The disclosed examples relate generally to user interfaces of electronic devices.
Consumers often own multiple electronic devices. Such electronic devices may be portable devices like cellular phones, tablet computers, laptops, digital audio players, and so forth. Such electronic devices may also be home electronics like audio-visual equipment, home security equipment, home automation equipment, appliances, and so forth. Such electronic devices may also be integrated with equipment not traditionally labeled as electronic devices. For example, such electronic devices may include telematics equipment that is integrated with an automobile.
User interfaces for remotely controlling target electronic devices using a personal electronic device with a touch-sensitive display are disclosed. In some examples, at an electronic device with a touch-sensitive display, where the touch-sensitive display comprises one or more sensors to detect the intensity of contacts with the touch-sensitive display, a plurality of icons representing applications, including an icon representing a remote control application, are displayed. A first contact on the touch-sensitive display at a location of the icon is received. The electronic device determines whether a target device out of a plurality of target devices is responsive to remote control. In response to the first contact and a determination of the target device being responsive to remote control, the electronic device displays a first plurality of remote controls for the target device. Further, while displaying the first plurality of remote controls, the electronic device receives a second contact on the touch-sensitive display, the second contact having a maximum intensity. In response to receiving the second contact and a determination that the maximum intensity is below a threshold intensity, the electronic device instructs the target device to perform an operation; and in response to receiving the second contact and a determination that the maximum intensity is above the threshold intensity, the electronic device displays a second plurality of remote controls for the first target device.
In some examples, the electronic device displays a user interface object on the touch-sensitive display of the electronic device, where the displayed user interface object represents a remote control application. The electronic device receives data representing a contact on the displayed user interface object, and identifies a target electronic device that is responsive to remote control. In response to receiving the data representing the contact, the electronic device displays graphical user interface objects for controlling operations of the identified target electronic device.
In some examples, when none of the target electronic devices of the plurality of target electronic devices is responsive to remote control, the electronic device displays a plurality of graphical user interface objects representing the plurality of target electronic devices. Restated, in response to a determination that no target electronic device is responsive to remote control, the electronic device displays a plurality of graphical user interface objects that represent the plurality of target electronic devices.
In some examples, the electronic device receives first data representing a first contact at a location on the touch-sensitive display, the first contact having a maximum intensity below a predetermined threshold intensity, and the location is associated with an operation of a target electronic device. In response to the first contact (which is a relatively lighter touch), the device sends an instruction to the target electronic device instructing the target electronic device to perform an operation. The electronic device then additionally receives second data representing a second contact on the display, the second contact having a maximum intensity above the threshold intensity. In response to the second contact (which is a relatively harder touch), the electronic device displays a user interface for registering (e.g., pairing) a new target electronic device with the remote control application.
In some examples, an intermediate device relays instructions from the electronic device that is running the remote control application to the target electronic device that is being remotely controlled. That is, the electronic device sends data to an intermediate electronic device, where the data represents an instruction instructing the target electronic device to perform the operation, and an instruction is then communicated by the intermediate electronic device to the target electronic device.
In some examples, the target electronic device is responsive to remote control when the target electronic device is executing an application having an operation that can be requested using the remote control application.
In some examples, the electronic device obtains data representing a plurality of target devices, displays a user interface object representing a remote control application, and receives data representing a selection on the displayed user interface object. The electronic device determines whether the number of target devices exceeds a threshold, and in accordance with a determination that the number exceeds the threshold, the electronic device displays a plurality of graphical user interface objects representing categories of target devices, in response to receiving the data, and in accordance with a determination that the number does not exceed the threshold, the electronic device a plurality of graphical user interface objects representing the plurality of target devices, in response to receiving the data.
In some examples, the electronic device determines the location of a target device relative to the electronic device; and displays, on the touch-sensitive display, a user interface object representing the target device. The target device is nearby and the display position of the user interface object, on the touch-sensitive display, is based on the location of the target device relative to the electronic device in some examples.
In some examples, the electronic device displays a user interface object representing a remote control application on the touch-sensitive display of the electronic device, receives first data representing a zoom function on the displayed user interface object; and in response to receiving the first data representing the zoom function, displays an affordance including indication of nearby target devices capable of being remotely controlled.
In some examples, the electronic device receives data representing a first movement of a rotatable input device; and in response to receiving the data representing the first movement, displays only a subset of the plurality of graphical user interface objects, where the displayed subset of graphical user interface objects includes the icon representing the remote control application, and displays an affordance including indication of nearby target devices capable of being remotely controlled.
In some examples, the electronic device identifies a target device that is responsive to remote control out of a plurality of target devices, detects a raise gesture based on detected motion of the electronic device; and, in response to detecting the raise gesture, instructs the target device to perform an operation.
For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
The following description sets forth exemplary methods, parameters, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.
As discussed above, consumers often own multiple electronic devices. It is desirable for a user to be able to remotely control these electronic devices. It is also desirable for the device (i.e., the “remote control”) that is used to remotely control these electronic devices to be portable and readily accessible. It is also desirable for the remote control to support remote control of various electronic devices while maintaining a physical form factor that promotes usability.
Below,
Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first touch could be termed a second touch, and, similarly, a second touch could be termed a first touch, without departing from the scope of the various described embodiments. The first touch and the second touch are both touches, but they are not the same touch.
The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a”, “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
Embodiments of electronic devices, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions. Exemplary embodiments of portable multifunction devices include, without limitation, the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California Other portable electronic devices, such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch screen displays and/or touchpads), are, optionally, used. It should also be understood that, in some embodiments, the device is not a portable communications device, but is a desktop computer with a touch-sensitive surface (e.g., a touch screen display and/or a touchpad).
In the discussion that follows, an electronic device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the electronic device optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick.
The device typically supports a variety of applications, such as one or more of the following: a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.
The various applications that are executed on the device optionally use at least one common physical user-interface device, such as the touch-sensitive surface. One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device are, optionally, adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch-sensitive surface) of the device optionally supports the variety of applications with user interfaces that are intuitive and transparent to the user.
Attention is now directed toward embodiments of portable devices with touch-sensitive displays.
As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).
As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
It should be appreciated that device 100 is only one example of a portable multifunction device, and that device 100 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in
Memory 102 optionally includes one or more computer-readable storage mediums. The computer-readable storage mediums are optionally tangible and non-transitory. The computer-readable storage mediums are optionally transitory. Memory 102 optionally includes high-speed random access memory and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 122 optionally controls access to memory 102 by other components of device 100.
Peripherals interface 118 can be used to couple input and output peripherals of the device to CPU 120 and memory 102. The one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for device 100 and to process data. In some embodiments, peripherals interface 118, CPU 120, and memory controller 122 are, optionally, implemented on a single chip, such as chip 104. In some other embodiments, they are, optionally, implemented on separate chips.
RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals. RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 108 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 108 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 108 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
Audio circuitry 110, speaker 111, and microphone 113 provide an audio interface between a user and device 100. Audio circuitry 110 receives audio data from peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 111. Speaker 111 converts the electrical signal to human-audible sound waves. Audio circuitry 110 also receives electrical signals converted by microphone 113 from sound waves. Audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to peripherals interface 118 for processing. Audio data is, optionally retrieved from and/or transmitted to memory 102 and/or RF circuitry 108 by peripherals interface 118. In some embodiments, audio circuitry 110 also includes a headset jack (e.g., 212,
I/O subsystem 106 couples input/output peripherals on device 100, such as touch screen 112 and other input control devices 116, to peripherals interface 118. I/O subsystem 106 optionally includes display controller 156, optical sensor controller 158, intensity sensor controller 159, haptic feedback controller 161, and one or more input controllers 160 for other input or control devices. The one or more input controllers 160 receive/send electrical signals from/to other input control devices 116. The other input control devices 116 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 160 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 208,
A quick press of the push button optionally disengages a lock of touch screen 112 or optionally begins a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 206) optionally turns power to device 100 on or off. The functionality of one or more of the buttons are, optionally, user-customizable. Touch screen 112 is used to implement virtual or soft buttons and one or more soft keyboards.
Touch-sensitive display 112 provides an input interface and an output interface between the device and a user. Display controller 156 receives and/or sends electrical signals from/to touch screen 112. Touch screen 112 displays visual output to the user. The visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output optionally corresponds to user-interface objects.
Touch screen 112 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 112 and display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on touch screen 112 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 112. In an exemplary embodiment, a point of contact between touch screen 112 and the user corresponds to a finger of the user.
Touch screen 112 optionally uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments. Touch screen 112 and display controller 156 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 112. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, California.
A touch-sensitive display in some embodiments of touch screen 112 is, optionally, analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 112 displays visual output from device 100, whereas touch-sensitive touchpads do not provide visual output.
A touch-sensitive display in some embodiments of touch screen 112 is described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.
Touch screen 112 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user optionally makes contact with touch screen 112 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
In some embodiments, in addition to the touch screen, device 100 optionally includes a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is, optionally, a touch-sensitive surface that is separate from touch screen 112 or an extension of the touch-sensitive surface formed by the touch screen.
Device 100 also includes power system 162 for powering the various components. Power system 162 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
Device 100 optionally also includes one or more optical sensors 164.
Device 100 optionally also includes one or more contact intensity sensors 165.
Device 100 optionally also includes one or more proximity sensors 166.
Device 100 optionally also includes one or more tactile output generators 167.
Device 100 optionally also includes one or more accelerometers 168.
In some embodiments, the software components stored in memory 102 include operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136. Furthermore, in some embodiments, memory 102 (
Operating system 126 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
Communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by RF circuitry 108 and/or external port 124. External port 124 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.
Contact/motion module 130 optionally detects contact with touch screen 112 (in conjunction with display controller 156) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 130 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 130 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 130 and display controller 156 detect contact on a touchpad.
In some embodiments, contact/motion module 130 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 100). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).
Contact/motion module 130 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.
Graphics module 132 includes various known software components for rendering and displaying graphics on touch screen 112 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.
In some embodiments, graphics module 132 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 132 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 156.
Haptic feedback module 133 includes various software components for generating instructions used by tactile output generator(s) 167 to produce tactile outputs at one or more locations on device 100 in response to user interactions with device 100.
Text input module 134, which is, optionally, a component of graphics module 132, provides soft keyboards for entering text in various applications (e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).
GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone module 138 for use in location-based dialing; to camera module 143 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
Applications 136 optionally include the following modules (or sets of instructions), or a subset or superset thereof:
Examples of other applications 136 that are, optionally, stored in memory 102 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, contacts module 137 are, optionally, used to manage an address book or contact list (e.g., stored in application internal state 192 of contacts module 137 in memory 102 or memory 370), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone module 138, video conference module 139, e-mail 140, or IM 141; and so forth.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, telephone module 138 are optionally, used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, optical sensor 164, optical sensor controller 158, contact/motion module 130, graphics module 132, text input module 134, contacts module 137, and telephone module 138, video conference module 139 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, e-mail client module 140 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 144, e-mail client module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, the instant messaging module 141 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages may include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, map module 154, and music player module, workout support module 142 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.
In conjunction with touch screen 112, display controller 156, optical sensor(s) 164, optical sensor controller 158, contact/motion module 130, graphics module 132, and image management module 144, camera module 143 includes executable instructions to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, or delete a still image or video from memory 102.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and camera module 143, image management module 144 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, browser module 147 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, e-mail client module 140, and browser module 147, calendar module 148 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, widget modules 149 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user-created widget 149-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, the widget creator module 150 is, optionally, used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, search module 151 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, and browser module 147, video and music player module 152 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 112 or on an external, connected display via external port 124). In some embodiments, device 100 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, notes module 153 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, and browser module 147, map module 154 are, optionally, used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, text input module 134, e-mail client module 140, and browser module 147, online video module 155 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 124), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 141, rather than e-mail client module 140, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.
Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are, optionally, combined or otherwise rearranged in various embodiments. For example, video player module is, optionally, combined with music player module into a single module (e.g., video and music player module 152,
In some embodiments, device 100 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 100, the number of physical input control devices (such as push buttons, dials, and the like) on device 100 is, optionally, reduced.
The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 100 to a main, home, or root menu from any user interface that is displayed on device 100. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.
Event sorter 170 receives event information and determines the application 136-1 and application view 191 of application 136-1 to which to deliver the event information. Event sorter 170 includes event monitor 171 and event dispatcher module 174. In some embodiments, application 136-1 includes application internal state 192, which indicates the current application view(s) displayed on touch-sensitive display 112 when the application is active or executing. In some embodiments, device/global internal state 157 is used by event sorter 170 to determine which application(s) is (are) currently active, and application internal state 192 is used by event sorter 170 to determine application views 191 to which to deliver event information.
In some embodiments, application internal state 192 includes additional information, such as one or more of: resume information to be used when application 136-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 136-1, a state queue for enabling the user to go back to a prior state or view of application 136-1, and a redo/undo queue of previous actions taken by the user.
Event monitor 171 receives event information from peripherals interface 118. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 112, as part of a multi-touch gesture). Peripherals interface 118 transmits information it receives from I/O subsystem 106 or a sensor, such as proximity sensor 166, accelerometer(s) 168, and/or microphone 113 (through audio circuitry 110). Information that peripherals interface 118 receives from I/O subsystem 106 includes information from touch-sensitive display 112 or a touch-sensitive surface.
In some embodiments, event monitor 171 sends requests to the peripherals interface 118 at predetermined intervals. In response, peripherals interface 118 transmits event information. In other embodiments, peripherals interface 118 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
In some embodiments, event sorter 170 also includes a hit view determination module 172 and/or an active event recognizer determination module 173.
Hit view determination module 172 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 112 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected optionally correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is, optionally, called the hit view, and the set of events that are recognized as proper inputs are, optionally, determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
Hit view determination module 172 receives information related to sub-events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 172 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 172, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
Active event recognizer determination module 173 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 173 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 173 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
Event dispatcher module 174 dispatches the event information to an event recognizer (e.g., event recognizer 180). In embodiments including active event recognizer determination module 173, event dispatcher module 174 delivers the event information to an event recognizer determined by active event recognizer determination module 173. In some embodiments, event dispatcher module 174 stores in an event queue the event information, which is retrieved by a respective event receiver 182.
In some embodiments, operating system 126 includes event sorter 170. Alternatively, application 136-1 includes event sorter 170. In yet other embodiments, event sorter 170 is a stand-alone module, or a part of another module stored in memory 102, such as contact/motion module 130.
In some embodiments, application 136-1 includes a plurality of event handlers 190 and one or more application views 191, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 191 of the application 136-1 includes one or more event recognizers 180. Typically, a respective application view 191 includes a plurality of event recognizers 180. In other embodiments, one or more of event recognizers 180 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 136-1 inherits methods and other properties. In some embodiments, a respective event handler 190 includes one or more of: data updater 176, object updater 177, GUI updater 178, and/or event data 179 received from event sorter 170. Event handler 190 optionally utilizes or calls data updater 176, object updater 177, or GUI updater 178 to update the application internal state 192. Alternatively, one or more of the application views 191 include one or more respective event handlers 190. Also, in some embodiments, one or more of data updater 176, object updater 177, and GUI updater 178 are included in a respective application view 191.
A respective event recognizer 180 receives event information (e.g., event data 179) from event sorter 170 and identifies an event from the event information. Event recognizer 180 includes event receiver 182 and event comparator 184. In some embodiments, event recognizer 180 also includes at least a subset of: metadata 183, and event delivery instructions 188 (which optionally include sub-event delivery instructions).
Event receiver 182 receives event information from event sorter 170. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information optionally also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.
Event comparator 184 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub-event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 184 includes event definitions 186. Event definitions 186 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (187-1), event 2 (187-2), and others. In some embodiments, sub-events in an event (187) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (187-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (187-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 112, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 190.
In some embodiments, event definition 187 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 184 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 112, when a touch is detected on touch-sensitive display 112, event comparator 184 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 190, the event comparator uses the result of the hit test to determine which event handler 190 should be activated. For example, event comparator 184 selects an event handler associated with the sub-event and the object triggering the hit test.
In some embodiments, the definition for a respective event (187) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
When a respective event recognizer 180 determines that the series of sub-events do not match any of the events in event definitions 186, the respective event recognizer 180 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.
In some embodiments, a respective event recognizer 180 includes metadata 183 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
In some embodiments, a respective event recognizer 180 activates event handler 190 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 180 delivers event information associated with the event to event handler 190. Activating an event handler 190 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 180 throws a flag associated with the recognized event, and event handler 190 associated with the flag catches the flag and performs a predefined process.
In some embodiments, event delivery instructions 188 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
In some embodiments, data updater 176 creates and updates data used in application 136-1. For example, data updater 176 updates the telephone number used in contacts module 137, or stores a video file used in video player module. In some embodiments, object updater 177 creates and updates objects used in application 136-1. For example, object updater 177 creates a new user-interface object or updates the position of a user-interface object. GUI updater 178 updates the GUI. For example, GUI updater 178 prepares display information and sends it to graphics module 132 for display on a touch-sensitive display.
In some embodiments, event handler(s) 190 includes or has access to data updater 176, object updater 177, and GUI updater 178. In some embodiments, data updater 176, object updater 177, and GUI updater 178 are included in a single module of a respective application 136-1 or application view 191. In other embodiments, they are included in two or more software modules.
It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 100 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.
Device 100 optionally also include one or more physical buttons, such as “home” or menu button 204. As described previously, menu button 204 is, optionally, used to navigate to any application 136 in a set of applications that are, optionally, executed on device 100. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 112.
In some embodiments, device 100 includes touch screen 112, menu button 204, push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, subscriber identity module (SIM) card slot 210, headset jack 212, and docking/charging external port 124. Push button 206 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 100 also accepts verbal input for activation or deactivation of some functions through microphone 113. Device 100 also, optionally, includes one or more contact intensity sensors 165 for detecting intensity of contacts on touch screen 112 and/or one or more tactile output generators 167 for generating tactile outputs for a user of device 100.
Each of the above-identified elements in
Attention is now directed towards embodiments of user interfaces that is, optionally, implemented on, for example, portable multifunction device 100.
It should be noted that the icon labels illustrated in
Although some of the examples which follow will be given with reference to inputs on touch screen display 112 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in
Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.
Exemplary techniques for detecting and processing touch intensity are found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, each of which is hereby incorporated by reference in their entirety.
In some embodiments, device 500 has one or more input mechanisms 506 and 508. Input mechanisms 506 and 508, if included, can be physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 500 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 500 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 500 to be worn by a user.
Input mechanism 508 is, optionally, a microphone, in some examples. Personal electronic device 500 optionally includes various sensors, such as GPS sensor 532, accelerometer 534, directional sensor 540 (e.g., compass), gyroscope 536, motion sensor 538, and/or a combination thereof, all of which can be operatively connected to I/O section 514.
Memory 518 of personal electronic device 500 can be a non-transitory computer-readable storage medium, for storing computer-executable instructions, which, when executed by one or more computer processors 516, for example, can cause the computer processors to perform the techniques described above, including processes 1500-1850 (
As used here, the term “affordance” refers to a user-interactive graphical user interface object that is, optionally, displayed on the display screen of devices 100, 300, and/or 500 (
As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 355 in
As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.5, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds optionally includes a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.
In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface optionally receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location is, optionally, based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm is, optionally, applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.
The intensity of a contact on the touch-sensitive surface is, optionally, be characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.
An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.
In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).
In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
Touchscreen 604 can allow a user to perform various functions by touching or hovering near the touch sensor panel. The user may make contact with touchscreen 604 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some examples, device 600 is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based inputs due to the larger area of contact of a finger on the touchscreen. In some examples, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
Touchscreen 604 can display graphical user interface objects. Examples of such graphical user interface objects include images, video, text, and other graphics. As used here, the term “icon” refers to a graphical user interface object—such as an image—that provides a visual indication of a device feature and optionally, when activated, initiates that feature. Also, as used here, the term “affordance” refers to a graphical user interface object—such as an image—and/or its content—such as text within the image.
In some examples, touchscreen 604 has one or more intensity sensors (not shown) for detecting intensity of contacts being applied. The one or more intensity sensors of touchscreen 604 can provide output data that represents the intensity of contacts. The user interface of device 600 can respond to contacts based on their intensity, meaning that contacts of different intensities can invoke different user interface operations on device 600. As used here, the term “intensity” of a contact on touchscreen 604 refers to the force or pressure (force per unit area) of a contact (e.g., a finger) on the touchscreen.
In some examples, touchscreen 604 does not have the above-described intensity sensors; rather, device 600 uses a substitute (proxy) for the force or pressure of a contact on touchscreen 604. In these examples, the size of the contact area detected on the touchscreen 604 and/or changes thereto, the capacitance of the touchscreen 604 proximate to the contact and/or changes thereto, and/or the resistance of the touchscreen 604 proximate to the contact and/or changes thereto can be used as a substitute for the force or pressure of the contact on touchscreen 604. These substitute measurements for contact force or pressure may be used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). Alternatively, these substitute measurements for contact force or pressure may be converted to an estimated force or pressure and the estimated force or pressure may then be used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure).
In some examples, regardless of whether touchscreen 604 has the above-described intensity sensors, device 600 can optionally communicate with a stylus having a pressure-sensitive tip that detects and provides data regarding the intensity of the stylus's contact on device 600, particularly touchscreen 604.
In some examples, device 600 has one or more input mechanisms 606 and 608. Input mechanisms 606 and 608, if included, can be physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some examples, device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 600 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth.
1. Remote Control User Interface
Icon 706 corresponds to a remote control application. A remote control application allows a user to remotely control other electronic devices. These other electronic devices can be referred to as target electronic devices. Target electronic devices are capable of being remotely controlled, meaning that they have the requisite hardware and/or software to receive and act on instructions from remote controllers. Some target electronic devices, however, may not always be responsive to remote control even if they are capable. For example, a target electronic device may be configured to receive and process incoming instructions when it is running some software applications but not others. Such a target electronic device may be identified as responsive to remote control when it is executing logic (e.g., a target software application) that has an operation that can be initiated remotely (e.g., from device 600). In some cases, a target electronic device is responsive to remote control when it is executing a relevant target software application in the foreground, but not be responsive to remote control when the target software application is executing in the background. Device 600 may require an external electronic device to be registered with device 600 before it is treated as a target electronic device capable of remote communication. The registration process may be akin to “pairing” processes used in the context of Bluetooth™ communication, WiFi Protected Setup (WPS), operating system device setup, and the like.
In some examples, electronic device 600 may determine responsiveness by listening for network discovery information broadcasted by target electronic devices that are responsive to remote control. In these examples, electronic device 600 expects target electronic devices that are responsive to remote control to send out communication datagrams (e.g., using a service discovery protocol) indicating their presence and responsiveness onto a communication channel (e.g., a network). In some examples, electronic device 600 may determine responsiveness by sending requests onto a communication channel and listening for acknowledgements from target electronic devices that are responsive to remote control. In these examples, electronic device 600 expects target electronic devices that are responsive to remote control to acknowledge requests. Electronic device 600 may broadcast requests and/or target requests to registered electronic devices. In some examples, electronic device 600 may determine responsiveness using a combination of the above-described techniques. For example, electronic device 600 may actively poll for target electronic devices by sending broadcast signals when its battery level is relatively full (e.g., above a threshold), but passively listen for network discovery data from target electronic devices when its battery level is relatively empty (e.g., below a threshold).
A user may make contact with icon 706 to launch the remote control application. This causes device 600 to display one of several possible graphical user interface screens (e.g. landing screen). In some examples, when a user activates icon 706, device 600 identifies whether there is a registered target electronic device that is currently responsive to remote control. If so, device 600 displays a screen depicting possible operations of the identified target electronic device. One example of a target electronic device that is responsive to remote control is a media player that is currently playing media.
Another example of a target electronic device that is responsive to remote control is a computer that is running a presentation program, such as Microsoft™ PowerPoint or Apple™ KeyNote. In some examples, the remote control application prioritizes the display of remote controls for presentation programs. Restated, if two target devices are responsive to remote control, and one of the two target devices is running a presentation program, the remote control application may land on remote controls for the presentation program upon launch.
Device 600 can display other landing screens. When a user activates icon 706 (
In yet other examples, when this occurs, device 600 may display a graphical user interface screen permitting a user's selection of a target electronic device (from a list of devices) to control remotely.
Device 600 can display still other landing screens. In some examples, when a user activates icon 706 (
Returning to
As can be seen from the exemplary user interfaces screens of 800 (
Device 600 can display yet still other landing screens. In some examples, when a user activates icon 706 (
As background, car 1110, cellular phone 1112, and door entry system 1114 are nearby and are positioned to the north, east, and west of device 600, respectively. Car 1110 is physically closest to device 600 while cellular phone 1112 is farthest away. In view of these positions and proximities, device 600 displays screen 1100 having graphical user interface object 1106 (representing car 1110) near the top edge of touchscreen 1104, object 1102 (representing cellular phone 1112) near the right edge, and object 1104 (representing door entry system 1114) near the left edge. In other words, in some examples, the on-screen position of a graphical user interface object corresponds to the relative position of its corresponding target electronic device with respect to device 600. Device 600 also displays object 1106 in larger size as compared with icon 1102. In some examples, the on-screen size of a graphical user interface object is inversely proportional to the distance between device 600 and its corresponding target electronic device.
Note, while distance can be measured using physical units, in some examples, distance between devices may be approximated based on meta-data such as network access delays and GPS location information, for example.
Device 600 can display yet still other landing screens. In some examples, when a user activates icon 706 (
Turning to
In some examples, device 600 may be able to detect motion that represents a raise gesture. For example, if device 600 is a wearable device configured to be worn on a user's arm, the device may be able to detect when the user has raised his arm. When a raise gesture is detected, device 600 may send an instruction that instructs a target electronic device to perform an operation, or to stop the performance of an operation. For example, device 600 may instruct a media playback device to stop (or pause) playback when a user raises the device. Techniques for determining raising gestures such as wrist raises are described in, e.g., U.S. Provisional Patent Application Ser. No. 62/026,532, “Raise Gesture Detection in a Device,” filed Jul. 18, 2014, the content of which is hereby incorporated by reference. In addition, device 600 may display user interface object representing additional controls (e.g., transport controls) for the target electronic device.
Device 600 can display user interface screen based on the intensity of contacts being applied to touchscreen 604 (
2. Registering Electronic Devices
As discussed above, device 600 may require registration of an electronic device before allowing remote control of the electronic device. When this is the case, device 600 provides graphical user interface screens for registering target electronic devices. In some examples, device 600 proactively displays the necessary registration screens under some usage conditions, as discussed above.
