Remote tracking and communication device

Abstract
A remote tracking and communication device comprising a housing which encloses a processor, a memory, a position locator, a first transmitter, and a second transmitter. Each of the latter components are electronically coupled to the processor. Both the first and second transmitters are adapted to send and receive wireless voice and data signals in a digital format. The device further comprises a first battery, which is removably affixed to the housing and electronically coupled to each component within the housing, a speaker and a microphone electronically coupled to the first transmitter, and a button electronically coupled to the processor. When pressed, the button is adapted to activate voice communications with a call center using the first transmitter.
Description
TECHNICAL FIELD

The field of the present invention is remote tracking and communication devices.


BACKGROUND OF THE INVENTION

Many different devices are known for the remote tracking of individuals, cars, or the like and/or for remotely communicating with individuals. For example, standard cellular telephones allow two-way voice communication, but they are often incapable, or at least inefficient, at tracking the movement of the operating user. On the other hand, remote tracking devices are disclosed in U.S. Pat. Nos. 5,652,570, 5,731,757, 5,867,103, 6,072,396, and 6,100,806. Each of these mobile tracking devices enables the remote tracking of the unit (and the user operating or wearing the device), but they do not have two-way voice communication capabilities or have implementations of two-way voice communication capabilities which are at best awkward and require additional devices for implementation of full voice communication.


Moreover, the database systems which support such mobile tracking devices generally pass all location data obtained from the tracking devices directly through to the administrative user who requires analysis of the data. This places the task of sorting through the mountain of location data directly on the administrative user. Placing such a heavy burden on the administrative user, however, is generally undesirable and a waste of resources.


BRIEF SUMMARY OF THE INVENTION

The present invention is directed towards a remote tracking and communication device and a method of processing data generated by such a device. In a first separate aspect of the present invention, the remote tracking device comprises a housing which encloses a processor, a memory, a position locator, and first and second transmitters. Each of the latter components are electronically coupled to the processor. The first transmitter is adapted to send and receive wireless voice and data signals in a digital format. The second transmitter is also adapted to send and receive wireless voice and data signals in a digital format. The device further comprises a first battery, which is removably affixed to the housing, a speaker, a microphone, and a button for activation of voice communications with a call center using the first transmitter.


The remote tracking device may include a second battery, this one being enclosed within the housing, which is provided as a backup to the first battery. The charge on the second battery is maintained by the first battery. The remote tracking device may also include an optical transmitter and an optical receiver disposed within the housing. A strap, which includes an optical fiber and a conductor, may then have both ends affixed to the housing such that one end of the optical fiber is in alignment with the optical transmitter and the other end of the optical fiber is in alignment with the optical receiver. With this configuration, the processor may monitor optical continuity through the fiber using the optical transmitter and the optical receiver and may also monitor electrical continuity through the conductor.


In a second separate aspect of the invention, the method of processing data generated by a remote tracking device includes processing the data at the remote tracking device; initiating an alert notification at the remote tracking device when the data includes first predetermined characteristics; transmitting the data from the remote tracking device to a call center when the data includes second predetermined characteristics; directly providing notification to an administrator of the remote tracking device when the data includes third predetermined characteristics; and providing a report to the administrator which includes data generated during a predetermined time period having first or second predetermined characteristics. The third characteristics may be, and preferably are, defined by the administrator.


In a third separate aspect of the present invention, any of the foregoing aspects may be employed in combination.


Accordingly, it is an object of the present invention to provide an improved remote tracking and communication device and an improved method of processing data generated by a remote tracking and communication device. Other objects and advantages will appear hereinafter.


The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which like reference numerals refer to similar components:



FIG. 1 is a front perspective view of a remote tracking and communication device;



FIG. 2 is a rear perspective view of a remote tracking and communication device;



FIG. 3 is a partial exploded perspective view of a remote tracking and communication device;



FIG. 4A is a perspective view of an extension cover portion of a remote tracking and communication device;



FIG. 4B is a partial sectional view of an extension cover portion of a remote tracking and communication device;



FIG. 5 is a schematic view of the tamper detection system for the strap of a remote tracking and communication device;



FIG. 6 is a schematic view of the electrical components in a remote tracking and communication device;



FIG. 7 is a front perspective view of a battery charger associated with a remote tracking and communication device;



FIG. 8 is a schematic view of the electrical components in a battery charger associated with a remote tracking and communication device;



FIG. 9 is a perspective view of a peripheral associated with a remote tracking and communication device; and



FIGS. 10 & 11 are flow charts which illustrate how data from a remote tracking and communication device is processed.



FIG. 12 is a block diagram of an embodiment of a system for tracking remote tracking and communication devices according to the concepts described herein.





DETAILED DESCRIPTION OF THE INVENTION

Turning in detail to the drawings, FIG. 1 illustrates a remote tracking and communication device 10. The device 10 includes a housing 12 with a battery 14 removably affixed thereto. The single housing is configured to contain all electrical components necessary for tracking and communicating with the individual wearing the device 10. The battery 14 provides power to the electronic circuitry within the housing 12, as described below, and is preferably rechargeable. The top side 16 of the housing 12 includes a first set of through ports 18. Another side 20 of the housing 12 includes a second set of through ports 22. The first set of through ports 18 are configured to allow sound to pass through to a microphone (not shown) disposed within the housing 12, while the second set of through ports 22 are configured to allow sound to pass outward from a speaker (not shown) which is also disposed within the housing 12. The top side 16 of the housing 12 also includes two panels 24, 26, at least one of which is configured as a rocker button to activate one or more of the electronic components described below.


The back side 28 of the device 10 are shown in perspective in FIG. 2. The back side 28 includes an appropriate curvature so that the device 10 can be attached to a person's body, preferably to an ankle. The battery 14, which forms the bottom side of the device 10, includes a lever 30 which is movable to release the battery 14 from the housing 12. Each side 32, 34 of the housing includes a wing extension 36, 38, respectively. Each end of a strap 40 (partially shown) is secured within one of the wing extensions 36, 38.



FIG. 3 illustrates the manner of securing an end of the strap 40 to the wing extension 36. The strap 40 includes an optical fiber 42 and a conductive material 44 embedded throughout its length, each of which is exposed at either end of the strap 40. Each end of the strap 40 is inserted into a strap seal 46. The strap seal 46 seals the wing extension 36 against water and other external undesirable contaminants when the device 10 is fully assembled and the strap seal is compressed by the pressure block 50. The strap seal 46, with the end of the strap 40 inserted therein, is seated into the open wing extension 36 area as shown. When seated in this manner, each end is aligned with one of a light emitter/receiver (see FIG. 5), and the conductive material 44 is seated into a contact fork 48. The pressure block 50 is placed over the seated strap seal 46 and is held in place by tamper-resistant screws 52. Depending upon the application for which the device 10 is used, the screws 52 may be replaced by other appropriate fasteners. The pressure block 50 pushes a fork 54 into the optical fiber 42 to hold the optical fiber 42 in place against the light emitter/receiver. Lastly, a cover 56 is placed over the assembled wing extension 36.


