The present disclosure relates generally to optical fiber connectors, and more specifically to optical fiber connectors having remote release tabs.
The prevalence of the Internet has led to unprecedented growth in communication networks. Consumer demand for service and increased competition has caused network providers to continuously find ways to improve quality of service while reducing cost.
Certain solutions have included deployment of high-density interconnect panels. High-density interconnect panels may be designed to consolidate the increasing volume of interconnections necessary to support the fast-growing networks into a compacted form factor, thereby increasing quality of service and decreasing costs such as floor space and support overhead.
Multiple fibers may be arranged within a single connector. Connectors generally include a housing portion that contains a ferrule that terminates the ends of the fibers. Ferrules are generally used to retain the ends of the optical fibers for connecting the optical fibers. There are several types of standardized fiber optic connectors which include various ferrule diameters, as well as multiple fiber mechanical transfer or MT ferrules. Typically, connectors are joined together to connect the optical transmission path of one fiber optic cable to another fiber optic cable or device, and the connection may be made by inserting the connectors in an adapter. An adapter generally includes a housing, or portion of a housing, having at least one port which is configured to receive and hold a connector to facilitate the optical connection of the connector ferrule with the ferrule of another connector or other device. Adapters may be used to facilitate connections contained within a chassis. The term “chassis” as used herein broadly refers to a containment structure for housing electrical components or switching components.
In communication networks, such as data centers and switching networks, numerous interconnections between mating connectors may be compacted into high-density panels. Panel and connector producers may optimize for such high densities by shrinking the connector size and/or the spacing between adjacent connectors on the panel. However, in a high-density panel configuration, adjacent connectors and cable assemblies may obstruct access to the individual connectors. Such physical obstructions may impede the ability of an operator to insert and remove cables and the connectors.
Furthermore, as a result of the use of pre-terminated fiber assemblies, the issue of maintaining polarity in parallel fiber-optic links is becoming increasingly important. Polarity maintains proper continuity between transmitters and receivers. In order to make sure that connectors are mated correctly with an adapter, the connector and adapter typically include fixed keying features that permit the connector to be mated with the adapter in generally only one mating configuration. While this has the advantage of preventing a connection that has the wrong polarity, it also can make it difficult to change the polarity of the connection on site.
Therefore, there remains a need for fiber optic connectors that can be remotely released and have the flexibility of easily changing the polarity of the connector on site.
According to one aspect of the present disclosure, there is provided an optical fiber connector assembly comprising at least one connector, a latch arm for coupling to an adapter, and a remote release tab having a protrusion configured to cooperate with the adapter to depress said latch arm when the remote release tab is pulled relative to the adapter.
In some embodiments, the remote release tab may be coupled to the latch arm. The remote release tab may further comprise a window configured to receive the latch arm. In some embodiments, the remote release tab may be configured such that the protrusion slides along the latch arm when the remote release tab is pulled relative to the adapter. In some embodiments, the remote release tab may further be configured such that the protrusion interacts with an inner portion of the adapter to receive a downward force needed to depress said latch arm. In some embodiments, the inner portion of the adapter may be a fixed portion. In some embodiments, the protrusion may have a wedge shape. In various embodiments, the remote release tab may be configured such that the protrusion pushes down the latch arm substantially simultaneously as sliding along an inner portion of the adapter.
In some embodiments, the optical fiber connector assembly may further comprise a boot, and the remote release tab may be configured to extend over the boot.
In some embodiments, the optical fiber connector assembly may comprise a guide configured to receive the remote release tab. In various embodiments, the guide may be further configured to rotate to allow reversing a polarity of the optical fiber connector assembly.
Some embodiments of the optical fiber connector assembly may comprise a housing configured to receive the at least one connector. Some embodiments of the connector assembly may further comprise a latch arm assembly including the latch arm. The latch arm assembly may have a first portion configured to couple to the at least one connector and a second portion configured to engage the housing. In some embodiments of the connector assembly, the latch arm may be coupled to the at least one connector. In other embodiments, the at least one connector may include the latch arm as an integral structure.
This disclosure is not limited to the particular systems, devices and methods described, as these may vary. The terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope.
As used in this document, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Nothing in this disclosure is to be construed as an admission that the embodiments described in this disclosure are not entitled to antedate such disclosure by virtue of prior invention. As used in this document, the term “comprising” means “including, but not limited to.”
The following terms shall have, for the purposes of this application, the respective meanings set forth below.
A connector, as used herein, refers to a device and/or components thereof that connects a first module or cable to a second module or cable. The connector may be configured for fiber optic transmission or electrical signal transmission. The connector may be any suitable type now known or later developed, for example, embodiments of multiple-fiber push-on/pull-off (MPO) connectors, such as the Senko mini MPO connector and the Senko MPO Plus connector. The connector may generally be defined by a connector housing body.