In some examples, device 600 reactively displays the necessary registration screens when a user contacts touchscreen 604 of device 600 with a greater intensity than what is normally needed to activate a graphical user interface object. When the intensity sensors of device 600 detect a contact that has a maximum intensity that is greater than a threshold intensity, device 600 can display graphical user interface screens for registering electronic devices as target electronic devices. This aspect is described with reference to
Device 600 may limit what electronic devices can be registered as target electronic devices. In some examples, device 600 registers only nearby electronic devices. Device 600 may consider an electronic device to be “nearby” if the two are within the communication range of a short-range wireless communication protocol such as Bluetooth™ (whether classic or low energy), near-field communication, ZigBee™, and the like. Also, device 600 may consider an electronic device to be “nearby” if the two are within communication range of a local area network such as IEEE 802.11 network. Also, device 600 considers an electronic device to be “nearby” if the two are within communication range of a wide area network such as a cellular network, a cellular data network, or a wide area network (e.g., internet). Also, device 600 may consider network response times between itself and a target electronic device in determining whether the target electronic device is nearby. Also, device 600 may consider additional meta-data, such as GPS location information, in determining whether a target electronic device is nearby.
In some examples, in response to a user contact at a maximum intensity that is greater than the predetermined threshold intensity, device 600 displays a user interface for viewing and changing configuration settings associated with the remote control application.
3. Progressive Disclosure
Affordance 1402 need not always be displayed. As demonstrated by
4. Processes for Remotely Controlling a Target Electronic Device
The identified target electronic device may have been registered on device 600. If the identified target electronic device is determined to be presently responsive to remote control, processing proceeds to block 1540, where graphical user interface objects for controlling the identified target electronic device are displayed. The displayed graphical user interface objects may depend on the operations supported by the identified target electronic device. If no target electronic device is identified, processing proceeds to block 1550, where graphical user interface objects for manually selecting a target electronic device for remote control are displayed.
In some examples, the instruction is an instruction to stop (or pause) an operation on the target device. For example, device 600 may instruct a media player to stop (or pause) playback in response to a raise gesture. In some examples, blocks 2430-2450 are performed only if blocks 2410-2420 are performed, meaning that an electronic device would send remote control instructions only the user has launched the remote control application by touching a corresponding icon. In some examples, blocks 2430-2450 are performed even if blocks 2410-2420 are not performed, meaning that an electronic device may send remote control instructions based on raise gestures even if the user has not launched the remote control application. Techniques for detecting a raise gesture involving an electronic device may include those described in U.S. Provisional Patent Application Ser. No. 62/026,532, “Raise Gesture Detection in a Device,” filed Jul. 18, 2014, the content of which is hereby incorporated by reference.
5. Computing Systems
Memory 1908 of computing system 1900 can be a non-transitory computer readable storage medium, for storing computer-executable instructions, which, when executed by one or more computer processors 1906, for example, can cause the computer processors to perform the remote control techniques described above, including processes 1500-1850 (
In some examples, processing unit 2308 is configured to detect a contact (e.g., with the detecting unit 2310), on the touch-sensitive surface unit 2304 over a graphical user interface object; and in response to detecting the contact: in accordance with a determination that the contact is below a predefined intensity criteria, perform a first operation (e.g., display a default set of remote control operations) using remote control unit 2312; and in accordance with a determination that the contact is above the predefined intensity criteria, perform a different second operation (e.g., display an alternate set of remote control operations).
In some examples, processing unit 2308 is configured to detect a contact (e.g., with the detecting unit 2310), on the touch-sensitive surface unit 2304 over a graphical user interface object. In addition, communication unit 2314 is configured to detect nearby target electronic devices. In response to detecting the contact and based on information about nearby target electronic device, device 2300 can display on display unit 2302 a plurality of graphical user interface objects representing the nearby target electronic devices. The on-screen location of the graphical user interface units can reflect the relative location of the nearby target electronic devices with respect to device 2300.
6. Remote Control Via Intermediate Device
The availability of components in system 1900, particularly short and long range communication interfaces, may affect the operation of device 600. In some examples, a target electronic device may use a communication protocol not supported by device 600. For example, the target electronic device may support WiFi but not Bluetooth™, while device 600 may support Bluetooth™ but not WiFi. In this situation, device 600 may use an intermediate device that supports both Bluetooth™ and WiFi protocols to communicate with the target electronic device. The intermediate device may be a Bluetooth™ and WiFi-enabled cellular phone, for example.
Communications sent to target electronic device 2004 may include instructions that cause the target electronic device to perform an operation. In some examples, intermediate device 2002 relays an instruction from device 600 to target electronic 2004 verbatim. In some examples, intermediate device 2002 processes an instruction from device 600 and creates a corresponding instruction for transmission to target electronic device 2004. In some examples, intermediate device 2002 modifies an instruction from device 600 and transmits the modified instruction to target electronic device 2004. Note, in some examples, the communication path depicted by
In accordance with some embodiments,
As shown in
In some embodiments, the processing unit 2504 is configured to: enable display (e.g., with the display enabling unit 2506) of a plurality of icons representing applications, including an icon representing a remote control application; receive (e.g., with the receiving unit 2508) a first contact on the touch-sensitive display at a location of the icon; determine (e.g., with the determining unit 2510) whether a target device out of a plurality of target devices is responsive to remote control. The processing unit 2504 is further configured to, in response to the first contact and a determination of the target device being responsive to remote control: enable display (e.g., with the display enabling unit 2506) of a first plurality of remote controls for the target device; while enabling display of the first plurality of remote controls, receive (e.g., with the receiving unit 2508) of a second contact on the touch-sensitive display, the second contact having a maximum intensity; in response to receiving the second contact and a determination that the maximum intensity is below a threshold intensity, instruct the target device to perform an operation; and in response to receiving the second contact and a determination that the maximum intensity is above the threshold intensity, enable display (e.g., with the display enabling unit 2506) of a second plurality of remote controls for the first target device.
In some embodiments, the processing unit 2504 is configured to: enable display (e.g., with the display enabling unit 2506) of a user interface object on the touch-sensitive display of the electronic device, wherein the displayed user interface object represents a remote control application; receive data (e.g., with the receiving unit 2508) representing a selection on the displayed user interface object; identify (e.g., with the identifying unit 2512) a target device, out of a plurality of target devices, that is responsive to remote control; and in response to receiving the data representing the selection, enable display (e.g., with the display enabling unit 2506) of a plurality of graphical user interface objects for controlling operations of the identified target device.
In some embodiments, the processing unit 2504 is further configured to: in response to an identification that no target device is responsive to remote control, enable display (e.g., with the display enabling unit 2506) of a plurality of graphical user interface objects representing the plurality of target devices.
In some embodiments, the touch-sensitive display unit includes one or more sensor units to detect the intensity of contacts with the touch-sensitive display, the data representing the selection is a first data, the target device is a first target device. The processing unit is further configured to: receive (e.g., with the receiving unit 2508) second data representing a second contact at a location on the touch-sensitive display, the second contact having a maximum intensity above a threshold intensity; and in response to the second contact, invoke (e.g., with the invoking unit 2514) a user interface for registering a second target electronic device with the electronic device.
In some embodiments, the touch-sensitive display unit includes one or more sensor units to detect the intensity of contacts with the touch-sensitive display, the data representing the selection is a first data, the target device is a first target device. Further, the processing unit 2504 is further configured to: receive (e.g., with the receiving unit 2508) second data representing a second contact at a location on the touch-sensitive display, the second contact having a maximum intensity below a threshold intensity, the location associated with an operation of the first target device; in response to the second contact, send (e.g., with the sending unit 2516) an instruction to the target device instructing the target device to perform the operation; receive (e.g., with the receiving unit 2508) third data representing a third contact on the display, the third contact having a maximum intensity above the threshold intensity; and in response to the third contact, enable display (e.g., with the display enabling unit 2506) of a user interface for registering a second target device with the remote control application.
In some embodiments, the data representing the selection is a first data. Further, the processing unit 2504 is further configured to: send (e.g., with the sending unit 2516), from the electronic device to an intermediate electronic device, data representing an instruction instructing the target device to perform the operation, and the instruction is communicated by the intermediate electronic device to the target device.
In some embodiments, the intermediate electronic device is a phone.
In some embodiments, the processing unit 2504 is configured to identify (e.g., with the identifying unit 2512) a target device by receiving network service information sent by the target device.
In some embodiments, the processing unit 2504 is configured to identify (e.g., with the identifying unit 2512) the target device by transmitting (e.g., via a transmitting unit 2518) a request message and receiving (e.g., with the receiving unit 2508) an acknowledgement message sent by the target device, wherein the acknowledge message was sent by the target device in response to the request message.
In some embodiments, the target device is responsive to remote control when the target device is executing an application having an operation that can be requested using the remote control application.
In some embodiments, the application executing on the target device is executing in the background.
In some embodiments, the target device is a device other than the electronic device.
In some embodiments, the plurality of graphical user interface objects includes transport controls.
In some embodiments, the processing unit 2504 is configured to determine (e.g., with the determining unit 2510) the plurality of graphical user interface objects based on the identified target device.
In some embodiments, the plurality of graphical user interface objects is shared by the identified target device and at least one other device of the plurality of target devices.
The operations described above with reference to
In accordance with some embodiments,
As shown in
The processing unit 2604 is configured to: obtain (e.g., with the obtaining unit 2606) data representing a plurality of target devices; enable display (e.g., with the display enabling unit 2608) of a user interface object representing a remote control application; receive (e.g., with the receiving unit 2610) data representing a selection on the displayed user interface object; and determine (e.g., with the determining unit 2612) whether the number of target devices exceeds a threshold; in accordance with a determination that the number exceeds the threshold, enable display (e.g., with the display enabling unit 2608) of a plurality of graphical user interface objects representing categories of target devices, in response to receiving the data, and in accordance with a determination that the number does not exceed the threshold, enable display (e.g., with the display enabling unit 2608) of a plurality of graphical user interface objects representing the plurality of target devices, in response to receiving the data.
The operations described above with reference to
In accordance with some embodiments,
As shown in
The processing unit 2704 is configured to: determine (e.g., with determining unit 2706) the location of a target device relative to the electronic device; and enable display (e.g., with display enabling unit 2708), on the touch-sensitive display unit, of a user interface object representing the target device, the target device is nearby, and the display position of the user interface object, on the touch-sensitive display, is based on the location of the target device relative to the electronic device.
In some embodiments, the processing unit 2704 is further configured to enable display (e.g., with the display enabling unit 2708) of the user interface object on the top half of the touch-sensitive display unit when the location of the target device is in front of a user of the electronic device.
In some embodiments, the processing unit 2704 is further configured to determine (e.g., with the determining unit 2706) a distance between the target device and the electronic device and the processing unit is configured to enable display (e.g., with display enabling unit 2708) of the user interface object at a size that is inversely proportional to the determined distance.
The operations described above with reference to
In accordance with some embodiments,
As shown in
The processing unit configured to: enable display (e.g., with display enabling unit 2806) of a user interface object on the touch-sensitive display of the electronic device, the displayed user interface object representing a remote control application; receive (e.g., with the receiving unit 2808) first data representing a zoom function on the displayed user interface object; and in response to receiving the first data representing the zoom function, enable display of an affordance including indication of nearby target devices capable of being remotely controlled.
In some embodiments, the indication indicates a number of nearby target devices capable of being remotely controlled.
In some embodiments, the processing unit 2804 is further configured to: receive (e.g., with the receiving unit 2808) second data representing a second selection on the displayed affordance including indication of nearby target devices; and in response to receiving the second data representing the second selection, enable display (e.g., with display enabling unit 2806) of a listing of the nearby target devices capable of being remotely controlled.
In some embodiments, the processing unit 2804 is further configured to: receive (e.g., with the receiving unit 2808) third data representing selection of a target device from the listing of target devices; and in response to receiving the third data representing the selection of the target device, enable display (e.g., with display enabling unit 2806) of a plurality of graphical user interface objects for controlling operations of the selected target device.
In some embodiments, the plurality of graphical user interface objects includes transport controls.
In some embodiments, the plurality of graphical user interface objects are determined based on the selected target device.
In some embodiments, the plurality of graphical user interface objects are shared by the selected target device and at least one other device in the listing of target devices.
In some embodiments, the processing unit 2804 is further configured to: in response to receiving the first data representing the first zoom function, determine (e.g., with the determining unit 2810) a number of nearby target devices capable of being remotely controlled.
In some embodiments, the processing unit 2804 is further configured to: in response to a determination that no nearby target device is capable of being remotely controlled, enable display (e.g., with display enabling unit 2806) of a plurality of graphical user interface objects for controlling operations on the last selected target device.
In some embodiments, the touch-sensitive display unit includes one or more sensor units (e.g., sensor units 2810) to detect the intensity of contacts with the touch-sensitive display. The processing unit 2804 is further configured to: determine (e.g., with the determining unit 2810) the intensity of the third selection, wherein the third selection is a contact with the touch-sensitive display unit; in response to a determination that the intensity of the third selection is greater than a predetermined threshold: enable display (e.g., with display enabling unit 2806) of a user interface for registering an additional target device capable of being remotely controlled by the remote control application; and in response to a determination that the intensity of the third selection is less than the predetermined threshold: enable display (e.g., with display enabling unit 2806) of the listing of the nearby target devices capable of being remotely controlled.
In some embodiments, the processing unit 2804 is further configured to: receive (e.g., with the receiving unit 2808) data representing a fourth selection on the touch-sensitive display, wherein the fourth selection is a contact on the touch-sensitive display; determine (e.g., with the determining unit 2810) the intensity of the fourth selection; and in response to a determination that the intensity of the fourth selection is greater than the predetermined threshold: enable display (e.g., with the display enabling unit 2806) of a user interface for viewing the settings associated with the remote control application.
In some embodiments, the nearby target devices capable of being remotely controlled include target devices registered with the electronic device.
In some embodiments, the nearby target devices capable of being remotely controlled include target devices responsive to remote control.
In some embodiments, the nearby target devices capable of being remotely controlled include target devices accessible via a wireless communications interface.
The operations described above with reference to
In accordance with some embodiments,
As shown in
The processing unit is configured to: enable display (e.g., with display enabling unit 2908) of a plurality of graphical user interface objects, wherein a user interface object of the plurality of graphical user interface objects is an icon representing a remote control application; receive (e.g., with receiving unit 2910) data representing a first movement of the rotatable input device; and in response to receiving the data representing the first movement: enable display (e.g., with display enabling unit 2908) of only a subset of the plurality of graphical user interface objects, the displayed subset of graphical user interface objects includes the icon representing the remote control application, and enable display (e.g., with display enabling unit 2908) of an affordance including indication of nearby target devices capable of being remotely controlled
In some embodiments, the affordance indicates a number of nearby target devices capable of being remotely controlled.
In some embodiments, the affordance is displayed within the icon representing the remote control application.
The operations described above with reference to
In accordance with some embodiments,
As shown in
The processing unit is configured to: identify (e.g., with the identifying unit 3008) a target device that is responsive to remote control out of a plurality of target devices; detect (e.g., with the detecting unit 3010) a raise gesture based on detected motion of the electronic device; and in response to detecting the raise gesture, instruct (e.g., with the instructing unit 3012) the target device to perform an operation.
In some embodiments, the processing unit is further configured to: enable display (e.g., with display enabling unit 3014) of a plurality of icons representing applications, including an icon representing a remote control application; and receive (e.g., with receiving unit 3016) a first contact on the touch-sensitive display at a location of the icon, where at least one of identifying the target device that is responsive to remote control and detecting the raise gesture occurs after receiving the first contact.
In some embodiments, instructing (e.g., with the instructing unit 3012) the target device includes instructing the target device to pause or stop an operation.
In some embodiments, instructing (e.g., with the instructing unit 3012) the target device includes instructing the target device to pause or stop playback of audio and/or visual content.
In some embodiments, identifying (e.g., with the identifying unit 3008) the target device that is responsive to remote control includes identifying a target device that performs audio and/or visual playback.
In some embodiments, identifying (e.g., with the identifying unit 3008) the target device that is responsive to remote control includes identifying a television or a television set-top media playback device.
In some embodiments, identifying (e.g., with the identifying unit 3008) a target device includes receiving network service information sent by the target device.
In some embodiments, the processing unit 3010 is further configured to: enable display (e.g., with the display enabling unit 3014) of a plurality of graphical user interface objects for controlling operations of the identified target device.
The operations described above with reference to
In accordance with some embodiments,
As shown in
The processing unit 3106 is configured to display (e.g., with the display enabling unit 3108) a plurality of icons representing applications, including an icon representing a remote control application; receive (e.g., with the receiving unit 3110) a first contact on the touch-sensitive display at a location of the icon; determine whether a target device out of a plurality of target devices is responsive to remote control; in response to the first contact and a determination of the target device being responsive to remote control: enable display (e.g., with the display enabling unit 3108) of a first plurality of remote controls for the target device; while enabling display of the first plurality of remote controls, receive (e.g., with the receiving unit 3110) a second contact on the touch-sensitive display, the second contact having a maximum intensity; in response to receiving the second contact and a determination that the maximum intensity is below a threshold intensity, instruct (e.g., with the instructing unit 3116) the target device to perform an operation; and in response to receiving the second contact and a determination that the maximum intensity is above the threshold intensity, enable display (e.g., with the display enabling unit 3108) of a second plurality of remote controls for the first target device.
The operations described above with reference to
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.
Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.