The cover 56 includes designed imperfections configured to provide visual evidence of tampering, through breaking, visible deformity, or discoloration, and helps maintain an overall uniformity of look for the device 10. FIG. 4A illustrates the cover 56, which includes locking tabs 58 to prevent removal of the cover 56 once installed in place. Referring to FIG. 4B, each tab 58 includes a cut-out portion 60 near the end flange 62. Once the cover 56 is initially affixed to the housing 12 of the device 10, removal of the cover 56 will generally cause the end of the tabs 58 to break at the cut-out portion 60. The cover 56 also includes grooves 64 on the inside portion thereof as structural weak points. These grooves 64 are designed to break or become visibly deformed upon any force to remove the cover 56 once it is installed in place. Both of these features provide visible evidence of attempted efforts to tamper with the cover 56 once it is securely attached to an individual.



FIG. 5 illustrates the connection between the strap and the internal electronic components of the remote tracking and communication device. Internal to the device is a main PCB 70, to which the light emitter 72, the light receiver 74, an electrical signal emitter 76, and an electrical signal receiver 78 are affixed. Other electrical components within the housing are also affixed to the main PCB 70, or alternatively, may be affixed to one or more secondary PCBs that are electrically connected with the main PCB 70. As shown, the optical fiber 42 included in the strap (not shown) runs from the light emitter 72 to the light receiver 74 when the strap is secured to the device. With such a configuration, a “light circuit” is created between the PCB 70 and the strap, and this “light circuit” can be monitored for optical continuity to ensure that the strap remains in place and has not been tampered with by the wearer. Likewise, the conductive material 44 in the strap runs from the electrical signal emitter 76 to the electrical signal receiver 78. This configuration creates a more common electrical circuit which can be monitored for electrical continuity to detect tampering.


Additional tamper detection may be achieved through monitoring all externally accessible fasteners, e.g., the screws affixing the pressure block to the housing, the external battery, and the like, for electrical continuity by using each fastener to complete, or be a part of, an electrical circuit.


Turning to FIG. 6, the electronic components of the remote tracking and communication device are communicably and electronically connected as illustrated. The type of connection between the various components is a matter of design choice, and may vary depending upon the specific component chosen to perform for a particular function. Further, where a specific component is indicated, those skilled in the art will appreciate that the indicated component may be substituted with other, functionally equivalent components that are readily available in the marketplace.


The microprocessor 90 controls overall operation of the device according to programming stored in the SRAM memory 92. One or more switches (or buttons) 94 are included for activation of pre-designated functionalities of the microprocessor 90 and other electronic components. Preferably, no more than two switches are included, with one of the two switches being dedicated for activation of voice communications with a call center. LEDs 96 are also included as function indicators. The programming stored in the SRAM 92 memory may be placed there at the time of manufacture, or it may be uploaded to the device using a wired connection via the included diagnostic interface 98 or the user interface 100, or wirelessly via the cellular transceiver 102 and the associated antenna 104. As shown, the cellular transceiver 102 is of the GSM/GPRS variety, and thus includes a SIM card 106. The cellular transceiver 102 enables two-way voice and data communications between the remote device and a call center. Voice communications are further enabled by a direct connection between the cellular transceiver 102 and the audio codec 108, which encodes and decodes the digital audio signal portion of the wireless transmission, and the associated speaker 110 and microphone 112. Speaker 110 may also be used as a siren or a separate siren 132 may be employed. Tamper Detection circuitry 134, as described with reference to FIG. 5, is also connected to microprocessor 90. Data communications are preferably enabled using the cellular data channel and/or the cellular control channel, via short message service (SMS). This provides redundancy for cellular systems in which service for both types of data communication is supported. Also, for those cellular systems in which the voice channel cannot be used simultaneously with the data channel, or in which the data channel is simply unavailable, the control channel provides a data link between the call center and the device.


A short range wireless transceiver 114 and associated antenna 116 are included for short range wireless voice and data communications with peripheral devices. Preferably, this second wireless transceiver 114 utilizes the wireless communications standard published by the ZigBee Alliance, information about which may be found at www.zigbee.org. The second wireless transceiver 114, however, may be designed and implemented using alternative wireless communication standards. The microprocessor 90 is programmed to pass through voice communications received by the cellular transceiver 102 to a voice-capable peripheral when such a peripheral is employed in conjunction with the remote tracking and communication device and is activated. Likewise, voice communications received from the peripheral are passed through to the cellular transceiver 102 for retransmission. Data received from such a peripheral, if any, may be stored by the microprocessor 90 in the serial flash memory 118 until additional processing is required by the microprocessor 90 or until retransmission occurs.


A GPS receiver 120 and associated GPS antenna 122 are included for establishing the geographical location of the remote tracking and communication device (and its wearer/user). Data from the GPS receiver 120 is received and passed through to the microprocessor 90, which in turn processes the data as required by the programming (described in more detail below) and stores it in the serial flash memory 118 pending transmission via the cellular transceiver 102. The cellular transceiver 102 may also be used to geographically locate the device through well known methods of cell tower triangulation. Geographical location using the cellular transceiver 102 may be performed in addition to or as a substitute for the GPS receiver 120. Other known ground-based methods for geographically locating the device may also be employed.


Power to the processor 90 and other electronic components is provided through a power controller 124 by an external battery 126, and if necessary, an internal battery 128. The external battery 126 is external to the housing (see FIG. 1) in which the other electronic components are enclosed. This battery is removable and is preferably rechargeable by a separate recharger unit. The internal battery 128 is internal to the housing. Power levels on the internal battery 128 are maintained and recharged using power from the external battery 126 and a battery recharger 130, which is also internal to the device. In this configuration, the internal battery 128 provides power backup during times when the external battery 126 is disconnected or depleted. Preferably, every remote tracking and communication device is associated with one or more spare external batteries so that the internal battery need only power the device during the short times, e.g., no more than one or two hours, the external batteries are exchanged. This eliminates the need to have an internal battery with a large power storage capacity.


The external battery recharging unit 140 is illustrated in FIG. 7. This battery recharging unit 140 is configured so that two external batteries may be simultaneously charged. As shown, one external battery 142 is coupled to one side of the recharging unit 140. Coupling flanges 144 are included on the sides of the recharging unit 140 so that the batteries may be attached and recharged.