A “fiber optic cable” or an “optical cable” refers to a cable containing one or more optical fibers for conducting optical signals in beams of light. The optical fibers can be constructed from any suitable transparent material, including glass, fiberglass, and plastic. The cable can include a jacket or sheathing material surrounding the optical fibers. In addition, the cable can be connected to a connector on one end or on both ends of the cable.
Various embodiments provide single fiber and multi-fiber connectors having a remote release tab, also referred to as a pull tab or a push pull tab. Some embodiments may be configured to allow polarity changes.
The pull tab of a typical connector may interact solely with the profile of the connector latch arm to flex the latch arm downward the distance needed to allow the connector to become unlatched from within the adapter/coupler for removal. Alternatively, the pull tab of a connector may work to solely lift an adapter hook a required distance to allow the connector to become unlatched for removal.
Various embodiments of connectors disclosed herein include an outer main body with a unique un-latching system. Various embodiments described herein generally provide optical fiber connectors with remote release tabs configured to allow a user to easily remove or insert connectors into adapters or couplers, such as adapters disposed on a high density panel without damaging surrounding connectors, accidentally disconnecting surrounding connectors, disrupting transmissions through surrounding connectors, and/or the like.
Various embodiments of connectors disclosed herein include a remote release tab having a tip configured to interact with an inner portion of the top surface of an adapter or coupler to provide some of the downward force needed to unlatch the connector from the adapter or coupler. In some embodiments, the inner portion of the top surface of the adapter or coupler may be a fixed portion that does not move.
In some embodiments, the tip of the remote release tab may be a wedge shaped tip. The connector may have a latch arm and may be configured such that as the remote release tab is pulled back, the tip of the remote release tab slides upwards along the slope of the latch arm of the connector. At a certain distance of retraction of the remote release tab, the wedge shape comes in contact with an inner portion of the top surface of the adapter. Upon additional retraction of the remote release tab, the wedge shaped tip simultaneously begins to push down the connector latch arm while sliding along the inner portion of the top surface of the adapter. As the connector latch arm is depressed to a sufficient distance, it becomes unlatched from the adapter, and any additional pulling of the remote release tab results in removing the connector from the adapter.
In some embodiments, the tip of the remote release tab may be a latch. The connector may have a latch arm connected to the latch, the remote release arm may further comprise a window or guide further configured to receive the latch arm. The remote release latch is coupled to the latch arm via a protrusion at a first end of the latch, the protrusion resides in the window. In some embodiments, the window of the remote release tab is resiliently deformable and collapses or folds under a rearward pull force applied at the opposite end of the window. The latch arm engages and depresses the latch protrusion, as the window deforms, when the remote release tab is pulled rearward relative to the adapter port. The window and protrusion contained therein exert a downward force on the latch to release the connector from the adapter port.
In some embodiments, the tip of the remote release tab is a latch. The connector may have a latch arm connected to the latch, the remote release arm may further comprise a window or guide further configured to receive the latch arm and the latch arm is slidable within the guide. The remote latch arm is secured to the latch at one end. In some embodiments, the secured end of the latch arm is deformable. One or more widthwise folds in the latch arm provide flexible joints that deform when the remote release tab is pulled rearward relative to the adapter port. The guide prevents the remote release tab from folding at other positions, and the pull force is exerted onto the latch, the latch moves downward releasing the connector from the adapter port.
Some embodiments, such as embodiments having multiple ferrules and embodiments having multiple fiber ferrule connectors, are further configured to allow reversing the polarity. For example, in some embodiments, a guide of the remote release tab may be configured to rotate about 180 degrees in order to reverse polarity.
The connector assembly 100 further includes at least one flexible latch arm assembly 110. The latch arm assembly 110 includes at least one flexible latch arm 111. The latch arm assembly 110 is configured to couple to the connectors 102. In other embodiments, each of the connectors 102 may include a respective latch arm. In some embodiments, the latch arm may be formed integrally with one or more connectors in the connector assembly.
The connector assembly 100 further includes a housing 112 configured to receive the connectors 102. The latch arm assembly 110 includes a first portion 114 configured to couple with the connectors 102, for example by coupling to the connector housings 106. The latch arm assembly 110 also includes a second portion 116 configured to be received by the housing 112. In other embodiments, the latch arm assembly 110 may be configured differently than shown in
The connector assembly 100 further includes a guide 118 configured to retain the remote release tab 104. In other embodiments, the guide may merely be configured to receive the remote release tab. The connector assembly 100 further includes a back post 122 and a boot 124.
The remote release tab 104 has a body 126. The body 126 may extend over the boot 124 to facilitate remotely releasing the connector assembly from an adapter. In various embodiments, the length of the remote release tab 104 may be selected so as to extend beyond the boot 124 of the connector assembly 100. For example, the length may be selected such that the handle of the remote release tab is located beyond the boot of the connector for easy access.
