Remote units for distributed communication systems and related installation methods and apparatuses

Information

  • Patent Grant
  • 9661781
  • Patent Number
    9,661,781
  • Date Filed
    Monday, July 28, 2014
    10 years ago
  • Date Issued
    Tuesday, May 23, 2017
    7 years ago
Abstract
Remote units are mounted in a support structure so that cooling air flow is not impeded by the support structure. The remote units may have RF communications circuitry and other components that generate heat in the provision of wireless services.
Description
BACKGROUND

The disclosure relates generally to remote antenna units.


Distributed antenna systems (DASs) or distributed communication systems provide wireless communications and other services within a building, stadium, and other infrastructures. One approach to deploying a DAS involves the use of radio frequency (RF) antenna coverage areas, also referred to as “antenna coverage areas.” The antenna coverage areas are provided by remote antenna units (RAUs), or more generally ‘remote units’ in the DAS. Remote units provide antenna coverage areas typically having radii from a few meters up to twenty (20) meters. If the antenna coverage areas each cover a small area, there are typically only a few users (clients) per antenna coverage area. This minimizes the amount of RF bandwidth shared among the wireless system users.


Remote units are commonly mounted on the ceiling in such a way that radiofrequency signals from the remote unit's antenna are not obstructed by the ceiling. If active remote antenna units are part of the DAS, the DAS designer must also ensure that the mounting structure allows for sufficient dissipation of the heat generated by remote unit's electronics. If a remote unit relies on airflow for cooling, the mounting environment must allow for relatively unobstructed airflow. It is also desirable that the remote unit mounting structure, as well as the remote unit itself, be as unobtrusive and aesthetically pleasing as possible.



FIG. 1 shows a typical remote unit 100 for use in a distributed antenna system. The remote unit 100 is attached at the lower surface 140 of a ceiling tile 150. In this arrangement, cooling air flow through the remote unit 100 may be partially blocked by the tile.


No admission is made that any reference cited herein constitutes prior art. Applicant expressly reserves the right to challenge the accuracy and pertinency of any cited documents.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a remote unit for use in a distributed communications system.



FIGS. 2 and 3 are schematic views of an exemplary optical fiber-based distributed antenna system (DAS).



FIG. 4 is a section view of a remote unit installation according to a present embodiment.



FIGS. 5 and 6 are schematic top plan views of exemplary remote units.





DETAILED DESCRIPTION

Before discussing the remote unit installation according to the present embodiment in FIG. 4, FIGS. 2 and 3 are examples of distributed antenna systems (DASs) that can incorporate remote antenna unit installations according to the present embodiments.



FIG. 2 is a schematic diagram of an embodiment of a DAS. In this embodiment, the system is an optical fiber-based distributed communication system in the form of a DAS 210. The optical-fiber based DAS 210 is configured to create one or more antenna coverage areas for establishing communications with wireless client devices located in the radio frequency (RF) range of the antenna coverage areas. The DAS 210 provides RF communications services (e.g., cellular services). The DAS 210 includes head end equipment (HEE) in the form of a head end unit (HEU) 212, one or more remote units 214, and an optical fiber 216 that optically couples the HEU 212 to the remote unit 214.


The HEU 212 is configured to receive communications over downlink electrical RF communications signals 218D from a source or sources, such as a network or carrier as examples, and provide such communications to the remote unit 214. The HEU 212 is also configured to return communications received from the remote unit 214, via uplink electrical RF communications signals 218U, back to the source or sources. The optical fiber 216 includes at least one downlink optical fiber 216D to carry signals communicated from the HEU 212 to the remote unit 214 and at least one uplink optical fiber 216U to carry signals communicated from the remote unit 214 back to the HEU 212. One downlink optical fiber 216D and one uplink optical fiber 216U could be provided to support multiple channels, each using wavelength-division multiplexing (WDM).


The DAS 210 has an antenna coverage area 220 that can be substantially centered about the remote unit 214. The remote unit 214 is configured to receive downlink optical RF communications signals 222D from the HEU 212 and transmit the content downlink optical RF communications signals 222D wirelessly within the coverage area 220. The HEU 212 is adapted to perform or to facilitate any one of a number of wireless applications, including but not limited to Radio-over-Fiber (RoF), radio frequency identification (RFID), wireless local-area network (WLAN) communication, public safety, cellular, telemetry, and other mobile or fixed services. Shown within the antenna coverage area 220 is a client device 224 in the form of a mobile device, which may be a cellular telephone as an example. The client device 224 can be any device that is capable of receiving RF communication signals. The client device 224 includes an antenna 226 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF communications signals.


The HEU 212 includes an electrical-to-optical (E/O) converter 228 to communicate the electrical RF communications signals over the downlink optical fiber 216D to the remote unit 214, to in turn be communicated to the client device 224 in the antenna coverage area 220 formed by the remote unit 214. The E/O converter 228 converts the downlink electrical RF communications signals 218D to downlink optical RF communications signals 222D to be communicated over the downlink optical fiber 216D. The remote unit 214 includes an optical-to-electrical (O/E) converter 230 to convert received downlink optical RF communications signals 222D back to electrical RF communications signals to be communicated wirelessly through an antenna 232 of the remote unit 214 to client devices 224 located in the antenna coverage area 220.


Each of the remote units 214 includes an antenna system capable of transmitting RF communications into and receiving RF communications from a coverage area. The antenna 232 is configured to receive wireless RF communications from client devices 224 in the antenna coverage area 220 and communicate electrical RF communications signals representing the wireless RF communications to an E/O converter 234 in the remote unit 214. The E/O converter 234 converts the electrical RF communications signals into uplink optical RF communications signals 222U to be communicated over the uplink optical fiber 216U. The E/O converter 234 and the O/E converter 30 constitute a “converter pair,” as illustrated in FIG. 2. The E/O converter 228 includes a laser suitable for delivering sufficient dynamic range for the RoF applications described herein.


An O/E converter 236 in the HEU 212 converts the uplink optical RF communications signals 222U into uplink electrical RF communications signals, which are communicated as uplink electrical RF communications signals 218U back to a network or other source. The O/E converter 236 is a photodetector, or a photodetector electrically coupled to a linear amplifier. The E/O converter 228 and the O/E converter 236 also constitute a “converter pair.”



FIG. 3 illustrates a distributed communication system deployed in a building infrastructure. The figure is a partially schematic cut-away diagram of a building infrastructure 238 with an expanded schematic of the DAS 210 deployed therein. The infrastructure 238 generally represents any type of building or other structure in which the optical fiber-based DAS 210 can be deployed, including indoor, outdoor or partially outdoor deployment sites such as stadiums. The building infrastructure 238 in this embodiment includes a first (ground) floor 240, a second floor 242, and a third floor 244. The floors 240, 242, 244 are serviced by the HEU 212 through a main distribution frame 246 to provide antenna coverage areas 248 within the building infrastructure 238. Only the ceilings of the floors 240, 242, 244 are shown in FIG. 3 for simplicity of illustration. A main cable 250 has a number of different sections that facilitate the placement of a large number of remote units 214 in the building infrastructure 238. Each remote unit 214 in turn services its own coverage area 248. Any number of remote units 214 can be deployed on each floor of the infrastructure 238. For example, at least three remote units 214 can be deployed on each of at least three, four, or five or more floors of the infrastructure 238. The main cable 250 can include, for example, a riser cable 252 that carries all of the downlink and uplink optical fibers 216D, 216U to and from the HEU 212. The riser cable 252 may be routed through an interconnect unit (ICU) 254 to one or more optical fiber cables 256. The ICU 254 may also be configured to provide power to the remote units 214.


The main cable 250 enables the multiple optical fiber cables 256 to be distributed throughout the building infrastructure 238 (e.g., fixed to the ceilings, walls, panels, or other support surfaces of each floor 240, 242, 244) to provide the antenna coverage areas 48 for the first, second and third floors 240, 242 and 244. A base transceiver station (BTS) 260 is connected to the HEU 212, and can be co-located or located remotely from the HEU 212. A BTS is any station or source that provides an input signal to the HEU 212 and can receive a return signal from the HEU 212. In a typical cellular system, for example, a plurality of BTSs are deployed at a plurality of remote locations to provide wireless telephone coverage. Each BTS serves a corresponding cell and when a mobile station enters the cell, the BTS communicates with the mobile station. Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell. Radio input could also be provided by a repeater or picocell.