The circuitry within the external battery recharging unit is illustrated in FIG. 8. The power regulator 150 powers each of two battery recharging terminals 152, 154. LEDs 157 are provided to indicate the charging status of the batteries. A microprocessor 156 is also powered by the power regulator 150. A short range wireless transceiver 158 and associated antenna 160 communicate with the microprocessor 156. The short range wireless transceiver is configured to use the same wireless communications standard as the remote tracking and communication device to enable wireless voice and data communications between the device and the battery recharging unit. Voice and/or data communications received by the short range wireless transceiver 158 are passed through to the modem 162 for retransmission over an incoming POTS line terminal 164. For convenience, the modem passes through the incoming POTS line to an outgoing POTS line terminal 166 so that a telephone may remain connected to the POTS line. When the battery recharging unit and the associated remote tracking and communication device are used in a location where no cellular service exists, the device may be programmed to utilize its own internal short range wireless transceiver to establish voice and/or data communications with the call center through the POTS line connected to the battery recharging unit.



FIG. 9 illustrates a peripheral 170 which may be used in conjunction with the remote tracking and communication device. This peripheral 170 has the form factor of a watch and includes an internal speaker, an internal microphone, and an internal short range wireless transceiver, each component in electronic communication with the other components. The microphone and speaker are positioned opposite through ports 172, 174, respectively, in the housing of the peripheral to better enable voice communications using the peripheral 170. The short range wireless transceiver is configured to use the same wireless communications standard as the remote tracking and communication device to enable wireless voice and data communications between the device and the peripheral 170. A button 176 is included which, when pressed, causes a command signal to be sent to the remote tracking and communication device. This command signal instructs the remote tracking and communication device to initiate two-way voice communications with the call center. When the peripheral 170 is used for such voice communications, the peripheral 170 communicates wirelessly with the device using the respective short range wireless transceiver of each respective unit, and the device uses the included cellular transceiver to connect the voice communications with the call center.


Using the electronics configuration described above, the remote tracking and communication device may be programmed with a variety of useful features. One such feature is the ability to track the geographical location of the individual wearing the device. Most frequently, the GPS receiver is used to determine the location of the device (and thus the wearer) at the time indicated in the GPS signals received from GPS network satellites. When the GPS is unable to determine location, the cellular transceiver may be used to determine the location of the device using well-known cellular tower triangulation techniques. Once identified, the location of the device is passed to the microprocessor, which processes the data according to its programming and stores the data in the flash memory. The stored data is periodically transmitted to a central server.


Where the device is used to track the location and movement of an individual the microprocessor is programmed to compare location data against rules which establish curfews, inclusion zones, exclusion zones. A curfew is defined by a geographical area within which the device (and thus the wearer) needs to be physically located during specified times. Examples of curfew rules include requiring the wearer to be at a home area during the evening and overnight hours or at a work area during work hours. An inclusion zone is a geographical area within which the wearer is required to remain at all times. An exclusion zone is a geographical area outside of which the wearer is required at all times. The rules are generally established for any particular device at the time of initialization, however, the rules may be changed, or even temporarily suspended, at any time through revisions to the programming stored within the device. Such revisions may be implemented through direct connections to the diagnostic or user interface components of the device, or through the wireless data connection provided by the cellular transceiver.


In another such feature, the SRAM memory is utilized to store prerecorded voice messages or other audio which provide feedback during operation of the device. Prerecorded voice messages, however, are preferred because they do not require a reference manual or other crib sheet for interpretation. Voice message feedback may be advantageously utilized during initial setup of the device in that it provides step-by-step instructions for the setup routine, including directing the administrative user to input information about the device and user into the database via the web application described below. Voice message feedback may be similarly utilized during the detachment process to ensure that the device is removed by an authorized individual. During the removal process, if the audible instructions are not followed, i.e., inputting requested information into the database, then the device is preferably programmed to generate an alarm, which is processed as described below.


Following the initial power-up sequence, the device may be programmed to establish a data connection with a central server to which the device provides device-specific identification data. This eliminates any need for the administrative user to connect the device to a local computer or terminal for the initialization process. The central server is programmed to maintain a database of data sent by tracking and communication devices. Upon initial contact, the central server creates a database entry using the device-specific identification data.


The administrative user is provided access to data on the central server via a computer or terminal. In instances where the device is used as a tracking device for offenders, the administrative user may be the supervision officer or other authority figure. For other service applications, the administrative user and the wearer may be the same individual. Access to the database may be advantageously implemented as a web application, or it may be implemented as a stand alone application. The administrative user accesses the database entry for the specific device by entering an identification code for that device. The administrative user is then presented with the opportunity to create an association in the database between the administrative user's account and that specific device. Thereafter, when accessing the database, the administrative user is preferably presented with a list of associated devices and no longer needs to enter device identification data to retrieve device-specific data. Once the administrative user has established the association with the device, the pre-recorded voice messages provide instructions for additional data for entry into the database. This additional data may include detailed personal and medical information about the individual wearing the device and, in the case where the wearer is an offender, detailed information regarding the rules for curfews, inclusion zones, exclusion zones, or any other information which is time and/or location related and is useable to control the activities of the offender. The rules established for a particular device are stored in the database and downloaded to the device so that the device can actively monitor for rule violations. Methods of designating rules for purposes of tracking are well known, see, e.g., U.S. Pat. Nos. 5,652,570, 5,731,757, 5,867,103, 6,072,396, and 6,100,806, and thus not discussed in detail herein.


In addition, prerecorded voice messages may also walk the administrative user through affixing the device to the wearer using the tamper resistant strap. As the strap is affixed, the device audibly confirms successful service operation, e.g. that optical continuity is established through the optical fiber in the strap and that electrical continuity is established through the conductive material in the strap.


Once the initialization process is complete, the GPS receiver begins identifying the geographical location of the device, and the microprocessor processes and stores that location data according to its programming. The device may be programmed such that geographical location is continuously monitored or monitored at specified intervals. With an appropriate peripheral, the device may also be programmed to monitor physiological conditions of the wearer. In addition, the microprocessor actively monitors other components of the device for indications of tampering, battery exchanges/replacements, and equipment failure. FIG. 10 illustrates the process with which the microprocessor processes monitored conditions. The microprocessor is programmed to collect and store location data and data related to other monitored conditions in the flash memory step 190. The microprocessor is further programmed to perform additional functions based upon application of the rules to the data collected, upon occurrence of a particular condition (such as, e.g., when tampering is detected or when the wearer's heartbeat is irregular or no longer detectable, the latter requiring a separate peripheral), or at predetermined intervals step 192. When an alarm condition is raised or action is otherwise required step 194, whether because the action is preprogrammed or the action is the result of a command received from the central server, the call center, or the administrative user, the microprocessor proceeds through a series of steps to determine the reaction. It should be noted that the reaction of the microprocessor is preferably entirely programmable by the administrative user through the web application or through a direct interface connection to the device. Options for the reaction include immediately initiating a data connection with the central server to transmit data relating to an alarm or data that is stored in memory step 196, producing an audible alert using the pre-recorded audio stored in memory step 198, playing one of the pre-recorded messages step 200, initiating voice communications with the call center step 202, or take some other action step 204. Other actions may include, among other things, storing data related to an alarm in memory for transmission at a later time, storing updated rules data to memory, or suspending rule violations notification for a period of time.