This application is a continuation of U.S. patent application Ser. No. 16/147,523 entitled “REMOTE USER INTERFACE” filed Sep. 28, 2018 which is a continuation of U.S. patent application Ser. No. 14/805,403, entitled “REMOTE USER INTERFACE” filed Jul. 21, 2015 which claims the benefit of priority of Provisional Patent Application No. 62/027,145, entitled “REMOTE USER INTERFACE,” filed Jul. 21, 2014; U.S. Provisional Patent Application No. 62/027,764, entitled “REMOTE USER INTERFACE,” filed Jul. 22, 2014; and U.S. Provisional Patent Application No. 62/129,798, entitled “REMOTE USER INTERFACE,” filed Mar. 7, 2015. The content of these applications is hereby incorporated by reference in their entirety for all purposes. This application relates to the following applications: International Patent Application Serial No. PCT/US2013/040061, entitled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013; International Patent Application Serial No. PCT/US2013/069483, entitled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013; and U.S. Provisional Patent Application Ser. No. 62/026,532, “Raise Gesture Detection in a Device,” filed Jul. 18, 2014. The content of these applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3148500 | Thomas | Sep 1964 | A |
4803487 | Willard et al. | Feb 1989 | A |
5208790 | Sato et al. | May 1993 | A |
5220541 | Vuilleumier | Jun 1993 | A |
5455808 | Grupp et al. | Oct 1995 | A |
5508979 | Eisenegger | Apr 1996 | A |
5617031 | Tuttle | Apr 1997 | A |
5659693 | Hansen et al. | Aug 1997 | A |
5793366 | Mano et al. | Aug 1998 | A |
5825353 | Will | Oct 1998 | A |
5845257 | Fu et al. | Dec 1998 | A |
5853327 | Gilboa | Dec 1998 | A |
5892519 | Hirai et al. | Apr 1999 | A |
5986655 | Chiu et al. | Nov 1999 | A |
5999195 | Santangeli | Dec 1999 | A |
6008807 | Bretschneider et al. | Dec 1999 | A |
6016248 | Anzai et al. | Jan 2000 | A |
6043818 | Nakano et al. | Mar 2000 | A |
6097371 | Siddiqui et al. | Aug 2000 | A |
6167353 | Piernot et al. | Dec 2000 | A |
6190174 | Lam et al. | Feb 2001 | B1 |
6199012 | Hasegawa | Mar 2001 | B1 |
6232972 | Arcuri et al. | May 2001 | B1 |
6359837 | Tsukamoto | Mar 2002 | B1 |
6359839 | Schenk et al. | Mar 2002 | B1 |
6416471 | Kumar et al. | Jul 2002 | B1 |
6429896 | Aruga et al. | Aug 2002 | B1 |
6449219 | Hepp et al. | Sep 2002 | B1 |
6477117 | Narayanaswami et al. | Nov 2002 | B1 |
6496780 | Harris et al. | Dec 2002 | B1 |
6522347 | Sakai et al. | Feb 2003 | B1 |
6556222 | Narayanaswami | Apr 2003 | B1 |
6728533 | Ishii et al. | Apr 2004 | B2 |
6809724 | Shiraishi et al. | Oct 2004 | B1 |
6809759 | Chiang | Oct 2004 | B1 |
6819867 | Mayer et al. | Nov 2004 | B2 |
6857105 | Fox et al. | Feb 2005 | B1 |
6871076 | Samn et al. | Mar 2005 | B2 |
6889138 | Krull et al. | May 2005 | B1 |
7036090 | Nguyen | Apr 2006 | B1 |
7203380 | Chiu et al. | Apr 2007 | B2 |
7257254 | Tunney et al. | Aug 2007 | B2 |
7463304 | Murray | Dec 2008 | B2 |
7515509 | Klein et al. | Apr 2009 | B2 |
7537162 | Siu | May 2009 | B1 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7593749 | Vallström et al. | Sep 2009 | B2 |
7637204 | Sumser et al. | Dec 2009 | B2 |
7653883 | Hotelling et al. | Jan 2010 | B2 |
7656393 | King et al. | Feb 2010 | B2 |
7751285 | Cain et al. | Jul 2010 | B1 |
7843471 | Doan et al. | Nov 2010 | B2 |
7843769 | Ishida et al. | Nov 2010 | B2 |
7898542 | Yu et al. | Mar 2011 | B1 |
7905815 | Ellis et al. | Mar 2011 | B2 |
8105208 | Oleson et al. | Jan 2012 | B2 |
8189087 | Misawa et al. | May 2012 | B2 |
8196043 | Crow et al. | Jun 2012 | B2 |
8290603 | Lambourne | Oct 2012 | B1 |
8364855 | James et al. | Jan 2013 | B2 |
8375326 | Bucher et al. | Feb 2013 | B2 |
8405663 | Wikkerink et al. | Mar 2013 | B2 |
8584031 | Moore et al. | Nov 2013 | B2 |
8595649 | Sherrard et al. | Nov 2013 | B2 |
8613070 | Borzycki et al. | Dec 2013 | B1 |
8624836 | Miller et al. | Jan 2014 | B1 |
8675084 | Bolton et al. | Mar 2014 | B2 |
8686961 | Yamano | Apr 2014 | B2 |
8732609 | Bayersdorfer et al. | May 2014 | B1 |
8742890 | Gocho et al. | Jun 2014 | B2 |
8762895 | Mehta et al. | Jun 2014 | B2 |
8811951 | Faaborg et al. | Aug 2014 | B1 |
8825445 | Hoffman et al. | Sep 2014 | B2 |
8866761 | Enami | Oct 2014 | B2 |
8868338 | Chau et al. | Oct 2014 | B1 |
8884874 | Kim et al. | Nov 2014 | B1 |
8894462 | Huang et al. | Nov 2014 | B2 |
8903671 | Park et al. | Dec 2014 | B2 |
8924894 | Yaksick et al. | Dec 2014 | B1 |
8963894 | Klassen et al. | Feb 2015 | B2 |
8983539 | Kim et al. | Mar 2015 | B1 |
8996639 | Faaborg et al. | Mar 2015 | B1 |
9070092 | Shieh et al. | Jun 2015 | B2 |
9100944 | Sauhta et al. | Aug 2015 | B2 |
9141270 | Stuart et al. | Sep 2015 | B1 |
9146124 | Parada et al. | Sep 2015 | B2 |
9164663 | Berard | Oct 2015 | B1 |
9171268 | Penilla et al. | Oct 2015 | B1 |
9172866 | Ito et al. | Oct 2015 | B2 |
9173052 | Hauser et al. | Oct 2015 | B2 |
9191988 | Newham | Nov 2015 | B2 |
9244562 | Moscovich et al. | Jan 2016 | B1 |
9369537 | Mathew et al. | Jun 2016 | B1 |
9400489 | Kim et al. | Jul 2016 | B2 |
D765118 | Bachman et al. | Aug 2016 | S |
9405766 | Robbin et al. | Aug 2016 | B2 |
9423868 | Iwasaki | Aug 2016 | B2 |
9451144 | Dye | Sep 2016 | B2 |
9459781 | Kocienda et al. | Oct 2016 | B2 |
9462340 | Mathurin | Oct 2016 | B1 |
9477208 | Park et al. | Oct 2016 | B2 |
9489074 | Oonishi | Nov 2016 | B2 |
D773510 | Foss et al. | Dec 2016 | S |
9544563 | Cheng et al. | Jan 2017 | B1 |
9547419 | Yang et al. | Jan 2017 | B2 |
9547425 | Kocienda et al. | Jan 2017 | B2 |
9560629 | Migicovsky et al. | Jan 2017 | B2 |
9574896 | Mcgavran et al. | Feb 2017 | B2 |
9582165 | Wilson et al. | Feb 2017 | B2 |
9594354 | Kahn et al. | Mar 2017 | B1 |
9628950 | Noeth et al. | Apr 2017 | B1 |
9652741 | Goldberg et al. | May 2017 | B2 |
D789381 | Okumura et al. | Jun 2017 | S |
9729730 | Levesque et al. | Aug 2017 | B2 |
9800525 | Lerner et al. | Oct 2017 | B1 |
9820323 | Young et al. | Nov 2017 | B1 |
9832697 | Kotecha et al. | Nov 2017 | B2 |
9892715 | Komulainen et al. | Feb 2018 | B2 |
9927957 | Sagar et al. | Mar 2018 | B1 |
9942463 | Kuo et al. | Apr 2018 | B2 |
9973674 | Dye et al. | May 2018 | B2 |
10019599 | Moran et al. | Jul 2018 | B1 |
10055121 | Chaudhri et al. | Aug 2018 | B2 |
10135905 | Chaudhri et al. | Nov 2018 | B2 |
10182138 | Motika et al. | Jan 2019 | B2 |
10216392 | Zhao | Feb 2019 | B2 |
10282078 | Choi | May 2019 | B2 |
10299300 | Young | May 2019 | B1 |
10310697 | Roberts et al. | Jun 2019 | B2 |
10324590 | Yang et al. | Jun 2019 | B2 |
10356070 | Cha et al. | Jul 2019 | B2 |
10466881 | Sasaki et al. | Nov 2019 | B2 |
10524300 | Ueda et al. | Dec 2019 | B2 |
10627914 | Ang et al. | Apr 2020 | B2 |
10643246 | Suprasadachandran Pillai | May 2020 | B1 |
10671174 | Ang et al. | Jun 2020 | B2 |
10721711 | Kirov et al. | Jul 2020 | B2 |
10802598 | Ang et al. | Oct 2020 | B2 |
11050873 | Kim et al. | Jun 2021 | B2 |
11099647 | Ang et al. | Aug 2021 | B2 |
11543887 | Ang et al. | Jan 2023 | B2 |
20010030597 | Inoue et al. | Oct 2001 | A1 |
20010031622 | Kivela et al. | Oct 2001 | A1 |
20020054066 | Kikinis et al. | May 2002 | A1 |
20020054541 | Hall et al. | May 2002 | A1 |
20020068600 | Chihara et al. | Jun 2002 | A1 |
20020081976 | Fujisawa et al. | Jun 2002 | A1 |
20020115478 | Fujisawa et al. | Aug 2002 | A1 |
20020131331 | Molander et al. | Sep 2002 | A1 |
20020140633 | Rafii et al. | Oct 2002 | A1 |
20020140803 | Gutta et al. | Oct 2002 | A1 |
20020142734 | Wickstead | Oct 2002 | A1 |
20020171737 | Tullis et al. | Nov 2002 | A1 |
20020180797 | Bachmann | Dec 2002 | A1 |
20030025802 | Mayer, Jr. et al. | Feb 2003 | A1 |
20030027621 | Libby et al. | Feb 2003 | A1 |
20030067497 | Pichon et al. | Apr 2003 | A1 |
20030074647 | Andrew et al. | Apr 2003 | A1 |
20030079057 | Ruskin et al. | Apr 2003 | A1 |
20030081506 | Karhu et al. | May 2003 | A1 |
20030128237 | Sakai | Jul 2003 | A1 |
20030151982 | Brewer et al. | Aug 2003 | A1 |
20030158927 | Sagey et al. | Aug 2003 | A1 |
20030164847 | Zaima et al. | Sep 2003 | A1 |
20030171984 | Wodka et al. | Sep 2003 | A1 |
20030182628 | Lira | Sep 2003 | A1 |
20030214885 | Powell et al. | Nov 2003 | A1 |
20040001105 | Chew et al. | Jan 2004 | A1 |
20040017733 | Sullivan | Jan 2004 | A1 |
20040021699 | Fildebrandt et al. | Feb 2004 | A1 |
20040044953 | Watkins et al. | Mar 2004 | A1 |
20040047244 | Iino et al. | Mar 2004 | A1 |
20040077462 | Brown et al. | Apr 2004 | A1 |
20040100389 | Naito et al. | May 2004 | A1 |
20040192332 | Samn | Sep 2004 | A1 |
20050015803 | Macrae et al. | Jan 2005 | A1 |
20050041667 | Miller et al. | Feb 2005 | A1 |
20050117601 | Anderson et al. | Jun 2005 | A1 |
20050125744 | Hubbard et al. | Jun 2005 | A1 |
20050134695 | Deshpande et al. | Jun 2005 | A1 |
20050168566 | Tada et al. | Aug 2005 | A1 |
20050188856 | Sumser et al. | Sep 2005 | A1 |
20050197063 | White et al. | Sep 2005 | A1 |
20050198319 | Chan et al. | Sep 2005 | A1 |
20050200611 | Goto et al. | Sep 2005 | A1 |
20050237194 | Voba et al. | Oct 2005 | A1 |
20050246642 | Valderas et al. | Nov 2005 | A1 |
20050278757 | Grossman et al. | Dec 2005 | A1 |
20060019649 | Feinleib et al. | Jan 2006 | A1 |
20060035632 | Sorvari et al. | Feb 2006 | A1 |
20060055700 | Niles et al. | Mar 2006 | A1 |
20060069604 | Leukart et al. | Mar 2006 | A1 |
20060079973 | Bacharach et al. | Apr 2006 | A1 |
20060085765 | Peterson et al. | Apr 2006 | A1 |
20060092770 | Demas | May 2006 | A1 |
20060098634 | Umemoto et al. | May 2006 | A1 |
20060132456 | Anson | Jun 2006 | A1 |
20060135064 | Cho et al. | Jun 2006 | A1 |
20060160090 | Macina et al. | Jul 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060210092 | Navid | Sep 2006 | A1 |
20060214935 | Boyd et al. | Sep 2006 | A1 |
20060217104 | Cho | Sep 2006 | A1 |
20070006096 | Kim et al. | Jan 2007 | A1 |
20070021153 | Novak | Jan 2007 | A1 |
20070025711 | Marcus et al. | Feb 2007 | A1 |
20070030256 | Akaike et al. | Feb 2007 | A1 |
20070040810 | Dowe et al. | Feb 2007 | A1 |
20070082707 | Flynt et al. | Apr 2007 | A1 |
20070094330 | Russell et al. | Apr 2007 | A1 |
20070096283 | Ljung et al. | May 2007 | A1 |
20070097113 | Lee et al. | May 2007 | A1 |
20070109417 | Hyttfors et al. | May 2007 | A1 |
20070143495 | Porat | Jun 2007 | A1 |
20070150842 | Chaudhri et al. | Jun 2007 | A1 |
20070157103 | Arneson et al. | Jul 2007 | A1 |
20070162872 | Hong et al. | Jul 2007 | A1 |
20070165103 | Arima et al. | Jul 2007 | A1 |
20070180392 | Russo | Aug 2007 | A1 |
20070191008 | Bucher et al. | Aug 2007 | A1 |
20070213955 | Ishida et al. | Sep 2007 | A1 |
20070239754 | Schnitman et al. | Oct 2007 | A1 |
20070254640 | Bliss | Nov 2007 | A1 |
20070259654 | Oijer | Nov 2007 | A1 |
20070279190 | Lugt et al. | Dec 2007 | A1 |
20080004113 | Avery et al. | Jan 2008 | A1 |
20080024459 | Poupyrev et al. | Jan 2008 | A1 |
20080033779 | Coffman et al. | Feb 2008 | A1 |
20080046839 | Mehra et al. | Feb 2008 | A1 |
20080052643 | Ike et al. | Feb 2008 | A1 |
20080055263 | Lemay et al. | Mar 2008 | A1 |
20080057926 | Forstall et al. | Mar 2008 | A1 |
20080062141 | Chaudhri | Mar 2008 | A1 |
20080076637 | Gilley et al. | Mar 2008 | A1 |
20080077673 | Thomas et al. | Mar 2008 | A1 |
20080082934 | Kocienda et al. | Apr 2008 | A1 |
20080098313 | Pollack | Apr 2008 | A1 |
20080100693 | Jobs et al. | May 2008 | A1 |
20080120029 | Zelek et al. | May 2008 | A1 |
20080122796 | Jobs et al. | May 2008 | A1 |
20080127268 | Bergeron et al. | May 2008 | A1 |
20080155428 | Lee | Jun 2008 | A1 |
20080165136 | Christie et al. | Jul 2008 | A1 |
20080168396 | Matas et al. | Jul 2008 | A1 |
20080168404 | Ording | Jul 2008 | A1 |
20080172634 | Choi et al. | Jul 2008 | A1 |
20080186808 | Lee | Aug 2008 | A1 |
20080192021 | Lim et al. | Aug 2008 | A1 |
20080214191 | Yach et al. | Sep 2008 | A1 |
20080246778 | Ham et al. | Oct 2008 | A1 |
20080259829 | Rosenblatt | Oct 2008 | A1 |
20080284855 | Umeyama et al. | Nov 2008 | A1 |
20080305742 | Basir | Dec 2008 | A1 |
20090051649 | Rondel | Feb 2009 | A1 |
20090060170 | Coughlan et al. | Mar 2009 | A1 |
20090068984 | Burnett | Mar 2009 | A1 |
20090088207 | Sweeney et al. | Apr 2009 | A1 |
20090100342 | Jakobson et al. | Apr 2009 | A1 |
20090102933 | Harris et al. | Apr 2009 | A1 |
20090141046 | Rathnam et al. | Jun 2009 | A1 |
20090143114 | Vargas et al. | Jun 2009 | A1 |
20090144391 | Jung et al. | Jun 2009 | A1 |
20090144639 | Nims et al. | Jun 2009 | A1 |
20090164923 | Ovi et al. | Jun 2009 | A1 |
20090177538 | Brewer et al. | Jul 2009 | A1 |
20090178007 | Matas et al. | Jul 2009 | A1 |
20090189915 | Mercer et al. | Jul 2009 | A1 |
20090195402 | Izadi et al. | Aug 2009 | A1 |
20090195497 | Fitzgerald et al. | Aug 2009 | A1 |
20090199130 | Tsern et al. | Aug 2009 | A1 |
20090203315 | Kawabata et al. | Aug 2009 | A1 |
20090207743 | Huq et al. | Aug 2009 | A1 |
20090216556 | Martin et al. | Aug 2009 | A1 |
20090222748 | Lejeune et al. | Sep 2009 | A1 |
20090225060 | Rizoiu et al. | Sep 2009 | A1 |
20090228868 | Forstall et al. | Sep 2009 | A1 |
20090231356 | Barnes et al. | Sep 2009 | A1 |
20090231960 | Hutcheson | Sep 2009 | A1 |
20090239587 | Negron et al. | Sep 2009 | A1 |
20090244015 | Sengupta et al. | Oct 2009 | A1 |
20090249247 | Tseng et al. | Oct 2009 | A1 |
20090254624 | Baudin et al. | Oct 2009 | A1 |
20090256780 | Small et al. | Oct 2009 | A1 |
20090259958 | Ban | Oct 2009 | A1 |
20090284476 | Bull et al. | Nov 2009 | A1 |
20090305732 | Marcellino et al. | Dec 2009 | A1 |
20090311993 | Horodezky | Dec 2009 | A1 |
20090313299 | Bonev et al. | Dec 2009 | A1 |
20090315671 | Gocho et al. | Dec 2009 | A1 |
20090325630 | Tiitola et al. | Dec 2009 | A1 |
20090327886 | Whytock et al. | Dec 2009 | A1 |
20100017748 | Taylor et al. | Jan 2010 | A1 |
20100026640 | Kim et al. | Feb 2010 | A1 |
20100048358 | Tchao et al. | Feb 2010 | A1 |
20100050086 | Sherrard et al. | Feb 2010 | A1 |
20100054497 | Bull et al. | Mar 2010 | A1 |
20100064255 | Rottler et al. | Mar 2010 | A1 |
20100085203 | Kahn et al. | Apr 2010 | A1 |
20100099462 | Baek et al. | Apr 2010 | A1 |
20100110082 | Myrick et al. | May 2010 | A1 |
20100114974 | Jung et al. | May 2010 | A1 |
20100123724 | Moore et al. | May 2010 | A1 |
20100125785 | Moore et al. | May 2010 | A1 |
20100125811 | Moore et al. | May 2010 | A1 |
20100138764 | Hatambeiki et al. | Jun 2010 | A1 |
20100138780 | Marano et al. | Jun 2010 | A1 |
20100141606 | Bae et al. | Jun 2010 | A1 |
20100146463 | Cho et al. | Jun 2010 | A1 |
20100149090 | Morris et al. | Jun 2010 | A1 |
20100156807 | Stallings et al. | Jun 2010 | A1 |
20100156833 | Kim et al. | Jun 2010 | A1 |
20100157742 | Relyea et al. | Jun 2010 | A1 |
20100162160 | Stallings et al. | Jun 2010 | A1 |
20100169790 | Vaughan et al. | Jul 2010 | A1 |
20100175006 | Li | Jul 2010 | A1 |
20100178873 | Lee | Jul 2010 | A1 |
20100194692 | Orr et al. | Aug 2010 | A1 |
20100198453 | Dorogusker et al. | Aug 2010 | A1 |
20100205563 | Haapsaari et al. | Aug 2010 | A1 |
20100226213 | Drugge | Sep 2010 | A1 |
20100228836 | Lehtovirta et al. | Sep 2010 | A1 |
20100235726 | Ording et al. | Sep 2010 | A1 |
20100243516 | Martin et al. | Sep 2010 | A1 |
20100251176 | Fong et al. | Sep 2010 | A1 |
20100269108 | Boudreau et al. | Oct 2010 | A1 |
20100271312 | Alameh et al. | Oct 2010 | A1 |
20100271343 | Nagashima et al. | Oct 2010 | A1 |
20100281374 | Schulz et al. | Nov 2010 | A1 |
20100284389 | Ramsay et al. | Nov 2010 | A1 |
20100287513 | Singh et al. | Nov 2010 | A1 |
20100289740 | Kim et al. | Nov 2010 | A1 |
20100289910 | Kamshilin et al. | Nov 2010 | A1 |
20100292600 | Dibenedetto et al. | Nov 2010 | A1 |
20100295789 | Shin et al. | Nov 2010 | A1 |
20100295803 | Kim et al. | Nov 2010 | A1 |
20100299436 | Khalid et al. | Nov 2010 | A1 |
20100304729 | Sabotta et al. | Dec 2010 | A1 |
20100321201 | Huang et al. | Dec 2010 | A1 |
20110003587 | Belz et al. | Jan 2011 | A1 |
20110016425 | Homburg et al. | Jan 2011 | A1 |
20110018695 | Bells et al. | Jan 2011 | A1 |
20110029750 | Jang et al. | Feb 2011 | A1 |
20110029870 | May et al. | Feb 2011 | A1 |
20110047014 | De | Feb 2011 | A1 |
20110057903 | Yamano et al. | Mar 2011 | A1 |
20110058052 | Bolton et al. | Mar 2011 | A1 |
20110059769 | Brunolli | Mar 2011 | A1 |
20110061017 | Ullrich et al. | Mar 2011 | A1 |
20110071818 | Jiang | Mar 2011 | A1 |
20110074699 | Marr et al. | Mar 2011 | A1 |
20110078622 | Missig et al. | Mar 2011 | A1 |
20110080411 | Wikkerink et al. | Apr 2011 | A1 |
20110081860 | Brown et al. | Apr 2011 | A1 |
20110081923 | Bednar et al. | Apr 2011 | A1 |
20110098928 | Hoffman et al. | Apr 2011 | A1 |
20110106921 | Brown et al. | May 2011 | A1 |
20110115721 | Li et al. | May 2011 | A1 |
20110115932 | Shin et al. | May 2011 | A1 |
20110130168 | Vendrow et al. | Jun 2011 | A1 |
20110138329 | Wells et al. | Jun 2011 | A1 |
20110151415 | Darling et al. | Jun 2011 | A1 |
20110153628 | Basu et al. | Jun 2011 | A1 |
20110157046 | Lee et al. | Jun 2011 | A1 |
20110159469 | Hwang et al. | Jun 2011 | A1 |
20110159927 | Choi | Jun 2011 | A1 |
20110167369 | Van Os | Jul 2011 | A1 |
20110167382 | Van Os | Jul 2011 | A1 |
20110175832 | Miyazawa et al. | Jul 2011 | A1 |
20110181520 | Boda et al. | Jul 2011 | A1 |
20110181521 | Reid et al. | Jul 2011 | A1 |
20110183613 | Nocera | Jul 2011 | A1 |
20110183650 | Mckee | Jul 2011 | A1 |
20110191695 | Dinka et al. | Aug 2011 | A1 |
20110197165 | Filippov et al. | Aug 2011 | A1 |
20110202861 | Fritzley et al. | Aug 2011 | A1 |
20110202883 | Oh et al. | Aug 2011 | A1 |
20110205182 | Miyazawa et al. | Aug 2011 | A1 |
20110205851 | Harris | Aug 2011 | A1 |
20110225492 | Boettcher et al. | Sep 2011 | A1 |
20110227872 | Huska et al. | Sep 2011 | A1 |
20110234633 | Ogura et al. | Sep 2011 | A1 |
20110237221 | Prakash et al. | Sep 2011 | A1 |
20110252146 | Santamaria et al. | Oct 2011 | A1 |
20110252318 | Helms | Oct 2011 | A1 |
20110265002 | Hong et al. | Oct 2011 | A1 |
20110279852 | Oda et al. | Nov 2011 | A1 |
20110281568 | Le | Nov 2011 | A1 |
20110285656 | Yaksick et al. | Nov 2011 | A1 |
20110302518 | Zhang | Dec 2011 | A1 |
20110306393 | Goldman et al. | Dec 2011 | A1 |
20110306421 | Nishimoto et al. | Dec 2011 | A1 |
20110316858 | Shen et al. | Dec 2011 | A1 |
20110316884 | Giambalvo | Dec 2011 | A1 |
20120011449 | Sasson et al. | Jan 2012 | A1 |
20120015779 | Powch et al. | Jan 2012 | A1 |
20120019400 | Patel et al. | Jan 2012 | A1 |
20120019513 | Fong et al. | Jan 2012 | A1 |
20120019610 | Hornyak et al. | Jan 2012 | A1 |
20120026110 | Yamano et al. | Feb 2012 | A1 |
20120028707 | Raitt et al. | Feb 2012 | A1 |
20120040719 | Lee et al. | Feb 2012 | A1 |
20120044062 | Jersa et al. | Feb 2012 | A1 |
20120051560 | Sanders | Mar 2012 | A1 |
20120052921 | Lim et al. | Mar 2012 | A1 |
20120059664 | Georgiev et al. | Mar 2012 | A1 |
20120059787 | Brown et al. | Mar 2012 | A1 |
20120066629 | Lee et al. | Mar 2012 | A1 |
20120069206 | Hsieh | Mar 2012 | A1 |
20120071146 | Shrivastava et al. | Mar 2012 | A1 |
20120071770 | Grey et al. | Mar 2012 | A1 |
20120084692 | Bae | Apr 2012 | A1 |
20120084729 | Lin et al. | Apr 2012 | A1 |
20120089300 | Wolterman et al. | Apr 2012 | A1 |
20120092383 | Hysek et al. | Apr 2012 | A1 |
20120096069 | Chan | Apr 2012 | A1 |
20120102399 | Nicholson | Apr 2012 | A1 |
20120105358 | Momeyer et al. | May 2012 | A1 |
20120113008 | Makinen et al. | May 2012 | A1 |
20120115608 | Pfeifer et al. | May 2012 | A1 |
20120117507 | Tseng et al. | May 2012 | A1 |
20120120277 | Tsai et al. | May 2012 | A1 |
20120124499 | Tsai et al. | May 2012 | A1 |
20120154293 | Hinckley et al. | Jun 2012 | A1 |
20120159380 | Kocienda et al. | Jun 2012 | A1 |
20120167008 | Zaman et al. | Jun 2012 | A1 |
20120192094 | Goertz et al. | Jul 2012 | A1 |
20120197419 | Dhruv et al. | Aug 2012 | A1 |
20120198531 | Ort et al. | Aug 2012 | A1 |
20120204123 | Bauer et al. | Aug 2012 | A1 |
20120214458 | Levien et al. | Aug 2012 | A1 |
20120218177 | Pang et al. | Aug 2012 | A1 |
20120218201 | Tamas et al. | Aug 2012 | A1 |
20120223890 | Borovsky et al. | Sep 2012 | A1 |
20120223935 | Renwick et al. | Sep 2012 | A1 |
20120236037 | Lessing et al. | Sep 2012 | A1 |
20120254263 | Hiestermann et al. | Oct 2012 | A1 |
20120254318 | Poniatowski | Oct 2012 | A1 |
20120254804 | Sheha et al. | Oct 2012 | A1 |
20120266093 | Park et al. | Oct 2012 | A1 |
20120287290 | Jain et al. | Nov 2012 | A1 |
20120290109 | Engelberg et al. | Nov 2012 | A1 |
20120304084 | Kim et al. | Nov 2012 | A1 |
20120316777 | Kitta et al. | Dec 2012 | A1 |
20120320141 | Bowen et al. | Dec 2012 | A1 |
20120322508 | Forstall et al. | Dec 2012 | A1 |
20120324357 | Viegers et al. | Dec 2012 | A1 |
20120324390 | Tao et al. | Dec 2012 | A1 |
20130014019 | Kim et al. | Jan 2013 | A1 |
20130016048 | So et al. | Jan 2013 | A1 |
20130016818 | Cohn | Jan 2013 | A1 |
20130017846 | Schoppe | Jan 2013 | A1 |
20130019175 | Kotler et al. | Jan 2013 | A1 |
20130024781 | Douillet et al. | Jan 2013 | A1 |
20130024802 | Zeng et al. | Jan 2013 | A1 |
20130026293 | Schneider et al. | Jan 2013 | A1 |
20130027341 | Mastandrea | Jan 2013 | A1 |
20130038771 | Brunner et al. | Feb 2013 | A1 |
20130044080 | Chiang | Feb 2013 | A1 |
20130046397 | Fadell et al. | Feb 2013 | A1 |
20130050263 | Khoe et al. | Feb 2013 | A1 |
20130057472 | Dizac et al. | Mar 2013 | A1 |
20130057566 | Kriese et al. | Mar 2013 | A1 |
20130063364 | Moore | Mar 2013 | A1 |
20130063366 | Paul | Mar 2013 | A1 |
20130063383 | Anderssonreimer et al. | Mar 2013 | A1 |
20130065482 | Trickett et al. | Mar 2013 | A1 |
20130067391 | Pittappilly et al. | Mar 2013 | A1 |
20130069893 | Brinda et al. | Mar 2013 | A1 |
20130076591 | Sirpal et al. | Mar 2013 | A1 |
20130076757 | Pritting | Mar 2013 | A1 |
20130082965 | Wada et al. | Apr 2013 | A1 |
20130085931 | Runyan | Apr 2013 | A1 |
20130091205 | Kotler et al. | Apr 2013 | A1 |
20130093715 | Marsden et al. | Apr 2013 | A1 |
20130093904 | Wagner et al. | Apr 2013 | A1 |
20130103797 | Park et al. | Apr 2013 | A1 |
20130106603 | Weast et al. | May 2013 | A1 |
20130107674 | Gossweiler et al. | May 2013 | A1 |
20130111550 | Naveh et al. | May 2013 | A1 |
20130116967 | Akcasu et al. | May 2013 | A1 |
20130117383 | Hymel et al. | May 2013 | A1 |
20130117693 | Anderson et al. | May 2013 | A1 |
20130120106 | Cauwels et al. | May 2013 | A1 |
20130125016 | Pallakoff et al. | May 2013 | A1 |
20130134212 | Chang et al. | May 2013 | A1 |
20130137073 | Nacey et al. | May 2013 | A1 |
20130138272 | Louise-Babando et al. | May 2013 | A1 |
20130141325 | Bailey et al. | Jun 2013 | A1 |
20130141331 | Shiu et al. | Jun 2013 | A1 |
20130141362 | Asanuma et al. | Jun 2013 | A1 |
20130141365 | Lynn et al. | Jun 2013 | A1 |
20130141371 | Hallford et al. | Jun 2013 | A1 |
20130143512 | Hernandez et al. | Jun 2013 | A1 |
20130145316 | Heo | Jun 2013 | A1 |
20130157729 | Tabe | Jun 2013 | A1 |
20130162411 | Moses et al. | Jun 2013 | A1 |
20130166679 | Kuwahara et al. | Jun 2013 | A1 |
20130168444 | Hsieh et al. | Jul 2013 | A1 |
20130169870 | Lee et al. | Jul 2013 | A1 |
20130173699 | Parks et al. | Jul 2013 | A1 |
20130174044 | Hill | Jul 2013 | A1 |
20130191785 | Wu et al. | Jul 2013 | A1 |
20130201098 | Schilit et al. | Aug 2013 | A1 |
20130205194 | Decker et al. | Aug 2013 | A1 |
20130205210 | Jeon et al. | Aug 2013 | A1 |
20130215044 | Ahn et al. | Aug 2013 | A1 |
20130219285 | Iwasaki et al. | Aug 2013 | A1 |
20130219303 | Eriksson et al. | Aug 2013 | A1 |
20130222270 | Winkler et al. | Aug 2013 | A1 |
20130223279 | Tinnakornsrisuphap et al. | Aug 2013 | A1 |
20130225152 | Matthews et al. | Aug 2013 | A1 |
20130227412 | Ornstein et al. | Aug 2013 | A1 |
20130234924 | Janefalkar et al. | Sep 2013 | A1 |
20130234929 | Libin | Sep 2013 | A1 |
20130234969 | Yeh et al. | Sep 2013 | A1 |
20130243924 | Bhandari et al. | Sep 2013 | A1 |
20130244633 | Jacobs et al. | Sep 2013 | A1 |
20130254705 | Mooring et al. | Sep 2013 | A1 |
20130262298 | Morley et al. | Oct 2013 | A1 |
20130263043 | Sarbin et al. | Oct 2013 | A1 |
20130275875 | Gruber et al. | Oct 2013 | A1 |
20130286251 | Wood et al. | Oct 2013 | A1 |
20130314204 | Ho et al. | Nov 2013 | A1 |
20130314302 | Jeung et al. | Nov 2013 | A1 |
20130318158 | Teng et al. | Nov 2013 | A1 |
20130325524 | Boudville | Dec 2013 | A1 |
20130326418 | Utsuki et al. | Dec 2013 | A1 |
20130329074 | Zhang et al. | Dec 2013 | A1 |
20130329924 | Fleizach et al. | Dec 2013 | A1 |
20130331130 | Lee | Dec 2013 | A1 |
20130339436 | Gray | Dec 2013 | A1 |
20130345978 | Lush et al. | Dec 2013 | A1 |
20130346882 | Shiplacoff et al. | Dec 2013 | A1 |
20140006949 | Briand et al. | Jan 2014 | A1 |
20140007021 | Akiyama et al. | Jan 2014 | A1 |
20140013414 | Bruck et al. | Jan 2014 | A1 |
20140015546 | Frederick et al. | Jan 2014 | A1 |
20140015784 | Oonishi | Jan 2014 | A1 |
20140022399 | Rashid et al. | Jan 2014 | A1 |
20140028546 | Jeon et al. | Jan 2014 | A1 |
20140032706 | Kuscher et al. | Jan 2014 | A1 |
20140033100 | Noda et al. | Jan 2014 | A1 |
20140036639 | Boni et al. | Feb 2014 | A1 |
20140037107 | Marino et al. | Feb 2014 | A1 |
20140040831 | Akasaka | Feb 2014 | A1 |
20140043367 | Sakaino et al. | Feb 2014 | A1 |
20140045463 | Hsieh et al. | Feb 2014 | A1 |
20140047525 | Bonhoff | Feb 2014 | A1 |
20140055388 | Yook et al. | Feb 2014 | A1 |
20140059493 | Kim | Feb 2014 | A1 |
20140068526 | Figelman et al. | Mar 2014 | A1 |
20140068755 | King et al. | Mar 2014 | A1 |
20140073252 | Lee et al. | Mar 2014 | A1 |
20140073256 | Newham et al. | Mar 2014 | A1 |
20140074570 | Hope et al. | Mar 2014 | A1 |
20140075003 | Tanaka et al. | Mar 2014 | A1 |
20140075311 | Boettcher et al. | Mar 2014 | A1 |
20140078371 | Kinoshita | Mar 2014 | A1 |
20140082533 | Kelley et al. | Mar 2014 | A1 |
20140084857 | Liu et al. | Mar 2014 | A1 |
20140101169 | Kurata et al. | Apr 2014 | A1 |
20140104449 | Masarik et al. | Apr 2014 | A1 |
20140118563 | Mehta et al. | May 2014 | A1 |
20140122331 | Vaish et al. | May 2014 | A1 |
20140123005 | Forstall et al. | May 2014 | A1 |
20140123043 | Schmidt et al. | May 2014 | A1 |
20140125620 | Panther et al. | May 2014 | A1 |
20140126336 | Goeller et al. | May 2014 | A1 |
20140129959 | Battles et al. | May 2014 | A1 |
20140136986 | Martin et al. | May 2014 | A1 |
20140139422 | Mistry et al. | May 2014 | A1 |
20140139637 | Mistry et al. | May 2014 | A1 |
20140141721 | Kim et al. | May 2014 | A1 |
20140142851 | Larmo et al. | May 2014 | A1 |
20140143678 | Mistry et al. | May 2014 | A1 |
20140143682 | Druck et al. | May 2014 | A1 |
20140143737 | Mistry et al. | May 2014 | A1 |
