This disclosure relates to emergency or hazard lights for automobiles, RVs, trailers, motorcycles and vehicles in general, and, more particularly, to emergency or hazard lights that strobe and give visual direction for increased safety and visibility. Even more particularly, this disclosure relates to systems and methods for convenient and safe deployment of enhanced vehicle emergency and hazard lighting systems.
For non-emergency vehicles (e.g., passenger cars) standard emergency or hazard flasher lights provide a relatively low amount of visual distinction compared with non-emergency lighting (e.g., headlights, daytime running lights, signal lights etc.). Solutions have been provided in the art including high visibility strobing systems such as those described in U.S. Pat. No. 9,481,331 to Tucker et al. and U.S. Pat. No. 9,616,810 to Tucker et al.
In some cases, a user of a vehicle that is so equipped, may inadvertently deploy a high visibility emergency strobe, or may deploy a high visibility strobe when conditions are not warranted. Over use of high visibility strobes could have the effect of desensitizing the driving public over time. In the short term, deployment of a high visibility strobe may represent a distraction when a genuine emergency does not exist.
What is needed is a system and method for addressing the above and related problems.
The invention of the present disclosure, in one aspect thereof, comprises a device having a body comprising a plurality of selectively lighted segments; and a tether connecting the plurality of lighted segments to an electrical system of a vehicle. The plurality of selectively lighted segments illuminate in a strobing manner in response to a strobe signal from the vehicle electrical system.
In some embodiments, the device includes a microcontroller that receives the strobe signal and controls the illumination of the plurality of selectively lighted segments in the strobing manner. The device may include a power supply powering the microcontroller and the plurality of selectively lighted segments when the tether becomes disconnected from the electrical system of the vehicle. The microcontroller may automatically illuminates the selectively lighted segments in a strobing manner when the tether becomes disconnected from the electrical system of the vehicle. In some cases, the microcontroller receives the strobe signal wirelessly.
The plurality of selectively lighted segments may form a shape of contrasting nested triangles. The device may include a stand that holds the body upright on a surface.
The invention of the present embodiment, in another aspect thereof, comprises a system having an interface to a vehicle wiring harness configured to detect that vehicle emergency indicators have been deployed, and a plurality of separately strobe capable light segments forming a hazard symbol. The device has a microcontroller controlling operation of the plurality of separately strobe capable light segments. The microcontroller activates the plurality of separately strobe capable light segments in a strobing manner in response to detection that vehicle emergency indicators have been deployed.
In some embodiments, the interface to a vehicle wiring harness comprises a wireless interface providing the detection that vehicle emergency indicators have been deployed. In some cases, the interface to a vehicle wiring harness is a wired tether to the vehicle. The microcontroller may detect disconnection of the tether and activates the plurality of separately strobe capable light segments in a strobing manner in response to detection of disconnection of the tether. The device may include an on-board power supply that can power the microcontroller and the plurality of separately strobe capable light segments.
In some embodiments, the hazard symbol formed by the light segments is a warning triangle. The plurality of separately strobe capable light segments may form a hazard symbol arranged into nested triangles having contrasting appearance when not illuminated. The plurality of separately strobe capable light segments may form a hazard symbol illuminated a contrasting appearance when strobed.
In some cases the plurality of separately strobe capable light segments forming a hazard symbol comprise a plurality of thin LED strips affixed with respect to a panel of automotive glass on the vehicle. In some cases, they are translucent or transparent.
The invention of the present disclosure, in another aspect thereof, comprises a system having a plurality of light segments each being capable of steady state illumination, flashing illumination, and strobing illumination, and a microcontroller that illuminates the plurality of light segments in a strobing manner in response to an emergency event indication from a vehicle. In some cases, the microcontroller can receive the emergency event indication wirelessly and via a tethered connection to the vehicle, and the microcontroller strobes the light segments in an alternating pattern to indicate a direction.
In various embodiments of the present disclosure, devices and systems are implemented that provide enhanced visual communication cues via existing or replacement signal and/or hazard lights on an automobile. Signal and hazard lights in most cars cycle between light and dark at a rate between once and twice per second or 1-2 Hz. Such a rate is believed to be adequate for signaling lane changes and other non-emergency situations. However, existing cars and hazard light flasher systems do not take in to account the need for, and benefit of, communicating an emergency situation utilizing an enhanced flash rate. A vehicle traveling 70 miles per hour will travel over 50 feet before a 2 Hz cycle has completed one time. This distance can mean the difference between an accident and a close call. Further, reaction time and ability to maneuver or stop must be taken into account. The quicker a driver takes notice of a problem, the more likely he or she can still have time to avoid a serious accident.