In instances where the location data indicates the device is located outside of a geographical location permitted by the rules, the microprocessor preferably provides audio feedback, in the form of a siren or a prerecorded message, to the wearer of the rule violation and immediately sends notice of the rule violation to the central server for additional processing. Such a notice preferably includes the geographical location of the device, the time of the location, and an indicator of the rule violated.



FIG. 11 illustrates the method of processing data from the device when it is received at the central server. Initially, the central server determines if the data includes information that was expressly requested by an operator at the call center or by the administrative user step 210, and if so, the data is relayed to the operator or administrative user for display at a computer or terminal step 212. Next, the central server determines if the data includes a standard tracer record step 214, which may include self-identification of the device, self-diagnostic reports, upload audit logs, component version identification, confirmation of parameter changes such as volume control, suspending audible alarms at the device, activating or deactivating the speaker, and the like. Standard tracer records are processed as necessary and noted in the database step 216. If the data does not include a tracer record, the central server determines if the data is an indicator of an alarm condition step 218. If the data is indicative of an alarm condition, the central server determines if the alarm is a repeat of an alarm which was previously received and reported step 220. For alarms that were not previously received, the central server takes the appropriate notification action as programmed by the administrative user step 222. If the data is not indicative of an alarm condition, the central server determines whether the individual wearing the device is subject to geographical location rules step 224. In such instances, the central server determines whether a rule has, in fact, been violated step 226 and determines if an alarm condition exists step 228. When an alarm condition is raised, the central server first if the alarm is a repeat of a previous alarm step 230, and if so, takes the appropriate notification action as programmed by the administrative user step 232. When immediate administrative user notification is not required, or no alarm condition is raised, the data is stored in the database step 234 and reported to the administrative user in periodic reports which at least lists all alarm conditions received since provision of the last report. All recorded data may optionally be included in the report.


The notification actions are fully configurable by the administrative user through the web application. The administrative user may designate specific types of alarms for immediate notification, and notification may be arranged through one or more methods including fax, email, text messaging to a pager, text messaging to a cellular phone, or through a direct call from the call center, or the like. In addition, the administrative user may also designate that some specific types of alarms result in direct notification to local authorities for immediate action.


The web application also provides the administrative user with the ability to temporarily suspend reactions to specific types of alarms. During suspension, the device will suspend localized reactions only (i.e., pre-recorded voice messages, siren, initiating voice communications with the call center). The device will still transmit all alarms identified during suspension to the central server, which will in turn include all identified alarms in the periodic reports (e.g., weekly) to the administrative user.


The web application also provides the administrative user and call center operators with the ability to enter and store notes. Notes may be in the form of personal daily monitoring logs, calendared appointments or action items, case management directives, or contextual notations related to particular alarms saved within the database.


Another feature of the central server is to enable the call center or the administrative user, through the web application, to send commands or other data to the device. Such commands may include playing a pre-recorded message to the wearer, instructing the microprocessor to transmit data to provide a current status of the location and status of the device, and the like. The administrative user may also use the web application to instruct the call center to initiate voice communications with the wearer. The call center then contacts the wearer by placing a cellular call to the cellular transceiver. Once the wearer is contacted, the call center then initiates a call to the administrative user and conferences the two calls.


Preferably, all voice communications with the device are made through the call center so that all calls can be recorded and saved within the database. This enables the call center and the administrative user to access the recorded calls at a later time as needed. To ensure that all calls are recorded, the cellular transceiver blocks all incoming calls that do not originate from the call center. Alternatively, the cellular transceiver may selectively block incoming calls by utilizing the area code and telephone prefix to identify the origin of the call, allowing calls only from selected area codes and prefixes. Alternatively, the cellular transceiver may selectively block all calls except those from list of phone numbers that is stored in memory.


The wearer may also initiate voice communications with the call center. At least one of the buttons on the exterior of the device housing is configured to activate voice communications using the cellular transceiver. When pressed, the device is programmed such that cellular transceiver only contacts the call center. The device preferably has stored in memory a primary number for the call center and a secondary number in case a connection cannot be achieved on the primary number. Further, the device is programmed to attempt make a predetermined number of attempts to contact the call center, first at the primary number, then at the secondary number. Should all attempts fail, the device is preferably programmed to sound an alert condition to the wearer as an indication that the device is out of a cellular service area or requires service for an internal fault.



FIG. 12 shows a system 300 for tracking remote tracking devices as described herein. Each remote tracking device (RTD) 304, 306, 308 and 316 communicate with a locationing network, such as GPS network 318 to determine their position. Additionally, RTDs 304, 306 and 308 communicate over a communications network, such as cellular network 310 and communications network 312 to send position status, and other data, to call center 302. Call center 302 may also send data to RTDs 304, 306 and 308 over the cellular network 310, 312, and voice communications may be established between the call center and any of the RTDs using the same. Call center 302 can also communicate with RTDs, as shown here by RTD 316, using a recharging unit, such as is described with reference to FIGS. 7 and 8. Recharging unit 314 communicates wirelessly with an RTD in range and then can use a plain old telephone (POTS) line 328 to communicate with call center 302. Peripheral 330, such as is described with reference to FIG. 9, can be used with an RTD. Call center 302 may communicate with the administrators, as is illustrated by administrators 320, 322 and 324, of the RTDs over communications network 326.


Thus, an improved remote tracking and communication device and an improved method of processing data generated by a remote tracking and communication device are disclosed. While embodiments of this invention have been shown and described, it will be apparent to those skilled in the art that many more modifications are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the following claims.


Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims
  • 1. A device for enabling a call center to perform remote tracking of and communication with a user, the device comprising: a housing enclosing:a processor;a position locator electronically coupled to the processor;a first transmitter electronically coupled to the processor, the first transmitter being adapted to send and receive wireless voice and data signals;a speaker operable to play at least one of one or more audible messages or one or more audible tones from the processor and to enable voice communications using the first transmitter; andtamper detection circuitry contained at least partially within the housing and operably coupled to the processor, the tamper detection circuitry being operably configured to detect a discontinuity in one or more circuits passing outside of the housing and that form part of the tamper detection circuitry;a microphone operable with the speaker to enable voice communications using the first transmitter;a button in the housing, wherein the button is adapted to activate voice communications with the call center using the first transmitter;a tamper resistant strap coupled to the housing of the tracking device and adapted to affix the tracking device securely to the user;a first circuit element passing through the length of the tamper resistant strap, the first circuit element composing a part of the tamper detection circuitry that is contained at least partially within the housing; anda second circuit element passing through the length of the tamper resistant strap, the second circuit element composing a part of the tamper detection circuitry that is contained at least partially within the housing.
  • 2. The device of claim 1, wherein the first and second circuit elements are separated within the tamper resistant strap.
  • 3. The device of claim 1, wherein the first and second circuit elements are composed of different materials.
  • 4. The device of claim 1, wherein the first and second circuit elements are configured to carry different types of circuit signals.
  • 5. The device of claim 1, wherein the first circuit element is an optical fiber.
  • 6. The device of claim 1, wherein the second circuit element is an electrically conductive material.
  • 7. The device of claim 1, wherein the tamper detection circuitry includes at least one optical receiver and at least one light emitter coupled to at least one of the first and second circuit elements.
  • 8. The device of claim 1, wherein the tamper detection circuitry includes at least one electrical signal emitter and at least electrical signal receiver coupled to at least one of the first and second circuit elements.
  • 9. The device of claim 1, wherein the tamper detection circuitry includes: at least one electrical signal emitter and at least electrical signal receiver coupled to the first circuit element; andat least one optical receiver and at least one light emitter coupled to the second circuit element.
  • 10. The device of claim 1, wherein the tamper detection circuitry monitors signal continuity through a first circuit, which includes the first circuit element, and through a second circuit, which includes the second circuit element.
  • 11. The device of claim 10, wherein the tamper detection circuitry also monitors continuity through a third circuit which includes a fastener that is affixed to the housing or which uses the fastener to complete the third circuit.
  • 12. The device of claim 11, wherein the at least one fastener is a screw.
  • 13. The device of claim 12, wherein the screw is connected to the housing in such a way as to help affix a pressure block to the housing.
  • 14. A device for enabling a call center to perform remote tracking of and communication with a user, the device comprising: a housing enclosing:a processor;a position locator electronically coupled to the processor;a first transmitter electronically coupled to the processor, the first transmitter being adapted to send and receive wireless voice and data signals;a speaker operable to play at least one of one or more audible messages or one or more audible tones from the processor and to enable voice communications using the first transmitter; andtamper detection circuitry contained within the housing and operably coupled to the processor, the tamper detection circuitry being operably configured to detect a discontinuity in one or more circuits of the tamper detection circuitry;a microphone operable with the speaker to enable voice communications using the first transmitter;a button in the housing, wherein the button is adapted to activate voice communications with the call center using the first transmitter;a tamper resistant strap coupled to the housing of the tracking device and adapted to affix the tracking device securely to the user; anda fastener which composes part of, and thereby serves to complete, a circuit of the tamper detection circuitry, wherein the fastener is affixed to the housing in such a way as to connect the tamper resistant strap to the housing.
  • 15. The device of claim 14, wherein the device further includes a pressure block to interconnect the housing and the tamper resistant strap.
  • 16. The device of claim 15, wherein the fastener is a screw which is used to mount the pressure block to the housing.
  • 17. The device of claim 16, wherein the device further includes: a first circuit element passing through the length of the tamper resistant strap and being connected to the tamper detection circuitry.
  • 18. The device of claim 17, wherein the device further includes: a second circuit element passing through the length of the tamper resistant strap and being connected to the tamper detection circuitry and which is offset from the first circuit element within the tamper resistant strap.
  • 19. A method comprising: using a tracking device to identify an alarm condition, wherein the tracking device comprises:a housing enclosing:a processor;a position locator electronically coupled to the processor;an optical transmitter electronically coupled to the processor;an optical receiver electronically coupled to the processor;a first transmitter electronically coupled to the processor, the first transmitter being adapted to send and receive wireless voice and data signals; anda speaker operable to play at least one of one or more audible messages or one or more audible tones from the processor and to enable voice communications using the first transmitter;a microphone operable with the speaker to enable voice communications, between the tracking device and a call center, using the first transmitter;a button in the housing, wherein the button is adapted to activate voice communications with the call center using the first transmitter; anda tamper resistant strap coupled to the tracking device and adapted to affix the tracking device securely to a user.
  • 20. The method of claim 19, wherein the alarm condition is identified in response to at least one of the following: detecting the tracking device is located within a particular exclusion zone;detecting the tracking device is located outside of a particular inclusion zone; orthe tracking device has been or is being tampered with.
  • 21. The method of claim 19, wherein the method further includes initiating an alert at the tracking device in response to the alarm condition.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/028,088 filed Feb. 8, 2008, and entitled “REMOTE TRACKING AND COMMUNICATION DEVICE, which is a continuation of U.S. patent application Ser. No. 11/202,427 filed Aug. 10, 2005, now issued as U.S. Pat. No. 7,330,122, and entitled “REMOTE TRACKING AND COMMUNICATION DEVICE”. All of the foregoing applications are incorporated herein by reference in their entireties.