The distributed communication system 210 in FIGS. 2 and 3 provides point-to-point communications between the HEU 212 and the remote units 214. Each remote unit 214 communicates with the HEU 212 over a distinct downlink and uplink optical fiber pair 216D/216U. Whenever a remote unit 214 is installed in the optical fiber-based DAS 210, the remote unit 214 is connected to a distinct downlink and uplink optical fiber pair connected to the HEU 212. The downlink and uplink optical fibers 216D/216U may be provided in the optical fiber 216. Multiple downlink and uplink optical fiber pairs 216D/216U can be provided in a fiber optic cable to service multiple remote units 214 from a common fiber optic cable. For example, with reference to FIG. 3, remote units 214 installed on a given floor 240, 242, or 244 may be serviced from the same optical fiber 216, which may have multiple nodes where distinct downlink and uplink optical fiber pairs 216D/216U are connected to a given remote unit 214.



FIG. 4 is a sectional view of a remote unit deployment according to a first embodiment. The deployment can be in any support surface, such as a wall or ceiling, ceiling tile, or other planar or generally planar surface, in a deployment infrastructure. The remote unit 300 can be generally similar or identical in function to the remote units 214 discussed above, and may include the additional features as described below. In FIG. 4, the remote unit 300 is illustrated with an antenna unit 304 for transmission of RF signals into and reception of RF signals (including, for example, voice and data information) from an RF coverage area. An electronics board 306 is attached to a heat sink 308 in order to dissipate the heat generated by the electronic components. The electronics board 306 may carry out processing and conversion functions described with reference to the remote units 214. The components of the remote unit 300 can be contained within an enclosure 320. The remote unit 300 can have all of the functionalities, components, and capabilities of the remote units 214 discussed with respect to FIGS. 2 and 3.


The enclosure 320 has first ventilation apertures 324 at a first side 326 of the enclosure 320, and second ventilation apertures 328 at a second side 330 of the enclosure. The ventilation apertures 324, 328 provide a pathway for cooling air to flow through the remote unit 300 to cool the components therein.


The exemplary remote unit 300 is deployed in a generally planar support structure 360 having a first generally planar surface 364 and a second generally planar surface 368. The support structure 360 has a mounting aperture 370 that can, for example, generally conform to the shape of the exterior periphery of the enclosure 320. Examples of exterior peripheral shapes of the enclosure 320 are discussed below with reference to FIGS. 5 and 6. In the mounting configuration illustrated in FIG. 4, a plane 374 extending through the support structure 360 also extends through the enclosure 320, so that the first side of the remote unit enclosure 320 extends past (or, below in FIG. 4) the plane of the first generally planar surface 364, and the second side 330 of the remote unit enclosure 320 extends past (or, above in FIG. 4) the plane of the second generally planar surface 368.


A mounting component 380 supports the remote unit 300 within the support structure 360. The mounting component 380 can have a support mount 382 configured to connect to and/or abut the support structure 360. The support mount 382 can have a continuous mounting periphery contacting the support structure, or individual projections or ‘legs’. The mounting component 380 can also have a remote mount 386 that connects to the enclosure 320 to secure the remote unit 300 to the mounting component 380 and to hold the remote unit 300 in place within the support structure 360. In the illustrated embodiment, the remote mount 386 is secured to the second, or upper, side 330 of the enclosure 320. A peripheral flange 390 can be included around the periphery 392 of the enclosure 320. The peripheral flange 390 can abut a surface of the support structure 360, which in the illustrated embodiment is the first generally planar surface, or lower surface, 364. The peripheral flange 390 can serve the purposes of more securely fixing the remote unit 300 to the support structure 360, and of hiding the mounting aperture 370 from view. The mounting component 380 can be formed from a skeletal frame with few large surfaces so that it does not unduly obstruct air flowing into and out of the ventilation aperture 328.


The illustrated arrangement of the remote unit 300 in the support structure provides advantageous cooling properties to the installation. In one exemplary mode of operation of the remote unit 300, air flow, indicated by the large arrows, enters the first side 324 of the remote unit 300 through the first ventilation apertures 324, flows over fins of the heat sink 308, and exits the second side 330 of the remote unit 300 through the second ventilation apertures 328. Heat generated through operation of the remote unit 300 is thus dissipated from the heat sink 308 and from the other components. The flow of air through the remote unit 300 can be essentially continuous, and can flow from first side to second, and vice versa. Ambient temperature conditions on either side of the support structure 360 can drive movement of air through the remote unit 300. If desired, a fan (not illustrated) can be included in the remote unit 300 to drive cooling air through the enclosure 320.


According to the above described embodiment, the surface of the support structure 360 does not impede the flow of cooling air through the remote unit 300, and cooling air travels freely between first and second sides of the support structure 360. A minimal structure (e.g., skeletal) of the mounting component 380 allows air to pass freely into and out of the second ventilation apertures 328.


The remote unit 300 also has an aesthetic advantage in that it protrudes only slightly from the first generally planar surface 364 of the mounting structure 360. One possible mounting arrangement of the remote unit 300 is a ceiling mounting, in which the support structure 360 corresponds to a section of ceiling, such as a ceiling tile. In this embodiment, the first generally planar surface 364 is the lower surface of the ceiling visible from below to occupants of the infrastructure. In typical office, commercial, etc. environments, it is preferable for electronic components such as the remote unit 300 to be as unobtrusive as possible. The remote unit 300, labeled with a height H, has only a portion of its height H protruding from the first surface 364 of the support structure 360 so that less of the remote unit is exposed to view by occupants. According to one aspect, less than three quarters of the height H of the remote unit 300 can extend past the surface 364. According to another aspect, less than half of the height H can extend past the surface 364. The mounting arrangement can be designed to allow a small portion of the remote unit 300 to protrude beyond the surface 364 so that the support structure 360 does not interfere with RF transmissions from the antenna unit 304.


According to another aspect, the support structure 360, the remote unit 300, and the mounting component 380 can be provided as an installation assembly 396. The installation assembly 396 can be assembled as a unit before delivery to a deployment site, for example, or delivered as a collection of components to be wholly or partially assembled on site. In one such application, the support structure 360 can correspond in dimension to standardized ceiling tiles. For example, conventional two (2) foot square ceiling tiles can be adapted to accommodate a ceiling mounting arrangement of a remote unit. The ceiling tile can be made from conventional materials such as those found in commercial building drop ceilings, such as mineral fiber pulp (e.g. gypsum and cellulose fiber) held together by a binder. When installing a preassembled installation assembly 396, the technician drops the installation assembly 396 into the building's ceiling tile support frame (not shown) as in the case of installing a conventional ceiling tile. The remote unit 300 can then be connected to external cables, such as cables having optical fibers or electrical conductors for transmitting voice, data, etc. information, and electrical conductors for conveying power and information (not shown).


If the installation assembly 396 is not preassembled, or only partially assembled, the installation process can take place in separate steps. For example, the mounting structure 380 can be provided as secured to the support structure 360, and that subassembly can be dropped into the ceiling tile support frame. The remote unit 300 can then be secured to the mounting structure 380. The flange 390 can be an integral part of the enclosure 320, or mounted to the enclosure 320 or the support structure 360 in a separate step. The remote unit 300 is then connected to external data, RF, and/or power cabling.


An installation assembly may also include a support structure integrally formed with the enclosure 320, so that a separate remote mount is not required to attach the remote unit 300 to the support structure. The installation assembly can then be dropped into an existing drop ceiling support frame, for example, and connected to external data, RF, and/or power cabling. In this example, the support structure can be formed from a thin metallic plate having an aperture configured to receive the remote unit 300, and an exterior periphery configured to rest in a drop ceiling support frame.


The mounting arrangement in FIG. 4 need not be deployed as a ceiling mount. A wall mount in a vertically extending support structure is also possible.



FIGS. 5 and 6 are schematic top plan views of exemplary remote unit peripheral shapes. The exemplary remote units have generally flat, disc-like shapes. The width dimension W in thus can be at least two, three or more times are large as the height dimension H shown in FIG. 4. FIG. 5 illustrates a generally rectangular, in this case square, peripheral shape having rounded corners. FIG. 6 illustrates a round peripheral shape.


Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.


It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Since modifications combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and their equivalents.