20140149859 | Van Dyken et al. | May 2014 | A1 |
20140149878 | Mischari et al. | May 2014 | A1 |
20140155123 | Lee et al. | Jun 2014 | A1 |
20140156801 | Fernandes et al. | Jun 2014 | A1 |
20140157167 | Zhu | Jun 2014 | A1 |
20140160033 | Brikman et al. | Jun 2014 | A1 |
20140160078 | Seo et al. | Jun 2014 | A1 |
20140160304 | Galor et al. | Jun 2014 | A1 |
20140164544 | Gagneraud | Jun 2014 | A1 |
20140164907 | Jung et al. | Jun 2014 | A1 |
20140164930 | Lieb et al. | Jun 2014 | A1 |
20140164945 | Junqua et al. | Jun 2014 | A1 |
20140164955 | Thiruvidam et al. | Jun 2014 | A1 |
20140167986 | Parada et al. | Jun 2014 | A1 |
20140168056 | Swaminathan et al. | Jun 2014 | A1 |
20140171156 | Pattikonda et al. | Jun 2014 | A1 |
20140173439 | Gutierrez et al. | Jun 2014 | A1 |
20140173455 | Shimizu et al. | Jun 2014 | A1 |
20140176475 | Myers et al. | Jun 2014 | A1 |
20140180582 | Pontarelli et al. | Jun 2014 | A1 |
20140181183 | Yamamoto et al. | Jun 2014 | A1 |
20140181219 | Wang et al. | Jun 2014 | A1 |
20140181654 | Kumar et al. | Jun 2014 | A1 |
20140184524 | Schiefer et al. | Jul 2014 | A1 |
20140189577 | Haslam et al. | Jul 2014 | A1 |
20140189584 | Weng et al. | Jul 2014 | A1 |
20140189589 | Kim et al. | Jul 2014 | A1 |
20140191715 | Wechlin et al. | Jul 2014 | A1 |
20140195943 | Zheng et al. | Jul 2014 | A1 |
20140195972 | Lee et al. | Jul 2014 | A1 |
20140197946 | Park et al. | Jul 2014 | A1 |
20140197965 | Park et al. | Jul 2014 | A1 |
20140204229 | Leung et al. | Jul 2014 | A1 |
20140210708 | Simmons et al. | Jul 2014 | A1 |
20140218599 | Nakamura et al. | Aug 2014 | A1 |
20140223490 | Pan et al. | Aug 2014 | A1 |
20140228063 | Harris et al. | Aug 2014 | A1 |
20140237389 | Ryall et al. | Aug 2014 | A1 |
20140240122 | Roberts et al. | Aug 2014 | A1 |
20140240216 | Bukurak et al. | Aug 2014 | A1 |
20140240577 | Masugi | Aug 2014 | A1 |
20140244165 | Bells et al. | Aug 2014 | A1 |
20140245177 | Maklouf et al. | Aug 2014 | A1 |
20140250391 | Jong et al. | Sep 2014 | A1 |
20140258935 | Nishida et al. | Sep 2014 | A1 |
20140267303 | Larkin et al. | Sep 2014 | A1 |
20140269614 | Maguire et al. | Sep 2014 | A1 |
20140273975 | Barat et al. | Sep 2014 | A1 |
20140282068 | Levkovitz et al. | Sep 2014 | A1 |
20140282254 | Feiereisen et al. | Sep 2014 | A1 |
20140289660 | Min | Sep 2014 | A1 |
20140302834 | Jones | Oct 2014 | A1 |
20140304664 | Lee et al. | Oct 2014 | A1 |
20140306898 | Cueto | Oct 2014 | A1 |
20140310348 | Keskitalo et al. | Oct 2014 | A1 |
20140310350 | Borggaard et al. | Oct 2014 | A1 |
20140310598 | Sprague et al. | Oct 2014 | A1 |
20140320387 | Eriksson et al. | Oct 2014 | A1 |
20140328147 | Yang et al. | Nov 2014 | A1 |
20140331314 | Fujioka | Nov 2014 | A1 |
20140333602 | Yang et al. | Nov 2014 | A1 |
20140337450 | Choudhary et al. | Nov 2014 | A1 |
20140337748 | Lee | Nov 2014 | A1 |
20140337791 | Agnetta et al. | Nov 2014 | A1 |
20140343843 | Yanku | Nov 2014 | A1 |
20140344951 | Brewer | Nov 2014 | A1 |
20140347289 | Lee et al. | Nov 2014 | A1 |
20140358707 | Perkins et al. | Dec 2014 | A1 |
20140359124 | Adimatyam et al. | Dec 2014 | A1 |
20140359481 | Graham et al. | Dec 2014 | A1 |
20140359637 | Yan | Dec 2014 | A1 |
20140365113 | Yue et al. | Dec 2014 | A1 |
20140368719 | Kaneko et al. | Dec 2014 | A1 |
20140370807 | Pierce et al. | Dec 2014 | A1 |
20140380187 | Gardenfors et al. | Dec 2014 | A1 |
20140380229 | Volodin et al. | Dec 2014 | A1 |
20150011199 | Lee et al. | Jan 2015 | A1 |
20150017956 | Jeong | Jan 2015 | A1 |
20150019981 | Petitt et al. | Jan 2015 | A1 |
20150019982 | Petitt et al. | Jan 2015 | A1 |
20150022438 | Hong | Jan 2015 | A1 |
20150022674 | Koss et al. | Jan 2015 | A1 |
20150026615 | Choi et al. | Jan 2015 | A1 |
20150026647 | Park et al. | Jan 2015 | A1 |
20150033136 | Sasaki et al. | Jan 2015 | A1 |
20150035762 | Lu | Feb 2015 | A1 |
20150036853 | Solum et al. | Feb 2015 | A1 |
20150049033 | Kim et al. | Feb 2015 | A1 |
20150049233 | Choi | Feb 2015 | A1 |
20150052461 | Sullivan et al. | Feb 2015 | A1 |
20150055197 | Romanoff et al. | Feb 2015 | A1 |
20150057945 | White et al. | Feb 2015 | A1 |
20150061842 | Yoon et al. | Mar 2015 | A1 |
20150061972 | Kang et al. | Mar 2015 | A1 |
20150065035 | Son et al. | Mar 2015 | A1 |
20150067513 | Zambetti et al. | Mar 2015 | A1 |
20150067580 | Um et al. | Mar 2015 | A1 |
20150094031 | Liu | Apr 2015 | A1 |
20150094050 | Bowles et al. | Apr 2015 | A1 |
20150094093 | Pierce et al. | Apr 2015 | A1 |
20150098309 | Adams et al. | Apr 2015 | A1 |
20150100537 | Grieves et al. | Apr 2015 | A1 |
20150100621 | Pan | Apr 2015 | A1 |
20150106221 | Tapley et al. | Apr 2015 | A1 |
20150112990 | Van Os et al. | Apr 2015 | A1 |
20150113435 | Phillips | Apr 2015 | A1 |
20150113468 | Clark | Apr 2015 | A1 |
20150117162 | Tsai et al. | Apr 2015 | A1 |
20150121231 | Edwardson et al. | Apr 2015 | A1 |
20150130830 | Nagasaki et al. | May 2015 | A1 |
20150131121 | Kang | May 2015 | A1 |
20150153952 | Grossman et al. | Jun 2015 | A1 |
20150160806 | Fey et al. | Jun 2015 | A1 |
20150185703 | Tanaka | Jul 2015 | A1 |
20150189162 | Kuo et al. | Jul 2015 | A1 |
20150193130 | Cho et al. | Jul 2015 | A1 |
20150193138 | Relyea et al. | Jul 2015 | A1 |
20150194050 | Lee | Jul 2015 | A1 |
20150195179 | Skare et al. | Jul 2015 | A1 |
20150205511 | Vinna et al. | Jul 2015 | A1 |
20150217163 | Amis et al. | Aug 2015 | A1 |
20150243246 | Mun et al. | Aug 2015 | A1 |
20150248200 | Cho et al. | Sep 2015 | A1 |
20150248235 | Offenberg et al. | Sep 2015 | A1 |
20150261493 | Lemmon et al. | Sep 2015 | A1 |
20150264202 | Pawlowski | Sep 2015 | A1 |
20150269848 | Yuen et al. | Sep 2015 | A1 |
20150271120 | Langholz | Sep 2015 | A1 |
20150286372 | Swindell et al. | Oct 2015 | A1 |
20150287403 | Holzer Zaslansky et al. | Oct 2015 | A1 |
20150297185 | Mccormack et al. | Oct 2015 | A1 |
20150301608 | Nagaraju et al. | Oct 2015 | A1 |
20150312175 | Langholz | Oct 2015 | A1 |
20150312617 | Chen et al. | Oct 2015 | A1 |
20150324751 | Orenstein et al. | Nov 2015 | A1 |
20150339261 | Jha et al. | Nov 2015 | A1 |
20150350029 | Skrobotov | Dec 2015 | A1 |
20150358043 | Jeong et al. | Dec 2015 | A1 |
20150370469 | Leong et al. | Dec 2015 | A1 |
20150373172 | Boesen | Dec 2015 | A1 |
20150379476 | Chaudhri et al. | Dec 2015 | A1 |
20160005189 | Gray et al. | Jan 2016 | A1 |
20160014266 | Bhatt | Jan 2016 | A1 |
20160018846 | Zenoff | Jan 2016 | A1 |
20160021168 | Chaudhri et al. | Jan 2016 | A1 |
20160026425 | Lee et al. | Jan 2016 | A1 |
20160028869 | Bhatt | Jan 2016 | A1 |
20160034133 | Wilson et al. | Feb 2016 | A1 |
20160034148 | Wilson et al. | Feb 2016 | A1 |
20160034152 | Wilson et al. | Feb 2016 | A1 |
20160034166 | Wilson et al. | Feb 2016 | A1 |
20160034167 | Wilson et al. | Feb 2016 | A1 |
20160036996 | Midholt et al. | Feb 2016 | A1 |
20160043905 | Fiedler | Feb 2016 | A1 |
20160048369 | Zenoff | Feb 2016 | A1 |
20160048370 | Zenoff | Feb 2016 | A1 |
20160050476 | Patil | Feb 2016 | A1 |
20160054710 | Jo et al. | Feb 2016 | A1 |
20160058336 | Blahnik et al. | Mar 2016 | A1 |
20160061613 | Jung et al. | Mar 2016 | A1 |
20160062567 | Yang et al. | Mar 2016 | A1 |
20160062572 | Yang et al. | Mar 2016 | A1 |
20160062589 | Wan et al. | Mar 2016 | A1 |
20160062606 | Vega et al. | Mar 2016 | A1 |
20160065505 | Iskander | Mar 2016 | A1 |
20160065707 | Yang et al. | Mar 2016 | A1 |
20160065708 | Yang et al. | Mar 2016 | A1 |
20160065827 | Dye et al. | Mar 2016 | A1 |
20160066277 | Yang et al. | Mar 2016 | A1 |
20160092053 | Loganathan et al. | Mar 2016 | A1 |
20160097651 | Jung et al. | Apr 2016 | A1 |
20160116941 | Kuwabara et al. | Apr 2016 | A1 |
20160117147 | Zambetti et al. | Apr 2016 | A1 |
20160134737 | Pulletikurty | May 2016 | A1 |
20160142763 | Kim et al. | May 2016 | A1 |
20160156597 | Meng et al. | Jun 2016 | A1 |
20160165037 | Youn et al. | Jun 2016 | A1 |
20160188181 | Smith | Jun 2016 | A1 |
20160191511 | Tijerina et al. | Jun 2016 | A1 |
20160193502 | Kang et al. | Jul 2016 | A1 |
20160195864 | Kim | Jul 2016 | A1 |
20160202866 | Zambetti | Jul 2016 | A1 |
20160209939 | Zambetti et al. | Jul 2016 | A1 |
20160210568 | Krupa et al. | Jul 2016 | A1 |
20160212374 | Usbergo et al. | Jul 2016 | A1 |
20160246566 | Fullerton et al. | Aug 2016 | A1 |
20160259489 | Yang | Sep 2016 | A1 |
20160259542 | Chaudhri et al. | Sep 2016 | A1 |
20160260414 | Yang | Sep 2016 | A1 |
20160269176 | Pang et al. | Sep 2016 | A1 |
20160313875 | Williams et al. | Oct 2016 | A1 |
20160327911 | Eim et al. | Nov 2016 | A1 |
20160337206 | Bugenhagen et al. | Nov 2016 | A1 |
20160342141 | Koumaiha et al. | Nov 2016 | A1 |
20160345039 | Billmeyer | Nov 2016 | A1 |
20170006210 | Dye et al. | Jan 2017 | A1 |
20170010677 | Roh et al. | Jan 2017 | A1 |
20170011210 | Cheong et al. | Jan 2017 | A1 |
20170019517 | Wilder et al. | Jan 2017 | A1 |
20170031648 | So et al. | Feb 2017 | A1 |
20170034253 | Jiang et al. | Feb 2017 | A1 |
20170053542 | Wilson et al. | Feb 2017 | A1 |
20170068407 | Wilson et al. | Mar 2017 | A1 |
20170068439 | Mohseni | Mar 2017 | A1 |
20170083188 | Yang et al. | Mar 2017 | A1 |
20170087469 | Hardee et al. | Mar 2017 | A1 |
20170123571 | Huang et al. | May 2017 | A1 |
20170123640 | Wilson et al. | May 2017 | A1 |
20170134553 | Jeon et al. | May 2017 | A1 |
20170134872 | Silva et al. | May 2017 | A1 |
20170149795 | Day | May 2017 | A1 |
20170156110 | Ueno et al. | Jun 2017 | A1 |
20170160098 | Mcgavran et al. | Jun 2017 | A1 |
20170180843 | Perianu et al. | Jun 2017 | A1 |
20170185373 | Kim et al. | Jun 2017 | A1 |
20170192730 | Yang et al. | Jul 2017 | A1 |
20170195772 | Han et al. | Jul 2017 | A1 |
20170205854 | Zenoff | Jul 2017 | A1 |
20170230236 | Kim et al. | Aug 2017 | A1 |
20170239524 | Lee et al. | Aug 2017 | A1 |
20170243508 | Cheng et al. | Aug 2017 | A1 |
20170269792 | Xu et al. | Sep 2017 | A1 |
20170322711 | Robinson et al. | Nov 2017 | A1 |
20170322713 | Hwang et al. | Nov 2017 | A1 |
20170331901 | Sarlandie De La Robertie et al. | Nov 2017 | A1 |
20170354845 | Williams et al. | Dec 2017 | A1 |
20170357426 | Wilson et al. | Dec 2017 | A1 |
20170357477 | Im et al. | Dec 2017 | A1 |
20180067633 | Wilson et al. | Mar 2018 | A1 |
20180067712 | Behzadi et al. | Mar 2018 | A1 |
20180069957 | Mushikabe et al. | Mar 2018 | A1 |
20180137266 | Kim et al. | May 2018 | A1 |
20180218636 | Alaouf et al. | Aug 2018 | A1 |
20180253151 | Kletsov et al. | Sep 2018 | A1 |
20180259915 | Hosoi et al. | Sep 2018 | A1 |
20180262677 | Dye et al. | Sep 2018 | A1 |
20180267773 | Kim et al. | Sep 2018 | A1 |
20180288560 | Naik et al. | Oct 2018 | A1 |
20180321842 | Lee et al. | Nov 2018 | A1 |
20180329585 | Carrigan et al. | Nov 2018 | A1 |
20180329586 | Sundstrom et al. | Nov 2018 | A1 |
20180335903 | Coffman et al. | Nov 2018 | A1 |
20180341448 | Behzadi et al. | Nov 2018 | A1 |
20180349022 | Chaudhri et al. | Dec 2018 | A1 |
20180352435 | Donley et al. | Dec 2018 | A1 |
20190026011 | Wang et al. | Jan 2019 | A1 |
20190028865 | Raleigh et al. | Jan 2019 | A1 |
20190037004 | Chaudhri et al. | Jan 2019 | A1 |
20190057593 | Park et al. | Feb 2019 | A1 |
20190121300 | Peterson et al. | Apr 2019 | A1 |
20190129661 | Hirota et al. | May 2019 | A1 |
20190146422 | Meyer et al. | May 2019 | A1 |
20190158645 | Yang et al. | May 2019 | A1 |
20190172016 | Chaudhri et al. | Jun 2019 | A1 |
20190182749 | Breaux et al. | Jun 2019 | A1 |
20190187861 | Yang | Jun 2019 | A1 |
20190196600 | Rothberg et al. | Jun 2019 | A1 |
20190232110 | Williams et al. | Aug 2019 | A1 |
20190232111 | Williams et al. | Aug 2019 | A1 |
20190238675 | Soni et al. | Aug 2019 | A1 |
20190265849 | Yang et al. | Aug 2019 | A1 |
20190268771 | Seo et al. | Aug 2019 | A1 |
20190281547 | Yoon et al. | Sep 2019 | A1 |
20190297439 | Maeda | Sep 2019 | A1 |
20190306607 | Clayton et al. | Oct 2019 | A1 |
20190340348 | Yu et al. | Nov 2019 | A1 |
20190347181 | Cranfill et al. | Nov 2019 | A1 |
20190349469 | Skogen et al. | Nov 2019 | A1 |
20190370094 | Louch et al. | Dec 2019 | A1 |
20190372862 | Carrigan et al. | Dec 2019 | A1 |
20200042088 | Ang et al. | Feb 2020 | A1 |
20200042145 | Williams et al. | Feb 2020 | A1 |
20200042311 | Shin | Feb 2020 | A1 |
20200067245 | Maley | Feb 2020 | A1 |
20200125037 | Jo et al. | Apr 2020 | A1 |
20200133206 | Jo et al. | Apr 2020 | A1 |
20200149921 | Hoffman et al. | May 2020 | A1 |
20200159374 | Yang et al. | May 2020 | A1 |
20200201540 | Zambetti et al. | Jun 2020 | A1 |
20200213437 | Bhatt | Jul 2020 | A1 |
20200228646 | Hotes et al. | Jul 2020 | A1 |
20200285379 | George-Svahn | Sep 2020 | A1 |
20200342144 | Alameh et al. | Oct 2020 | A1 |
20200348827 | Wilson et al. | Nov 2020 | A1 |
20200356242 | Wilson et al. | Nov 2020 | A1 |
20200356252 | Ko et al. | Nov 2020 | A1 |
20200356687 | Salzman et al. | Nov 2020 | A1 |
20200359204 | Hawkins et al. | Nov 2020 | A1 |
20200379712 | Carrigan | Dec 2020 | A1 |
20200379713 | Carrigan | Dec 2020 | A1 |
20200379716 | Carrigan et al. | Dec 2020 | A1 |
20210073741 | Chaudhri et al. | Mar 2021 | A1 |
20210173431 | Yang et al. | Jun 2021 | A1 |
20210203765 | Yang et al. | Jul 2021 | A1 |
20210216654 | Ko et al. | Jul 2021 | A1 |
20210263702 | Carrigan | Aug 2021 | A1 |
20210373718 | Yang et al. | Dec 2021 | A1 |
20220043626 | Carrigan | Feb 2022 | A1 |
20220047918 | Williams et al. | Feb 2022 | A1 |
20220083183 | Patton | Mar 2022 | A1 |
20220101719 | Bojic et al. | Mar 2022 | A1 |
20220129858 | Chaudhri et al. | Apr 2022 | A1 |
20220276780 | Ko et al. | Sep 2022 | A1 |
20220291793 | Zambetti et al. | Sep 2022 | A1 |
20230066552 | Van Os et al. | Mar 2023 | A1 |
20230179700 | Bhatt | Jun 2023 | A1 |
20230214089 | Yang et al. | Jul 2023 | A1 |
20230214107 | Zambetti et al. | Jul 2023 | A1 |
20230252737 | Dreyer et al. | Aug 2023 | A1 |
20230291824 | Yang et al. | Sep 2023 | A1 |
20230334432 | Chaudhri et al. | Oct 2023 | A1 |
20230335139 | Breton et al. | Oct 2023 | A1 |
20230376193 | Han et al. | Nov 2023 | A1 |
20230376268 | Carrigan et al. | Nov 2023 | A1 |
Number | Date | Country |
---|---|---|
2010249319 | Jun 2012 | AU |
2015101019 | Sep 2015 | AU |
2781636 | Jul 2010 | CA |
2792987 | Oct 2011 | CA |
707412 | Jun 2014 | CH |
1556955 | Dec 2004 | CN |
1558690 | Dec 2004 | CN |
1705346 | Dec 2005 | CN |
1997957 | Jul 2007 | CN |
101042618 | Sep 2007 | CN |
101098535 | Jan 2008 | CN |
101118469 | Feb 2008 | CN |
101203821 | Jun 2008 | CN |
101232528 | Jul 2008 | CN |
101243383 | Aug 2008 | CN |
101382438 | Mar 2009 | CN |
101427574 | May 2009 | CN |
101433034 | May 2009 | CN |
101627349 | Jan 2010 | CN |
101702112 | May 2010 | CN |
101819486 | Sep 2010 | CN |
101872240 | Oct 2010 | CN |
101873386 | Oct 2010 | CN |
101978374 | Feb 2011 | CN |
101981987 | Feb 2011 | CN |
102012738 | Apr 2011 | CN |
102163098 | Aug 2011 | CN |
201928419 | Aug 2011 | CN |
102301415 | Dec 2011 | CN |
102426490 | Apr 2012 | CN |
102438092 | May 2012 | CN |
102446059 | May 2012 | CN |
102450040 | May 2012 | CN |
202309894 | Jul 2012 | CN |
102687176 | Sep 2012 | CN |
102695302 | Sep 2012 | CN |
102754071 | Oct 2012 | CN |
102763066 | Oct 2012 | CN |
102769705 | Nov 2012 | CN |
102772211 | Nov 2012 | CN |
102790826 | Nov 2012 | CN |
102830795 | Dec 2012 | CN |
102833345 | Dec 2012 | CN |
102859480 | Jan 2013 | CN |
102981727 | Mar 2013 | CN |
102982401 | Mar 2013 | CN |
102989159 | Mar 2013 | CN |
103092469 | May 2013 | CN |
103399480 | Nov 2013 | CN |
103415084 | Nov 2013 | CN |
203311163 | Nov 2013 | CN |
103425451 | Dec 2013 | CN |
103558916 | Feb 2014 | CN |
103562832 | Feb 2014 | CN |
103576902 | Feb 2014 | CN |
103604272 | Feb 2014 | CN |
103607660 | Feb 2014 | CN |
103713843 | Apr 2014 | CN |
103744671 | Apr 2014 | CN |
103778082 | May 2014 | CN |
103793075 | May 2014 | CN |
103839023 | Jun 2014 | CN |
103853493 | Jun 2014 | CN |
103902165 | Jul 2014 | CN |
103970208 | Aug 2014 | CN |
104024987 | Sep 2014 | CN |
104102388 | Oct 2014 | CN |
104160362 | Nov 2014 | CN |
203930358 | Nov 2014 | CN |
104205785 | Dec 2014 | CN |
104272854 | Jan 2015 | CN |
104281257 | Jan 2015 | CN |
104281430 | Jan 2015 | CN |
104288983 | Jan 2015 | CN |
104346297 | Feb 2015 | CN |
104360735 | Feb 2015 | CN |
104434314 | Mar 2015 | CN |
104508426 | Apr 2015 | CN |
104956182 | Sep 2015 | CN |
105208511 | Dec 2015 | CN |
105388998 | Mar 2016 | CN |
105959906 | Sep 2016 | CN |
205608658 | Sep 2016 | CN |
106060772 | Oct 2016 | CN |
106797415 | May 2017 | CN |
106851528 | Jun 2017 | CN |
106936929 | Jul 2017 | CN |
107637073 | Jan 2018 | CN |
107852572 | Mar 2018 | CN |
108292203 | Jul 2018 | CN |
109347581 | Feb 2019 | CN |
0831629 | Mar 1998 | EP |
0836074 | Apr 1998 | EP |
1079371 | Feb 2001 | EP |
1406176 | Apr 2004 | EP |
1614992 | Jan 2006 | EP |
1659504 | May 2006 | EP |
1674977 | Jun 2006 | EP |
1679879 | Jul 2006 | EP |
1705883 | Sep 2006 | EP |
1777611 | Apr 2007 | EP |
1832969 | Sep 2007 | EP |
1858238 | Nov 2007 | EP |
1885109 | Feb 2008 | EP |
1953663 | Aug 2008 | EP |
2040146 | Mar 2009 | EP |
2096413 | Sep 2009 | EP |
2194508 | Jun 2010 | EP |
2194698 | Jun 2010 | EP |
2204702 | Jul 2010 | EP |
2284646 | Feb 2011 | EP |
2302493 | Mar 2011 | EP |
2306692 | Apr 2011 | EP |
2312512 | Apr 2011 | EP |
2360902 | Aug 2011 | EP |
2367098 | Sep 2011 | EP |
2413577 | Feb 2012 | EP |
2423810 | Feb 2012 | EP |
2428947 | Mar 2012 | EP |
2437148 | Apr 2012 | EP |
2466260 | Jun 2012 | EP |
2523439 | Nov 2012 | EP |
2547117 | Jan 2013 | EP |
2602759 | Jun 2013 | EP |
2615607 | Jul 2013 | EP |
2629483 | Aug 2013 | EP |
2632131 | Aug 2013 | EP |
1614992 | Oct 2013 | EP |
2653961 | Oct 2013 | EP |
2677775 | Dec 2013 | EP |
2693382 | Feb 2014 | EP |
2720126 | Apr 2014 | EP |
2720442 | Apr 2014 | EP |
2733598 | May 2014 | EP |
2738640 | Jun 2014 | EP |
2821912 | Jan 2015 | EP |
2892240 | Jul 2015 | EP |
2980715 | Feb 2016 | EP |
2998822 | Mar 2016 | EP |
3001282 | Mar 2016 | EP |
3032537 | Jun 2016 | EP |
3057342 | Aug 2016 | EP |
3073703 | Sep 2016 | EP |
3276905 | Jan 2018 | EP |
3379853 | Sep 2018 | EP |
2370208 | Jun 2002 | GB |
2402105 | Dec 2004 | GB |
2475669 | Jun 2011 | GB |
8-110955 | Apr 1996 | JP |
9-251084 | Sep 1997 | JP |
11-160470 | Jun 1999 | JP |
11-183183 | Jul 1999 | JP |
11-232013 | Aug 1999 | JP |
2000-122957 | Apr 2000 | JP |
2001-309455 | Nov 2001 | JP |
2001-318852 | Nov 2001 | JP |
2002-507718 | Mar 2002 | JP |
2002-271451 | Sep 2002 | JP |
2002-342356 | Nov 2002 | JP |
2002-351768 | Dec 2002 | JP |
2003-30245 | Jan 2003 | JP |
2004-177148 | Jun 2004 | JP |
2004-519033 | Jun 2004 | JP |
2004-184396 | Jul 2004 | JP |
2005-532607 | Oct 2005 | JP |
2006-101505 | Apr 2006 | JP |
2008-97202 | Apr 2008 | JP |
2009-502048 | Jan 2009 | JP |
2009-239867 | Oct 2009 | JP |
2010-124181 | Jun 2010 | JP |
3162246 | Aug 2010 | JP |
2010-245940 | Oct 2010 | JP |
2010-257051 | Nov 2010 | JP |
3168099 | Jun 2011 | JP |
2011-209786 | Oct 2011 | JP |
2011-217000 | Oct 2011 | JP |
2011-530101 | Dec 2011 | JP |
2012-505478 | Mar 2012 | JP |
2012-123475 | Jun 2012 | JP |
2012-147432 | Aug 2012 | JP |
2012-517630 | Aug 2012 | JP |
2012-203832 | Oct 2012 | JP |
2012-531607 | Dec 2012 | JP |
2013-506225 | Feb 2013 | JP |
2013-530458 | Jul 2013 | JP |
2013-146557 | Aug 2013 | JP |
2013-175188 | Sep 2013 | JP |
2014-503861 | Feb 2014 | JP |
2014-53692 | Mar 2014 | JP |
2014-123169 | Jul 2014 | JP |
2014-123197 | Jul 2014 | JP |
2014-143575 | Aug 2014 | JP |
2015-61318 | Mar 2015 | JP |
2015-210587 | Nov 2015 | JP |
2016-13151 | Jan 2016 | JP |
2017-34563 | Feb 2017 | JP |
2017-143357 | Aug 2017 | JP |
2018-113544 | Jul 2018 | JP |
2018-147265 | Sep 2018 | JP |
20-0425314 | Sep 2006 | KR |
20-2008-0004775 | Oct 2008 | KR |
10-2014-0064687 | May 2014 | KR |
10-2014-0073232 | Jun 2014 | KR |
10-2014-0074824 | Jun 2014 | KR |
10-2015-0001287 | Jan 2015 | KR |
10-2016-0092363 | Aug 2016 | KR |
10-2017-0027435 | Mar 2017 | KR |
10-2017-0032471 | Mar 2017 | KR |
10-2017-0082022 | Jul 2017 | KR |
10-2017-0124954 | Nov 2017 | KR |
10-2019-0020850 | Mar 2019 | KR |
10-2019-0022883 | Mar 2019 | KR |
201012152 | Mar 2010 | TW |
201215086 | Apr 2012 | TW |
M435665 | Aug 2012 | TW |
M474482 | Mar 2014 | TW |
201419115 | May 2014 | TW |
201509168 | Mar 2015 | TW |
199966394 | Dec 1999 | WO |
199966395 | Dec 1999 | WO |
200171433 | Sep 2001 | WO |
2002054157 | Jul 2002 | WO |
2004056107 | Jul 2004 | WO |
2004095414 | Nov 2004 | WO |
2005103863 | Nov 2005 | WO |
2005109829 | Nov 2005 | WO |
2006012343 | Feb 2006 | WO |
2006094308 | Sep 2006 | WO |
2006112641 | Oct 2006 | WO |
2006094308 | Dec 2006 | WO |
2007008321 | Jan 2007 | WO |
2007018881 | Feb 2007 | WO |
2007102110 | Sep 2007 | WO |
2007105937 | Sep 2007 | WO |
2007142703 | Dec 2007 | WO |
2007149731 | Dec 2007 | WO |
2009085378 | Jul 2009 | WO |
2009137419 | Nov 2009 | WO |
2009140095 | Nov 2009 | WO |
2010017627 | Feb 2010 | WO |
2011000893 | Jan 2011 | WO |
2011041427 | Apr 2011 | WO |
2011062871 | May 2011 | WO |
2011063516 | Jun 2011 | WO |
2011084857 | Jul 2011 | WO |
2011084859 | Jul 2011 | WO |
2011149231 | Dec 2011 | WO |
2011130849 | May 2012 | WO |
2012128361 | Sep 2012 | WO |
2012161434 | Nov 2012 | WO |
2012172970 | Dec 2012 | WO |
2013048880 | Apr 2013 | WO |
2013051048 | Apr 2013 | WO |
2013097895 | Jul 2013 | WO |
2013111239 | Aug 2013 | WO |
2013135270 | Sep 2013 | WO |
2013169842 | Nov 2013 | WO |
2013169849 | Nov 2013 | WO |
2013169851 | Nov 2013 | WO |
2013169854 | Nov 2013 | WO |
2013169870 | Nov 2013 | WO |
2013169875 | Nov 2013 | WO |
2013169877 | Nov 2013 | WO |
2013169882 | Nov 2013 | WO |
2014024000 | Feb 2014 | WO |
2014078114 | May 2014 | WO |
2014081181 | May 2014 | WO |
2014105276 | Jul 2014 | WO |
2014105278 | Jul 2014 | WO |
2014105279 | Jul 2014 | WO |
2014143776 | Sep 2014 | WO |
2014171734 | Oct 2014 | WO |
2015061831 | May 2015 | WO |
2015065402 | May 2015 | WO |
2015185123 | Dec 2015 | WO |
2016022203 | Feb 2016 | WO |
2016022205 | Feb 2016 | WO |
2016036472 | Mar 2016 | WO |
2016036522 | Mar 2016 | WO |
2016036541 | Mar 2016 | WO |
2016200603 | Dec 2016 | WO |
2016204186 | Dec 2016 | WO |
2017062621 | Apr 2017 | WO |
2017112003 | Jun 2017 | WO |
2018032085 | Feb 2018 | WO |
2018048510 | Mar 2018 | WO |
2018084802 | May 2018 | WO |
2018098136 | May 2018 | WO |
2019173136 | Sep 2019 | WO |
2019200350 | Oct 2019 | WO |
2019217086 | Nov 2019 | WO |
2020063762 | Apr 2020 | WO |
Entry |
---|
Applicant Initiated Interview Summary received for U.S. Appl. No. 17/746,807, dated Mar. 31, 2023, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/935,002, dated Mar. 28, 2023, 2 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/943,737, dated Mar. 28, 2023, 28 pages. |
Notice of Allowance received for U.S. Appl. No. 17/572,117, dated Apr. 4, 2023, 9 pages. |
Office Action received for Australian Patent Application No. 2022209277, dated Mar. 10, 2023, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/410,169, dated Apr. 25, 2023, 6 pages. |
Final Office Action received for U.S. Appl. No. 17/181,089, dated Apr. 19, 2023, 13 pages. |
Final Office Action received for U.S. Appl. No. 17/746,807, dated Apr. 26, 2023, 16 pages. |
Notice of Allowance received for Chinese Patent Application No. 202080039642.6, dated Apr. 17, 2023, 6 pages (2 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202010295272.4, dated Feb. 27, 2023, 15 pages (6 pages of English Translation and 9 pages of Official Copy). |
Result of Consultation received for European Patent Application No. 16708003.5, mailed on Apr. 18, 2023, 9 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/181,089, dated Apr. 7, 2023, 5 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2022/044236, dated Mar. 27, 2023, 17 pages. |
Notice of Allowance received for U.S. Appl. No. 17/509,356, dated Apr. 7, 2023, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 17/516,537, dated Apr. 17, 2023, 8 pages. |
Office Action received for European Patent Application No. 20720310.0, dated Apr. 11, 2023, 8 pages. |
Han Sangwoo, “AR Glasses interaction prototype”, Available Online at: https://sangwoohan.cargo.site/AR-Glasses-interaction-prototype, Oct. 2020, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/181,089, dated Nov. 22, 2022, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/410,169, dated Nov. 7, 2022, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/516,537, dated Nov. 22, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/572,117, dated Nov. 17, 2022, 4 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/827,004, dated Nov. 9, 2022, 27 pages. |
Notice of Allowance received for U.S. Appl. No. 16/679,967, dated Nov. 2, 2022, 7 pages. |
3C Blogger Kisplay Share, Samsung Galaxy Tab S Hands-on SideSync 3.0 Is Amazing, Available online at: http://www.samsung.com/tw/article/galaxy-tab-s-blogger-kisplay, Jul. 4, 2014, 4 pages. |
Accepted Outlook Meetings Move to Deleted Folder, Available online at:—https://social.technet.microsoft.com/Forums/office/en-US/f3301c9a-a93f-49f7-be 13-c642e285f150/accepted-outlook-meetings-move-to-deleted-folder?forum=outlook, Jan. 12, 2011, 4 pages. |
Advisory Action received for U.S. Appl. No. 14/752,776, dated Aug. 31, 2018, 3 pages. |
Advisory Action received for U.S. Appl. No. 14/815,898, dated Aug. 30, 2016, 3 pages. |
Advisory Action received for U.S. Appl. No. 14/822,769, dated Apr. 30, 2018, 4 pages. |
Advisory Action received for U.S. Appl. No. 14/833,014, dated Jan. 27, 2017, 3 pages. |
Advisory Action received for U.S. Appl. No. 14/863,099, dated Sep. 8, 2016, 3 pages. |
Advisory Action received for U.S. Appl. No. 15/405,122, dated Apr. 18, 2022, 5 pages. |
Advisory Action received for U.S. Appl. No. 16/377,892, dated Apr. 9, 2021, 4 pages. |
Advisory Action received for U.S. Appl. No. 16/378,136, dated Apr. 12, 2021, 4 pages. |
Advisory Action received for U.S. Appl. No. 16/806,981, dated Jun. 14, 2021, 6 pages. |
Advisory Action received for U.S. Appl. No. 16/935,002, dated May 6, 2022, 3 pages. |