For purposes of the present disclosure, an enhanced flash rate is one that is perceptibly altered, or has at least a component of the flashing cycle that is increased in flashing speed, from the high end of the normal flash rate of about 2 Hz. Such flash rate may be referred to as a “strobe” instead of a flash or signal for purposes of the present disclosure. In some embodiments, a strobe has a cycle rate of 3 Hz or above (although slower rates may still be considered “enhanced” or “strobing” so long as there is a perceptible increase in rate over that of a typical signal light). In other embodiments, the strobe rate is 4 Hz or above, representing a doubling of the fastest typical vehicle signal light or hazard light flash rate. It is believed that the faster a light strobes with adequate delineation and contrast between light and dark periods, the more attention grabbing the light is perceived to be. Accordingly, in another embodiment, the strobe rate is 6 Hz, or a factor of three faster than the fastest flash rate expected to be encountered from a standard signal or hazard light. In further embodiments, the strobe rate is 8 Hz or above.
It should be understood that lighting patterns may be produced that comprise strobed illumination (e.g., light and dark cycles repeating at 2 Hz or more) interspersed with longer dark or non-illuminated periods. For purposes of the present disclosure, the term strobe encompasses patterns of flashing lights, part of which are strobing per the definition above, and part of which may be dark or non-illuminated, steady state illuminated (at full or partial maximum output), or flashed at a rate that is slower than a strobe. The term strobe should also be understood to encompass patterns that contain strobing portions of varying frequency. A non-limiting example of such a pattern would start flashing at 2 Hz and increase over time to 8 Hz or more before repeating or moving to another pattern. It should also be understood that, in various embodiments of the present disclosure, signal lights (e.g., left and right signal) are maintained at the normal 1-2 Hz, while emergency or hazard flashers are deployed at a strobing rate or in a strobing pattern. Moreover, as described in detail below, a normal slower flash rate may be optionally available when the hazard flashers are deployed.
Emergency vehicles have been quipped for many years with brightly and rapidly cycling lighting systems. These have been based on complex mechanical systems involving rotating reflectors and the like that increase apparent flash rate beyond what is normally achievable with traditional incandescent based circuitry. Unfortunately, such systems were specialized add on equipment to the basic underlying vehicle, and not normally available or cost effective for the general public to utilize, even for legitimate purposes. Newer systems based on light emitting diodes (LEDs) are available but, again, are specialized equipment, typically added to a vehicle after it leaves the manufacturer, and requiring separate controls, circuitry, and possibly power supplies from what is available from a factory vehicle.
A traditional signal light system for a consumer automobile, and its associated hazard flashing system, has a flash rate on the order of 1-2 Hz. This was originally based in part on the use of incandescent light bulbs in the older systems (typically 6V or 12V bulbs), which rely on internal filaments that heat up and glow in order to operate. The filaments do not glow sufficiently to be able to provide appropriate visual cues until power has been applied a sufficient amount of time. Further, they do not stop glowing instantaneously when power is removed. Thus, the rate at which the signal light or hazard flashers could be cycled was limited. Other limitations existed based on the fact that the original circuitry driving the flashing operation was based on analog thermal switches or other electromechanical components, which could not drive incandescent bulbs much beyond around 2 Hz. For purposes of the present disclosure, an existing vehicle circuit implementing the periodic activation of lights for signaling or hazard indications (whether based on thermal switches or otherwise) is referred to as a flasher module or relay, signal module or relay, or blinker module or relay.
Strobe lights based on exclusively on analog circuitry have been available for some time but require arrangements of transformers to produce voltages on the order of hundreds of volts, capacitors, and delicate gas discharge tubes to operate. Again, none are suitable for consumer use with ordinary automobiles.
LED lighting systems have now made their way to many vehicle models as standard equipment. LED upgrade kits are available for older and newer model cars as well. However, the operation of the LED lighting systems operates in the same manner and provide the same functions that were available with the incandescent lighting systems (albeit at greater efficiency and/or intensity).