The body 126 includes a coupling portion 128 configured to couple to the connectors 120. For example, as shown in
The remote release tab 104 further includes a protrusion 132 at one end thereof. The protrusion 132 is shaped as a wedge. In other embodiments, the protrusion 132 may have different shapes and configurations. In various embodiments, the protrusion 132 may be configured to slide along the latch arm 111 of the latch arm assembly 110 and further to interact with an adapter coupled to the connector assembly 100, as the remote release tab 104 is pulled rearward, to decouple the connector assembly from the adapter, as described and illustrated further below in relation to
In some embodiments, the remote release tab 104 may be removable from the optical connector assembly 100. The remote release tab 104 may also be re-installed by coupling to the connector assembly 100. For example, the guide 118 may be configured to retain the remote release tab 104. The guide 118 may further be configured to allow removing the remote release tab 104 from the connector assembly 100. The guide may further act as a stop, as shown in
In various embodiments, the remote release tab 104 may have a single integral structure. In other embodiments, the remote release tab 104 may comprise a plurality of pieces coupled together to form the remote release tab. For example, in some embodiments, the coupling portion 128 and the protrusion 132 may be formed integrally with the housing 112. In other embodiments, the coupling portion 128 or the protrusion 132 may be separate pieces coupled to each other to form the remote release tab 104.
The remote release tab 704 has a body 726. The body 712 may extend over the boot 724 integrating the back post 722. In various embodiments the length of the pull tab 704 may extend beyond the boot 724. This extended pull tab allows for easier access to release the connector from the adapter. The body 712 may have a coupling portion 728, the coupling portion may have a window 730 and a deformable second end 734, 736. The latch assembly 710 may have a protrusion 732 located at a second end and configured to the retained within the window 730. Unlike
The latch arm assembly 110 may contain a latch 711 at one end, the latch 711 has at least one latch cutout 738 along one side of the latch. The latch cutout 738 is configured to engage and lock to a corresponding adapter housing opening 744, upon full insertion of the connector 700 into the adapter 740, as described in
The remote release tab 804 has a body 812. The body 812 is attached to a connector housing 806. The pull tab 804 may be extended to allow for easy access and removal of the connector from the adapter. The body 812 may have a coupling portion 828 configured to attached a guide 818 to the connector 800. The latch assembly 810 at a first end has a latch 811 and at the second end is the pull tab 826. The latch 811 at a first end has at least one latch cutout 838 and at a second end an anchor point 860. The anchor point is configured to attach a deformable tab portion 834 to the latch 811. The latch cutout 838 is configured to engage and lock to a corresponding adapter housing opening 844 (
In the above detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be used, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.
The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods, reagents, compounds, compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (for example, bodies of the appended claims) are generally intended as “open” terms (for example, the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” et cetera). While various compositions, methods, and devices are described in terms of “comprising” various components or steps (interpreted as meaning “including, but not limited to”), the compositions, methods, and devices can also “consist essentially of” or “consist of” the various components and steps, and such terminology should be interpreted as defining essentially closed-member groups. It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (for example, “a” and/or “an” should be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should be interpreted to mean at least the recited number (for example, the bare recitation of “two recitations,” without other modifiers, means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, et cetera” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, et cetera). In those instances where a convention analogous to “at least one of A, B, or C, et cetera” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, et cetera). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.
As will be understood by one skilled in the art, for any and all purposes, such as in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, et cetera As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, et cetera As will also be understood by one skilled in the art all language such as “up to,” “at least,” and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 cells refers to groups having 1, 2, or 3 cells. Similarly, a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.
Various of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, each of which is also intended to be encompassed by the disclosed embodiments.