Advisory Action received for U.S. Appl. No. 16/943,737, dated Jun. 1, 2022, 6 pages. |
Airshow, “Airshow App for Mobile Devices”, 2012, 4 pages. |
Android 2.3.4 User's Guide, Online available at: https://static.googleusercontent.com/media/www.google.com/en//help/hc/pdfs/mobile/AndroidUsersGuide-2.3.4.pdf, May 20, 2011, 384 pages. |
Android Central, “BeWeather weather app for Android”, Available online at: <https://www.youtube.com/watch?v=G2EY2K-XkSI>, Sep. 1, 2011, 1 page. |
Android Central, “Changing the watchface on your Android Wear device”, Retrieved from: https://www.youtube.com/watch?v=YYwFe2K_qil, Jul. 2, 2014, 4 pages. |
Androidika, “Butterfly 3D Live Wallpaper 1.0 APK”, Available at: < http://net-suckga-ilauncher2.apk-dl.com/butterfly-3d-live-wallpaper>, Feb. 26, 2013, 7 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/405,122, dated Dec. 22, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/405,122, dated Jul. 7, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/405,122, dated Mar. 1, 2022, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/405,122, dated May 21, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/144,264, dated Jul. 22, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/147,523, dated Apr. 27, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/147,523, dated Dec. 10, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/147,523, dated Jun. 13, 2022, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/147,523, dated Oct. 26, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/147,523, dated Sep. 14, 2021, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/259,954, dated Mar. 23, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/265,938, dated Mar. 11, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/265,938, dated May 28, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/281,838, dated Jun. 2, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/377,892, dated Mar. 26, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/377,892, dated Oct. 13, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/378,136, dated Mar. 26, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/378,136, dated Oct. 13, 2020, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/583,981, dated Mar. 9, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/583,981, dated Sep. 14, 2020, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/583,994, dated Apr. 3, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/583,994, dated May 28, 2021, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/583,994, dated Nov. 24, 2020, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/653,857, dated Dec. 14, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/653,857, dated May 3, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/679,967, dated Feb. 10, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/679,967, dated Jun. 1, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/679,967, dated Oct. 25, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/723,583, dated Dec. 28, 2020, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/749,929, dated Oct. 13, 2020, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/806,981, dated Jan. 28, 2022, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/935,002, dated Sep. 21, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/943,737, dated Apr. 29, 2022, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/943,737, dated Sep. 7, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/013,778, dated Feb. 28, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/041,350, dated Aug. 18, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/041,350, dated Feb. 2, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/103,436, dated Sep. 22, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/181,089, dated Oct. 7, 2022, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/188,228, dated Jun 14, 2022, 9 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/188,228, dated Sep. 23, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/314,948, dated Oct. 21, 2022, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/516,537, dated Jul 5, 2022, 4 pages. |
Avdonin Nikita, “Astroviewer 3D”, Available <: https:jjwww.youtube.comjwatch?v=zY0tslx3JHY/>, Nov. 5, 2013, 2 pages. |
Axiang's Network Notebook, Deep Analysis on Samsung's 2013 New Flagship: tell you what kind of mobile phone Galaxy S4 is! available at: https://axiang.cc/archives/6115, 22, 2013, 4 pages. |
Baar Marius, “Fitbit Ace—Unboxing, Setup and 24-Hour Test”, YouTube [online] [video], Retrieved from: <https://youtu.be/ekvkfqOyrls>.See especially 4:44, Oct. 24, 2018, 3 pages. |
Board Decision received for Chinese Patent Application No. 201580046788.2, dated Jun. 6, 2022, 17 pages. |
Board Decision received for Chinese Patent Application No. 201680012936.3, dated Jun. 16, 2021, 2 pages. |
Board Opinion received for Chinese Patent Application No. 201580046788.2, dated Dec. 29, 2021, 10 pages. |
Bogdanov Alexei, “SKMEI 1016”, XP054977588, Available online at <URL: https://www.youtube.com/watch?v=E4q4Fug05Fw>, Jun. 21, 2014, 2 pages. |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 15730925.3, mailed on Feb. 18, 2020, 7 pages. |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 15760008.1, mailed on Sep. 13, 2021, 8 pages. |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 17184710.6, mailed on Feb. 19, 2020, 2 pages. |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 17184710.6, mailed on Mar. 9, 2020, 2 pages. |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 20176616.9, mailed on Jun. 9, 2022, 1 page. |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 20176616.9, mailed on May 27, 2022, 1 page. |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 20192404.0, mailed on May 4, 2022, 3 pages. |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 20192404.0, mailed on May 18, 2022, 1 page. |
Castellini Rick, “Google Earth”, Retrieved from <https://www.youtube.com/watch?v=bgjMSBXsFZQ>, How to Use Google Earth for Beginners, Feb. 12, 2013, 3 pages. |
Certificate of Examination received for Australian Patent Application No. 2018100158, dated Oct. 23, 2018, 2 pages. |
Certificate of Examination received for Australian Patent Application No. 2018101855, dated Aug. 6, 2019, 2 pages. |
Chan Christine, “Handoff Your Browser to Your iPhone or iPad! Plus a Chance to Win a Copy!”, Apr. 12, 2011, 2 pages. |
Chenzai, “Apple, please don't screw up notifications on the Apple Watch”, Available online at: https://digi.tech.qq.com/a/20140918/060747.htm. also published on the English webpage https://www.theverge.com/2014/9/9/6127913/apple-please-dont-screw-up-notifications-on-the-apple-watch, Sep. 18, 2014, 8 pages. |
Clark Josh, “Designing Great iPhone Apps”, O'Reilly Japan Co, O'Reilly Tim, vol. 1, May 24, 2012, 5 pages. |
Clock & Calendar for SmartWatch 2, https://www.youtube.com/watch?v=Uj-K2vMnrj8, Nov. 20, 2013, 2 pages. |
Codrington Simon, “Intuitive Scrolling Interfaces with CSS Scroll Snap Points”, Online Available at: https://www.sitepoint.com/intuitive-scrolling-interfaces-with-css-scroll-snap-points/, Dec. 8, 2015, 14 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/641,251, dated Jun. 17, 2016, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/815,879, dated Jul 13, 2017, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/815,879, dated Jul. 28, 2017, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/815,879, dated Sep. 21, 2017, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/822,769, dated Jan. 17, 2019, 8 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/839,897, dated Jan. 23, 2019, 6 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/839,903, dated Feb. 13, 2019, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/839,903, dated Mar. 1, 2019, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/841,402, dated May 4, 2018, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/841,614, dated Jan. 8, 2019, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/268,115, dated Apr. 13, 2018, 11 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/268,115, dated Mar. 21, 2018, 9 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/355,956, dated Jan. 3, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/798,257, dated Aug. 26, 2019, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/798,257, dated Jul. 9, 2019, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/798,257, dated Jun. 12, 2019, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/103,699, dated May 29, 2019, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/281,838, dated Oct. 30, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/377,892, dated Aug. 11, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/378,136, dated Aug. 11, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/378,136, dated Jun. 11, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/583,981, dated Apr. 6, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/583,981, dated May 17, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/583,994, dated Jul. 6, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/041,350, dated Apr. 4, 2022, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/041,350, dated Mar. 15, 2022, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/103,436, dated Dec. 22, 2021, 2 pages. |
Decision on Acceptance received for Australian Patent Application No. 2015298710, dated Jul. 19, 2019, 18 pages. |
Decision on Acceptance received for Australian Patent Application No. 2018201089, dated Apr. 20, 2021, 28 pages. |
Decision on Appeal received for U.S. Appl. No. 14/833,014, mailed on Oct. 30, 2019, 10 pages. |
Decision on Appeal received for U.S. Appl. No. 14/774,664, mailed on Sep. 12, 2019, 8 pages. |
Decision on Appeal received for U.S. Appl. No. 14/815,890, mailed on Nov. 24, 2020, 13 pages. |
Decision on Appeal received for U.S. Appl. No. 14/863,099, mailed on Aug. 22, 2019, 9 pages. |
Decision on Appeal received for U.S. Appl. No. 15/128,952, mailed on Dec. 28, 2020, 23 pages. |
Decision on Opposition received for Australian Patent Application No. 2015298710, mailed on Aug. 9, 2019, 4 pages. |
Decision on Opposition received for Australian Patent Application No. 2015298710, mailed on Aug. 20, 2018, 20 pages. |
Decision to Grant received for Danish Patent Application No. PA201570664, dated Feb. 20, 2017, 2 pages. |
Decision to grant received for Danish Patent Application No. PA201570788, dated Jul. 10, 2017, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201570791, dated Jun. 7, 2017, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201670320, dated Oct. 18, 2018, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA202070609, dated May 3, 2021, 2 pages. |
Decision to Grant received for European Patent Application No. 15711969.4, dated Sep. 26, 2019, 2 pages. |
Decision to Grant received for European Patent Application No. 15712218.5, dated Jun. 7, 2018, 2 pages. |
Decision to Grant received for European Patent Application No. 15730925.3, dated Dec. 9, 2021, 2 pages. |
Decision to Grant received for European Patent Application No. 15739110.3, dated Sep. 19, 2019, 2 pages. |
Decision to Grant received for European Patent Application No. 15747595.5, dated Jul. 16, 2020, 2 pages. |
Decision to Grant received for European Patent Application No. 15759998.6, dated Jun. 18, 2020, 2 pages. |
Decision to Grant received for European Patent Application No. 15760008.1, dated Aug. 11, 2022, 2 pages. |
Decision to Grant received for European Patent Application No. 15787091.6, dated Dec. 3, 2020, 2 pages. |
Decision to Grant received for European Patent Application No. 19185318.3, dated Mar. 31, 2022, 3 pages. |
Decision to Grant received for European Patent Application No. 20185974.1, dated Aug. 19, 2022, 3 pages. |
Decision to Refuse received for European Patent Application No. 15730924.6, dated Mar. 15, 2019, 12 pages. |
Decision to Refuse received for European Patent Application No. 17184710.6, dated Jun. 16, 2020, 9 pages. |
Decision to Refuse received for European Patent Application No. 17810749.6, dated Jan. 29, 2021, 24 pages. |
Decision to Refuse received for European Patent Application No. 20192404.0, dated Jun. 14, 2022, 15 pages. |
Deluxe Moon-Guide, available online at: https://web.archive.org/web/20130520161057/http://www.lifewaresolutions.com/deluxe_moon_guide_ip.html, May 20, 2013, 5 pages. |
Dharmasena Anusha, “iMessage-send as text message Option”, YouTube, Available online at: <https://www.youtube.com/watch?v=hXG-MdlW6FA>, Feb. 18, 2013, 1 page. |
Ebpman Tech Reviews, “Lg G3 Tips: How to customize the clock face”, Available online at: https://www.youtube.com/watch?v=evraMWFb1fY, Jul. 25, 2014, 1 page. |
Ellis Benus, “Use a Phone Number in the Google Calendar Where Line for One Click Calling”, Available online at: https://ellisbenus.com/ellis-benus/use-a-phone-number-in-the-google-calender-where-line-for-one-click-calling, Ellis Benus-Small Business Web Guru, Oct. 3, 2012, 2 pages. |
Ergonomic requirements for office work with visual display terminals (VDTs), Part 13: User guidance, International Standard ISO, Zuerich, CH, vol. 9241-13, Jul. 15, 1998, 40 pages. |
European Search Report received for European Patent Application No. 20192404.0, dated Nov. 20, 2020, 4 pages. |
European Search Report received for European Patent Application No. 21165295.3, dated Jun. 18, 2021, 4 pages. |
Evgenyevich Sergey, “Earth & Moon in HD Gyro 3D”, Available at <https://www.youtube.com/watch?v=IRwNcaSYrls/>, Dec. 1, 2013, 2 pages. |
Examiner-Initiated Interview Summary received for U.S. Appl. No. 16/806,981, dated Jan. 13, 2022, 4 pages. |
Examiner-Initiated Interview Summary received for U.S. Appl. No. 16/806,981, dated Mar. 26, 2021, 2 pages. |
Examiner-Initiated Interview Summary received for U.S. Appl. No. 16/806,981, dated May 24, 2021, 4 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 14/774,664, mailed on May 31, 2018, 28 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 14/815,890, mailed on Mar. 20, 2020, 16 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 14/833,014, mailed on Nov. 2, 2017, 48 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 14/863,099, mailed on Jul. 28, 2017, 31 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 15/128,952, mailed on Jan. 8, 2020, 9 pages. |
Examiner's Pre-Review Report received for Japanese Patent Application No. 2018-080122, dated Feb. 25, 2020, 6 pages. |
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 16190252.3, dated Mar. 1, 2017, 10 pages. |
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 17184710.6, dated Nov. 28, 2017, 10 pages. |
Extended European Search Report for European Application No. 19185318.3, dated Nov. 20, 2019, 8 pages. |
Extended European Search Report received for European Patent Application No. 19203942.8, dated Apr. 1, 2020, 10 pages. |
Extended European Search Report received for European Patent Application No. 20176616.9, dated Sep. 8, 2020, 7 pages. |
Extended European Search Report received for European Patent Application No. 20185974.1, dated Oct. 28, 2020, 7 pages. |
Extended European Search Report received for European Patent Application No. 22157106.0, dated Jun. 27, 2022, 8 pages. |
Extended European Search Report received for European Patent Application No. 22169639.6, dated Jul. 19, 2022, 14 pages. |
Extended European Search Report received for European Patent Application No. 22179347.4, dated Oct. 13, 2022, 7 pages. |
Farmboyreef, “Apple watch controlling your tv”, Available online at: https://www.youtube.com/watch?v=xaJPG0Wm3Tg, Jun. 23, 2015, 3 pages. |
Feldman Ari, “Excerpts from: Designing Arcade Computer Game Graphics”, Available online at: http://www.phatcode.net/res/269/files/dacgg.pdf, Jan. 1, 2001, 35 pages. |
Final Office Action received for U.S. Appl. No. 14/752,776, dated May 29, 2018, 36 pages. |
Final Office Action received for U.S. Appl. No. 14/774,664, dated Aug. 25, 2017, 23 pages. |
Final Office Action received for U.S. Appl. No. 14/815,890, dated Feb. 26, 2018, 20 pages. |
Final Office Action received for U.S. Appl. No. 14/815,890, dated May 14, 2019, 22 pages. |
Final Office Action received for U.S. Appl. No. 14/815,890, dated Nov. 21, 2016, 18 pages. |
Final Office Action received for U.S. Appl. No. 14/815,898, dated Jun. 9, 2016, 19 pages. |
Final Office Action received for U.S. Appl. No. 14/822,769, dated Jan. 4, 2018, 25 pages. |
Final Office Action received for U.S. Appl. No. 14/822,769, dated Nov. 9, 2016, 18 pages. |
Final Office Action received for U.S. Appl. No. 14/833,014, dated Oct. 26, 2016, 32 pages. |
Final Office Action received for U.S. Appl. No. 14/839,897, dated Jan. 10, 2018, 16 pages. |
Final Office Action received for U.S. Appl. No. 14/839,903, dated Sep. 18, 2018, 11 pages. |
Final Office Action received for U.S. Appl. No. 14/841,402, dated Aug. 25, 2017, 17 pages. |
Final Office Action received for U.S. Appl. No. 14/841,614, dated May 10, 2018, 13 pages. |
Final Office Action received for U.S. Appl. No. 14/841,623, dated Sep. 5, 2017, 16 pages. |
Final Office Action received for U.S. Appl. No. 14/863,099, dated Apr. 21, 2016, 20 pages. |
Final Office Action received for U.S. Appl. No. 15/128,952, dated Jul. 18, 2018, 19 pages. |
Final Office Action received for U.S. Appl. No. 15/268,115, dated Oct. 11, 2017, 48 pages. |
Final Office Action received for U.S. Appl. No. 15/352,215, dated Mar. 7, 2019, 22 pages. |
Final Office Action received for U.S. Appl. No. 15/405,122, dated Jan. 21, 2020, 36 pages. |
Final Office Action received for U.S. Appl. No. 15/405,122, dated Nov. 5, 2021, 45 pages. |
Final Office Action received for U.S. Appl. No. 16/147,523, dated Aug. 4, 2020, 15 pages. |
Final Office Action received for U.S. Appl. No. 16/147,523, dated Oct. 14, 2021, 22 pages. |
Final Office Action received for U.S. Appl. No. 16/265,938, dated Apr. 7, 2020, 45 pages. |
Final Office Action received for U.S. Appl. No. 16/377,892, dated Jan. 28, 2021, 11 pages. |
Final Office Action received for U.S. Appl. No. 16/378,136, dated Jan. 28, 2021, 9 pages. |
Final Office Action received for U.S. Appl. No. 16/583,981, dated Apr. 16, 2020, 19 pages. |
Final Office Action received for U.S. Appl. No. 16/583,994, dated Jul. 23, 2020, 16 pages. |
Final Office Action received for U.S. Appl. No. 16/653,857, dated Feb. 10, 2021, 43 pages. |
Final Office Action received for U.S. Appl. No. 16/679,967, dated Nov. 10, 2021, 14 pages. |
Final Office Action received for U.S. Appl. No. 16/723,583, dated Feb. 5, 2021, 15 pages. |
Final Office Action received for U.S. Appl. No. 16/806,981, dated Apr. 14, 2021, 24 pages. |
Final Office Action received for U.S. Appl. No. 16/806,981, dated Mar. 1, 2022, 33 pages. |
Final Office Action received for U.S. Appl. No. 16/935,002, dated Jan. 5, 2022, 25 pages. |
Final Office Action received for U.S. Appl. No. 16/943,737, dated Feb. 4, 2022, 24 pages. |
Final Office Action received for U.S. Appl. No. 17/013,778, dated Apr. 1, 2022, 11 pages. |
Final Office Action received for U.S. Appl. No. 17/041,350, dated Sep. 17, 2021, 25 pages. |
Final Office Action received for U.S. Appl. No. 17/181,089, dated Oct. 21, 2022, 15 pages. |
Final Office Action received for U.S. Appl. No. 17/188,228, dated Jul. 6, 2022, 13 pages. |
Final Office Action received for U.S. Appl. No. 17/516,537, dated Oct. 11, 2022, 9 pages. |
Final Office Action received for U.S. Appl. No. 14/815,879, dated Mar. 24, 2016, 46 pages. |
First Action Interview received for U.S. Appl. No. 14/815,890, dated Aug. 12, 2016, 3 pages. |
Frakes Dan, “How to Get Started with Airplay”, available at: https://www.macworld.com/article/2039770/how-to-get-started-with-airplay.html, Macworld, May 27, 2013, 8 pages. |
Franks Tech Help, “DSLR Camera Remote Control on Android Tablet, DSLR Dashboard, Nexus 10, Canon Camera, OTG Host Cable”, Available online at : https://www.youtube.com/watch?v=DD4dCVinreU, Dec. 10, 2013, 1 page. |
Fuchphone Extras, “LG G Watch—Designs | Watch Faces”, Available online at: https://www.youtube.com/watch?v=yqxzqdi_MSE, Jul. 27, 2014, 1 page. |
Fuchphone Extras, “Samsung Gear Live—Designs | Watch Faces”, Available online at: https://www.youtube.com/watch?v=fFjtVAxyimE, Jul. 26, 2014, 1 page. |
Fuji Film, “Taking Pictures Remotely: Free iPhone/Android App Fuji Film Camera Remote”, Available at <http://app.fujifilm-dsc.com/en/camera_remote/guide05.html>, Apr. 22, 2014, 3 pages. |
Fukuda Kazuhiro, “Xperia Z1 Perfect Manual”, Sotec Co, Ltd, No. 1, Nov. 15, 2013, pp. 217-218. |
Gazer, “iPhone 4S Super Manual”, Shuwa System Co, Saito Kazukuni, vol. 1, Jun. 6, 2013, 7 pages. |
Geary David, “Programming HTML5 Canvas”, O'Reilly Japan, Inc, No. 1, Jul. 23, 2014, pp. 327-330. |
Gil Lory, “How to control Apple TV with your Apple Watch”, Available online at: https://www.imore.com/how-control-your-apple-tv-remote-app%ADapple-watch], Jun. 6, 2016, 24 pages. |
Google Earth 7.0.1.8244, retrieved from the Internet: http://dl.google.com/dl/earth/client/ge7/release_7_0_1/googleearth-win-bundle-7.0.1.8244.exe, Oct. 29, 2012, 1 page. |
Google Earth on Android—AndroidCentral.com, Available online at: https://www.youtube.com/watch?v=1WxN1RunrE4, Feb. 22, 2010, 1 page. |
Gottabemobile, “How to Change Watch Faces on Android Wear”, available online at URL: https://www.youtube.com/watch?v=B8iRGkGq6a8, Jul. 9, 2014, 4 pages. |
GT-I9500 (Galaxy 84) User Manual, Samsung, Rev.1.1, http://org.downloadcenter.samsung.com/downloadfile/ContentsFile.aspx?CDSite=UNI_TW&CttFileID=5406113&CDCttType=UM&ModelType=N&ModelName=GTI9500&VPath=UM/201305/20130520173017063/GTI9500_UM_Open_Taiwan_Jellybean_Chi_Rev.1.1_130520.pdf, May 2013, 14 pages. |
HOBBYISTSOFTWARELTD,“VLC Remote”, Online available at: https://watchaware.com/watch-apps/297244048, 2016, 7 pages. |
Horowitz Paul, “Always Show Scroll Bars in Mac OS X”, OS X Daily, available online at: URL: http: jjosxdaily.com/2011/08/03/show-scroll-bars-mac-os-x-lion/, Aug. 3, 2011, 7 pages. |
Instruction Manual, Detailed version, KDDI Corporation, No. 1, vol. 1, Jun. 2014, 4 pages. |
Intention to Grant received for Danish Patent Application No. PA201570496, dated Feb. 17, 2016, 6 pages. |
Intention to Grant received for Danish Patent Application No. PA201570563, dated Mar. 17, 2016, 7 pages. |
Intention to Grant received for Danish Patent Application No. PA201570773, dated Mar. 9, 2018, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201570788, dated Mar. 27, 2017, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201570791, dated Mar. 7, 2017, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201670320, dated May 17, 2018, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA202070609, dated Jan. 14, 2021, 2 pages. |
Intention to Grant received for European Patent Application No. 15711969.4, dated May 29, 2019, 11 pages. |
Intention to Grant received for European Patent Application No. 15712218.5, dated Jan. 24, 2018, 7 pages. |
Intention to Grant received for European Patent Application No. 15730925.3, dated Aug. 16, 2021, 10 pages. |
Intention to Grant received for European Patent Application No. 15730925.3, dated May 28, 2020, 10 pages. |
Intention to Grant received for European Patent Application No. 15739110.3, dated Mar. 7, 2019, 8 pages. |
Intention to Grant received for European Patent Application No. 15739110.3, dated Sep. 11, 2019, 6 pages. |
Intention to Grant received for European Patent Application No. 15747595.5, dated Feb. 17, 2020, 8 pages. |
Intention to Grant received for European Patent Application No. 15759998.6, dated Apr. 17, 2020, 10 pages. |
Intention to Grant received for European Patent Application No. 15759998.6, dated Nov. 21, 2019, 12 pages. |
Intention to Grant received for European Patent Application No. 15760008.1, dated Apr. 6, 2022, 11 pages. |
Intention to Grant received for European Patent Application No. 15760008.1, dated Oct. 5, 2021, 11 pages. |
Intention to Grant received for European Patent Application No. 15787091.6, dated Apr. 23, 2020, 7 pages. |
Intention to Grant received for European Patent Application No. 15787091.6, dated Sep. 30, 2020, 7 pages. |
Intention to Grant received for European Patent Application No. 16708014.2, dated May 10, 2022, 8 pages. |
Intention to Grant received for European Patent Application No. 19185318.3, dated Dec. 10, 2021, 12 pages. |