Claims
  • 1. An installation assembly for a remote unit of a distributed communication system, comprising: a remote unit comprising an enclosure and at least one antenna unit capable of transmitting RF communication signals into a coverage area, the remote unit being configured for mounting within a mounting aperture of a support structure so that a first side of the remote unit is visible at a first side of the support structure and a second side of the remote unit is opposite to the first side of the remote unit; anda mounting component secured to the remote unit,wherein the remote unit has at least one ventilation aperture to allow cooling air to flow between the first and second sides of the remote unit and between the first side and a second side of the support structure.
  • 2. The installation assembly of claim 1, wherein the mounting component includes a support mount configured to abut the second side of the support structure and a remote mount connected to the second side of the enclosure.
  • 3. The installation assembly of claim 1, further comprising a flange configured to at least partially cover the mounting aperture.
  • 4. The installation assembly of claim 1, wherein the remote unit comprises a circuit board and a heat sink.
  • 5. The installation assembly of claim 1, wherein the first and second sides of the support structure are generally planar surfaces.
  • 6. The installation assembly of claim 1, wherein the at least one ventilation aperture comprises a plurality of first ventilation apertures at a first side of the enclosure and a plurality of second ventilation apertures at a second side of the enclosure.
  • 7. The installation assembly of claim 1, wherein the first side of the remote unit protrudes beyond the first side of the support structure.
  • 8. The installation assembly of claim 1, wherein the second side of the remote unit protrudes beyond the second side of the support structure.
  • 9. An installation assembly for a remote unit of a distributed communication system, comprising: a support structure having a first side, a second side, and a mounting aperture extending from the first side to the second side;a remote unit comprising an enclosure and at least one antenna unit capable of transmitting RF communication signals into a coverage area, the remote unit being disposed within the mounting aperture so that a first side of the remote unit is visible at the first side of the support structure; anda mounting component secured to the remote unit and secured to the support structure,wherein the remote unit has at least one ventilation aperture to allow cooling air to flow between the first and second sides of the remote unit and between the first side and second sides of the support structure.
  • 10. The installation assembly of claim 9, wherein the mounting component includes a support mount configured to abut the second side of the support structure.
  • 11. The installation assembly of claim 9, further comprising a flange configured to at least partially cover the mounting aperture.
  • 12. The installation assembly of claim 9, wherein the remote unit comprises a circuit board and a heat sink.
  • 13. The installation assembly of claim 9, wherein the first and second sides of the support structure are generally planar surfaces.
  • 14. The installation assembly of claim 9, wherein the at least one ventilation aperture comprises a plurality of first ventilation apertures at a first side of the enclosure and a plurality of second ventilation apertures at a second side of the enclosure.
  • 15. The installation assembly of claim 9, wherein the first side of the remote unit protrudes beyond the first side of the support structure.
  • 16. The installation assembly of claim 9, wherein the second side of the remote unit protrudes beyond the second side of the support structure.
  • 17. The installation assembly of claim 9, wherein the remote unit has height H extending generally perpendicular to the support surfaces and a width W, the width W being at least twice the height H.
  • 18. The installation assembly of claim 9, wherein the support structure is adapted to be accommodated within a building ceiling tile support frame.
  • 19. The installation assembly of claim 9, wherein the support structure is generally rectangular and is adapted to be accommodated within a ceiling tile support frame for ceiling tiles having sides two feet in length.
  • 20. The installation assembly of claim 9, wherein the support structure comprises either a section of a wall or a ceiling in a deployment infrastructure.
RELATED APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application No. 61/860,553 filed on Jul. 31, 2013, the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (807)
Number Name Date Kind
4365865 Stiles Dec 1982 A
4449246 Seiler et al. May 1984 A
4573212 Lipsky Feb 1986 A
4665560 Lange May 1987 A
4867527 Dotti et al. Sep 1989 A
4889977 Haydon Dec 1989 A
4896939 O'Brien Jan 1990 A
4916460 Powell Apr 1990 A
4939852 Brenner Jul 1990 A
4972346 Kawano et al. Nov 1990 A
5039195 Jenkins et al. Aug 1991 A
5042086 Cole et al. Aug 1991 A
5056109 Gilhousen et al. Oct 1991 A
5059927 Cohen Oct 1991 A
5125060 Edmundson Jun 1992 A
5187803 Sohner et al. Feb 1993 A
5189718 Barrett et al. Feb 1993 A
5189719 Coleman et al. Feb 1993 A
5206655 Caille et al. Apr 1993 A
5208812 Dudek et al. May 1993 A
5210812 Nilsson et al. May 1993 A
5260957 Hakimi Nov 1993 A
5263108 Kurokawa et al. Nov 1993 A
5267122 Glover et al. Nov 1993 A
5268971 Nilsson et al. Dec 1993 A
5278690 Vella-Coleiro Jan 1994 A
5278989 Burke et al. Jan 1994 A
5280472 Gilhousen et al. Jan 1994 A
5299947 Barnard Apr 1994 A
5301056 O'Neill Apr 1994 A
5325223 Bears Jun 1994 A
5339058 Lique Aug 1994 A
5339184 Tang Aug 1994 A
5343320 Anderson Aug 1994 A
5377035 Wang et al. Dec 1994 A
5379455 Koschek Jan 1995 A
5381459 Lappington Jan 1995 A
5396224 Dukes et al. Mar 1995 A
5400391 Emura et al. Mar 1995 A
5420863 Taketsugu et al. May 1995 A
5424864 Emura Jun 1995 A
5444564 Newberg Aug 1995 A
5457557 Zarem et al. Oct 1995 A
5459727 Vannucci Oct 1995 A
5469523 Blew et al. Nov 1995 A
5519830 Opoczynski May 1996 A
5543000 Lique Aug 1996 A
5546443 Raith Aug 1996 A
5557698 Gareis et al. Sep 1996 A
5574815 Kneeland Nov 1996 A
5598288 Collar Jan 1997 A
5606725 Hart Feb 1997 A
5615034 Hori Mar 1997 A
5627879 Russell et al. May 1997 A
5640678 Ishikawa et al. Jun 1997 A
5642405 Fischer et al. Jun 1997 A
5644622 Russell et al. Jul 1997 A
5648961 Ebihara Jul 1997 A
5651081 Blew et al. Jul 1997 A
5657374 Russell et al. Aug 1997 A
5668562 Cutrer et al. Sep 1997 A
5677974 Elms et al. Oct 1997 A
5682256 Motley et al. Oct 1997 A
5694232 Parsay et al. Dec 1997 A
5703602 Casebolt Dec 1997 A