US Referenced Citations (523)
Number Name Date Kind
2986543 Daniel May 1961 A
3210747 Clynes Oct 1965 A
3440633 Vinding Apr 1969 A
3462692 Bartlett Aug 1969 A
3478344 Schwitzgebel Nov 1969 A
3568161 Knickel Mar 1971 A
3572316 Vogelman Mar 1971 A
3609741 Miller Sep 1971 A
3639907 Greatbatch Feb 1972 A
3656456 Stigmark Apr 1972 A
3665448 McGlinchey May 1972 A
3743865 Reichmann Jul 1973 A
3758855 Meyer Sep 1973 A
3764819 Muller Oct 1973 A
3876890 Brown Apr 1975 A
3882277 DePedro May 1975 A
3898472 Long Aug 1975 A
3898984 Mandel Aug 1975 A
3914692 Seaborn Oct 1975 A
3925763 Wadhwani Dec 1975 A
3930249 Steck Dec 1975 A
3972320 Kalman Aug 1976 A
3973208 Diamond Aug 1976 A
3983483 Pando Sep 1976 A
4095214 Minasy Jun 1978 A
4110741 Hubert Aug 1978 A
4157540 Oros Jun 1979 A
4234840 Konrad Nov 1980 A
4237344 Moore Dec 1980 A
4258709 Flack Mar 1981 A
4259665 Manning Mar 1981 A
4275385 White Jun 1981 A
4285732 Charles Aug 1981 A
4293852 Rogers Oct 1981 A
4295132 Burney Oct 1981 A
4309697 Weaver Jan 1982 A
4316134 Balan Feb 1982 A
4319241 Mount Mar 1982 A
4331161 Patel May 1982 A
4342986 Buskirk Aug 1982 A
4359733 O'Neill Nov 1982 A
4445118 Taylor Apr 1984 A
4446454 Pyle May 1984 A
4523184 Abel Jun 1985 A
4536755 Holzgang Aug 1985 A
4549169 Moura Oct 1985 A
4558309 Antonevich Dec 1985 A
4559526 Tani Dec 1985 A
4578539 Townsing Mar 1986 A
4591661 Benedetto May 1986 A
4596988 Wanka Jun 1986 A
4598272 Cox Jul 1986 A
4598275 Ross Jul 1986 A
4622544 Bially Nov 1986 A
4630035 Stahl Dec 1986 A
4651157 Gray Mar 1987 A
4665370 Holland May 1987 A
4665385 Henderson May 1987 A
4665387 Cooper May 1987 A
4667203 Counselman May 1987 A
4673936 Kotoh Jun 1987 A
4675656 Narcisse Jun 1987 A
4682155 Shirley Jul 1987 A
4701760 Raoux Oct 1987 A
4728959 Maloney Mar 1988 A
4731613 Endo Mar 1988 A
4736196 McMahon Apr 1988 A
4737976 Borth Apr 1988 A
4740792 Sagey Apr 1988 A
4741245 Malone May 1988 A
4742336 Hall May 1988 A
4742357 Rackley May 1988 A
4747120 Foley May 1988 A
4750197 Denekamp Jun 1988 A
4751512 Longaker Jun 1988 A
4754283 Fowler Jun 1988 A
4754465 Trimble Jun 1988 A
4764757 DeMarco Aug 1988 A
4777477 Watson Oct 1988 A
4791572 Green Dec 1988 A
4809005 Counselman Feb 1989 A
4812823 Dickerson Mar 1989 A
4812991 Hatch Mar 1989 A
4819053 Halavais Apr 1989 A
4819162 Webb Apr 1989 A
4819860 Hargrove Apr 1989 A
4820966 Fridman Apr 1989 A
4825457 Lebowitz Apr 1989 A
4833477 Tendler May 1989 A
4837568 Snaper Jun 1989 A
4843377 Fuller Jun 1989 A
4864277 Goodman Sep 1989 A
4885571 Pauley Dec 1989 A
4888716 Ueno Dec 1989 A
4891650 Sheffer Jan 1990 A
4891761 Gray Jan 1990 A
4894662 Counselman Jan 1990 A
4897642 Dilullo Jan 1990 A
4903212 Yokouchi Feb 1990 A
4907290 Crompton Mar 1990 A
4908629 Apsell Mar 1990 A
4912756 Hop Mar 1990 A
4916435 Fuller Apr 1990 A
4918425 Greenberg Apr 1990 A
4918432 Pauley Apr 1990 A
4924699 Kuroda May 1990 A
4928107 Kuroda May 1990 A
4952913 Pauley Aug 1990 A
4952928 Carroll Aug 1990 A
4953198 Daly Aug 1990 A
4956861 Kondo Sep 1990 A
4961212 Marui Oct 1990 A
4965548 Fayfield Oct 1990 A
4980671 McCurdy Dec 1990 A
4983980 Ando Jan 1991 A
4993061 Hsieh Feb 1991 A
4996161 Conners Feb 1991 A
4999613 Williamson Mar 1991 A
5003317 Gray Mar 1991 A
5003595 Collins Mar 1991 A
5008930 Gawrys Apr 1991 A
5014040 Weaver May 1991 A
5014066 Counselman May 1991 A
5014206 Scribner May 1991 A
5019802 Brittain May 1991 A
5019828 Schoolman May 1991 A
5021794 Lawrence Jun 1991 A
5023904 Kaplan Jun 1991 A
5025253 Dilullo Jun 1991 A
5025261 Ohta Jun 1991 A
5032823 Bower Jul 1991 A
5032845 Velasco Jul 1991 A
5043736 Darnell Aug 1991 A
5055851 Sheffer Oct 1991 A
5075670 Bower Dec 1991 A
5077788 Cook Dec 1991 A
5081667 Drori Jan 1992 A
5115223 Moody May 1992 A
5117222 McCurdy May 1992 A
5119102 Barnard Jun 1992 A
5131020 Liebesny Jul 1992 A
5146207 Henry Sep 1992 A
5146231 Ghaem Sep 1992 A
5148471 Metroka Sep 1992 A
5148473 Freeland Sep 1992 A
5155689 Wortham Oct 1992 A
5170426 D'Alessio Dec 1992 A
5179519 Adachi Jan 1993 A
5182543 Siegel Jan 1993 A
5193215 Olmer Mar 1993 A
5198831 Burrell Mar 1993 A
5203009 Bogusz Apr 1993 A
5204670 Stinton Apr 1993 A
5206897 Goudreau Apr 1993 A
5218344 Ricketts Jun 1993 A
5218367 Sheffer Jun 1993 A
5220509 Takemura Jun 1993 A
5223844 Mansell Jun 1993 A
5225842 Brown Jul 1993 A
5235320 Romano Aug 1993 A
5235633 Dennison Aug 1993 A
5243652 Teare Sep 1993 A
5247564 Zicker Sep 1993 A
5255183 Katz Oct 1993 A
5255306 Melton Oct 1993 A
5257195 Hirata Oct 1993 A
5266944 Carroll Nov 1993 A
5266958 Durboraw Nov 1993 A
5268845 Startup Dec 1993 A
5274695 Green Dec 1993 A
5278539 Lauterbach Jan 1994 A
5297186 Dong Mar 1994 A
5298884 Gilmore Mar 1994 A
5299132 Wortham Mar 1994 A
5305370 Kearns Apr 1994 A
5307277 Hirano Apr 1994 A
5311197 Sorden May 1994 A
5311374 Oh May 1994 A
5317309 Vercellotti May 1994 A
5317620 Smith May 1994 A
5319374 Desai Jun 1994 A
5319698 Glidewell Jun 1994 A
5334974 Simms Aug 1994 A
