This invention relates to medical diagnostic ultrasound systems and, in particular, to the use of ultrasound systems for remote diagnosis with control of the local image display quality.
Currently available medical ultrasound systems enable clinicians to conduct ultrasound scans on a patient, capture images, make measurements and use built-in algorithms and report generation software to make diagnoses and report the results of a diagnosis. The clinicians who perform these procedures are experienced radiologists, cardiologists, obstetricians, or trained sonographers. Sufficient training is expected before a clinician can conduct the procedure and interpret the scanned images. However, such medical experts may not be readily available in a remote area. One approach to providing necessary diagnostic care is teleradiology, whereby an inexperienced person at the location of the patient is guided in the conduct of a scan by a remotely located medical expert. But providing remote assistance with the help of a local user (e.g., the patient himself/herself) has to be robust and secure enough to meet appropriate security guidelines. It should also be a low cost solution so that patients and other inexperienced persons are encouraged to conduct the scan.
Moreover, many countries have laws in place to restrict the use of ultrasound for use by an expert for medical diagnosis purpose only. In some countries gender identification is an issue and it is illegal to determine gender of a fetus before birth using ultrasound. Only licensed persons can perform ultrasound imaging. If a remote ultrasound system is provided to the patient for legitimate use such as checking the condition of the heart, it is conceivable that the device can be misused for gender identification purposes. One approach to preventing such misuse is to block the display of images to unqualified or unauthorized users. However, preventing display of the image locally to the user may make it difficult to perform a useful lawful scan, as the user may need some guidance in probe placement which only an image can provide. Accordingly, it is an object of the present invention to make ultrasound imaging available at the site of a patient with the help of an expert at a remote location. It is a further object to do so in a way that facilitates local scanning with remote expert assistance without also facilitating improper use of the scanning device such as unlawful gender identification. A solution which meets these objectives will enable diagnostic imaging in areas where diagnostic imaging experts are not readily available for cost or other reasons.
In some aspects, the present invention provides a system for remote guidance of a scanning procedure. The system can include a local ultrasound scanning device comprising an ultrasound probe, an image display, and an image communication unit adapted to send images to and receive control signals from a remote location. The system can also include an ultrasound system that is located at the remote location and adapted to display images received from the local ultrasound scanning device and send control signals to the local ultrasound scanning device. The local ultrasound scanning device can include an image processor that is responsive to control signals received from the ultrasound system and adapted to produce low image quality images for display on the image display and high quality images for sending to the ultrasound system at the remote location, and the image display can be configured to display the lower image quality images of the local ultrasound scanning device.
In certain aspects, the low image quality images comprise a lower image resolution than the high quality images. Quality factors for the low quality images and the high quality images can be set according to a default setting in the local ultrasound scanning device. Alternatively, quality factors for the low quality images and the high quality images can be set according to an image quality control signal received from the ultrasound system located at the remote location. In some aspects, the ultrasound probe can be adapted for scanning a patient at the site of the local ultrasound scanning device under guidance from an expert at the remote location. The image processor of the local ultrasound scanning device can include a scan converter configured to produce the high quality images with full interpolation of image pixel values between echo pixels and low quality images having no interpolated values added to the echo pixels. The image processor of the local ultrasound scanning device further can include a video compression processor. In certain aspects, the local ultrasound scanning device and the ultrasound system each include a network communication unit adapted to send and receive control and or image data.
The present invention also includes methods for guiding an ultrasonic scanning procedure from a remote location. The method can include ultrasonically scanning a subject with an ultrasound scanning device at a patient site, sending high quality ultrasound images acquired by the ultrasonic scanning to a remote site, producing low quality ultrasound images in response to an image quality control signal or a default setting on the ultrasound scanning device, and displaying low quality ultrasound images at the patient site.
The methods can also include providing scanning guidance to the patient site from the remote site, displaying the high quality ultrasound images on an image display device at the remote site, making a diagnosis using the high quality ultrasound images at the remote site, producing low quality ultrasound images is performed by the ultrasound scanning device, establishing voice communication between the patient site and the remote site, and/or enabling the ultrasound scanning device for scanning from the remote site.
In the drawings:
In accordance with the principles of the present invention a system and method are described which enable ultrasonic imaging by inexperienced personnel under the guidance of a remotely located diagnostic imaging expert. Improper use of the scanning device is prevented by controlling the device to present only low quality images to the person conducting the scan, while images of high quality are sent to the remote expert for diagnosis. Various ways are described for controllably setting the quality of the ultrasound images presented to the inexperienced person conducting the scan. Thus, an effective diagnosis by the expert is facilitated while providing at the scanning site only images which, while sufficient to provide visual guidance of the scanning procedure, cannot be used improperly by persons at the site of the patient being scanned.