5708681 Malkemes et al. Jan 1998 A
5726984 Kubler et al. Mar 1998 A
5765099 Georges et al. Jun 1998 A
5790536 Mahany et al. Aug 1998 A
5790606 Dent Aug 1998 A
5793772 Burke et al. Aug 1998 A
5802173 Hamilton-Piercy et al. Sep 1998 A
5802473 Rutledge et al. Sep 1998 A
5805975 Green, Sr. et al. Sep 1998 A
5805983 Naidu et al. Sep 1998 A
5809395 Hamilton-Piercy et al. Sep 1998 A
5809431 Bustamante et al. Sep 1998 A
5812296 Tarusawa et al. Sep 1998 A
5818619 Medved et al. Oct 1998 A
5818883 Smith et al. Oct 1998 A
5821510 Cohen et al. Oct 1998 A
5825651 Gupta et al. Oct 1998 A
5838474 Stilling Nov 1998 A
5839052 Dean et al. Nov 1998 A
5852651 Fischer et al. Dec 1998 A
5854986 Dorren et al. Dec 1998 A
5859719 Dentai et al. Jan 1999 A
5862460 Rich Jan 1999 A
5867485 Chambers et al. Feb 1999 A
5867763 Dean et al. Feb 1999 A
5881200 Burt Mar 1999 A
5883882 Schwartz Mar 1999 A
5896568 Tseng et al. Apr 1999 A
5903834 Wallstedt et al. May 1999 A
5910776 Black Jun 1999 A
5913003 Arroyo et al. Jun 1999 A
5917636 Wake et al. Jun 1999 A
5930682 Schwartz et al. Jul 1999 A
5936754 Ariyavisitakul et al. Aug 1999 A
5943372 Gans et al. Aug 1999 A
5946622 Bojeryd Aug 1999 A
5949564 Wake Sep 1999 A
5953670 Newson Sep 1999 A
5959531 Gallagher, III et al. Sep 1999 A
5960344 Mahany Sep 1999 A
5969837 Farber et al. Oct 1999 A
5983070 Georges et al. Nov 1999 A
5987303 Dutta et al. Nov 1999 A
6005884 Cook et al. Dec 1999 A
6006069 Langston et al. Dec 1999 A
6006105 Rostoker et al. Dec 1999 A
6011980 Nagano et al. Jan 2000 A
6014546 Georges et al. Jan 2000 A
6016426 Bodell Jan 2000 A
6023625 Myers, Jr. Feb 2000 A
6037898 Parish et al. Mar 2000 A
6061161 Yang et al. May 2000 A
6069721 Oh et al. May 2000 A
6084772 Pell Jul 2000 A
6088381 Myers, Jr. Jul 2000 A
6118767 Shen et al. Sep 2000 A
6122529 Sabat, Jr. et al. Sep 2000 A
6127917 Tuttle Oct 2000 A
6128470 Naidu et al. Oct 2000 A
6128477 Freed Oct 2000 A
6148041 Dent Nov 2000 A
6150921 Werb et al. Nov 2000 A
6157810 Georges et al. Dec 2000 A
6192216 Sabat, Jr. et al. Feb 2001 B1
6194968 Winslow Feb 2001 B1
6212397 Langston et al. Apr 2001 B1
6222503 Gietema Apr 2001 B1
6223201 Reznak Apr 2001 B1
6232870 Garber et al. May 2001 B1
6236789 Fitz May 2001 B1
6236863 Waldroup et al. May 2001 B1
6240274 Izadpanah May 2001 B1
6246500 Ackerman Jun 2001 B1
6268946 Larkin et al. Jul 2001 B1
6275990 Dapper et al. Aug 2001 B1
6279158 Geile et al. Aug 2001 B1
6286163 Trimble Sep 2001 B1
6292673 Maeda et al. Sep 2001 B1
6295451 Mimura Sep 2001 B1
6301240 Slabinski et al. Oct 2001 B1
6307869 Pawelski Oct 2001 B1
6314163 Acampora Nov 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6323980 Bloom Nov 2001 B1
6324391 Bodell Nov 2001 B1
6330241 Fort Dec 2001 B1
6330244 Swartz et al. Dec 2001 B1
6334219 Hill et al. Dec 2001 B1
6336021 Nukada Jan 2002 B1
6336042 Dawson et al. Jan 2002 B1
6337754 Imajo Jan 2002 B1
6340932 Rodgers et al. Jan 2002 B1
6353406 Lanzl et al. Mar 2002 B1
6353600 Schwartz et al. Mar 2002 B1
6359714 Imajo Mar 2002 B1
6370203 Boesch et al. Apr 2002 B1
6374078 Williams et al. Apr 2002 B1
6374124 Slabinski Apr 2002 B1
6389010 Kubler et al. May 2002 B1
6400318 Kasami et al. Jun 2002 B1
6400418 Wakabayashi Jun 2002 B1
6404775 Leslie et al. Jun 2002 B1
6405018 Reudink et al. Jun 2002 B1
6405058 Bobier Jun 2002 B2
6405308 Gupta et al. Jun 2002 B1
6414624 Endo et al. Jul 2002 B2
6415132 Sabat, Jr. Jul 2002 B1
6421327 Lundby et al. Jul 2002 B1
6438301 Johnson et al. Aug 2002 B1
6438371 Fujise et al. Aug 2002 B1
6448558 Greene Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6459519 Sasai et al. Oct 2002 B1
6459989 Kirkpatrick et al. Oct 2002 B1
6477154 Cheong et al. Nov 2002 B1
6480702 Sabat, Jr. Nov 2002 B1
6486907 Farber et al. Nov 2002 B1
6496290 Lee Dec 2002 B1
6501965 Lucidarme Dec 2002 B1
6504636 Seto et al. Jan 2003 B1
6504831 Greenwood et al. Jan 2003 B1
6512478 Chien Jan 2003 B1
6519395 Bevan et al. Feb 2003 B1
6519449 Zhang et al. Feb 2003 B1
6525855 Westbrook et al. Feb 2003 B1
6535330 Lelic et al. Mar 2003 B1
6535720 Kintis et al. Mar 2003 B1
6556551 Schwartz Apr 2003 B1
6577794 Currie et al. Jun 2003 B1
6577801 Broderick et al. Jun 2003 B2
6580402 Navarro et al. Jun 2003 B2
6580905 Naidu et al. Jun 2003 B1
6580918 Leickel et al. Jun 2003 B1
6583763 Judd Jun 2003 B2
6587514 Wright et al. Jul 2003 B1
6594496 Schwartz Jul 2003 B2
6597325 Judd et al. Jul 2003 B2
6598009 Yang Jul 2003 B2
6606430 Bartur et al. Aug 2003 B2
6615074 Mickle et al. Sep 2003 B2
6628732 Takaki Sep 2003 B1
6634811 Gertel et al. Oct 2003 B1
6636747 Harada et al. Oct 2003 B2
6640103 Inman et al. Oct 2003 B1
6643437 Park Nov 2003 B1
6652158 Bartur et al. Nov 2003 B2
6654590 Boros et al. Nov 2003 B2
6654616 Pope, Jr. et al. Nov 2003 B1
6657535 Magbie et al. Dec 2003 B1
6658269 Golemon et al. Dec 2003 B1
6665308 Rakib et al. Dec 2003 B1
6670930 Navarro Dec 2003 B2
6674966 Koonen Jan 2004 B1
6675294 Gupta et al. Jan 2004 B1
6678509 Skarman et al. Jan 2004 B2
6687437 Starnes et al. Feb 2004 B1
6690328 Judd Feb 2004 B2
6701137 Judd et al. Mar 2004 B1
6704298 Matsumiya et al. Mar 2004 B1
6704545 Wala Mar 2004 B1
6710366 Lee et al. Mar 2004 B1
6714800 Johnson et al. Mar 2004 B2
6731880 Westbrook et al. May 2004 B2
6745013 Porter et al. Jun 2004 B1
6758913 Tunney et al. Jul 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6771862 Karnik et al. Aug 2004 B2
6771933 Eng et al. Aug 2004 B1
6784802 Stanescu Aug 2004 B1
6785558 Stratford et al. Aug 2004 B1
6788666 Linebarger et al. Sep 2004 B1
6801767 Schwartz et al. Oct 2004 B1
6807374 Imajo et al. Oct 2004 B1
6812824 Goldinger et al. Nov 2004 B1
6812905 Thomas et al. Nov 2004 B2
6823174 Masenten et al. Nov 2004 B1
6826163 Mani et al. Nov 2004 B2
6826164 Mani et al. Nov 2004 B2
6826337 Linnell Nov 2004 B2
6836660 Wala Dec 2004 B1
6836673 Trott Dec 2004 B1
6842433 West et al. Jan 2005 B2
6847856 Bohannon Jan 2005 B1
6850510 Kubler Feb 2005 B2
6865390 Goss et al. Mar 2005 B2
6873823 Hasarchi Mar 2005 B2
6876056 Tilmans et al. Apr 2005 B2
6879290 Toutain et al. Apr 2005 B1
6882311 Walker et al. Apr 2005 B2
6883710 Chung Apr 2005 B2
6885344 Mohamadi Apr 2005 B2
6885846 Panasik et al. Apr 2005 B1
6889060 Fernando et al. May 2005 B2
6909399 Zegelin et al. Jun 2005 B1
6915058 Pons Jul 2005 B2
6915529 Suematsu et al. Jul 2005 B1
6919858 Rofougaran Jul 2005 B2
6920330 Caronni et al. Jul 2005 B2
6924997 Chen et al. Aug 2005 B2
6930987 Fukuda et al. Aug 2005 B1
6931183 Panak et al. Aug 2005 B2
6931659 Kinemura Aug 2005 B1
6933849 Sawyer Aug 2005 B2
6934511 Lovinggood et al. Aug 2005 B1
6934541 Miyatani Aug 2005 B2
6941112 Hasegawa Sep 2005 B2
6946989 Vavik Sep 2005 B2
6961312 Kubler et al. Nov 2005 B2
6963289 Aljadeff et al. Nov 2005 B2
6963552 Sabat, Jr. et al. Nov 2005 B2