5334986 Fernhout Aug 1994 A
5349530 Odagawa Sep 1994 A
5353376 Oh Oct 1994 A
5355140 Slavin Oct 1994 A
5357560 Nykerk Oct 1994 A
5365451 Wang Nov 1994 A
5365570 Boubelik Nov 1994 A
5367524 Rideout Nov 1994 A
5369699 Page Nov 1994 A
5374933 Kao Dec 1994 A
5377256 Franklin Dec 1994 A
5379224 Brown Jan 1995 A
5388147 Grimes Feb 1995 A
5389934 Kass Feb 1995 A
5392052 Eberwine Feb 1995 A
5394333 Kao Feb 1995 A
5396227 Carroll Mar 1995 A
5396516 Padovani Mar 1995 A
5396540 Gooch Mar 1995 A
5398190 Wortham Mar 1995 A
5402466 Delahanty Mar 1995 A
5416468 Baumann May 1995 A
5416695 Stutman May 1995 A
5416808 Witsaman May 1995 A
5418537 Bird May 1995 A
5422816 Sprague Jun 1995 A
5426425 Conrad Jun 1995 A
5428546 Shah Jun 1995 A
5430656 Dekel Jul 1995 A
5437278 Wilk Aug 1995 A
5438315 Nix Aug 1995 A
5444430 Mcshane Aug 1995 A
5448221 Weller Sep 1995 A
5451948 Jekel Sep 1995 A
5461365 Schlager Oct 1995 A
5461390 Hoshen Oct 1995 A
5465388 Zicker Nov 1995 A
5475751 McMonagle Dec 1995 A
5479149 Pike Dec 1995 A
5479479 Braitberg Dec 1995 A
5479482 Grimes Dec 1995 A
5485385 Mitsugi Jan 1996 A
5490200 Snyder Feb 1996 A
5493692 Theimer Feb 1996 A
5493694 Vicek Feb 1996 A
5497148 Olivia Mar 1996 A
5497149 Fast Mar 1996 A
5504482 Schreder Apr 1996 A
5510797 Abraham Apr 1996 A
5512879 Stokes Apr 1996 A
5513111 Wortham Apr 1996 A
5515043 Bernard May 1996 A
5515062 Maine May 1996 A
5515285 Garrett May 1996 A
5517419 Lanckton May 1996 A
5518402 Tommarello May 1996 A
5519380 Edwards May 1996 A
5519403 Bickley May 1996 A
5519621 Wortham May 1996 A
5523740 Burgmann Jun 1996 A
5525967 Azizi Jun 1996 A
5525969 LaDue Jun 1996 A
5528248 Steiner Jun 1996 A
5532690 Hertel Jul 1996 A
5537102 Pinnow Jul 1996 A
5541845 Klein Jul 1996 A
5542100 Hatakeyama Jul 1996 A
5543780 Mcauley Aug 1996 A
5544661 Davis Aug 1996 A
5546445 Dennison Aug 1996 A
5550551 Alesio Aug 1996 A
5552772 Janky Sep 1996 A
5555286 Tendler Sep 1996 A
5557254 Johnson Sep 1996 A
5559491 Stadler Sep 1996 A
5559497 Hong Sep 1996 A
5563931 Bishop Oct 1996 A
5568119 Schnipper Oct 1996 A
5572204 Timm Nov 1996 A
5572217 Flawn Nov 1996 A
5574649 Levy Nov 1996 A
5576716 Sadler Nov 1996 A
5587715 Lewis Dec 1996 A
5588038 Snyder Dec 1996 A
5589834 Weinberg Dec 1996 A
5594425 Ladner Jan 1997 A
5594650 Shah Jan 1997 A
5596262 Boll Jan 1997 A
5596313 Berglund Jan 1997 A
5598151 Torii Jan 1997 A
5600230 Dunstan Feb 1997 A
5602739 Haagenstad Feb 1997 A
5612675 Jennings Mar 1997 A
5617317 Ignagni Apr 1997 A
5621388 Sherburne Apr 1997 A
5625668 Loomis Apr 1997 A
5627520 Grubbs May 1997 A
5627548 Woo May 1997 A
5629693 Janky May 1997 A
5630206 Urban May 1997 A
5644317 Weston Jul 1997 A
5646593 Hughes Jul 1997 A
5650770 Schlager Jul 1997 A
5652570 Lepkofker Jul 1997 A
5673035 Huang Sep 1997 A
5673305 Ross Sep 1997 A
5677521 Garrou Oct 1997 A
5682133 Johnson Oct 1997 A
5682142 Loosmore Oct 1997 A
5684828 Bolan Nov 1997 A
5686910 Timm Nov 1997 A
5686924 Trimble Nov 1997 A
5687215 Timm Nov 1997 A
5694452 Bertolet Dec 1997 A
5699256 Shibuya Dec 1997 A
5703598 Emmons Dec 1997 A
5705980 Shapiro Jan 1998 A
5712619 Simkin Jan 1998 A
5715277 Goodson Feb 1998 A
5721678 Widl Feb 1998 A
5722081 Tamura Feb 1998 A
5722418 Bro Mar 1998 A
5724316 Brunts Mar 1998 A
5726893 Schuchman Mar 1998 A
5727057 Emery Mar 1998 A
5731757 Layson Mar 1998 A
5732076 Ketseoglou Mar 1998 A
5736962 Tendler Apr 1998 A
5740049 Kaise Apr 1998 A
5740532 Fernandez Apr 1998 A
5740547 Kull Apr 1998 A
5742233 Hoffman Apr 1998 A
5742509 Goldberg Apr 1998 A
5742666 Alpert Apr 1998 A
5742686 Finley Apr 1998 A
5742904 Pinder Apr 1998 A
5745037 Guthrie Apr 1998 A
5745849 Britton Apr 1998 A
5745868 Geier Apr 1998 A
5748089 Sizemore May 1998 A
5748148 Heiser May 1998 A
5751246 Hertel May 1998 A
5752976 Duffin May 1998 A
5757367 Kapoor May 1998 A
5760692 Block Jun 1998 A
5767788 Ness Jun 1998 A
5771002 Creek Jun 1998 A
5774825 Reynolds Jun 1998 A
5777580 Janky Jul 1998 A
5781101 Stephen Jul 1998 A
5784029 Geier Jul 1998 A
5786789 Janky Jul 1998 A
5790022 Delvecchio Aug 1998 A
5790974 Tognazzini Aug 1998 A
5793283 Davis Aug 1998 A
5793630 Theimer Aug 1998 A
5794174 Janky Aug 1998 A
5796613 Kato Aug 1998 A
5796777 Terlep Aug 1998 A
5797091 Clise Aug 1998 A
5805055 Colizza Sep 1998 A
5809426 Radojevic Sep 1998 A
5809520 Edwards Sep 1998 A
5811886 Majmudar Sep 1998 A
5815118 Schipper Sep 1998 A
5818333 Yaffe Oct 1998 A
5819864 Koike Oct 1998 A
5825283 Camhi Oct 1998 A
5825327 Krasner Oct 1998 A
5825871 Mark Oct 1998 A
5828292 Kokhan Oct 1998 A
5831535 Reisman Nov 1998 A
5835017 Ohkura Nov 1998 A
5835907 Newman Nov 1998 A
5842146 Shishido Nov 1998 A
5844894 Dent Dec 1998 A
5847679 Yee Dec 1998 A
5852401 Kita Dec 1998 A
5857433 Files Jan 1999 A
5867103 Taylor Feb 1999 A
5868100 Marsh Feb 1999 A
5873040 Dunn Feb 1999 A
5874801 Kobayashi Feb 1999 A
5874889 Higdon Feb 1999 A
5875402 Yamawaki Feb 1999 A
5877724 Davis Mar 1999 A