This application claims the benefit of priority of U.S. Provisional Application No. 62/452,147 filed Jan. 30, 2017, entitled “Narrow Width Adapters and Connectors with Modular Latching Arm,” U.S. Provisional Application No. 62/457,150 filed Feb. 9, 2017, entitled “Optical Fiber Connector,” U.S. Provisional Application No. 62/463,898 filed Feb. 27, 2017, entitled “Optical Connector Port with Changeable Latching System,” U.S. Provisional Application No. 62/546,920 filed Aug. 17, 2017, entitled “Narrow Width Adapters and Connectors with Modular Latching Arm,” U.S. Provisional Application No. 62/581,961 filed Nov. 6, 2017, entitled “Narrow Width Adapters and Connectors with Modular Latching Arm”, and U.S. Provisional Application No. 62/485,042 filed Apr. 13, 2017, entitled “Optical Connector with Remote Release and Reversible Polarity System,” each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3721945 | Hults | Mar 1973 | A |
4150790 | Potter | Apr 1979 | A |
4327964 | Haesly et al. | May 1982 | A |
4478473 | Frear | Oct 1984 | A |
4762388 | Tanaka et al. | Aug 1988 | A |
4764129 | Jones et al. | Aug 1988 | A |
4840451 | Sampson et al. | Jun 1989 | A |
4872736 | Myers et al. | Oct 1989 | A |
4979792 | Weber et al. | Dec 1990 | A |
5026138 | Boudreau et al. | Jun 1991 | A |
5041025 | Haitmanek | Aug 1991 | A |
D323143 | Ohkura et al. | Jan 1992 | S |
5212752 | Stephenson et al. | May 1993 | A |
5265181 | Chang | Nov 1993 | A |
5289554 | Cubukciyan et al. | Feb 1994 | A |
5317663 | Beard et al. | May 1994 | A |
5335301 | Newman et al. | Aug 1994 | A |
5348487 | Marazzi et al. | Sep 1994 | A |
5444806 | deMarchi et al. | Aug 1995 | A |
5481634 | Anderson et al. | Jan 1996 | A |
5506922 | Grois et al. | Apr 1996 | A |
5521997 | Rovenolt et al. | May 1996 | A |
5570445 | Chou et al. | Oct 1996 | A |
5588079 | Tanabe et al. | Dec 1996 | A |
5684903 | Kyomasu et al. | Nov 1997 | A |
5687268 | Stephenson et al. | Nov 1997 | A |
5781681 | Manning | Jul 1998 | A |
5845036 | De Marchi | Dec 1998 | A |
5915987 | Reed et al. | Jun 1999 | A |
5937130 | Amberg et al. | Aug 1999 | A |
5956444 | Duda et al. | Sep 1999 | A |
5971626 | Knodell et al. | Oct 1999 | A |
6041155 | Anderson et al. | Mar 2000 | A |
6049040 | Biles et al. | Apr 2000 | A |
6134370 | Childers et al. | Oct 2000 | A |
6178283 | Weigel | Jan 2001 | B1 |
RE37080 | Stephenson et al. | Mar 2001 | E |
6206577 | Hall, III et al. | Mar 2001 | B1 |
6206581 | Driscoll et al. | Mar 2001 | B1 |
6227717 | Ott et al. | May 2001 | B1 |
6238104 | Yamakawa et al. | May 2001 | B1 |
6247849 | Liu | Jun 2001 | B1 |
6276840 | Weiss et al. | Aug 2001 | B1 |
6364537 | Maynard | Apr 2002 | B1 |
6379052 | de Jong et al. | Apr 2002 | B1 |
6447170 | Takahashi | Sep 2002 | B1 |
6461054 | Iwase | Oct 2002 | B1 |
6471412 | Belenkiy et al. | Oct 2002 | B1 |
6478472 | Anderson et al. | Nov 2002 | B1 |
6485194 | Shirakawa | Nov 2002 | B1 |
6530696 | Ueda et al. | Mar 2003 | B1 |
6551117 | Poplawski et al. | Apr 2003 | B2 |
6565262 | Childers et al. | May 2003 | B2 |
6579014 | Melton et al. | Jun 2003 | B2 |
6623172 | de Jong et al. | Sep 2003 | B1 |
6634796 | de Jong et al. | Oct 2003 | B2 |
6634801 | Waldron et al. | Oct 2003 | B1 |
6648520 | McDonald et al. | Nov 2003 | B2 |
6668113 | Togami et al. | Dec 2003 | B2 |
6682228 | Rathnam et al. | Jan 2004 | B2 |
6685362 | Burkholder et al. | Feb 2004 | B2 |
6695486 | Falkenberg | Feb 2004 | B1 |