Echoes from the transmitted ultrasonic energy are received by the transducers of the array 14, which generate echo signals that are coupled to the beamformer 16 where they are digitized and beamformed into coherent echo signals. The echo signal samples from the individual transducer elements of the array 14 are delayed and summed by the beamformer 16 to form coherent echo signals along scanline directions for an image. The coherent echo signals undergo signal processing by a signal processor 18, which include filtering by a digital filter and noise reduction as by spatial or frequency compounding. The signal processor can also shift the frequency band to a lower or baseband frequency range. The digital filter of the signal processor 18 can be a filter of the type disclosed in U.S. Pat. No. 5,833,613 (Averkiou et al.), for example. When phase information is needed as is the case for Doppler processing, quadrature (I and Q) demodulation is also performed by the signal processor.
The beamformed and processed coherent echo signals are coupled to a B mode processor 22 which produces a B mode tissue image. The B mode processor performs amplitude (envelope) detection of quadrature demodulated I and Q signal components by calculating the echo signal amplitude in the form of (I2+Q2)1/2. The quadrature echo signal components are also coupled to a Doppler processor 24, which stores ensembles of echo signals from discrete points in an image field which are then used to estimate the Doppler shift at points in the image with a fast Fourier transform (FFT) processor. For a color Doppler image such as that shown on the display device in
The pixel density a typical image display is generally greater than the density of echo signals acquired from an image field of the body. Accordingly, scan conversion also typically includes calculating additional image points for pixel display between the image points of acquired echo signals. The spaces between acquired scanlines and echo signals are usually filled in by four-point interpolation of the echo signals surrounding a void in the display field. In accordance with the principles of the present invention, in one implementation the scan converter 26 produces two images of each scene in the image field with two different display qualities. One way to do this is to produce the usual scan converted image with full interpolation of image pixel values between echo pixels, and a second, low quality image in which no interpolated values are added to the echo pixels. The latter image will thus be coarse with poor anatomical resolution. The poorly resolved image is stored in an image memory 28, from which it is coupled to a display processor 34 for display on the image display 36 of the scanning device as shown in
In some aspects, the locally displayed image can have image quality factors that are set according to a default setting on the local ultrasound system. For example, the default setting can include poor image resolution, or other quality parameters such as gain or depth, that are of lower quality than that at the remote imaging system or workstation. In other aspects, the degree of the resolution and/or image quality parameters of the locally displayed image can be set by the remote expert communicating with his or her imaging system or workstation. Prior to scanning at the patient site, the expert sends an image quality control signal to the scanning system, which is received by the modem/WiFi radio 30 and coupled to a system controller 20. The system controller then couples an image quality control signal to the scan converter 26, instructing the scan converter how to form the low quality image. In the foregoing example, this was done by instructing the scan converter to fill in none of the voids between acquired echo signal image points with smoothed, interpolated values, thereby producing a coarse, low quality image for local display. Other approaches may also be taken, such as injecting noise into the image, as by adding a small random number to each display value in the image. Spatial or temporal filtering may also be employed to degrade the quality of an image. Image modification techniques which blur an image may also be used.
In the Lumify system of
A method for use of the ultrasound scanning device of
Variations of the system and method described above will readily occur to those skilled in the art. The system used by the expert in
It should be noted that an ultrasound system suitable for use in an implementation of the present invention, and in particular the component structure of the workstation and ultrasound systems of
As used herein, the term “computer” or “module” or “processor” or “workstation” may include any processor-based or microprocessor-based system including systems using microcontrollers, reduced instruction set computers (RISC), ASICs, logic circuits, and any other circuit or processor capable of executing the functions described herein. The above examples are exemplary only, and are thus not intended to limit in any way the definition and/or meaning of these terms.
The computer or processor executes a set of instructions that are stored in one or more storage elements, in order to process input data. The storage elements may also store data or other information as desired or needed. The storage element may be in the form of an information source or a physical memory element within a processing machine.
The set of instructions of an ultrasound system including those controlling the acquisition, processing, and transmission of ultrasound images as described above may include various commands that instruct a computer or processor as a processing machine to perform specific operations such as the methods and processes of the various embodiments of the invention. The set of instructions may be in the form of a software program. The software may be in various forms such as system software or application software and which may be embodied as a tangible and non-transitory computer readable medium. Further, the software may be in the form of a collection of separate programs or modules, a program module within a larger program or a portion of a program module. The software also may include modular programming in the form of object-oriented programming. The processing of input data by the processing machine may be in response to operator commands, or in response to results of previous processing, or in response to a request made by another processing machine. In the Lumify system smartphone shown in
Furthermore, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. 112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function devoid of further structure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/078678 | 11/9/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62423477 | Nov 2016 | US |