Intention to Grant received for European Patent Application No. 20185974.1, dated Apr. 28, 2022, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/027882, dated Sep. 24, 2015, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/019298, dated Mar. 16, 2017, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/019317, dated Dec. 15, 2016, 18 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/034604, dated Feb. 16, 2017, 21 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/034607, dated Feb. 16, 2017, 18 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/038173, dated Jan. 5, 2017, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/038174, dated Jan. 5, 2017, 27 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/041424, dated Feb. 2, 2017, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/044517, dated Mar. 16, 2017, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/046262, dated Mar. 16, 2017, 26 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/046787, dated Mar. 16, 2017, 19 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/047507, dated Mar. 16, 2017, 16 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/055165, dated Sep. 21, 2017, 15 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/016621, dated Aug. 24, 2017, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/017271, dated Sep. 21, 2017, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/035554, dated Dec. 20, 2018, 39 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/024792, dated Dec. 17, 2020, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/026044, dated Dec. 9, 2021, 18 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/031536, dated Nov. 18, 2021, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/035446, dated Dec. 9, 2021, 14 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2015/034604, dated Nov. 9, 2015, 30 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2015/047507, dated Feb. 22, 2016, 22 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/032498, dated Feb. 10, 2014, 18 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/027882, dated Oct. 10, 2014, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019298, dated Jul. 13, 2015, 17 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019317, dated Aug. 25, 2015, 24 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/034606, dated Dec. 2, 2015, 17 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/038173 dated Sep. 25, 2015, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/038174, dated Jan. 18, 2016, 38 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/041424, dated Mar. 31, 2016, 18 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/044517, dated Oct. 28, 2015, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/046262, dated Mar. 15, 2016, 34 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/046787, dated Apr. 1, 2016, 26 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/055165, dated Apr. 20, 2016, 22 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/016621, dated May 9, 2016, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/017271, dated Sep. 1, 2016, 18 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/035554, dated Sep. 22, 2017, 42 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/024792, dated Jul. 18, 2019, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/026044, dated Sep. 9, 2020, 26 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/031536, dated Sep. 23, 2020, 16 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/035446, dated Nov. 10, 2020, 20 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/034607, dated Dec. 1, 2015, 23 pages. |
Inventerium, “Tropical Fish 14”, Available online at: https://www.turbosquid.com/3d-models/tropical-fish-3d-model/388510, Feb. 4, 2008, 2 pages. |
Invitation to Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2015/034604 dated Sep. 4, 2015, 6 pages. |
Invitation to Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2015/034606 dated Sep. 9, 2015, 6 pages. |
Invitation to Pay Additional Fee received for European Patent Application No. 15747595.5, dated Feb. 9, 2018, 6 pages. |
Invitation to Pay Additional Fees received for European Patent Application No. 15753796.0, dated Mar. 24, 2020, 3 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2014/027882, dated Aug. 5, 2014, 2 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/019317, dated May 22, 2015, 7 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/034607, dated Sep. 30, 2015, 4 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/038174, dated Oct. 5, 2015, 5 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/041424, dated Nov. 12, 2015, 6 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/046262, dated Nov. 23, 2015, 7 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/046787, dated Dec. 15, 2015, 8 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/047507, dated Jan. 4, 2016, 8 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/055165, dated Jan. 18, 2016, 6 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2016/017271, dated May 25, 2016, 7 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2017/035554, dated Jul. 20, 2017, 2 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2020/026044, dated Jun. 25, 2020, 12 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2020/031536, dated Jul. 31, 2020, 9 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2020/035446, dated Sep. 11, 2020, 12 pages. |
Iphone, “User Guide for IOS 7.1 Software”, Mar. 2014, 162 pages. |
Itjungles, “iPhone 6: How to Pair with Another Bluetooth Device”, Available Online at: https://www.youtube.com/watch?v=9setanYtHAk, Aug. 5, 2015, 3 pages. |
Jean, “Our Pact Parental Control Review”, Available online at : https://www.bewebsmart.com/parental-controls/our-pact-parental-control-review/, Jun. 25, 2016, 25 pages. |
Jepson Tom, “How to auto-forward specific emails in gmail?”, Available online at <http://www.tomjepson.co.uk/how-to-auto-forward-specific-emails-in-gmail/>, May 19, 2013, 7 pages. |
Kenney Briley, “How to Customize a Smartwatch and other Personalization Questions”, Available online at: <https://smartwatches.org/learn/customize-smartwatch/>, Jan. 23, 2014, 3 pages. |
Kidizoom Smartwatch, Available online at <URL: https://www.vtechnl.com/media/downloads/Kidizoom-Smart-Watch.pdf>, Jun. 24, 2014, 23 pages. |
Kinect Gesture Commands—Kinect Voice Commands, Xbox Wire, Available Online at: <https://hwcdn.libsyn.com/p/4/4/c/44c89c7f273167b4/Xbox_One_Kinect_Voice_Gesture.pdf?c_id=6458139&cs_id=6458139&expiration=1555411736&hwt=fe78eb09654ea677c9fbf836ad2ed82b >, 2013, 2 pages. |
Klein Matt, “How to Add, Remove, and Rearrange Apps on the Apple Watch's Dock”, Available online at: https://www.howtogeek.com/279796/how-to-add-remove-and-rearrange-apps-on-the-apple-watch%E2%80%99s-dock/, Nov. 18, 2016, 10 pages. |
Link to Wayback Machine with link to Google Play showing different layouts of complications associated with a clock face, available online at https://play.google.com/store/apps/details?id=com.levelup.beautifulwidgets.free&hl=da, Sep. 9, 2013, 6 pages. |
Living Earth, available at: http;//www.livingcarthapp.com/, 2014, 6 pages. |
Lyons et al, “Facet: A Multi-Segment Wrist Worn System”, Online available at: <http://fetlab.io/publications/2012-Facet-a%20multi-segment%20wrist%20worn%20system.pdf>, Oct. 7-10, 2012, pp. 123-129. |
Microsoft Outlook 2010(TM) A Beginners Guide, Available online at: http://www.reading.ac.uk/web/files/its/outlook2010.pdf, Apr. 1, 2012, 24 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 15711969.4, mailed on May 16, 2019, 7 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 15730924.6, mailed on Mar. 13, 2019, 4 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 15730925.3, mailed on May 26, 2020, 11 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 15760008.1, mailed on Sep. 21, 2021, 6 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 17810749.6, mailed on Jan. 26, 2021, 8 pages. |
Mugs, Online Available at: https://web.archive.org/web/20151029034349/http://le-mugs.com/, Oct. 29, 2015, 14 pages. |
My Mate Vince, “Setting up the Fitbit Alta HR Activity Tracker on Apple iOS”, Online available at:—https://youtu.be/FdwRF4lfvFc>, Jun. 18, 2017, 3 pages. |
Nerdtalk, “The Best Android Clock Widgets”, available at: https://www.youtube.com/watch?v=E1bAprWByfU, Apr. 25, 2011, 1 page. |
Netsapiens, “Click to Call in MS Outlook”, Available online at <https://netsapiens.com/click-to-call-in-ms-outlook-windows-apps/>, May 4, 2012, 8 pages. |
New, but unsigned—Easy Stopwatch for Symbian, XP55393563, Available online at <http://www.allaboutsymbian.com/flow/item/19490_New_but_unsigned-Easy_StopWatc.php>, Mar. 15, 2014, 15 pages. |
Nikolov Anton, “Design principle: Consistency”, Available online at: https://uxdesign.cc/design-principle-consistency-6b0cf7e7339f, Apr. 8, 2017, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/752,776, dated Jan. 2, 2018, 30 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/752,776, dated Nov. 5, 2018, 48 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/774,664, dated Mar. 7, 2017, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/805,403, dated Nov. 16, 2017, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/815,879, dated Dec. 15, 2016, 33 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/815,890, dated Dec. 18, 2018, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/815,890, dated Jun. 6, 2017, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/822,769, dated Feb. 5, 2016, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/822,769, dated Jun. 29, 2016, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/822,769, dated May 4, 2017, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/822,769, dated May 24, 2018, 30 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/833,014, dated Mar. 21, 2016, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/839,897, dated May 18, 2017, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/839,903, dated Feb. 26, 2018, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/839,913, dated Jul. 28, 2016, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/839,913, dated Mar. 2, 2016, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/841,402, dated Jan. 25, 2017, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/841,608, dated Apr. 12, 2017, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/841,614, dated Jul. 27, 2017, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/841,623, dated Feb. 2, 2017, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/863,099, dated Dec. 2, 2015, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/864,011, dated Jan. 21, 2016, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/864,011, dated Jun. 10, 2016, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/128,952, dated Apr. 1, 2019, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/128,952, dated Dec. 29, 2017, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/135,328 dated Apr. 11, 2018, 64 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/268,115, dated Apr. 13, 2017, 44 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/352,215, dated Sep. 20, 2018, 31 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/355,956, dated May 31, 2019, 32 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/405,122, dated Apr. 2, 2021, 35 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/405,122, dated May 31, 2019, 43 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/405,122, dated Sep. 24, 2020, 30 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/433,238, dated Nov. 3, 2017, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/103,699, dated Nov. 30, 2018, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/144,264, dated May 1, 2020, 30 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/147,523, dated Apr. 26, 2022, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/147,523, dated Dec. 27, 2019, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/147,523, dated Jul. 21, 2021, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/259,954, dated Feb. 5, 2020, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/265,938, dated Nov. 4, 2019, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/281,838, dated Mar. 26, 2020, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/377,892, dated May 21, 2020, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/378,136, dated Jun. 2, 2020, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/407,584, dated Jul. 10, 2019, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/583,981, dated Dec. 6, 2019, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/583,994, dated Dec. 23, 2020, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/583,994, dated Dec. 30, 2019, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/653,857, dated Jul. 9, 2020, 35 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/653,857, dated Jul. 22, 2021, 45 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/679,967, dated Apr. 19, 2022, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/679,967, dated Sep. 2, 2021, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/723,583, dated Aug. 13, 2020, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/749,929, dated May 13, 2020, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/806,981, dated Nov. 13, 2020, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/806,981, dated Sep. 1, 2021, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/935,002, dated Jun. 25, 2021, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/943,737, dated Jun. 25, 2021, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/013,778, dated Aug. 20, 2021, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/013,778, dated Dec. 9, 2021, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/041,350, dated Jun. 10, 2021, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/103,436, dated Aug. 18, 2021, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/181,089, dated May 13, 2022, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/188,228, dated Dec. 21, 2021, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/314,948, dated Aug. 1, 2022, 33 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/410,169, dated Sep. 16, 2022, 42 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/516,537, dated May 5, 2022, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/572,117, dated Oct. 6, 2022, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/815,879, dated Nov. 6, 2015, 35 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/815,890, dated Oct. 19, 2015, 5 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/815,898, dated Dec. 1, 2015, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/815,907, dated Jan. 12, 2016, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/815,909, dated Nov. 27, 2015, 12 pages. |
Notice of Acceptance received for Australian Patent Application No. 2015267671, dated Apr. 4, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2015279544, dated Mar. 1, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2015298710, dated Oct. 8, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2015385757, dated Jul. 16, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2016218318, dated Jul. 3, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2016231598, dated Mar. 1, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2017277971, dated Feb. 17, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018201089, dated May 28, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018202751, dated Sep. 4, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018204286, dated Feb. 27, 2020, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018247345, dated May 15, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020203919, dated Sep. 3, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020239670, dated Jul. 2,2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020250323, dated Feb. 28, 2022, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020285524, dated Dec. 17, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2021203636, dated Apr. 14, 2022, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022201369, dated Mar. 17, 2022, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2015279545, dated Feb. 9, 2018, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 201510479088.4, dated Jan. 21, 2021, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201510481525.6, dated May 27, 2019, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201510483268.X, dated Nov. 6, 2019, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201510483305.7, dated Jan. 8, 2019, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 201510484514.3, dated Jun. 6, 2019, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201510557356.X, dated Mar. 5, 2020, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201520594249.X, dated Jul. 12, 2016, 4 pages. |
Notice of Allowance received for Chinese Patent Application No. 201580028505.1, dated Sep. 19, 2019, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201580029054.3, dated Jul. 19, 2019, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201580046237.6, dated Aug. 29, 2018, 4 pages. |
Notice of Allowance received for Chinese Patent Application No. 201580077218.X, dated Nov. 13, 2020, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201610084974.1, dated Aug. 5, 2019, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201680012936.3, dated Jul. 13, 2021, 4 pages. |
Notice of Allowance received for Chinese Patent Application No. 201710439448.7, dated Jan. 26, 2021, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201710657424.9, dated May 8, 2020, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201780034203.4, dated Jan. 17, 2022, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201810321928.8, Sep. 11, 2019, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201910990432.4, dated Apr. 27, 2021, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201980036737.X, dated Apr. 20, 2021, 10 pages. |
Notice of Allowance received for Chinese Patent Application No. 202110011509.6, dated Mar. 2, 2022, 2 pages. |
Notice of Allowance received for Danish Patent Application No. PA201570495, dated Feb. 22, 2017, 1 page. |
Notice of Allowance received for Danish Patent Application No. PA201570496, dated Apr. 18, 2016, 2 pages. |
Notice of Allowance received for Danish Patent Application No. PA201570563, dated May 24, 2016, 2 pages. |
Notice of Allowance received for Danish Patent Application No. PA201570667, dated Nov. 11, 2016, 2 pages. |
Notice of Allowance received for Danish Patent Application No. PA201570771, dated Sep. 2, 2016, 2 pages. |
Notice of Allowance received for Danish Patent Application No. PA201570773 , dated Apr. 26, 2018, 2 pages. |
Notice of Allowance received for Japanese Patent Application No. 2016-569669, dated Mar. 19, 2018, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2017-505450, dated Mar. 9, 2018, 10 pages. |
Notice of Allowance received for Japanese Patent Application No. 2017-505842, dated Mar. 16, 2020, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2017-505847, dated May 20, 2019, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2017-545733, dated Jun. 1, 2018, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2018-074971, dated Apr. 23, 2019, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2018-080122, dated May 7, 2021, 28 pages. |
Notice of Allowance received for Japanese Patent Application No. 2018-107114, dated Mar. 22, 2019, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2018-126311, dated Feb. 1, 2019, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2019-096219, dated Jun. 26, 2020, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2020-551465, dated Jun. 28, 2021, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2021-122610, dated Aug. 5, 2022, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2021-571464, dated May 30, 2022, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2022-102840, dated Aug. 19, 2022, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2016-7032902, dated Sep. 7, 2018, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2017-7005939, dated Mar. 30, 2018, 5 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2018-7018904, dated Jun. 26, 2020, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2018-7035747, dated Dec. 9, 2020, 5 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-7026036, dated Jul. 26, 2021, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-7028759, dated Oct. 19, 2021, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2021-7034748, dated Jan. 27, 2022, 6 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2021-7039234, dated Dec. 20, 2021, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2022-7001721, dated Feb. 28, 2022, 5 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2022-7008567, dated Jul. 4, 2022, 9 pages. |
Notice of Allowance received for Netherland Patent Application No. 2019753, dated Jul. 6, 2018, 6 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104107328, dated Jun. 12, 2017, 3 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104108223, dated Jan. 10, 2017, 3 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104123593, dated Oct. 1, 2018, 4 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104124962, dated Jul. 27, 2107, 3 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104124963, dated Sep. 28, 2017, 5 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104124995, dated Jul. 27, 2017, 3 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104124997, dated Jun. 16, 2017, 5 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104124998, dated Mar. 31, 2017, 3 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104128519, dated Nov. 20, 2017, 5 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104128684, dated Feb. 23, 2017, 3 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104128700, dated Mar. 27, 2017, 3 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104133756, dated Nov. 30, 2017, 5 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104133757, dated Jan. 18, 2017, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 14/841,608, dated Nov. 14, 2017, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/641,251, dated May 18, 2016, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 14/805,403, dated Jul. 11, 2018, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 14/815,879, dated Jun. 26, 2017, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/815,890, dated Feb. 12, 2021, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/815,898, dated Dec. 5, 2016, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 14/815,898, dated Oct. 24, 2016, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 14/815,907, dated Jul. 28, 2016, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 14/815,907, dated Nov. 30, 2016, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 14/815,909, dated Jun. 9, 2016, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 14/815,909, dated May 3, 2016, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 14/815,909, dated May 20, 2016, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 14/815,909, dated Sep. 6, 2016, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 14/822,769, dated Nov. 29, 2018, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 14/833,014, dated Nov. 20, 2019, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/839,897, dated Jun. 8, 2018, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 14/839,903, dated Jan. 3, 2019, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/839,913, dated Aug. 11, 2016, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/841,402, dated Apr. 26, 2018, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 14/841,614, dated Oct. 24, 2018, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 14/841,623, dated Feb. 23, 2018, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/864,011, dated Apr. 28, 2016, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/864,011, dated Oct. 5, 2016, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 15/135,328, dated Jul. 1, 2019, 25 pages. |
Notice of Allowance received for U.S. Appl. No. 15/268,115, dated Mar. 7, 2018, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 15/352,215, dated Nov. 27, 2019, 20 pages. |
Notice of Allowance received for U.S. Appl. No. 15/355,956, dated Nov. 22, 2019, 29 pages. |
Notice of Allowance received for U.S. Appl. No. 15/366,607, dated Apr. 2, 2019, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 15/366,607, dated Feb. 21, 2019, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/433,238, dated May 17, 2018, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 15/616,480, dated Jan. 3, 2019, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/798,257, dated May 22, 2019, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 15/975,581, dated Oct. 3, 2018, 25 pages. |
Notice of Allowance received for U.S. Appl. No. 16/103,699, dated Apr. 11, 2019, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/144,264, dated Nov. 16, 2020, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/147,523, dated Aug. 4, 2022, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/147,523, dated Oct. 4, 2022, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/259,954, dated May 7, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/265,938, dated Oct. 15, 2020, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/281,838, dated Aug. 26, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/281,838, dated May 20, 2021, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/377,892, dated May 24, 2021, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/377,892, dated Sep. 9, 2021, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/378,136, dated Jun. 3, 2021, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 16/378,136, dated Sep. 22, 2021, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 16/407,584, dated Oct. 28, 2019, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/583,981, dated Mar. 26, 2021, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/583,994, dated Jun. 24, 2021, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/653,857, dated Feb. 16, 2022, 34 pages. |
Notice of Allowance received for U.S. Appl. No. 16/679,967, dated Jun. 15, 2022, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 16/749,929, dated Dec. 16, 2020, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 16/749,929, dated Nov. 4, 2020, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/867,002, dated Aug. 20, 2021, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 16/867,002, dated Mar. 1, 2022, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 17/041,350, dated Feb. 24, 2022, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 17/103,436, dated Dec. 8, 2021, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 17/188,228, dated Oct. 19, 2022, 6 pages. |
Nova, “Tour of the Solar System”, Retrieved from <http://www.pbs.org/wgbh/nova/space/tour-solar-system.html>, May 24, 2013, 14 pages. |
Nozawa Naoki et al., “iPad Perfect Manual for IOS 4”, JPN, Sotec Ltd., Yanagisawa Junichi, Dec. 31, 2010, pp. 189-190. |