6854894 | Yunker et al. | Feb 2005 | B1 |
6869227 | Del Grosso et al. | Mar 2005 | B2 |
6872039 | Baus et al. | Mar 2005 | B2 |
6935789 | Gross, III et al. | Aug 2005 | B2 |
7036993 | Luther et al. | May 2006 | B2 |
7052186 | Bates | May 2006 | B1 |
7077576 | Luther et al. | Jul 2006 | B2 |
7090406 | Melton et al. | Aug 2006 | B2 |
7090407 | Melton et al. | Aug 2006 | B2 |
7091421 | Kukita et al. | Aug 2006 | B2 |
7111990 | Melton et al. | Sep 2006 | B2 |
7113679 | Melton et al. | Sep 2006 | B2 |
D533504 | Lee | Dec 2006 | S |
D534124 | Taguchi | Dec 2006 | S |
7150567 | Luther et al. | Dec 2006 | B1 |
7153041 | Mine et al. | Dec 2006 | B2 |
7198409 | Smith et al. | Apr 2007 | B2 |
7207724 | Gurreri | Apr 2007 | B2 |
D543124 | Raatikainen | May 2007 | S |
D543146 | Chen et al. | May 2007 | S |
7258493 | Milette | Aug 2007 | B2 |
7264402 | Theuerkom et al. | Sep 2007 | B2 |
7281859 | Mudd et al. | Oct 2007 | B2 |
D558675 | Chien et al. | Jan 2008 | S |
7315682 | En Lin et al. | Jan 2008 | B1 |
7325976 | Gurreri et al. | Feb 2008 | B2 |
7325980 | Pepe | Feb 2008 | B2 |
7329137 | Martin et al. | Feb 2008 | B2 |
7331718 | Yazaki et al. | Feb 2008 | B2 |
7354291 | Caveney et al. | Apr 2008 | B2 |
7371082 | Zimmel et al. | May 2008 | B2 |
7387447 | Mudd et al. | Jun 2008 | B2 |
7390203 | Murano et al. | Jun 2008 | B2 |
D572661 | En Lin et al. | Jul 2008 | S |
7431604 | Waters et al. | Oct 2008 | B2 |
7463803 | Cody et al. | Dec 2008 | B2 |
7465180 | Kusuda et al. | Dec 2008 | B2 |
7473124 | Briant et al. | Jan 2009 | B1 |
7507103 | Phillips | Mar 2009 | B1 |
7510335 | Su et al. | Mar 2009 | B1 |
7513695 | Lin et al. | Apr 2009 | B1 |
7540666 | Luther et al. | Jun 2009 | B2 |
7561775 | Lin et al. | Jul 2009 | B2 |
7588373 | Sato et al. | Sep 2009 | B1 |
7591595 | Lu et al. | Sep 2009 | B2 |
7594766 | Sasser et al. | Sep 2009 | B1 |
7641398 | O'Riorden et al. | Jan 2010 | B2 |
7651361 | Henry | Jan 2010 | B2 |
7695199 | Teo et al. | Apr 2010 | B2 |
7699533 | Milette | Apr 2010 | B2 |
7785019 | Lewallen et al. | Aug 2010 | B2 |
7824113 | Wong et al. | Nov 2010 | B2 |
7837395 | Lin et al. | Nov 2010 | B2 |
D641708 | Yamauchi | Jul 2011 | S |
8083450 | Smith et al. | Dec 2011 | B1 |
8152385 | de Jong et al. | Apr 2012 | B2 |
8186890 | Lu | May 2012 | B2 |
8192091 | Hsu et al. | Jun 2012 | B2 |
8202009 | Lin et al. | Jun 2012 | B2 |
8251733 | Wu | Aug 2012 | B2 |
8267595 | Lin et al. | Sep 2012 | B2 |
8270796 | Nhep | Sep 2012 | B2 |
8408815 | Lin et al. | Apr 2013 | B2 |
8465317 | Gniadek et al. | Jun 2013 | B2 |
8534928 | Cooke et al. | Sep 2013 | B2 |
8556645 | Crain | Oct 2013 | B2 |
8559781 | Childers et al. | Oct 2013 | B2 |
8622634 | Arnold et al. | Jan 2014 | B2 |
8636424 | Kuffel et al. | Jan 2014 | B2 |
8641293 | Lin | Feb 2014 | B2 |
8651749 | Dainese, Jr. et al. | Feb 2014 | B2 |
8676022 | Jones | Mar 2014 | B2 |
8678670 | Takahashi et al. | Mar 2014 | B2 |
8727638 | Lee et al. | May 2014 | B2 |
8770863 | Cooke et al. | Jul 2014 | B2 |
9028270 | Vanderwoud | May 2015 | B1 |
9310569 | Lee | Apr 2016 | B2 |
9366829 | Czosnowski et al. | Jun 2016 | B2 |
9411110 | Barnette et al. | Aug 2016 | B2 |
9465172 | Shih | Oct 2016 | B2 |
9494744 | de Jong | Nov 2016 | B2 |
9548557 | Liu | Jan 2017 | B2 |
9551842 | Theuerkorn | Jan 2017 | B2 |
9557495 | Raven et al. | Jan 2017 | B2 |
9568686 | Fewkes et al. | Feb 2017 | B2 |
9581768 | Baca et al. | Feb 2017 | B1 |
9599778 | Wong | Mar 2017 | B2 |
