a plunger as in some other embodiments disclosed herein. As such, where electronic remote control functionality is not provided in the snowboard binding 1000, the retention and release assembly may simply comprise, or consist of, a housing that defines a bore in which the pin 1012 is removably received. This housing may have the same, or similar, configuration as the housing 406, for example, and all moving parts may be omitted from the housing.
As noted above, the user can use the cable 1002 to retract the pin 1012 from a bore defined by a housing. Additionally, or alternatively, electronics, and a plunger, in the housing could be used to push pin 1012 out of the bore. One example of such a housing and associated mechanical and electrical components is disclosed in
When the user releases the handle 1004, the spring 1014 acts on the pin 1012 to return the pin 1012 to an extended position in which the pin 1012 is received in the bore of the retention and release assembly, once again locking the boot interface portion 1006 to the retention and release assembly (not shown). To reenter the snowboard binding 1000, the user does not need to pull the handle 1004. Rather, the user can simply reenter the snowboard binding 1000 in the same manner as described herein with respect to other embodiments of the invention.
With reference now to
As shown, the snowboard binding 1100 may include a boot interface portion 1102 that includes a sole 1104 to which a housing 1106 is mounted. The housing 1106 may have a similar, or identical, size and configuration to any of the other housings disclosed herein, although that is not necessarily required. The snowboard binding 1100 also includes a cable (not shown) that may be connected to an actuator assembly 1110 in the same, or identical, configuration and manner as indicated in
As such, the actuator assembly 1110 includes a spring 1112 that acts on a pin 1114 that is slidingly received in a bore 1116 defined by the housing 1106. As in the case of other disclosed housing embodiments, the housing 1106 may be a single-piece construction and can be made of metals such as aluminum for example, composite materials, plastic, or other suitable materials.
With continued reference to the Figures, a baseplate 1118 is also provided that is configured to be attached to a snowboard. Example attachment configurations are disclosed elsewhere herein. The baseplate 1118 defines a bore 1120 configured to slidingly receive the pin 1114. In general, the baseplate 1118 interfaces with the housing 1106 in the same, or similar, manner as in the case of other disclosed embodiments. As such, the user may enter the snowboard binding 1100 by placing the housing 1106 onto the baseplate 1118 and rotating the boot interface portion 1102, to which the housing 1106 is attached, until the pin 1114, biased into an extended position by the spring 1112, is received in the bore 1120. At this point, the boot interface portion 1102 is locked onto the baseplate 1118. No operation or movement of the cable (not shown) is required to effect locking of the boot interface portion 1102 onto the baseplate 1118.
When the user pulls a handle (not shown) attached to the cable (not shown), the bias exerted by the spring 1112 on the pin 1114 is overcome, and the pin 1114 is retracted from the bore 1120 against the bias imposed by the spring 1112. While the pin 1114 is still retracted, the user can then rotate the boot interface portion 1102, to which the housing 1106 is attached, thereby disengaging the housing 1106 from the baseplate 1118. The user can then release the handle, freeing the spring 1112 to act on the pin 1114 so that the pin 1114 again assumes the extended position. To reenter the snowboard binding 1100, the user does not need to pull the handle. Rather, the user can simply reenter the snowboard binding 1100 in the same manner as described herein with respect to other embodiments of the invention.
As further shown in
With reference finally to
In more detail, the cable 1206 includes a movable cable element 1206b slidably received within a protective sheath 1206c and includes a terminal end 1206d rotatably connected to a cam 1210 which, in turn, is rotatably connected to the housing 1202 by way of a pin or shaft 1211. Thus, when a user pulls on the movable cable element 1206b so as to effect a release of the boot interface portion from the snowboard, the cam 1210 is caused to rotate counterclockwise as shown in
As the cam 1210 rotates counterclockwise in response to a user pulling a handle attached to the cable 1206, a corresponding rotation of a cam surface 1210a acts on the end of a plunger 1214 that is configured and arranged for reciprocal motion in a bore 1216 defined by the housing 1202. In particular, the counterclockwise rotational motion of the cam 1210 causes the cam surface 1210a to drive the plunger 1214 further into the bore 1216, thus pushing a spring-loaded pin (not shown) out of the bore 1216, thereby disengaging the housing 1202 from a baseplate (not shown). As the foregoing suggests, the spring-loaded pin may be an element of, and reside at least partially in, a baseplate. Moreover, the spring-loaded pin may be biased into an extended position in which the spring-loaded pin is at least partially positioned in the bore 1216, such that the baseplate is releasably locked to the housing 1202.
When the user releases the handle (not shown) attached to the cable 1206, the spring 1212 is free to act on the cam 1210, causing the cam 1210 to rotate clockwise and thereby allow the pin 1214 to move back toward the interior of the housing 1202. This movement of the pin 1214 correspondingly allows the spring-loaded pin to once again extend from the housing 1202. To reenter the snowboard binding 1200, the user does not need to pull the handle attached to the cable 1206. Rather, the user can simply reenter the snowboard binding 1200 in the same manner as described herein with respect to other embodiments of the invention. When the user does so, the spring-loaded pin (not shown) enters the bore 1216, thus locking the housing 1202 to the baseplate.
The embodiments disclosed herein may include the use of a special purpose or general-purpose computer including various computer hardware or software modules, as discussed in greater detail below. A computer may include a processor and computer storage media carrying instructions that, when executed by the processor and/or caused to be executed by the processor, perform any one or more of the methods disclosed herein. In some embodiments, such a computer can take the form of a smartphone or other mobile communication device.
As indicated above, embodiments within the scope of the present invention also include computer storage media, which are physical media for carrying or having computer-executable instructions or data structures stored thereon. Such computer storage media can be any available physical media that can be accessed by a general purpose or special purpose computer.
By way of example, and not limitation, such computer storage media can comprise hardware such as solid state disk (SSD), RAM, ROM, EEPROM, CD-ROM, flash memory, phase-change memory (“PCM”), or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other hardware storage devices which can be used to store program code in the form of computer-executable instructions or data structures, which can be accessed and executed by a general-purpose or special-purpose computer system to implement the disclosed functionality of the invention. Combinations of the above should also be included within the scope of computer storage media. Such media are also examples of non-transitory storage media, and non-transitory storage media also embraces cloud-based storage systems and structures, although the scope of the invention is not limited to these examples of non-transitory storage media.
Computer-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts disclosed herein are disclosed as example forms of implementing the claims.
As used herein, the term ‘module’ or ‘component’ can refer to software objects or routines that execute on the computing system. The different components, modules, engines, and services described herein may be implemented as objects or processes that execute on the computing system, for example, as separate threads. While the system and methods described herein can be implemented in software, implementations in hardware or a combination of software and hardware are also possible and contemplated. In the present disclosure, a ‘computing entity’ may be any computing system as previously defined herein, or any module or combination of modules running on a computing system.
In at least some instances, a hardware processor is provided that is operable to carry out executable instructions for performing a method or process, such as the methods and processes disclosed herein. The hardware processor may or may not comprise an element of other hardware, such as the computing devices and systems disclosed herein.
In terms of computing environments, embodiments of the invention can be performed in client-server environments, whether network or local environments, or in any other suitable environment. Suitable operating environments for at least some embodiments of the invention include cloud computing environments where one or more of a client, server, or target virtual machine may reside and operate in a cloud environment.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Number | Date | Country | |
---|---|---|---|
Parent | 15990161 | May 2018 | US |
Child | 16913298 | US |