6965718 Koertel Nov 2005 B2
6967347 Estes et al. Nov 2005 B2
6968107 Belardi et al. Nov 2005 B2
6970652 Zhang et al. Nov 2005 B2
6973243 Koyasu et al. Dec 2005 B2
6974262 Rickenbach Dec 2005 B1
6977502 Hertz Dec 2005 B1
7002511 Ammar et al. Feb 2006 B1
7006465 Toshimitsu et al. Feb 2006 B2
7013087 Suzuki et al. Mar 2006 B2
7015826 Chan et al. Mar 2006 B1
7020473 Splett Mar 2006 B2
7020488 Bleile et al. Mar 2006 B1
7024166 Wallace Apr 2006 B2
7035512 Van Bijsterveld Apr 2006 B2
7039399 Fischer May 2006 B2
7043271 Seto et al. May 2006 B1
7047028 Cagenius et al. May 2006 B2
7050017 King et al. May 2006 B2
7053838 Judd May 2006 B2
7054513 Herz et al. May 2006 B2
7069577 Geile et al. Jun 2006 B2
7072586 Aburakawa et al. Jul 2006 B2
7082320 Kattukaran et al. Jul 2006 B2
7084769 Bauer et al. Aug 2006 B2
7093985 Lord et al. Aug 2006 B2
7103119 Matsuoka et al. Sep 2006 B2
7103377 Bauman et al. Sep 2006 B2
7106252 Smith et al. Sep 2006 B2
7106931 Sutehall et al. Sep 2006 B2
7110795 Doi Sep 2006 B2
7114859 Tuohimaa et al. Oct 2006 B1
7127175 Mani et al. Oct 2006 B2
7127176 Sasaki Oct 2006 B2
7142503 Grant et al. Nov 2006 B1
7142535 Kubler et al. Nov 2006 B2
7142619 Sommer et al. Nov 2006 B2
7146506 Hannah et al. Dec 2006 B1
7160032 Nagashima et al. Jan 2007 B2
7171244 Bauman Jan 2007 B2
7184728 Solum Feb 2007 B2
7190748 Kim et al. Mar 2007 B2
7194023 Norrell et al. Mar 2007 B2
7199443 Elsharawy Apr 2007 B2
7200305 Dion et al. Apr 2007 B2
7200391 Chung et al. Apr 2007 B2
7228072 Mickelsson et al. Jun 2007 B2
7263293 Ommodt et al. Aug 2007 B2
7269311 Kim et al. Sep 2007 B2
7280011 Bayar et al. Oct 2007 B2
7286843 Scheck Oct 2007 B2
7286854 Ferrato et al. Oct 2007 B2
7295119 Rappaport et al. Nov 2007 B2
7310430 Mallya et al. Dec 2007 B1
7313415 Wake et al. Dec 2007 B2
7315735 Graham Jan 2008 B2
7324730 Varkey et al. Jan 2008 B2
7343164 Kallstenius Mar 2008 B2
7348843 Qiu et al. Mar 2008 B1
7349633 Lee et al. Mar 2008 B2
7359408 Kim Apr 2008 B2
7359674 Markki et al. Apr 2008 B2
7366150 Lee et al. Apr 2008 B2
7366151 Kubler et al. Apr 2008 B2
7369526 Lechleider et al. May 2008 B2
7379669 Kim May 2008 B2
7388892 Nishiyama et al. Jun 2008 B2
7392025 Rooyen et al. Jun 2008 B2
7392029 Pronkine Jun 2008 B2
7394883 Funakubo et al. Jul 2008 B2
7403156 Coppi et al. Jul 2008 B2
7409159 Izadpanah Aug 2008 B2
7412224 Kotola et al. Aug 2008 B2
7424228 Williams et al. Sep 2008 B1
7444051 Tatat et al. Oct 2008 B2
7450853 Kim et al. Nov 2008 B2
7450854 Lee et al. Nov 2008 B2
7451365 Wang et al. Nov 2008 B2
7454222 Huang et al. Nov 2008 B2
7460507 Kubler et al. Dec 2008 B2
7460829 Utsumi et al. Dec 2008 B2
7460831 Hasarchi Dec 2008 B2
7466925 Iannelli Dec 2008 B2
7469105 Wake et al. Dec 2008 B2
7477597 Segel Jan 2009 B2
7483504 Shapira et al. Jan 2009 B2
7483711 Burchfiel Jan 2009 B2
7496070 Vesuna Feb 2009 B2
7496384 Seto et al. Feb 2009 B2
7505747 Solum Mar 2009 B2
7512419 Solum Mar 2009 B2
7514804 Wang Apr 2009 B2
7522552 Fein et al. Apr 2009 B2
7539509 Bauman et al. May 2009 B2
7542452 Penumetsa Jun 2009 B2
7546138 Bauman Jun 2009 B2
7548138 Kamgaing Jun 2009 B2
7548695 Wake Jun 2009 B2
7551641 Pirzada et al. Jun 2009 B2
7557758 Rofougaran Jul 2009 B2
7580384 Kubler et al. Aug 2009 B2
7586861 Kubler et al. Sep 2009 B2
7590354 Sauer et al. Sep 2009 B2
7593704 Pinel et al. Sep 2009 B2
7599420 Forenza et al. Oct 2009 B2
7599672 Shoji et al. Oct 2009 B2
7610046 Wala Oct 2009 B2
7630690 Kaewell, Jr. et al. Dec 2009 B2
7633934 Kubler et al. Dec 2009 B2
7639982 Wala Dec 2009 B2
7646743 Kubler et al. Jan 2010 B2
7646777 Hicks, III et al. Jan 2010 B2
7653397 Pernu et al. Jan 2010 B2
7668565 Ylänen et al. Feb 2010 B2
7675936 Mizutani et al. Mar 2010 B2
7688811 Kubler et al. Mar 2010 B2
7693486 Kasslin et al. Apr 2010 B2
7697467 Kubler et al. Apr 2010 B2
7697574 Suematsu et al. Apr 2010 B2
7706803 Benco Apr 2010 B2
7715375 Kubler et al. May 2010 B2
7720510 Pescod et al. May 2010 B2
7751374 Donovan Jul 2010 B2
7751838 Ramesh et al. Jul 2010 B2
7760703 Kubler et al. Jul 2010 B2
7761093 Sabat, Jr. et al. Jul 2010 B2
7768951 Kubler et al. Aug 2010 B2
7773573 Chung et al. Aug 2010 B2
7778603 Palin et al. Aug 2010 B2
7787823 George et al. Aug 2010 B2
7805073 Sabat, Jr. et al. Sep 2010 B2
7809012 Ruuska et al. Oct 2010 B2
7812766 Leblanc et al. Oct 2010 B2
7812775 Babakhani et al. Oct 2010 B2
7817969 Castaneda et al. Oct 2010 B2
7835328 Stephens et al. Nov 2010 B2
7848316 Kubler et al. Dec 2010 B2
7848770 Scheinert Dec 2010 B2
7853234 Afsahi Dec 2010 B2
7870321 Rofougaran Jan 2011 B2
7880677 Rofougaran et al. Feb 2011 B2
7881755 Mishra et al. Feb 2011 B1
7894423 Kubler et al. Feb 2011 B2
7899007 Kubler et al. Mar 2011 B2
7907972 Walton et al. Mar 2011 B2
7912043 Kubler et al. Mar 2011 B2
7912506 Lovberg et al. Mar 2011 B2
7916706 Kubler et al. Mar 2011 B2
7917177 Bauman Mar 2011 B2
7920553 Kubler et al. Apr 2011 B2
7920858 Sabat, Jr. et al. Apr 2011 B2
7924783 Mahany et al. Apr 2011 B1
7936713 Kubler et al. May 2011 B2
7949364 Kasslin et al. May 2011 B2
7957777 Vu et al. Jun 2011 B1
7962111 Solum Jun 2011 B2
7969009 Chandrasekaran Jun 2011 B2
7969911 Mahany et al. Jun 2011 B2
7990925 Tinnakornsrisuphap et al. Aug 2011 B2
7996020 Chhabra Aug 2011 B1
8018907 Kubler et al. Sep 2011 B2
8023886 Rofougaran Sep 2011 B2
8027656 Rofougaran et al. Sep 2011 B2
8036308 Rofougaran Oct 2011 B2
8082353 Huber et al. Dec 2011 B2
8086192 Rofougaran et al. Dec 2011 B2
8135102 Wiwel et al. Mar 2012 B2
8213401 Fischer et al. Jul 2012 B2
8223795 Cox et al. Jul 2012 B2
8235349 Conklin et al. Aug 2012 B1
8238463 Arslan et al. Aug 2012 B1
8270387 Cannon et al. Sep 2012 B2
8290483 Sabat, Jr. et al. Oct 2012 B2
8306563 Zavadsky et al. Nov 2012 B2
8346278 Wala et al. Jan 2013 B2
8385850 Thompson et al. Feb 2013 B1
8428201 McHann, Jr. et al. Apr 2013 B1
8428510 Stratford et al. Apr 2013 B2
8462683 Uyehara et al. Jun 2013 B2
8472579 Uyehara et al. Jun 2013 B2
8509215 Stuart Aug 2013 B2
8509850 Zavadsky et al. Aug 2013 B2
8526970 Wala et al. Sep 2013 B2
8532242 Fischer et al. Sep 2013 B2
8626245 Zavadsky et al. Jan 2014 B2
8737454 Wala et al. May 2014 B2
8743718 Grenier et al. Jun 2014 B2
8743756 Uyehara et al. Jun 2014 B2
8837659 Uyehara et al. Sep 2014 B2
8837940 Smith et al. Sep 2014 B2
8873585 Oren et al. Oct 2014 B2
8929288 Stewart et al. Jan 2015 B2
20010036163 Sabat, Jr. et al. Nov 2001 A1
20010036199 Terry Nov 2001 A1
20020003645 Kim et al. Jan 2002 A1
20020009070 Lindsay et al. Jan 2002 A1
20020012336 Hughes et al. Jan 2002 A1
20020012495 Sasai et al. Jan 2002 A1
20020016827 McCabe et al. Feb 2002 A1
20020045519 Watterson et al. Apr 2002 A1
20020048071 Suzuki et al. Apr 2002 A1
20020051434 Ozluturk et al. May 2002 A1
20020075906 Cole et al. Jun 2002 A1
20020092347 Niekerk et al. Jul 2002 A1