9658409 | Gniadek et al. | May 2017 | B2 |
9684313 | Cline et al. | Jun 2017 | B2 |
9709753 | Chang et al. | Jul 2017 | B1 |
9778425 | Nguyen et al. | Oct 2017 | B2 |
9798094 | Kuffel et al. | Oct 2017 | B2 |
9829645 | Good et al. | Nov 2017 | B2 |
9869825 | Bailey et al. | Jan 2018 | B2 |
9880361 | Childers et al. | Jan 2018 | B2 |
9946035 | Gustafson et al. | Apr 2018 | B2 |
10031296 | Good | Jul 2018 | B2 |
10185099 | Chang | Jan 2019 | B2 |
20010026661 | de Jong et al. | Oct 2001 | A1 |
20020172467 | Anderson et al. | Nov 2002 | A1 |
20020191919 | Nolan | Dec 2002 | A1 |
20030053787 | Lee | Mar 2003 | A1 |
20030063862 | Fillion | Apr 2003 | A1 |
20030157825 | Kane | Aug 2003 | A1 |
20040052473 | Seo et al. | Mar 2004 | A1 |
20040136657 | Ngo | Jul 2004 | A1 |
20040141693 | Szilagyi et al. | Jul 2004 | A1 |
20040161958 | Togami et al. | Aug 2004 | A1 |
20040184741 | Del Grosso et al. | Sep 2004 | A1 |
20040234209 | Cox et al. | Nov 2004 | A1 |
20040247252 | Ehrenreich et al. | Dec 2004 | A1 |
20050111796 | Matasek et al. | May 2005 | A1 |
20050141817 | Yazaki et al. | Jun 2005 | A1 |
20050207709 | Del Grosso et al. | Sep 2005 | A1 |
20060013539 | Thaler et al. | Jan 2006 | A1 |
20060089049 | Sedor | Apr 2006 | A1 |
20060127025 | Haberman | Jun 2006 | A1 |
20060140543 | Abendschein et al. | Jun 2006 | A1 |
20060160429 | Dawiedczyk et al. | Jul 2006 | A1 |
20060269194 | Luther et al. | Nov 2006 | A1 |
20060274411 | Yamauchi | Dec 2006 | A1 |
20070025665 | Dean, Jr. et al. | Feb 2007 | A1 |
20070028409 | Yamada | Feb 2007 | A1 |
20070079854 | You | Apr 2007 | A1 |
20070098329 | Shimoji et al. | May 2007 | A1 |
20070149062 | Long et al. | Jun 2007 | A1 |
20070230874 | Lin | Oct 2007 | A1 |
20070232115 | Burke et al. | Oct 2007 | A1 |
20070243749 | Wu | Oct 2007 | A1 |
20080008430 | Kewitsch | Jan 2008 | A1 |
20080044137 | Luther et al. | Feb 2008 | A1 |
20080069501 | Mudd et al. | Mar 2008 | A1 |
20080101757 | Lin et al. | May 2008 | A1 |
20080226237 | O'Riorden | Sep 2008 | A1 |
20080267566 | Lin et al. | Oct 2008 | A1 |
20090022457 | De Jong et al. | Jan 2009 | A1 |
20090028507 | Jones et al. | Jan 2009 | A1 |
20090092360 | Lin et al. | Apr 2009 | A1 |
20090196555 | Lin et al. | Aug 2009 | A1 |
20090214162 | O'Riorden | Aug 2009 | A1 |
20090220197 | Gniadek | Sep 2009 | A1 |
20090220200 | Sheau Tung Wong et al. | Sep 2009 | A1 |
20090290938 | Lin | Nov 2009 | A1 |
20100034502 | Lu et al. | Feb 2010 | A1 |
20100092136 | Nhep | Apr 2010 | A1 |
20100220961 | de Jong et al. | Sep 2010 | A1 |
20100239220 | Lin et al. | Sep 2010 | A1 |
20100247041 | Szilagyi | Sep 2010 | A1 |
20100284656 | Morra et al. | Nov 2010 | A1 |
20100322561 | Lin et al. | Dec 2010 | A1 |
20110044588 | Larson et al. | Feb 2011 | A1 |
20110045683 | Foung | Feb 2011 | A1 |
20110058773 | Peterhans et al. | Mar 2011 | A1 |
20110131801 | Nelson et al. | Jun 2011 | A1 |
20110155810 | Taniguchi et al. | Jun 2011 | A1 |
20110177710 | Tobey | Jul 2011 | A1 |
20110239220 | Gibson et al. | Sep 2011 | A1 |
20120099822 | Kuffel et al. | Apr 2012 | A1 |
20120155810 | Nakagawa | Jun 2012 | A1 |
20120189260 | Kowalczyk et al. | Jul 2012 | A1 |
20120237177 | Minota | Sep 2012 | A1 |
20120269485 | Haley et al. | Oct 2012 | A1 |
20120301080 | Gniadek | Nov 2012 | A1 |
20130071067 | Lin | Mar 2013 | A1 |
20130089995 | Gniadek et al. | Apr 2013 | A1 |
20130094816 | Lin et al. | Apr 2013 | A1 |
20130121653 | Shitama et al. | May 2013 | A1 |