5889474 LaDue Mar 1999 A
5890061 Timm Mar 1999 A
5890092 Kato Mar 1999 A
5892447 Wilkinson Apr 1999 A
5892454 Schipper Apr 1999 A
5892825 Mages Apr 1999 A
5894498 Kotzin Apr 1999 A
5898391 Jefferies Apr 1999 A
5900734 Munson May 1999 A
5905461 Neher May 1999 A
5906655 Fan May 1999 A
5907555 Raith May 1999 A
5912623 Pierson Jun 1999 A
5912886 Takahashi Jun 1999 A
5912921 Warren Jun 1999 A
5914675 Tognazzini Jun 1999 A
5917405 Joao Jun 1999 A
5918180 Dimino Jun 1999 A
5918183 Janky Jun 1999 A
5919239 Fraker Jul 1999 A
5920278 Tyler Jul 1999 A
5926086 Escareno Jul 1999 A
5928306 France Jul 1999 A
5929752 Janky Jul 1999 A
5929753 Montague Jul 1999 A
5933080 Nojima Aug 1999 A
5936529 Reisman Aug 1999 A
5937164 Mages Aug 1999 A
5940004 Fulton Aug 1999 A
5940439 Kleider Aug 1999 A
5945906 Onuma Aug 1999 A
5945944 Krasner Aug 1999 A
5948043 Mathis Sep 1999 A
5949350 Girard Sep 1999 A
5959533 Layson Sep 1999 A
5963130 Schlager Oct 1999 A
5966079 Tanguay Oct 1999 A
5969600 Tanguay Oct 1999 A
5969673 Bickley Oct 1999 A
5982281 Layson Nov 1999 A
5982813 Dutta Nov 1999 A
5983115 Mizikovsky Nov 1999 A
5990785 Suda Nov 1999 A
5990793 Bieback Nov 1999 A
5991637 Mack Nov 1999 A
5995847 Gergen Nov 1999 A
5997476 Brown Dec 1999 A
5999124 Sheynblat Dec 1999 A
6009363 Beckert Dec 1999 A
6011510 Yee Jan 2000 A
6014080 Layson Jan 2000 A
6014555 Tendler Jan 2000 A
6018667 Ghosh Jan 2000 A
6025774 Forbes Feb 2000 A
6025779 Huang Feb 2000 A
6026125 Larrick Feb 2000 A
6026300 Hicks Feb 2000 A
6026345 Shah Feb 2000 A
6028551 Schoen Feb 2000 A
6029111 Croyle Feb 2000 A
6031454 Lovejoy Feb 2000 A
6034622 Levine Mar 2000 A
6035201 Whitehead Mar 2000 A
6035217 Kravitz Mar 2000 A
6044257 Boling Mar 2000 A
6046687 Janky Apr 2000 A
6047196 Makela Apr 2000 A
6054928 Lemelson Apr 2000 A
6055426 Beasley Apr 2000 A
6060982 Holtrop May 2000 A
6061018 Sheynblat May 2000 A
6061392 Bremer May 2000 A
6061561 Alanara May 2000 A
6069570 Herring May 2000 A
6072396 Gaukel Jun 2000 A
6075797 Thomas Jun 2000 A
6075821 Kao Jun 2000 A
6084510 Lemelson Jul 2000 A
6084906 Kao Jul 2000 A
6084917 Kao Jul 2000 A
6088387 Gelblum Jul 2000 A
6088586 Haverty Jul 2000 A
6091325 Zur Jul 2000 A
6091786 Chen Jul 2000 A
6091957 Larkins Jul 2000 A
6094140 Parente Jul 2000 A
6097337 Bisio Aug 2000 A
6100806 Gaukel Aug 2000 A
6115597 Kroll Sep 2000 A
6130620 Pinnow Oct 2000 A
6160481 Taylor Dec 2000 A
6181253 Eschenbach Jan 2001 B1
6198394 Jacobsen Mar 2001 B1
6198914 Saegusa Mar 2001 B1
6218945 Taylor Apr 2001 B1
6226510 Boling May 2001 B1
6232916 Grillo May 2001 B1
6236319 Pitzer May 2001 B1
6239700 Hoffman May 2001 B1
6262666 Lodichand Jul 2001 B1
6285867 Boling Sep 2001 B1
6313733 Kyte Nov 2001 B1
6356841 Hamrick Mar 2002 B1
6362778 Neher Mar 2002 B2
6405213 Layson Jun 2002 B1
6437696 Lemelson Aug 2002 B1
6518889 Schlager Feb 2003 B2
6580908 Kroll Jun 2003 B1
6636732 Boling Oct 2003 B1
6639516 Copley Oct 2003 B1
6639519 Drummond Oct 2003 B2
6646617 Gaukel Nov 2003 B1
6671351 Menard Dec 2003 B2
6674368 Hawkins Jan 2004 B2
6675006 Diaz Jan 2004 B1
6687497 Parvulescu Feb 2004 B1
6703936 Hill Mar 2004 B2
6762684 Camhi Jul 2004 B1
6765991 Hanuschak Jul 2004 B1
6766159 Lindholm Jul 2004 B2
6774797 Freathy Aug 2004 B2
6782208 Lundholm Aug 2004 B1
6847892 Zhou Jan 2005 B2
6859650 Ritter Feb 2005 B1
6912399 Zirul Jun 2005 B2
6972684 Copley Dec 2005 B2
7002477 Camhi Feb 2006 B1
7015817 Copley Mar 2006 B2
7026929 Wallace Apr 2006 B1
7038590 Hoffman May 2006 B2
7042338 Weber May 2006 B1
7092695 Boling Aug 2006 B1
7106191 Liberati Sep 2006 B1
7123141 Contestabile Oct 2006 B2
7251471 Boling Jul 2007 B2
7289031 Hock Oct 2007 B1
7330122 Derrick Feb 2008 B2
7545318 Derrick Jun 2009 B2
20020115436 Howell Aug 2002 A1
20030027547 Wade Feb 2003 A1
20030107487 Korman Jun 2003 A1
20030197612 Tanaka Oct 2003 A1
20050192353 Barrett et al. Sep 2005 A1
20060047543 Moses Mar 2006 A1
20070041427 Small Feb 2007 A1
20070082677 Hart Apr 2007 A1
20070258417 Harvey Nov 2007 A1
20080012760 Derrick Jan 2008 A1
20080018458 Derrick Jan 2008 A1
20080018459 Derrick Jan 2008 A1
20080096521 Boling Apr 2008 A1
20080174422 Freathy Jul 2008 A1
20080218358 Derrick Sep 2008 A1
20090224909 Derrick Sep 2009 A1
Foreign Referenced Citations (22)
Number Date Country
4413974 Nov 1995 DE
19625581 Dec 1997 DE
0017448 Oct 1980 EP
0242099 Oct 1987 EP
0489915 Jun 1992 EP
496538 Jul 1992 EP
745867 Dec 1996 EP
0780993 Jun 1997 EP
0809117 Nov 1997 EP
0889631 Jan 1999 EP
0946037 Sep 1999 EP
1363258 Nov 2003 EP
2141006 Dec 1984 GB
2007200 Jan 1990 JP
6020191 Jan 1994 JP
6036185 Feb 1994 JP
39909 Nov 2007 RE
WO 87-04851 Aug 1987 WO
WO 87-06713 Nov 1987 WO
WO 97-03511 Jan 1997 WO
WO 00-77688 Dec 2000 WO
WO 0173466 Oct 2001 WO
Related Publications (1)
Number Date Country
20100328063 A1 Dec 2010 US
Continuations (2)
Number Date Country
Parent 12028088 Feb 2008 US
Child 12875988 US
Parent 11202427 Aug 2005 US
Child 12028088 US