20020097564 Struhsaker et al. Jul 2002 A1
20020103012 Kim et al. Aug 2002 A1
20020111149 Shoki Aug 2002 A1
20020111192 Thomas et al. Aug 2002 A1
20020114038 Arnon et al. Aug 2002 A1
20020123365 Thorson et al. Sep 2002 A1
20020126967 Panak et al. Sep 2002 A1
20020128009 Boch et al. Sep 2002 A1
20020130778 Nicholson Sep 2002 A1
20020181668 Masoian et al. Dec 2002 A1
20020190845 Moore Dec 2002 A1
20020197984 Monin et al. Dec 2002 A1
20030002604 Fifield et al. Jan 2003 A1
20030007214 Aburakawa et al. Jan 2003 A1
20030016418 Westbrook et al. Jan 2003 A1
20030045284 Copley et al. Mar 2003 A1
20030069922 Arunachalam Apr 2003 A1
20030078074 Sesay et al. Apr 2003 A1
20030112826 Ashwood Smith et al. Jun 2003 A1
20030141962 Barink Jul 2003 A1
20030161637 Yamamoto et al. Aug 2003 A1
20030165287 Krill et al. Sep 2003 A1
20030174099 Bauer et al. Sep 2003 A1
20030209601 Chung Nov 2003 A1
20040001719 Sasaki Jan 2004 A1
20040008114 Sawyer Jan 2004 A1
20040017785 Zelst Jan 2004 A1
20040037565 Young et al. Feb 2004 A1
20040041714 Forster Mar 2004 A1
20040043764 Bigham et al. Mar 2004 A1
20040047313 Rumpf et al. Mar 2004 A1
20040078151 Aljadeff et al. Apr 2004 A1
20040095907 Agee et al. May 2004 A1
20040100930 Shapira et al. May 2004 A1
20040106435 Bauman et al. Jun 2004 A1
20040126068 Van Bijsterveld Jul 2004 A1
20040126107 Jay et al. Jul 2004 A1
20040139477 Russell et al. Jul 2004 A1
20040146020 Kubler et al. Jul 2004 A1
20040149736 Clothier Aug 2004 A1
20040151164 Kubler et al. Aug 2004 A1
20040151503 Kashima et al. Aug 2004 A1
20040157623 Splett Aug 2004 A1
20040160912 Kubler et al. Aug 2004 A1
20040160913 Kubler et al. Aug 2004 A1
20040162084 Wang Aug 2004 A1
20040162115 Smith et al. Aug 2004 A1
20040162116 Han et al. Aug 2004 A1
20040165573 Kubler et al. Aug 2004 A1
20040175173 Deas Sep 2004 A1
20040196404 Loheit et al. Oct 2004 A1
20040202257 Mehta et al. Oct 2004 A1
20040203703 Fischer Oct 2004 A1
20040203704 Ommodt et al. Oct 2004 A1
20040203846 Caronni et al. Oct 2004 A1
20040204109 Hoppenstein Oct 2004 A1
20040208526 Mibu Oct 2004 A1
20040208643 Roberts et al. Oct 2004 A1
20040215723 Chadha Oct 2004 A1
20040218873 Nagashima et al. Nov 2004 A1
20040233877 Lee et al. Nov 2004 A1
20040258105 Spathas et al. Dec 2004 A1
20040267971 Seshadri Dec 2004 A1
20050052287 Whitesmith et al. Mar 2005 A1
20050058451 Ross Mar 2005 A1
20050068179 Roesner Mar 2005 A1
20050076982 Metcalf et al. Apr 2005 A1
20050078006 Hutchins Apr 2005 A1
20050093679 Zai et al. May 2005 A1
20050099343 Asrani et al. May 2005 A1
20050116821 Wilsey et al. Jun 2005 A1
20050123232 Piede et al. Jun 2005 A1
20050141545 Fein et al. Jun 2005 A1
20050143077 Charbonneau Jun 2005 A1
20050147067 Mani et al. Jul 2005 A1
20050147071 Karaoguz et al. Jul 2005 A1
20050148306 Hiddink Jul 2005 A1
20050159108 Fletcher Jul 2005 A1
20050174236 Brookner Aug 2005 A1
20050176458 Shklarsky et al. Aug 2005 A1
20050201323 Mani et al. Sep 2005 A1
20050201761 Bartur et al. Sep 2005 A1
20050219050 Martin Oct 2005 A1
20050224585 Durrant et al. Oct 2005 A1
20050226625 Wake et al. Oct 2005 A1
20050232636 Durrant et al. Oct 2005 A1
20050242188 Vesuna Nov 2005 A1
20050252971 Howarth et al. Nov 2005 A1
20050266797 Utsumi et al. Dec 2005 A1
20050266854 Niiho et al. Dec 2005 A1
20050269930 Shimizu et al. Dec 2005 A1
20050271396 Iannelli Dec 2005 A1
20050272439 Picciriello et al. Dec 2005 A1
20060002326 Vesuna Jan 2006 A1
20060014548 Bolin Jan 2006 A1
20060017633 Pronkine Jan 2006 A1
20060028352 McNamara et al. Feb 2006 A1
20060045054 Utsumi et al. Mar 2006 A1
20060045524 Lee et al. Mar 2006 A1
20060045525 Lee et al. Mar 2006 A1
20060053324 Giat et al. Mar 2006 A1
20060056327 Coersmeier Mar 2006 A1
20060062579 Kim et al. Mar 2006 A1
20060083520 Healey et al. Apr 2006 A1
20060094470 Wake et al. May 2006 A1
20060104643 Lee et al. May 2006 A1
20060159388 Kawase et al. Jul 2006 A1
20060172775 Conyers et al. Aug 2006 A1
20060182446 Kim et al. Aug 2006 A1
20060182449 Iannelli et al. Aug 2006 A1
20060189354 Lee et al. Aug 2006 A1
20060209745 MacMullan et al. Sep 2006 A1
20060223439 Pinel et al. Oct 2006 A1
20060233506 Noonan et al. Oct 2006 A1
20060239630 Hase et al. Oct 2006 A1
20060268738 Goerke et al. Nov 2006 A1
20060274704 Desai et al. Dec 2006 A1
20070009266 Bothwell Jan 2007 A1
20070050451 Caspi et al. Mar 2007 A1
20070054682 Fanning et al. Mar 2007 A1
20070058978 Lee et al. Mar 2007 A1
20070060045 Prautzsch Mar 2007 A1
20070060055 Desai et al. Mar 2007 A1
20070071128 Meir et al. Mar 2007 A1
20070076649 Lin et al. Apr 2007 A1
20070093273 Cai Apr 2007 A1
20070149250 Crozzoli et al. Jun 2007 A1
20070166042 Seeds et al. Jul 2007 A1
20070173288 Skarby et al. Jul 2007 A1
20070174889 Kim et al. Jul 2007 A1
20070224954 Gopi Sep 2007 A1
20070230328 Saitou Oct 2007 A1
20070243899 Hermel et al. Oct 2007 A1
20070248358 Sauer Oct 2007 A1
20070253714 Seeds et al. Nov 2007 A1
20070257796 Easton et al. Nov 2007 A1
20070264009 Sabat, Jr. et al. Nov 2007 A1
20070264011 Sone et al. Nov 2007 A1
20070268846 Proctor et al. Nov 2007 A1
20070274279 Wood et al. Nov 2007 A1
20070292143 Yu et al. Dec 2007 A1
20070297005 Montierth et al. Dec 2007 A1
20080002652 Gupta et al. Jan 2008 A1
20080007453 Vassilakis et al. Jan 2008 A1
20080013909 Kostet et al. Jan 2008 A1
20080013956 Ware et al. Jan 2008 A1
20080013957 Akers et al. Jan 2008 A1
20080014948 Scheinert Jan 2008 A1
20080026765 Charbonneau Jan 2008 A1
20080031628 Dragas et al. Feb 2008 A1
20080043714 Pernu Feb 2008 A1
20080056167 Kim et al. Mar 2008 A1
20080058018 Scheinert Mar 2008 A1
20080063397 Hu et al. Mar 2008 A1
20080070502 George et al. Mar 2008 A1
20080080863 Sauer et al. Apr 2008 A1
20080098203 Master et al. Apr 2008 A1
20080118014 Reunamaki et al. May 2008 A1
20080119198 Hettstedt et al. May 2008 A1
20080124086 Matthews May 2008 A1
20080124087 Hartmann et al. May 2008 A1
20080129634 Pera et al. Jun 2008 A1
20080134194 Liu Jun 2008 A1
20080145061 Lee et al. Jun 2008 A1
20080150514 Codreanu et al. Jun 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080194226 Rivas et al. Aug 2008 A1
20080207253 Jaakkola et al. Aug 2008 A1
20080212969 Fasshauer et al. Sep 2008 A1
20080219670 Kim et al. Sep 2008 A1
20080232305 Oren et al. Sep 2008 A1
20080232799 Kim Sep 2008 A1
20080247716 Thomas et al. Oct 2008 A1
20080253280 Tang et al. Oct 2008 A1
20080253351 Pernu et al. Oct 2008 A1
20080253773 Zheng Oct 2008 A1
20080260388 Kim et al. Oct 2008 A1
20080261656 Bella et al. Oct 2008 A1
20080268766 Narkmon et al. Oct 2008 A1
20080268833 Huang et al. Oct 2008 A1
20080273844 Kewitsch Nov 2008 A1
20080279137 Pernu et al. Nov 2008 A1
20080280569 Hazani et al. Nov 2008 A1
20080291830 Pernu et al. Nov 2008 A1
20080292322 Daghighian et al. Nov 2008 A1
20080298813 Song et al. Dec 2008 A1
20080304831 Miller, II et al. Dec 2008 A1