20130170797 | Ott | Jul 2013 | A1 |
20130183012 | Cabanne Lopez et al. | Jul 2013 | A1 |
20130216185 | Klavuhn et al. | Aug 2013 | A1 |
20130259429 | Czosnowski et al. | Oct 2013 | A1 |
20130272671 | Jones | Oct 2013 | A1 |
20130308915 | Buff et al. | Nov 2013 | A1 |
20130308916 | Buff et al. | Nov 2013 | A1 |
20130322825 | Cooke et al. | Dec 2013 | A1 |
20130323949 | De Dios Martin | Dec 2013 | A1 |
20140016901 | Lambourn et al. | Jan 2014 | A1 |
20140023322 | Gniadek et al. | Jan 2014 | A1 |
20140050446 | Chang | Feb 2014 | A1 |
20140056562 | Limbert et al. | Feb 2014 | A1 |
20140133808 | Hill et al. | May 2014 | A1 |
20140219621 | Barnette et al. | Aug 2014 | A1 |
20140226946 | Cooke et al. | Aug 2014 | A1 |
20140241644 | Kang et al. | Aug 2014 | A1 |
20140241678 | Brinquier et al. | Aug 2014 | A1 |
20140241688 | Isenhour et al. | Aug 2014 | A1 |
20140334780 | Nguyen et al. | Nov 2014 | A1 |
20140348477 | Chang | Nov 2014 | A1 |
20150003788 | Chen et al. | Jan 2015 | A1 |
20150030289 | Jiang et al. | Jan 2015 | A1 |
20150111417 | Vanderwoud | Apr 2015 | A1 |
20150212282 | Lin | Jun 2015 | A1 |
20150277059 | Raven et al. | Oct 2015 | A1 |
20150301294 | Chang | Oct 2015 | A1 |
20150355417 | Takano | Oct 2015 | A1 |
20150331201 | Takano et al. | Nov 2015 | A1 |
20150378113 | Good et al. | Dec 2015 | A1 |
20160116685 | Wong et al. | Apr 2016 | A1 |
20160172852 | Takano | Jun 2016 | A1 |
20160291262 | Chang | Jun 2016 | A1 |
20160195682 | Takano | Jul 2016 | A1 |
20160216458 | Shih | Jul 2016 | A1 |
20160259135 | Gniadek et al. | Sep 2016 | A1 |
20160266326 | Gniadek | Sep 2016 | A1 |
20160320572 | Gniadek | Nov 2016 | A1 |
20160131849 | Takano | Dec 2016 | A1 |
20160349458 | Murray et al. | Dec 2016 | A1 |
20170003458 | Gniadek | Jan 2017 | A1 |
20170023746 | Good | Jan 2017 | A1 |
20170176691 | Childers et al. | Jun 2017 | A1 |
20170254966 | Gniadek et al. | Sep 2017 | A1 |
20170293088 | Manes et al. | Oct 2017 | A1 |
20170293089 | Gustafson et al. | Oct 2017 | A1 |
20170293090 | Hopper et al. | Oct 2017 | A1 |
20180128987 | Good et al. | May 2018 | A1 |
20180156988 | Gniadek et al. | Jun 2018 | A1 |
20180156999 | Buff et al. | Jun 2018 | A1 |
20180164511 | Childers et al. | Jun 2018 | A1 |
20180172923 | Bauco et al. | Jun 2018 | A1 |
20180172924 | Bauco et al. | Jun 2018 | A1 |
20180172942 | Bauco et al. | Jun 2018 | A1 |
20180217339 | Ma et al. | Aug 2018 | A1 |
20180217340 | Wong et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
2495693 | Apr 2004 | CA |
2836038 | Nov 2006 | CN |
2836038 | Nov 2006 | CN |
201383588 | Jan 2010 | CN |
201383588 | Jan 2010 | CN |
2026500189 | Dec 2013 | CN |
202006011910 | Mar 2007 | DE |
102006019335 | Oct 2007 | DE |
1074868 | Jul 2001 | EP |
1211537 | Jun 2002 | EP |
1245980 | Oct 2002 | EP |
1566674 | Aug 2005 | EP |
2111240 | Jun 1983 | GB |
2009229545 | Oct 2009 | JP |
2009229545 | Oct 2009 | JP |
2009276493 | Nov 2009 | JP |
200821653 | May 2008 | TW |
200179904 | Oct 2001 | WO |
200179904 | Oct 2001 | WO |
2004027485 | Apr 2004 | WO |
2008112986 | Sep 2008 | WO |
2008112986 | Sep 2008 | WO |
2009135787 | Nov 2009 | WO |
2009135787 | Nov 2009 | WO |
2010024851 | Mar 2010 | WO |
2012136702 | Oct 2012 | WO |
2012162385 | Nov 2012 | WO |
2013052070 | Apr 2013 | WO |
2014028527 | Feb 2014 | WO |
2014182351 | Nov 2014 | WO |
2015191024 | Dec 2015 | WO |
2016148741 | Sep 2016 | WO |
Entry |
---|