Obara Yuuta, “iPhone Application Selection for University Students”, Shuwa System Co., Saito Kazukuni, vol. 1, May 16, 2013, 4 pages. |
Octoba, “Just Install It—Utilizing Method for Android Application Business”, ASCII Media Works Co. Takano Kiyoshi, vol. 1, Apr. 25, 2013, 6 pages. |
Office Action received for Australian Patent Application No. 2015101020, dated Oct. 26, 2015, 8 pages. |
Office Action received for Danish Patent Application No. PA201570499, dated Nov. 1, 2017, 6 pages. |
Office Action received for European Patent Application No. 15711969.4, dated Nov. 17, 2017, 9 pages. |
Office Action received for European Patent Application No. 15730924.6, dated Dec. 12, 2017, 8 pages. |
Office Action received for Australian Patent Application No. 2015101019, dated Oct. 14, 2015, 3 pages. |
Office Action received for Australian Patent Application No. 2015101019, dated Apr. 7, 2016, 4 pages. |
Office Action received for Australian Patent Application No. 2015101021, dated Apr. 26, 2016, 4 pages. |
Office Action received for Australian Patent Application No. 2015101021, dated Oct. 28, 2015, 10 pages. |
Office Action received for Australian Patent Application No. 2015267671, dated Apr. 5, 2017, 2 pages. |
Office Action received for Australian Patent Application No. 2015279544, dated Apr. 18, 2017, 4 pages. |
Office Action received for Australian Patent Application No. 2015279544, dated Feb. 13, 2018, 5 pages. |
Office Action received for Australian Patent Application No. 2015298710, dated Apr. 13, 2017, 3 pages. |
Office Action received for Australian Patent Application No. 2015298710, dated Feb. 15, 2017, 2 pages. |
Office Action received for Australian Patent Application No. 2015298710, dated Nov. 6, 2018, 4 pages. |
Office Action received for Australian Patent Application No. 2015298710, dated Sep. 24, 2018, 4 pages. |
Office Action received for Australian Patent Application No. 2015385757, dated Sep. 11, 2017, 3 pages. |
Office Action received for Australian Patent Application No. 2016100155, dated May 4, 2016, 7 pages. |
Office Action received for Australian Patent Application No. 2016100411, dated Jun. 10, 2016, 3 pages. |
Office Action received for Australian Patent Application No. 2016100476, dated Jun. 9, 2016, 4 pages. |
Office Action received for Australian Patent Application No. 2016100765, dated Aug. 5, 2016, 2 pages. |
Office Action received for Australian Patent Application No. 2016100765, dated Dec. 16, 2016, 3 pages. |
Office Action received for Australian Patent Application No. 2016218318, dated Aug. 24, 2018, 5 pages. |
Office Action received for Australian Patent Application No. 2016218318, dated Sep. 26, 2018, 3 pages. |
Office Action received for Australian Patent Application No. 2016231598, dated Apr. 7, 2017, 5 pages. |
Office Action received for Australian Patent Application No. 2017100667, dated Aug. 3, 2017, 9 pages. |
Office Action received for Australian Patent Application No. 2017277971, dated Aug. 12, 2020, 3 pages. |
Office Action received for Australian Patent Application No. 2017277971, dated Jun. 3, 2020, 3 pages. |
Office Action received for Australian Patent Application No. 2018100158, dated Apr. 23, 2018, 5 pages. |
Office Action received for Australian Patent Application No. 2018101855, dated Feb. 22, 2019, 4 pages. |
Office Action received for Australian Patent Application No. 2018201089, dated Jul. 23, 2020, 4 pages. |
Office Action received for Australian Patent Application No. 2018201089, dated Oct. 11, 2019, 4 pages. |
Office Action received for Australian Patent Application No. 2018202751, dated Apr. 2, 2019, 4 pages. |
Office Action received for Australian Patent Application No. 2018204286, dated Apr. 17, 2019, 5 pages. |
Office Action received for Australian Patent Application No. 2018204286, dated Nov. 12, 2019, 5 pages. |
Office Action received for Australian Patent Application No. 2018204286, dated Sep. 5, 2019, 5 pages. |
Office Action received for Australian Patent Application No. 2018247345, dated May 6, 2019, 2 pages. |
Office Action received for Australian Patent Application No. 2020203919, dated Dec. 23, 2020, 5 pages. |
Office Action received for Australian Patent Application No. 2020203919, dated Jul. 19, 2021, 7 pages. |
Office Action received for Australian Patent Application No. 2020203919, dated Mar. 30, 2021, 5 pages. |
Office Action received for Australian Patent Application No. 2020203919, dated Oct. 19, 2020, 5 pages. |
Office Action received for Australian Patent Application No. 2020239670, dated Mar. 3, 2021, 4 pages. |
Office Action received for Australian Patent Application No. 2020250323, dated Dec. 14, 2021, 2 pages. |
Office Action received for Australian Patent Application No. 2021203636, dated Mar. 23, 2022, 3 pages. |
Office Action received for Australian Patent Application No. 2021250863, dated Oct. 6, 2022, 6 pages. |
Office Action received for Australian Patent Application No. 2021277718, dated Oct. 17, 2022, 4 pages. |
Office Action received for Australian Patent Application No. 2015101019, dated Feb. 12, 2016, 4 pages. |
Office Action received for Australian Patent Application No. 2015279545, dated Apr. 13, 2017, 3 pages. |
Office Action received for Chinese Patent Application No. 201520595384.6, dated Mar. 25, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 201510479088.4, dated Apr. 22, 2020, 7 pages. |
Office Action received for Chinese Patent Application No. 201510479088.4, dated Mar. 12, 2018, 20 pages. |
Office Action received for Chinese Patent Application No. 201510479088.4, dated May 7, 2019, 6 pages. |
Office Action received for Chinese Patent Application No. 201510481525.6, dated Aug. 29, 2018, 10 pages. |
Office Action received for Chinese Patent Application No. 201510481525.6, dated Nov. 29, 2017, 9 pages. |
Office Action received for Chinese Patent Application No. 201510483268.X, dated Apr. 16, 2019, 6 pages. |
Office Action received for Chinese Patent Application No. 201510483268.X, dated Dec. 1, 2017, 11 pages. |
Office Action received for Chinese Patent Application No. 201510483268.X, dated Oct. 19, 2018, 10 pages. |
Office action received for Chinese Patent Application No. 201510483305.7, dated Aug. 31, 2018, 10 pages. |
Office action received for Chinese Patent Application No. 201510483305.7, dated Dec. 1, 2017, 13 pages. |
Office Action received for Chinese Patent Application No. 201510484514.3, dated Apr. 4, 2018, 12 pages. |
Office Action received for Chinese Patent Application No. 201510484514.3, dated Dec. 24, 2018, 13 pages. |
Office Action received for Chinese Patent Application No. 201510557356.X, dated Aug. 15, 2019, 12 pages. |
Office Action received for Chinese Patent Application No. 201510557356.X, dated Dec. 29, 2017, 11 pages. |
Office Action received for Chinese Patent Application No. 201510557356.X, dated Nov. 23, 2018, 12 pages. |
Office Action received for Chinese Patent Application No. 201520594249.X, dated Mar. 25, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 201520595384.6, dated Dec. 30, 2016, 2 pages. |
Office Action received for Chinese Patent Application No. 201520595384.6, dated Jul. 22, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 201520595385.0, dated Dec. 30, 2016, 2 pages. |
Office Action received for Chinese Patent Application No. 201520595385.0, dated Jul. 22, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 201520595385.0, dated Mar. 25, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 201520595408.8, dated Dec. 9, 2015, 4 pages. |
Office Action Received for Chinese Patent Application No. 201520595408.8, dated Dec. 30, 2016, 2 pages. |
Office Action received for Chinese Patent Application No. 201520595408.8, dated Jul. 25, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 201520595408.8, dated Mar. 25, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 201520595538.1, dated Dec. 30, 2016, 2 pages. |
Office Action received for Chinese Patent Application No. 201520595538.1, dated Jul. 22, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 201520595538.1, dated Mar. 25, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 201520679198.0, dated Jun. 24, 2016, 5 pages. |
Office Action received for Chinese Patent Application No. 2015206791980, dated Mar. 7, 2016, 6 pages. |
Office Action received for Chinese Patent Application No. 2015206791980, dated Nov. 18, 2015, 4 pages. |
Office Action received for Chinese Patent Application No. 201580028505.1, dated Jan. 16, 2019, 15 pages. |
Office Action received for Chinese Patent Application No. 201580028505.1, dated Jun. 20, 2019, 7 pages. |
Office Action received for Chinese Patent Application No. 201580029054.3, dated Dec. 5, 2018, 12 pages. |
Office Action received for Chinese Patent Application No. 201580046237.6, dated Feb. 6, 2018, 10 pages. |
Office Action received for Chinese Patent Application No. 201580046788.2, dated Apr. 15, 2019, 13 pages. |
Office Action received for Chinese Patent Application No. 201580046788.2, dated Feb. 25, 2020, 14 pages. |
Office Action received for Chinese Patent Application No. 201580046788.2, dated Mar. 25, 2021, 9 pages. |
Office Action received for Chinese Patent Application No. 201580046788.2, dated Sep. 22, 2020, 10 pages. |
Office Action received for Chinese Patent Application No. 201580077218.X, dated Feb. 3, 2020, 23 pages. |
Office Action received for Chinese Patent Application No. 201610084974.1, dated Dec. 5, 2018, 6 pages. |
Office Action received for Chinese Patent Application No. 201610084974.1, dated May 3, 2018, 12 pages. |
Office Action received for Chinese Patent Application No. 201620119869.2, dated Jun. 3, 2016, 2 pages. |
Office Action received for Chinese Patent Application No. 201620119869.2, dated Nov. 22, 2016, 2 pages. |
Office Action received for Chinese Patent Application No. 201621208900.6, dated Apr. 26, 2017, 2 pages. |
Office Action received for Chinese Patent Application No. 201680012936.3, dated Aug. 18, 2020, 15 pages. |
Office Action received for Chinese Patent Application No. 201680012936.3, dated Dec. 1, 2020, 21 pages. |
Office Action received for Chinese Patent Application No. 201680012936.3, dated Mar. 3, 2021, 12 pages. |
Office Action received for Chinese Patent Application No. 201680012936.3, dated Mar. 20, 2020, 23 pages. |
Office Action received for Chinese Patent Application No. 201710439448.7, dated Mar. 27, 2020, 13 pages. |
Office Action received for Chinese Patent Application No. 201710439448.7, dated Oct. 10, 2020, 19 pages. |
Office Action received for Chinese Patent Application No. 201710657424.9, dated Sep. 17, 2019, 23 pages. |
Office Action received for Chinese Patent Application No. 201780034203.4, dated Jul. 14, 2021, 12 pages. |
Office Action received for Chinese Patent Application No. 201780034203.4, dated Sep. 24, 2021, 7 pages. |
Office Action received for Chinese Patent Application No. 201810321928.8, dated Jul. 2, 2019, 10 pages. |
Office Action received for Chinese Patent Application No. 201810411708.4, dated Feb. 24, 2022, 10 pages. |
Office Action received for Chinese Patent Application No. 201810411708.4, dated Feb. 26, 2021, 16 pages. |
Office Action received for Chinese Patent Application No. 201810411708.4, dated Nov. 12, 2021, 12 pages. |
Office Action received for Chinese Patent Application No. 201910990432.4, dated Dec. 28, 2020, 6 pages. |
Office Action received for Chinese Patent Application No. 201910990432.4, dated May 18, 2020, 15 pages. |
Office Action received for Chinese Patent Application No. 202080039642.6, dated Sep. 5, 2022, 12 pages. |
Office Action received for Chinese Patent Application No. 202110011509.6, dated Oct. 11, 2021, 10 pages. |
Office Action received for Chinese Patent Application No. 202111612841.4, dated Jul. 22, 2022, 13 pages. |
Office Action received for Chinese Patent Application No. 201520594249.X, dated Dec. 9, 2015, 4 pages. |
Office Action received for Chinese Patent Application No. 201520595384.6, dated Dec. 9, 2015, 4 pages. |
Office Action received for Chinese Patent Application No. 201520595385.0, dated Dec. 9, 2015, 4 pages. |
Office Action received for Chinese Patent Application No. 201520595538.1, dated Dec. 9, 2015, 4 pages. |
Office Action received for Danish Patent Application No. PA201570495, dated Dec. 9, 2016, 2 pages. |
Office action received for Danish Patent Application No. PA201570495, dated May 4, 2016, 8 pages. |
Office Action received for Danish Patent Application No. PA201570495, dated Oct. 29, 2015, 7 pages. |
Office Action received for Danish Patent Application No. PA201570497, dated Feb. 21, 2017, 3 pages. |
Office Action received for Danish Patent Application No. PA201570497, dated May 17, 2016, 6 pages. |
Office Action received for Danish Patent Application No. PA201570497, dated Nov. 15, 2016, 2 pages. |
Office Action received for Danish Patent Application No. PA201570497, dated Oct. 24, 2017, 2 pages. |
Office Action received for Danish Patent Application No. PA201570498, dated Feb. 6, 2017, 2 pages. |
Office Action received for Danish Patent Application No. PA201570498, dated Jun. 2, 2016, 8 pages. |
Office Action received for Danish Patent Application No. PA201570498, dated Oct. 26, 2017, 5 pages. |
Office Action received for Danish Patent Application No. PA201570498, dated Oct. 30, 2015, 7 pages. |
Office Action received for Danish Patent Application No. PA201570499, dated Feb. 14, 2017, 2 pages. |
Office Action received for Danish Patent Application No. PA201570499, dated Jun. 16, 2016, 8 pages. |
Office Action received for Danish Patent Application No. PA201570499, dated Jun. 19, 2018, 4 pages. |
Office Action received for Danish Patent Application No. PA201570499, dated Nov. 3, 2015, 7 pages. |
Office Action received for Danish Patent Application No. PA201570664, dated Dec. 14, 2016, 2 pages. |
Office Action received for Danish Patent Application No. PA201570664, dated Jun. 3, 2016, 3 pages. |
Office Action received for Danish Patent Application No. PA201570664, dated Mar. 15, 2016, 10 pages. |
Office Action received for Danish Patent Application No. PA201570667, dated Apr. 1, 2016, 7 pages. |
Office Action received for Danish Patent Application No. PA201570667, dated Sep. 2, 2016, 2 pages. |
Office Action received for Danish Patent Application No. PA201570771, dated Jun. 13, 2016, 3 pages. |
Office Action received for Danish Patent Application No. PA201570771, dated Mar. 17, 2016, 8 pages. |
Office Action received for Danish Patent Application No. PA201570773, dated Aug. 28, 2017, 3 pages. |
Office Action received for Danish Patent Application No. PA201570773, dated Feb. 15, 2017, 3 pages. |
Office Action received for Danish Patent Application No. PA201570773, dated Mar. 18, 2016, 9 pages. |
Office Action received for Danish Patent Application No. PA201570773, dated Sep. 12, 2016, 3 pages. |
Office Action received for Danish Patent Application No. PA201570788, dated Apr. 8, 2016, 11 pages. |
Office Action received for Danish Patent Application No. PA201570788, dated Sep. 13, 2016, 3 pages. |
Office action received for Danish Patent Application No. PA201570791, dated Apr. 6, 2016, 12 pages. |
Office action received for Danish Patent Application No. PA201570791, dated Sep. 6, 2016, 4 pages. |
Office Action received for Danish Patent Application No. PA201670074, dated Apr. 7, 2016, 8 pages. |
Office Action received for Danish Patent Application No. PA201670074, dated Jun. 28, 2016, 5 pages. |
Office Action received for Danish Patent Application No. PA201670074, dated Mar. 16, 2017, 2 pages. |
Office Action received for Danish Patent Application No. PA201670319, dated Aug. 2, 2016, 6 pages. |
Office Action received for Danish Patent Application No. PA201670319, dated Jun. 21, 2017, 6 pages. |
Office Action received for Danish Patent Application No. PA201670319, dated Nov. 24, 2016, 7 pages. |
Office Action received for Danish Patent Application No. PA201670320, dated Aug. 4, 2016, 9 pages. |
Office Action received for Danish Patent Application No. PA201670320, dated Dec. 5, 2016, 4 pages. |
Office Action received for Danish Patent Application No. PA201670320, dated Jan. 18, 2018, 2 pages. |
Office Action received for Danish Patent Application No. PA201670320, dated Jul. 3, 2017, 4 pages. |
Office Action received for Danish Patent Application No. PA201770423, dated Jun. 12, 2018, 7 pages. |
Office Action received for Danish Patent Application No. PA201770423, dated Mar. 29, 2019, 6 pages. |
Office Action received for Danish Patent Application No. PA201970533, dated Apr. 20, 2021, 2 pages. |
Office Action received for Danish Patent Application No. PA201970533, dated Jul. 17, 2020, 6 pages. |
Office Action received for Danish Patent Application No. PA202070609, dated Dec. 10, 2020, 8 pages. |
Office Action received for Danish Patent Application No. PA202070610, dated Jun. 18, 2021, 8 pages. |
Office Action received for Danish Patent Application No. PA202070610, dated Mar. 14, 2022, 7 pages. |
Office Action received for Danish Patent Application No. PA201570496, dated Oct. 29, 2015, 6 pages. |
Office Action received for Danish Patent Application No. PA201570497, dated Oct. 30, 2015, 6 pages. |
Office Action received for European Patent Application No. 15712218.5, dated Aug. 3, 2017, 4 pages. |
Office Action received for European Patent Application No. 15730925.3, dated Apr. 12, 2018, 8 pages. |
Office Action Received for European Patent Application No. 15739109.5, dated Jan. 31, 2018, 7 pages. |
Office Action Received for European Patent Application No. 15739110.3, dated Jan. 31, 2018, 8 pages. |
Office Action received for European Patent Application No. 15747595.5, dated Apr. 15, 2019, 4 pages. |
Office Action received for European Patent Application No. 15747595.5, dated Jun. 27, 2018, 8 pages. |
Office Action received for European Patent Application No. 15753796.0, dated Aug. 4, 2020, 9 pages. |
Office Action received for European Patent Application No. 15753796.0, dated Jun. 2, 2022, 2 pages. |
Office Action received for European Patent Application No. 15759998.6, dated Dec. 19, 2018, 6 pages. |
Office Action received for European Patent Application No. 15759998.6, dated Jul. 16, 2018, 6 pages. |
Office Action received for European Patent Application No. 15759998.6, dated May 29, 2019, 6 pages. |
Office Action received for European Patent Application No. 15760008.1, dated Jul. 16, 2019, 9 pages. |
Office Action received for European Patent Application No. 15787091.6, dated Aug. 2, 2019, 8 pages. |
Office Action received for European Patent Application No. 15787091.6, dated Oct. 8, 2018, 7 pages. |
Office Action received for European Patent Application No. 16190252.3, dated Feb. 19, 2018, 7 pages. |
Office Action received for European Patent Application No. 16708003.5, dated Feb. 22, 2021, 10 pages. |
Office Action received for European Patent Application No. 16708014.2, dated Apr. 3, 2019, 7 pages. |
Office Action received for European Patent Application No. 16708014.2, dated Mar. 4, 2021, 7 pages. |
Office Action received for European Patent Application No. 17184710.6, dated Dec. 21, 2018, 7 pages. |
Office Action received for European Patent Application No. 17810749.6, dated Aug. 20, 2019, 9 pages. |
Office Action received for European Patent Application No. 19203942.8, dated Oct. 29, 2021, 6 pages. |
Office Action received for European Patent Application No. 19722280.5, dated Oct. 4, 2021, 7 pages. |
Office Action received for European Patent Application No. 20176616.9, dated Jun. 10, 2021, 4 pages. |
Office Action received for European Patent Application No. 20192404.0, dated Dec. 2, 2020, 8 pages. |
Office Action received for European Patent Application No. 20192404.0, dated Jun. 8, 2021, 7 pages. |
Office Action received for European Patent Application No. 20720310.0, dated Oct. 4, 2022, 9 pages. |
Office Action received for European Patent Application No. 20729346.5, dated Jan. 17, 2022, 8 pages. |
Office Action received for European Patent Application No. 20729346.5, dated Jul. 28, 2022, 9 pages. |
Office Action received for European Patent Application No. 21165295.3, dated Jul. 1, 2021, 10 pages. |
Office Action received for European Patent Application No. 15730925.3, dated Feb. 27, 2019, 5 pages. |
Office Action received for German Patent Application No. 112015003083.2, dated Mar. 9, 2018, 12 pages. |
Office Action received for Indian Patent Application No. 202017041557, dated Dec. 8, 2021, 8 pages. |
Office Action received for Japanese Patent Application No. 2018-126311, dated Nov. 2, 2018, 4 pages. |
Office Action received for Japanese Patent Application No. 2017-505450, dated Jun. 20, 2017, 8 pages. |
Office Action received for Japanese Patent Application No. 2017-505842, dated Feb. 22, 2019, 11 pages. |
Office Action received for Japanese Patent Application No. 2017-505842, dated Sep. 9, 2019, 7 pages. |
Office Action received for Japanese Patent Application No. 2017-505847, dated Feb. 12, 2019, 13 pages. |
Office Action received for Japanese Patent Application No. 2017-510631, dated Mar. 2, 2018, 12 pages. |
Office Action received for Japanese Patent Application No. 2017-545733, dated Feb. 13, 2018, 7 pages. |
Office Action received for Japanese Patent Application No. 2018-074971, dated Jan. 28, 2019, 6 pages. |
Office Action received for Japanese Patent Application No. 2018-080122, dated Aug. 9, 2019, 5 pages. |
Office Action received for Japanese Patent Application No. 2018-080122, dated Jan. 28, 2019, 11 pages. |
Office Action received for Japanese Patent Application No. 2018-080122, dated Nov. 27, 2020, 16 pages. |
Office Action received for Japanese Patent Application No. 2018-107114, dated Oct. 9, 2018, 4 pages. |
Office Action received for Japanese Patent Application No. 2020-124605, dated Dec. 17, 2021, 2 pages. |
Office Action received for Japanese Patent Application No. 2020-124605, dated May 13, 2022, 6 pages. |
Office Action received for Japanese Patent Application No. 2020-124605, dated Sep. 3, 2021, 5 pages. |
Office Action received for Korean Patent Application No. 10-2017-7005939, dated Jun. 30, 2017, 6 pages. |
Office Action received for Korean Patent Application No. 10-2018-7018904, dated Aug. 20, 2019, 8 pages. |
Office Action received for Korean Patent Application No. 10-2018-7035747, dated Apr. 9, 2020, 11 pages. |
Office Action received for Korean Patent Application No. 10-2018-7035747, dated Oct. 14, 2020, 6 pages. |
Office Action received for Korean Patent Application No. 10-2020-7026036, dated Dec. 7, 2020, 8 pages. |
Office Action received for Korean Patent Application No. 10-2020-7028759, dated Jun. 29, 2021, 12 pages. |
Office Action received for Korean Patent Application No. 10-2022-7008567, dated Mar. 28, 2022, 5 pages. |
Office Action received for Netherland Patent Application No. 2015245, dated Jan. 24, 2017, 11 pages. |
Office Action received for Netherland Patent Application No. 2019753, dated Apr. 12, 2018, 8 pages. |
Office Action received for Netherlands Patent Application No. 2015239, dated Oct. 28, 2016, 13 pages. |
Office Action received for Taiwanese Patent Application No. 104108223, dated Apr. 25, 2016, 10 pages. |
Office Action received for Taiwanese Patent Application No. 104123593, dated May 24, 2016, 57 pages. |
Office Action received for Taiwanese Patent Application No. 104123593, dated Sep. 13, 2016, 8 pages. |
Office Action received for Taiwanese Patent Application No. 104124962, dated Nov. 29, 2016, 6 pages. |
Office Action received for Taiwanese Patent Application No. 104124963, dated Jan. 5, 2017, 11 pages. |
Office Action received for Taiwanese Patent Application No. 104124995, dated Dec. 1, 2016, 6 pages. |
Office Action received for Taiwanese Patent Application No. 104124997, dated Dec. 8, 2016, 12 pages. |
Office Action received for Taiwanese Patent Application No. 104124998, dated Nov. 29, 2016, 6 pages. |
Office Action received for Taiwanese Patent Application No. 104128519, dated Mar. 29, 2017, 16 pages. |
Office Action received for Taiwanese Patent Application No. 104128684, dated Nov. 8, 2016, 24 pages. |
Office Action received for Taiwanese Patent Application No. 104128700, dated Aug. 31, 2016, 13 pages. |
Office Action received for Taiwanese Patent Application No. 104128705, dated Aug. 29, 2016, 18 pages. |
Office Action received for Taiwanese Patent Application No. 104128705, dated Mar. 16, 2017, 3 pages. |
Office Action received for Taiwanese Patent Application No. 104133756, dated May 17, 2017, 13 pages. |
Office Action received for Taiwanese Patent Application No. 104133757, dated Jul. 6, 2016, 22 pages. |
Office Action received for Taiwanese Patent Application No. 104107328, dated Dec. 28, 2016, 4 pages. |
Office Action received for Taiwanese Patent Application No. 104120843, dated Jan. 30, 2016, 5 pages. |
Office Action received for Australian Patent Application No. 2015101183, dated Nov. 6, 2015, 4 pages. |
Ojeda-Zapata Julio, “Five Apps That Play Podcasts Directly from Your Apple Watch”, Available online at: https://tidbits.com/2018/04/09/five-apps-that-play-podcasts-directly-from-your-apple-watch/, Apr. 9, 2018, 12 pages. |
Omar Romero, “Sony Smartwatch 2 Custom Watchfaces Tutorial”, Retrieved From: <https://www.youtube.com/watch?v=8odbxqwSQR8>, May 1, 2014, 2 pages. |
Pairing Your Apple Watch With Your AppleTV, Available online at: https://www.youtube.com/watch?v=C4t8YFSJ-UY, Apr. 27, 2015, 3 pages. |
Partial Supplementary European Search Report received for European Patent Application No. 17810749.6, dated Apr. 25, 2019, 8 pages. |
Pentax K20D Operating Manual, http://www.ricoh-imaging.eu/en/operating-manuals-download.html, Pentax Corporation, 2008, pp. 173-174. |
Phonebuff, “Hybrid Stopwatch & Timer Android App Review”, Available Online at: https://www.youtube.com/watch?v=B43oCFPiWvY, Apr. 4, 2012, 7 pages. |