20080310464 Schneider Dec 2008 A1
20080310848 Yasuda et al. Dec 2008 A1
20080311876 Leenaerts et al. Dec 2008 A1
20080311944 Hansen et al. Dec 2008 A1
20090022304 Kubler et al. Jan 2009 A1
20090028087 Nguyen et al. Jan 2009 A1
20090028317 Ling et al. Jan 2009 A1
20090041413 Hurley Feb 2009 A1
20090047023 Pescod et al. Feb 2009 A1
20090059903 Kubler et al. Mar 2009 A1
20090061796 Arkko et al. Mar 2009 A1
20090061939 Andersson et al. Mar 2009 A1
20090073916 Zhang et al. Mar 2009 A1
20090081985 Rofougaran et al. Mar 2009 A1
20090087179 Underwood et al. Apr 2009 A1
20090088071 Rofougaran Apr 2009 A1
20090088072 Rofougaran et al. Apr 2009 A1
20090135078 Lindmark et al. May 2009 A1
20090141780 Cruz-Albrecht et al. Jun 2009 A1
20090149221 Liu et al. Jun 2009 A1
20090154621 Shapira et al. Jun 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175214 Sfar et al. Jul 2009 A1
20090180407 Sabat et al. Jul 2009 A1
20090180426 Sabat et al. Jul 2009 A1
20090218407 Rofougaran Sep 2009 A1
20090218657 Rofougaran Sep 2009 A1
20090237317 Rofougaran Sep 2009 A1
20090245084 Moffatt et al. Oct 2009 A1
20090245153 Li et al. Oct 2009 A1
20090245221 Piipponen Oct 2009 A1
20090247109 Rofougaran Oct 2009 A1
20090252136 Mahany et al. Oct 2009 A1
20090252139 Ludovico et al. Oct 2009 A1
20090252205 Rheinfelder et al. Oct 2009 A1
20090258652 Lambert et al. Oct 2009 A1
20090278596 Rofougaran et al. Nov 2009 A1
20090279593 Rofougaran et al. Nov 2009 A1
20090285147 Subasic et al. Nov 2009 A1
20090316608 Singh et al. Dec 2009 A1
20090319909 Hsueh et al. Dec 2009 A1
20100002626 Schmidt et al. Jan 2010 A1
20100002661 Schmidt et al. Jan 2010 A1
20100002662 Schmidt et al. Jan 2010 A1
20100014494 Schmidt et al. Jan 2010 A1
20100027443 LoGalbo et al. Feb 2010 A1
20100056200 Tolonen Mar 2010 A1
20100080154 Noh et al. Apr 2010 A1
20100080182 Kubler et al. Apr 2010 A1
20100091475 Toms et al. Apr 2010 A1
20100118864 Kubler et al. May 2010 A1
20100127937 Chandrasekaran et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100142598 Murray et al. Jun 2010 A1
20100142955 Yu et al. Jun 2010 A1
20100144285 Behzad et al. Jun 2010 A1
20100148373 Chandrasekaran Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100159859 Rofougaran Jun 2010 A1
20100188998 Pernu et al. Jul 2010 A1
20100189439 Novak et al. Jul 2010 A1
20100190509 Davis Jul 2010 A1
20100202326 Rofougaran et al. Aug 2010 A1
20100225413 Rofougaran et al. Sep 2010 A1
20100225520 Mohamadi et al. Sep 2010 A1
20100225556 Rofougaran et al. Sep 2010 A1
20100225557 Rofougaran et al. Sep 2010 A1
20100232323 Kubler et al. Sep 2010 A1
20100246558 Harel Sep 2010 A1
20100255774 Kenington Oct 2010 A1
20100258949 Henderson et al. Oct 2010 A1
20100260063 Kubler et al. Oct 2010 A1
20100261501 Behzad et al. Oct 2010 A1
20100266287 Adhikari et al. Oct 2010 A1
20100278530 Kummetz et al. Nov 2010 A1
20100284323 Tang et al. Nov 2010 A1
20100290355 Roy et al. Nov 2010 A1
20100309049 Reunamäki et al. Dec 2010 A1
20100311472 Rofougaran et al. Dec 2010 A1
20100311480 Raines et al. Dec 2010 A1
20100329161 Ylanen et al. Dec 2010 A1
20100329166 Mahany et al. Dec 2010 A1
20100329680 Presi et al. Dec 2010 A1
20110002687 Sabat, Jr. et al. Jan 2011 A1
20110007724 Mahany et al. Jan 2011 A1
20110007733 Kubler et al. Jan 2011 A1
20110008042 Stewart Jan 2011 A1
20110019999 George et al. Jan 2011 A1
20110021146 Pernu Jan 2011 A1
20110021224 Koskinen et al. Jan 2011 A1
20110026932 Yeh et al. Feb 2011 A1
20110045767 Rofougaran et al. Feb 2011 A1
20110065450 Kazmi Mar 2011 A1
20110066774 Rofougaran Mar 2011 A1
20110069668 Chion et al. Mar 2011 A1
20110071734 Van Wiemeersch et al. Mar 2011 A1
20110086614 Brisebois et al. Apr 2011 A1
20110116393 Hong et al. May 2011 A1
20110116572 Lee et al. May 2011 A1
20110122912 Benjamin et al. May 2011 A1
20110126071 Han et al. May 2011 A1
20110149879 Noriega et al. Jun 2011 A1
20110158298 Djadi et al. Jun 2011 A1
20110182230 Ohm et al. Jul 2011 A1
20110194475 Kim et al. Aug 2011 A1
20110200328 In De Betou et al. Aug 2011 A1
20110201368 Faccin et al. Aug 2011 A1
20110204504 Henderson et al. Aug 2011 A1
20110206383 Chien et al. Aug 2011 A1
20110211439 Manpuria et al. Sep 2011 A1
20110215901 Van Wiemeersch et al. Sep 2011 A1
20110222415 Ramamurthi et al. Sep 2011 A1
20110222434 Chen Sep 2011 A1
20110222619 Ramamurthi et al. Sep 2011 A1
20110227795 Lopez et al. Sep 2011 A1
20110244887 Dupray et al. Oct 2011 A1
20110256878 Zhu et al. Oct 2011 A1
20110268033 Boldi et al. Nov 2011 A1
20110268449 Berlin et al. Nov 2011 A1
20110274021 He et al. Nov 2011 A1
20110281536 Lee et al. Nov 2011 A1
20120052892 Braithwaite Mar 2012 A1
20120177026 Uyehara et al. Jul 2012 A1
20130012195 Sabat, Jr. et al. Jan 2013 A1
20130070816 Aoki et al. Mar 2013 A1
20130071112 Melester et al. Mar 2013 A1
20130089332 Sauer et al. Apr 2013 A1
20130095870 Phillips et al. Apr 2013 A1
20130150063 Berlin Jun 2013 A1
20130210490 Fischer et al. Aug 2013 A1
20130252651 Zavadsky et al. Sep 2013 A1
20130260705 Stratford Oct 2013 A1
20140016583 Smith Jan 2014 A1
20140022914 Leimeister et al. Jan 2014 A1
20140140225 Wala May 2014 A1
20140146797 Zavadsky et al. May 2014 A1
20140146905 Zavadsky et al. May 2014 A1
20140146906 Zavadsky et al. May 2014 A1
20140219140 Uyehara et al. Aug 2014 A1
20160135313 Freeman May 2016 A1
20170054496 Hazani Feb 2017 A1
Foreign Referenced Citations (116)
Number Date Country
645192 Oct 1992 AU
731180 Mar 1998 AU
2065090 Feb 1998 CA
2242707 Jan 1999 CA
101389148 Mar 2009 CN
101547447 Sep 2009 CN
20104862 Aug 2001 DE
10249414 May 2004 DE
0477952 Apr 1992 EP
0477952 Apr 1992 EP
0461583 Mar 1997 EP
851618 Jul 1998 EP
0687400 Nov 1998 EP
0993124 Apr 2000 EP
1037411 Sep 2000 EP
1179895 Feb 2002 EP
1267447 Dec 2002 EP
1347584 Sep 2003 EP
1363352 Nov 2003 EP
1391897 Feb 2004 EP
1443687 Aug 2004 EP
1455550 Sep 2004 EP
1501206 Jan 2005 EP
1503451 Feb 2005 EP
1530316 May 2005 EP
1511203 Mar 2006 EP
1267447 Aug 2006 EP
1693974 Aug 2006 EP
1742388 Jan 2007 EP
1227605 Jan 2008 EP
1954019 Aug 2008 EP
1968250 Sep 2008 EP
1056226 Apr 2009 EP
1357683 May 2009 EP
2276298 Jan 2011 EP
1570626 Nov 2013 EP
2323252 Sep 1998 GB
2370170 Jun 2002 GB
2399963 Sep 2004 GB
2428149 Jan 2007 GB
H4189036 Jul 1992 JP
05260018 Oct 1993 JP
09083450 Mar 1997 JP
09162810 Jun 1997 JP
09200840 Jul 1997 JP
11068675 Mar 1999 JP
2000152300 May 2000 JP
2000341744 Dec 2000 JP
2002264617 Sep 2002 JP
2002353813 Dec 2002 JP
2003148653 May 2003 JP
2003172827 Jun 2003 JP
2004172734 Jun 2004 JP
2004245963 Sep 2004 JP
2004247090 Sep 2004 JP
2004264901 Sep 2004 JP
2004265624 Sep 2004 JP
2004317737 Nov 2004 JP
2004349184 Dec 2004 JP
2005018175 Jan 2005 JP
2005087135 Apr 2005 JP
2005134125 May 2005 JP
2007228603 Sep 2007 JP
2008172597 Jul 2008 JP
20010055088 Jul 2001 KR