AFOP to Introduce LC Slimpac(TM) Uniboot Connectors as High Density Connector Solutions, Aug. 26, 2014, 1 page, https://www.marketscreener.com/ALLIANCE-FIBER-OPTIC-PROD-8289/news/Alliance-Fiber-Optic-Products-AFOP-to-introduce-LC-Slimpac-TM-Uniboot-Connectors-as-high-density-18956166. |
Shimoji et al., Development of Mini-MPO Connectory, Furukawa Reveiw, 1999, available on line at least Jul. 16, 2011. |
International Search Report and Opinion for PCT/US2018/016049 dated Apr. 13, 2018, 8 pages. |
International Search Report and Written Opinion for Application No. PCT/US17/64643, dated May 9, 2018, 10 pages. |
International Search Report and Written Opinion for Application No. PCT/US11/58799, dated Nov. 1, 2011. |
Fiber Optic Connectors and Assemblies Catalog, 2009, Huber & Suhner Fiber Optics, Herisau, Switzerland, http://www.google.co.in/uri?sa=t&source=web&cd=63&ved=0CCMQFjACODw&url=http%3A%2F%2Fwww.hubersuhner.com%2Fwrite_rtn_binary.pdf%3Fbinaryid%3D8DBC7DE2EB72D315%26binarytype%3D48403DAA363AEB7E&ei=ZvcvTujWH4ntrAfH-dXZCg&usg=AFQjCNEIMdC-4avewRJU6IDVetIWYbr0QQ. |
Fiber Optic Interconnect Solutions, Tactical Fiber Optic Connector Cables and Termini, 2006, Glenair, Inc., Glendale, California. |
Fiber Optic Products Catalog, Nov. 2007, Tyco Electronics Corporation, Harrisburg, Pennsylvania. |
International Search Report and Written Opinion for Application No. PCT/US12/039126, dated Aug. 27, 2012. |
European Search Report and Written Opinion dated Mar. 3, 2015 for EP 14187661. |
European Search Report and Written Opinion dated Feb. 19, 2015 for EP 14168005. |
“Fiber Optic Connectors and Assemblies Catalog” 2009, Huber & Suhner Fiber Optics, Herisau, Switzerland, www.google.co.in/url?sa=t&source=web&cd=63&ved=0CCMQFjACODw&url=http%3A%2F%2Fwww.hubersuhner.com%2Fwrite_rtn_binary.pdf%3Fbinaryid%3D8DBC7DE2EB72D315%26binarytype%3D48403DAA363AEB7E&ei=ZvcvTujWH4ntrAfH-dXZCg&usg=AFQjCNE1MdC-4avewRJU6IDVc___WYbr0QQ. |
“Fiber Optic Interconnect Solutions, Tactical Fiber Optic Connectors, Cables and Termini” 2006, Glenair, Inc., Glendale, California, www.mps-electronics.de/fileadmin/files/MPS-E/Produkte/Katalog/Glenair/Katalog¬Glenair¬LWL-1110.pdf. |
“Fiber Optic Products Catalog” Nov. 2007, Tyco Electronics Corporation, Harrisburg, Pennsylvania, www.ampnetconnect.com/documents/Fiber%20Optics%20Catalog%201107.pdf. |
International Search Report and Written Opinion dated Apr. 27, 2012 for PCT/US2011/058799. |
International Search Report and Written Opinion dated Aug. 27, 2012 for PCT/US2012/039126. |
International Search Report and Written Opinion dated Jan. 16, 2014 for PCT/US2013/54784. |
International Search Report and Written Opinion dated Aug. 29, 2014 for PCT/US2014/041500. |
International Search Report and Written Opinion dated May 14, 2014 for PCT/US2014/012137. |
International Search Report and Written Opinion dated Aug. 21, 2008 for PCT/US2008/057023. |
International Preliminary Report on Patentability dated Sep. 14, 2017 from related International Application No. PCT/US2015/059458, International Filing Date Nov. 6, 2015. |
International Search Report (ISR) WO2008112986 dated Sep. 15, 2009. |
ISR WO2012162385ISR Nov. 29, 2012. |
ISR WO2014028527ISR Jul. 16, 2015. |
ISR WO2015191024ISR Oct. 9, 2014. |
ISR WO2015US57610ISR Sep. 22, 2016. |
ISR WO2016176083ISR May 19, 2016. |
ISR WO2016148741ISR Sep. 22, 2016. |
Number | Date | Country | |
---|---|---|---|
20180217339 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
62452147 | Jan 2017 | US |