Playmemories Camera Apps, “PlayMemories Camera Apps Help Guide”, available at <https://www.playmemoriescameraapps.com/portal/manual/IS9104-NPIA09014_00-F00002/en/index.html>, 2012, 3 pages. |
Pre-Interview First Office Action received for U.S. Appl. No. 14/815,890, dated May 26, 2016, 4 pages. |
Razykdreviews, “In Depth Review of Apple Watch Activity and Workout App”, available at <URL: https://www.youtube.com/watch?v=GkKI3qIKOow>, Category: X Claims: 1-5Category: L Reason: Internet citation/video, May 11, 2015, 1 page. |
Record of Oral Hearing received for U.S. Appl. No. 14/815,890, mailed on Nov. 20, 2020, 18 pages. |
Rehman A, “Install Android 4.2 Gesture-Based Keyboard & Clock App on Jelly Bean 4.1 or Higher”, Excerpts From, Available online at <http://www.addictivetips.com/android/install-android-4-2-keyboard-clock-app-apk-on-jelly-bean-4-1-x/>, Nov. 3, 2012, 4 pages. |
Remote Phone Call, Available online at <https://web.archive.org/web/20140625104844/https://www.justremotephone.com/>, Jun. 25, 2014, 22 pages. |
Remote Shot for SmartWatch 2, Available online at: https://play.google.com/store/apps/details?id=net.watea.sw2.rshot&h1=en, Nov. 21, 2017, 3 pages. |
Responding to a meeting invitation, Available online at: https://web.archive.org/web/20121128174157/https://www.zimbra.com/desktop7/help/en_US/Calendar/Responding_to_an_invitation.htm, Nov. 28, 2012, 1 page. |
Restriction Requirement received for U.S. Appl. No. 14/815,890, dated Feb. 22, 2016, 5 pages, 5 pages. |
Result of Consultation received for European Patent Application No. 15760008.1, mailed on Sep. 9, 2021, 7 pages. |
Result of Consultation received for European Patent Application No. 17184710.6, mailed on Feb. 21, 2020, 6 pages. |
Result of Consultation received for European Patent Application No. 17184710.6, mailed on Feb. 28, 2020, 3 pages. |
Result of Consultation received for European Patent Application No. 17810749.6, mailed on Dec. 15, 2020, 3 pages. |
Result of Consultation received for European Patent Application No. 17810749.6, mailed on Jan. 18, 2021, 3 pages. |
Result of Consultation received for European Patent Application No. 17810749.6, mailed on Jan. 21, 2021, 18 pages. |
Result of Consultation received for European Patent Application No. 20185974.1, mailed on Apr. 4, 2022, 4 pages. |
Result of Consultation received for European Patent Application No. 15730925.3, mailed on Nov. 24, 2020, 4 pages. |
Rizknows, “Garmin Connect Mobile App—Review #2”, https://www.youtube.com/watch?v=7my3wMpeRbE, Category: X Claims: 1-5Category: L Reason: Internet citation/video, Oct. 22, 2015, 1 page. |
Rowinski Dan, “Why the All-In-One Smartwatch Isn't Happening Any Time Soon”, Online available at: https://web.archive.org/web/20140123074218if_/https://readwrite.com/2014/01/20/smartwatch-wearable-fitness-remote-control/, Jan. 20, 2014, 6 pages. |
Samsung, “SM-G900F User Manual”, English (EU). Rev.1.0, Mar. 2014, 249 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201770423, dated Oct. 4, 2017, 10 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201970533, dated Oct. 25, 2019, 9 pages. |
Search Report and Opinion received for Danish Patent Application No. PA202070610, dated Jan. 8, 2021, 9 pages. |
Search Report and Opinion Received for Netherland Patent Application No. 2015232, dated Jan. 25, 2017, 9 pages. |
Search Report and Opinion received for Netherlands Patent Application No. 2015242, dated Jul. 4, 2017, 20 pages. |
Search Report and Opinion received for Netherlands Patent Application No. 2015364, dated Jul. 4, 2017, 12 pages. |
Search Report and Opinion received for Netherlands Patent Application No. 2018531, dated Jul. 27, 2017, 14 pages. |
Search Report received for Netherlands Patent Application No. 2015236, dated Apr. 21, 2021, 19 pages. |
Shankland Stephen, “Chrome OS Gets ‘OK Google’ Voice Search Control”, available online at <http://www.cnet.com/news/chrome-os-gets-ok-google-voice-search-control/>, May 21, 2014, 4 pages. |
Shiota Shinji, “Windows 7 Dojo”, Weekly ASCII, Ascii Mediaworks Inc., vol. 798, Aug. 31, 2010, 3 pages. |
Singh Ajit, “Mytunz: Free Iphone Media Player App With Sleep Timer, Gesture Control”, Available online at: https://www.ilovefreesoftware.com/01/iphone/mytunz-free-iphone-media-player-app.html, Jul. 1, 2014, 6 pages. |
Smartwatch, “App Earth Space HD Live Wallpaper APK for Smart Watch”, Version 1.7, Android version 2.2, Aug. 27, 2013, 1 page. |
Solar Walk Free, Vito Technology, Jun. 19, 2014, 9 pages. |
Sony Smartwatch 2 update—new features and watchface creator!!! NEW!!! , Online available at: https://www.youtube.com/watch?v=k3jjBv7QZSk, May 8, 2014, 3 pages. |
Sony, “Live View™ micro display”, Extended User Guide, Aug. 2010, 27 pages. |
Sony, “Sony Smartwatch 3 SWR50”, User Guide, Jul. 2014, 31 pages. |
Sony, “Sony SmartWatch”, User Guide, Dec. 2011, 18 pages. |
Stateoftech, “Samsung Galaxy Gear Tips—Installing and Customizing Clock Faces”, Online available at: https://www.youtube.com/watch?v=p2GzpL3xIUo, Dec. 12, 2013, 3 pages. |
Stateoftech, “Samsung Galaxy Gear Tips- Change the Clock Face”, Retrieved from: https://www.youtube.com/watch?v=GOom7AZUAjY, Dec. 11, 2013, 2 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 15711969.4, mailed on Oct. 22, 2018, 12 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 15730924.6, mailed on Jun. 13, 2018, 10 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 15730925.3, mailed on Oct. 2, 2019, 8 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 15739109.5, mailed on Aug. 23, 2018, 9 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 15739109.5, mailed on Oct. 4, 2018, 3 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 15739110.3, mailed on Aug. 23, 2018, 10 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 15739110.3, mailed on Oct. 2, 2018, 3 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 15760008.1, mailed on Feb. 5, 2021, 11 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 16190252.3, mailed on Jan. 8, 2019, 3 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 16190252.3, mailed on Oct. 30, 2018, 13 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 16708014.2, mailed on Oct. 10, 2022, 5 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 17184710.6, mailed on Sep. 17, 2019, 7 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 17810749.6, mailed on Aug. 12, 2020, 11 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 20176616.9, mailed on Dec. 17, 2021, 7 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 20192404.0, mailed on Feb. 2, 2022, 11 pages. |
Sun Set, “Sun Set solar image clock”, Available at <https://web.archive.orgjweb/20140719005410/http://www.sunsetclock.com/>, 2013, 5 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 14/805,403, dated Oct. 4, 2018, 3 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 14/815,890, dated Mar. 10, 2021, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 14/833,014, dated Mar. 12, 2020, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 14/841,608, dated Jan. 25, 2018, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 15/433,238, dated Jun. 20, 2018, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 15/616,480, dated Mar. 28, 2019, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/147,523, dated Aug. 23, 2022, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/867,002, dated Mar. 16, 2022, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 16/867,002, dated Sep. 9, 2021, 2 pages. |
Supplementary European Search Report received for European Patent Application No. 17810749.6, dated Aug. 6, 2019, 6 pages. |
Tablet Talk, “Tablet Talk App: Frequently Asked Questions—Tablet Talk.”, available at https://web.archive.org/web/20140625102903/http:/1www.tablettal app.com/faq, Jun. 25, 2014, pp. 1-6. |
Talkandroid, “Android Wear walkthrough”, Available online at: https://www.youtube.com/watch?v=4xntpZac4sw, Jun. 30, 2014, 1 page. |
Techcloud, “How to Create Custom Watch Face for Samsung Galaxy Gear Smartwatch just in Few Seconds”, Online available at: https://www.youtube.com/watch?v=6rO -_SREDjQ, Oct. 9, 2013, 3 pages. |
Techsmith, “Snagit® 11 Snagit 11.4 Help”, available at <http://assets.techsmith.com/Downloads/ua-tutorials-snagit-11/Snagit_11.pdf>, Jan. 2014, 146 pages. |
Theunlockr, “How to Change the Watch Face on the Galaxy Gear”, Online available at: https://www.youtube.com/watch?v=Z7EBG5aBiZg, Jan. 3, 2014, 3 pages. |
UIKit User Interface Catalog: Page Controls, Available online at https://web.archive.org/web/20140703123442/https://developer.apple.com/library/ios/documentation/userexperience/conceptual/UIKitUICatalog/UIPageControl.html, Dec. 16, 2013, 4 pages. |
Vanhemert Kyle, “Why Siri Could Be the Killer App for Smartwatches”, XP002798416, Retrieved from the Internet: URL: https://www.wired.com/2013/12/what-can-a-smartwatch-really-do/, Dec. 19, 2013, 14 pages. |
Viticci Frederico, “Checking Time Zones with Living Earth—MacStories”, Available at <https://www.macstories.net/reviews/checking-time-zones-with-living-earth/>, Dec. 11, 2013, pp. 1-5. |
Walker Alissa, “Apple Watch's Walking Directions Buzz Your Wrist When It's Time to Turn”, available online at: http://gizmodo.com/apple-watch-will-give-you-a-buzz-when-its-time-to-turn-1632557384, Sep. 9, 2014, 2 pages. |
Watchophilia, “Mickey Mouse Watches”, Online Available at: https://web.archive.org/web/20130929065422/https://www.watchophilia.com/photogallery/mickey-mouse/, Sep. 29, 2013, 16 pages. |
Watchuseek, “The watch every father needs: M-I-C-K-E-Y, M-O-U-S-E. Mickey Mouse ”, Online Available at: https://forums.watchuseek.com/f2/watch-every-father-needs-m-i- c-k-e-y-m-o-u-s-e-mickey-mouse-855069.html, 2013, 3 pages. |
Wearablezone, “How to Set up Your Fitbit Profile”, Online available at: <https://youtu.be/jsWPtcDWiJM>, Jun. 6, 2016, 3 pages. |
Whitney Lance, “How to Listen to Music on Your Apple Watch”, Available Online at: https://medium.com/pcmag-access/how-to-listen-to-music-on-your-apple-watch-f48a6c20dd52#:˜:text=On%20your%20iPhone%2C%20go%20to,.%E2%80%9D%20Tap%20on%20Add%20Music., Mar. 2, 2018, 13 pages. |
Wilson et al., “Context-Specific User Interfaces”, U.S. Appl. No. 14/815,898, filed Jul. 31, 2015. |
Xdream, “TickTalk Video User Manual”, YouTube [online] [video], Online available at: <https://youtu.be/jYhq3DwmVzo>, Mar. 17, 2017, 3 pages. |
Xiao et al., “Expanding the Input Expressivity of Smartwatches with Mechanical Pan, Twist, Tilt and Click”, 14th Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 26, 2014, pp. 193-196. |
Xperia Blog, “Action Camera Extension Gives Smartwatch/Smartband Owners Ability to Control Sony Wireless Cameras”, Available at <http://www.xperiablog.net/2014/06/13/action-camera-extension-gives-smartwatchsmartband-owners-ability-to-control-sony-wireless-cameras/>, Jun. 13, 2014, 10 pages. |
Zelgadis, “Reuse Animations—ynfig Animation Studio”, Available online at: https://wiki.synfig.org/index.php?title=Doc:Reuse_Animations&oldid=18173, May 20, 2013, 5 pages. |
Zukerman Erez, “6 Beautiful, Interesting & Versatile Timer Apps [Android]”, available at: http://www.makeuseof.com/tag/beautiful-interesting-versatile-timer-apps-android/, May 18, 2012, 5 pages. |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 16708003.5, mailed on May 8, 2023, 1 page. |
Notice of Acceptance received for Australian Patent Application No. 2022204555, dated May 11, 2023, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022209277, dated Apr. 28, 2023, 3 pages. |
Office Action received for Australian Patent Application No. 2022203957, dated May 12, 2023, 5 pages. |
Office Action received for Chinese Patent Application No. 201911099970.0, dated Feb. 23, 2023, 15 pages (05 pages of English Translation and 10 pages of Official Copy). |
Summons to Oral Proceedings received for European Patent Application No. 17184710.6, mailed on May 10, 2023, 3 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 15/405,122, mailed on Jan. 11, 2023, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/951,875, dated Jan. 23, 2023, 12 pages. |
Notice of Acceptance received for Australian Patent Application No. 2021250863, dated Jan. 13, 2023, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 202111612841.4, dated Jan. 5, 2023, 3 pages (2 pages of English Translation and 1 page of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2022-139320, dated Jan. 6, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2020-124605, dated Dec. 5, 2022, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/147,523, dated Nov. 28, 2022, 8 pages. |
Office Action received for Australian Patent Application No. 2021277718, dated Dec. 5, 2022, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/013,778, dated Mar. 7, 2023, 5 pages. |
Extended European Search Report received for European Patent Application No. 22188724.3, dated Mar. 2, 2023, 14 pages. |
Final Office Action received for U.S. Appl. No. 17/314,948, dated Mar. 7, 2023, 31 pages. |
Notice of Acceptance received for Australian Patent Application No. 2021277718, dated Mar. 3, 2023, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/951,875, dated Feb. 28, 2023, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/935,002, dated Mar. 2, 2023, 2 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/181,089, dated Feb. 17, 2023, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 16/935,002, dated Feb. 15, 2023, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 17/013,778, dated Feb. 23, 2023, 8 pages. |
Office Action received for Australian Patent Application No. 2022204555, dated Feb. 17, 2023, 5 pages. |
Advisory Action received for U.S. Appl. No. 17/181,089, dated Dec. 20, 2022, 4 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 17/013,778, dated Dec. 20, 2022, 9 pages. |
Final Office Action received for U.S. Appl. No. 17/572,117, dated Dec. 22, 2022, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/509,356, dated Dec. 22, 2022, 16 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2022-7014529, dated Dec. 13, 2022, 8 pages (2 pages of English Translation and 6 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 17/516,537, dated Dec. 27, 2022, 7 pages. |
7 Summons to Attend Oral Proceedings received for European Patent Application No. 16708003.5, mailed on Dec. 13, 2022, 11 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/509,356, dated Feb. 3, 2023, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/572,117, dated Feb. 1, 2023, 4 pages. |
Extended European Search Report received for European Patent Application No. 22197186.4, dated Jan. 19, 2023, 9 pages. |
Final Office Action received for U.S. Appl. No. 17/410,169, dated Feb. 6, 2023, 47 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/746,807, dated Feb. 2, 2023, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 17/188,228, dated Feb. 1, 2023, 5 pages. |
Office Action received for Australian Patent Application No. 2021277718, dated Jan. 23, 2023, 4 pages. |
Office Action received for Chinese Patent Application No. 201910875660.7, dated Dec. 26, 2022, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Siewiorek et al., “SenSay: A context-aware mobile phone”, Retrieved from the Internet: URL: http://www.cs.cmu.edu/aura/docdir/sensay_iswc.pdf sensay_iswc.pdf, 2003, 10 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 20729346.5, mailed on Jan. 23, 2023, 11 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 17/746,807, dated Jun. 9, 2023, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/509,356, dated Jun. 13, 2023, 2 pages. |
Extended European Search Report received for European Patent Application No. 23158566.2, dated Jun. 14, 2023, 10 pages. |
Intention to Grant received for European Patent Application No. 16708003.5, dated Jun. 14, 2023, 9 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/181,089, dated May 16, 2023, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/509,356, dated May 24, 2023, 2 pages. |
Final Office Action received for U.S. Appl. No. 17/951,875, dated May 30, 2023, 12 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/119,789, dated Sep. 27, 2023, 3 pages. |
Intention to Grant received for European Patent Application No. 19722280.5, dated Sep. 26, 2023, 9 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022203957, dated Sep. 27, 2023, 3 pages. |
Office Action received for Chinese Patent Application No. 202010295272.4, dated Aug. 28, 2023, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Final Office Action received for U.S. Appl. No. 18/119,789, dated Aug. 30, 2023, 29 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2023/012260, dated Aug. 2, 2023, 22 pages. |
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2023/012260, dated Jun. 7, 2023, 11 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 17/951,875, dated Aug. 25, 2023, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/935,002, dated Jul. 17, 2023, 5 pages. |
Intention to Grant received for European Patent Application No. 20729346.5, dated Jul. 10, 2023, 9 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 20729346.5, mailed on Jul. 4, 2023, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/746,807, dated Jul. 20, 2023, 14 pages. |
Notice of Allowance received for Chinese Patent Application No. 201911099970.0, dated Jun. 25, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/119,789, dated Jul. 31, 2023, 4 pages. |
Extended European Search Report received for European Patent Application No. 23173355.1, dated Aug. 4, 2023, 8 pages. |
Intention to Grant received for European Patent Application No. 19203942.8, dated Aug. 1, 2023, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/181,089, dated Aug. 4, 2023, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 17/951,875, dated Jul. 26, 2023, 7 pages. |
Office Action received for European Patent Application No. 20720310.0, dated Jul. 25, 2023, 11 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 21165295.3, mailed on Jul. 25, 2023, 14 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/181,089, dated Sep. 18, 2023, 3 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/088,309, dated Sep. 21, 2023, 11 pages. |
Office Action received for Australian Patent Application No. 2023202432, dated Sep. 18, 2023, 4 pages. |
Office Action received for Chinese Patent Application No. 201910875660.7, dated Aug. 12, 2023, 15 pages (6 pages of English Translation and 9 pages of Official Copy). |
Office Action received for European Patent Application No. 20746429.8, dated Sep. 20, 2023, 10 pages. |
Record of Oral Hearing received for U.S. Appl. No. 15/405,122, mailed on Sep. 12, 2023, 20 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/951,875, dated Jun. 27, 2023, 2 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/119,789, dated Jun. 28, 2023, 31 pages. |
Notice of Allowance received for U.S. Appl. No. 16/935,002, dated Jun. 28, 2023, 8 pages. |
Result of Consultation received for European Patent Application No. 20729346.5, mailed on Jun. 21, 2023, 3 pages. |
Wikipedia, “Emoji”, Online Avaiable at: https://web.archive.org/web/20140829025736/https://en.wikipedia.org/wiki/Emoji, 2014, 13 pages. |
Intention to Grant received for European Patent Application No. 15753796.0, mailed on Jan. 12, 2024, 9 pages. |
Advisory Action received for U.S. Appl. No. 17/181,089, mailed on Dec. 8, 2023, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/181,089, mailed on Nov. 28, 2023, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/746,807, mailed on Nov. 3, 2023, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/088,309, mailed on Oct. 27, 2023, 2 pages. |
Decision on Appeal received for U.S. Patent Application No. 15/405, 122, mailed on Dec. 12, 2023, 18 pages. |
Decision to Grant received for European Patent Application No. 16708003.5, mailed on Oct. 19, 2023, 2 pages. |
Decision to Grant received for European Patent Application No. 19203942.8, mailed on Nov. 16, 2023, 2 pages. |
Decision to Grant received for European Patent Application No. 20729346.5, mailed on Nov. 16, 2023, 2 pages. |
Final Office Action received for U.S. Appl. No. 17/181,089, mailed on Oct. 13, 2023, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2023/022410, mailed on Aug. 31, 2023, 21 pages. |
Non-Final Office Action received for U.S. Patent Application No. 17/410,169, mailed on Dec. 5, 2023, 48 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/122,625, mailed on Nov. 15, 2023, 14 pages. |
Of Acceptance received for Australian Patent Application No. 2023202432, mailed on Nov. 6, 2023, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 17/951,875, mailed on Oct. 20, 2023, 8 pages. |
Office Action received for Australian Patent Application No. 2023201920, mailed on Nov. 10, 2023, 2 pages. |
Office Action received for Chinese Patent Application No. 201910875660.7, mailed on Oct. 18, 2023, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202211081603.X, mailed on Oct. 20, 2023, 15 pages (7 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202211096369.8, mailed on Sep. 29, 2023, 13 pages (6 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202211110081.1, mailed on Oct. 13, 2023, 16 pages (7 pages of English Translation and 9 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2022-149476, mailed on Nov. 2, 2023, 9 pages (4 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2023-7008854, mailed on Nov. 15, 2023, 6 pages (2 pages of English Translation and 4 pages of Official Copy). |
Application-Initiated Interview Summary received for U.S. Appl. No. 17/410,169, mailed on Jan. 26, 2024, 5 pages. |
Application-Initiated Interview Summary received for U.S. Appl. No. 18/088,309, mailed on Feb. 28, 2024, 2 pages. |
Application-Initiated Interview Summary received for U.S. Appl. No. 18/122,625, mailed on Jan. 19, 2024, 2 pages. |
Board Decision received for Chinese Patent Application No. 202010295272.4, mailed on Dec. 14, 2023, 2 pages (1 pages of English Translation and 1 page of Official Copy). |
Decision to Grant received for European Patent Application No. 19722280.5, mailed on Feb. 1, 2024, 2 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 16/943,737, mailed on Feb. 2, 2024, 15 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 18/119,789, mailed on Jan. 22, 2024, 45 pages. |
Final Office Action received for U.S. Appl. No. 17/410,169, mailed on Feb. 23, 2024, 49 pages. |
Final Office Action received for U.S. Appl. No. 17/746,807, mailed on Feb. 20, 2024, 24 pages. |
Final Office Action received for U.S. Appl. No. 18/088,309, mailed on Jan. 9, 2024, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/197,681, mailed on Jan. 30, 2024, 32 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/211,150, mailed on Feb. 14, 2024, 11 pages. |
Notice of Acceptance received for Australian Patent Application No. 2023201920, mailed on Feb. 9, 2024, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 201910875660.7, mailed on Jan. 4, 2024, 2 pages (1 pages of English Translation and 1 page of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 17/951,875, mailed on Dec. 26, 2023, 7 pages. |
Office Action received for Chinese Patent Application No. 202211081603.X, mailed on Jan. 10, 2024, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202211110081.1, mailed on Jan. 8, 2024, 14 pages (6 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202211558100.7, mailed on Jan. 8, 2024, 12 pages (6 pages of English Translation and 6 pages of Official Copy). |
Office Action received for European Patent Application No. 22157106.0. mailed on Dec. 21, 2023, 6 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 20720310.0, mailed on Jan. 3, 2024, 12 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/197,681, mailed on Mar. 18, 2024, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/211,150, mailed on Apr. 3, 2024, 3 pages. |
Final Office Action received for U.S. Appl. No. 18/122,625, mailed on Apr. 5, 2024, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2022/044236, mailed on Apr. 4, 2024, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/088,309, mailed on Apr. 9, 2024, 14 pages. |
Notice of Allowance received for Chinese Patent Application No. 202211558100.7, mailed on Mar. 29, 2024, 3 pages (2 pages of English Translation and 1 page of Official Copy). |
Office Action received for Australian Patent Application No. 2023214377, mailed on Mar. 27, 2024, 3 pages. |
Office Action received for Korean Patent Application No. 10-2022-7032414, mailed on Mar. 26, 2024, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 21165295.3, mailed on Feb. 27, 2024, 1 page. |
Communication for Board of Appeal received for European Patent Application No. 17184710.6, mailed on Feb. 29, 2024, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/200,480, mailed on Feb. 29, 2024, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/200,480, mailed on Mar. 6, 2024, 17 pages. |
Office Action received for Chinese Patent Application No. 202010295272.4, mailed on Feb. 5, 2024, 14 pages (6 pages of English Translation and 8 pages of Official Copy). |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 17/181,089, mailed on Apr. 15, 2024, 11 pages. |
Office Action received for European Patent Application No. 23158566.2, mailed on Apr. 9, 2024, 7 pages. |
Office Action received for Japanese Patent Application No. 2022-205934, mailed on Mar. 11, 2024, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Number | Date | Country | |
---|---|---|---|
20230052490 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
62129798 | Mar 2015 | US | |
62027764 | Jul 2014 | US | |
62027145 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16147523 | Sep 2018 | US |
Child | 17975141 | US | |
Parent | 14805403 | Jul 2015 | US |
Child | 16147523 | US |