9603823 Feb 1996 WO
9810600 Mar 1998 WO
0042721 Jul 2000 WO
0072475 Nov 2000 WO
0178434 Oct 2001 WO
0184760 Nov 2001 WO
0221183 Mar 2002 WO
0230141 Apr 2002 WO
02102102 Dec 2002 WO
03024027 Mar 2003 WO
03098175 Nov 2003 WO
2004030154 Apr 2004 WO
2004047472 Jun 2004 WO
2004056019 Jul 2004 WO
2004059934 Jul 2004 WO
2004086795 Oct 2004 WO
2004093471 Oct 2004 WO
2005062505 Jul 2005 WO
2005069203 Jul 2005 WO
2005073897 Aug 2005 WO
2005079386 Sep 2005 WO
2005101701 Oct 2005 WO
2005111959 Nov 2005 WO
2006011778 Feb 2006 WO
2006018592 Feb 2006 WO
2006019392 Feb 2006 WO
2006039941 Apr 2006 WO
2006051262 May 2006 WO
2006060754 Jun 2006 WO
2006077569 Jul 2006 WO
2006105185 Oct 2006 WO
2006133609 Dec 2006 WO
2006136811 Dec 2006 WO
2007048427 May 2007 WO
2007077451 Jul 2007 WO
2007088561 Aug 2007 WO
2007091026 Aug 2007 WO
2008008249 Jan 2008 WO
2008027213 Mar 2008 WO
2008033298 Mar 2008 WO
2008039830 Apr 2008 WO
2008116014 Sep 2008 WO
2006046088 May 2009 WO
2010090999 Aug 2010 WO
2010132739 Nov 2010 WO
2011023592 Mar 2011 WO
2011100095 Aug 2011 WO
2011139939 Nov 2011 WO
2012148938 Nov 2012 WO
2012148940 Nov 2012 WO
2013122915 Aug 2013 WO
Non-Patent Literature Citations (47)
Entry
Notice of Allowance for U.S. Appl. No. 14/855,896, mailed Nov. 9, 2016, 19 pages.
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3.
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12, pp. 2718-2720.
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages.
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3.
Cooper, A.J., “Fiber/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26.
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5.
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2.
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2.
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8.
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710.
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168.
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transaction on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985.
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, No. 4, pp. 206-208.
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011.
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System Based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58.
Author Unknown, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 22 pages.
Author Unknown, “ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cable for the Access Network,” ITU-T Recommendation G.657, International Telecommunication Union, 20 pages.
Author Unknown, RFID Technology Overview, Date Unknown, 11 pages.
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages.
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages.
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2001, pp. 271-282.
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709.
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design.
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56.
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific Conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118.
Wake, D. et al., “Passive Picocell: A New Concept n Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406.
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages.
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communications Systems,” IEEE Transcations on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751.
Yu et al., “A Novel Scheme to Generate Single-Sideband Millimeter-Wave Signals by Using Low-Frequency Local Oscillator Signal,” IEEE Photonics Technology Letters, vol. 20, No. 7, Apr. 1, 2008, pp. 478-480.
Attygalle et al., “Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in Conjunction with Optimized Modulation,” Journal of Lightwave Technology, vol. 24, No. 4, Apr. 2006, 7 pages.
Bo Zhang et al., “Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers,” Journal of Lightwave Technology, vol. 27, No. 15, Aug. 2009, 6 pages.
Chang-Hasnain, et al., “Ultrahigh-speed laser modulation by injection locking,” Chapter 6, Optical Fiber Telecommunication V A: Components and Subsystems, Elsevier Inc., 2008, 20 pages.
Cheng Zhang et al., “60 GHz Millimeter-wave Generation by Two-mode Injection-locked Fabry-Perot Laser Using Second-Order Sideband Injection in Radio-over-Fiber System,” Conference on Lasers and Electro-Optics and Quantum Electronics, Optical Society of America, May 2008, 2 pages.
Chrostowski, “Optical Injection Locking of Vertical Cavity Surface Emitting Lasers,” Fall 2003, PhD dissertation University of California at Berkely, 122 pages.
Dang et al., “Radio-over-Fiber based architecture for seamless wireless indoor communication in the 60GHz band,” Computer Communications, Elsevier B.V., Amsterdam, NL, vol. 30, Sep. 8, 2007, pp. 3598-3613.
Hyuk-Kee Sung et al., “Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 19, No. 13, Jul. 1, 2007, 4 pages.
Lim et al., “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, No. 5, May 2006, 7 pages.
Lu H H et al., “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Optics Communications, vol. 266, No. 2, Elsevier B.V., Oct. 15, 2006, 4 pages.
Pleros et al., “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” Journal of Lightwave Technology, vol. 27, No. 12, IEEE, Jun. 15, 2009, pp. 1957-1967.
Reza et al., “Degree-of-Polarization-Based PMD Monitoring for Subcarrier-Multiplexed Signals via Equalized Carrier/Sideband Filtering,” Journal of Lightwave Technology, vol. 22, No. 4, IEEE, Apr. 2004, 8 pages.
Zhao, “Optical Injection Locking on Vertical-Cavity Surface-Emitting Lasers (VCSELs): Physics and Applications,” Fall 2008, PhD dissertation University of California at Berkeley, pp. 1-209.
Author Unknown, “VCSEL Chaotic Synchronization and Modulation Characteristics,” Master's Thesis, Southwest Jiatong University, Professor Pan Wei, Apr. 2006, 8 pages (machine translation).
Chowdhury et al., “Multi-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Wireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3.
Oberon Product Catalog, “Suspended Ceiling T Wireless Access Point & DAS rem,” http://www.oberonwireless.com/plenum-rated-access-point-enclosures.php, Jun. 4, 2014, 6 pages.
Seto et al., “Optical Subcarrier Multiplexing Transmission for Base Station With Adaptive Array Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 10, Oct. 2001, pp. 2036-2041.
Biton et al., “Challenge: CeTV and Ca-Fi—Cellular and Wi-Fi over CATV,” Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking, Aug. 28-Sep. 2, 2005, Cologne, Germany, Association for Computing Machinery, 8 pages.
Related Publications (1)
Number Date Country
20150035705 A1 Feb 2015 US
Provisional Applications (1)
Number Date Country
61860553 Jul 2013 US