In various embodiments, the present disclosure provides systems and methods that are capable of providing strobing effects in existing lighting systems for factory standard automobiles. Such systems and methods rely on existing wiring, LED lights, and controls (switches, etc.). In other embodiments, the systems and methods of the present disclosure are applicable to vehicles produced without LED lights, but which have been upgraded from the basic incandescent bulbs, at least so far lights for which strobing effects are sought. The existing wiring may be employed in such embodiments and the existing controls are utilized. In other words, embodiments of the present disclosure provide for strobing effects of vehicle signal lights, brake lights, or other existing lights to be available to a driver or vehicle occupant and to be operable with existing and familiar hazard light switches or other activation means. Automatic deployment of strobing effects can be tied to signals received from existing vehicle control or safety systems corresponding, for example, to air bag deployment, ABS activation, hard braking, rollovers, etc. It is also possible to add at least some automatic deployment features for older vehicles based on the use of separate accelerometers not present in the existing vehicle systems. Various embodiments of the present disclosure can be installed or implemented at the time of manufacture as factory standard equipment, or entirely as an aftermarket system relying on factory installed controls, wiring, and to the extent possible, existing bulbs.
Referring now to
In addition to the vehicle lights that are normally deployed as part of the signal light or hazard flasher system, vehicles typically have additional lights that are dedicated to other purposes. For example, headlights 112 are provided as standard equipment. Fog lights 114 may be standard, optional, or aftermarket. Brake lights are standard equipment as well. Rear brake lights on some vehicles serve a dual purpose and function as part of the existing signal or hazard flasher system. Vehicles of recent years provide a center high mounted stop lamp (CHMSL) 120 that functions along with the other brake lights. The CHMSL 120 is not normally shared with any other vehicle function (except as provided herein). After market light bars or light strips 122 can be added to most any vehicle. Although, as explained below, certain embodiments of the present disclosure are intended to operate only through standard or factory installed vehicle lights, it should be understood that aftermarket or add-on lights can be controlled as well. An after-market or add-on light should not be confused within the present disclosure for what are later referred to as auxiliary or multi-purpose lights. Auxiliary and/or multi-purpose lights, within the present disclosure, specifically denotes lights for which a use is already designated by the vehicle (e.g., an CHMSL) but which may be additionally or supplementally deployed or activated by systems of the present disclosure.
As described above, the various indicator lights, marker lights, or other vehicles lights may be LED lights or may have originally been incandescent bulbs (or a mixture of the two) that have been changed out for LED lights in order to allow effective strobing, as provided by various embodiments of the present disclosure. In various embodiments of the present disclosure, the existing location, placement, and color of lights is retained as the vehicle was manufactured, or would be manufactured, without any of the systems of the present disclosure.
Referring now to
A hazard flasher button 206 may be located at various locations on the interior of a vehicle. Here, the hazard flasher button 206 is shown in the center of the vehicle dashboard 202 but it could be placed on a steering column, below the vehicle dashboard 202, or elsewhere.
Embodiments of the present disclosure are designed to work with the exiting signal and hazard light controls (e.g., the turn signal stalk 204 and hazard flasher button 206) such that a driver or user does not have to learn or remember any separate controls. As described below, some embodiments of the present disclosure allow a selection of various strobe or flashing lights to be implemented. These may be implemented by sequential presses of the hazard flasher button 206. No separate manual controls are needed or provided. Thus, the user is not presented with a confusing array of options or controls during an emergency and does not have to suffer any unwanted modifications that are visible on the interior of the vehicle.
Referring now to
In some embodiments, as explained below, the strobe module 300 may not be able to provide the full contemplated functionality interfacing to the vehicle exclusively via the wiring harness 208. In such cases, additional leads may be routed to power, ground, or wherever needed. In embodiments where a body control module (BCM) is present, the strobe module 300 may have little or no interaction to the vehicle via the connector 214, but may be spliced and wired into the vehicle at a convenient location to receive output from the BCM and drive the associated vehicle lights (as described further below).
For purposes of the present disclosure, any electronic or electromechanical mechanical device with control or programmable control (whether or not reprogrammable) over the signal lights or hazard lights of a car is considered a BCM. A BCM may incorporate one or more silicon based processors, microprocessors, controllers, microcontrollers, chips, gate arrays, or other logical devices. In some cases, the BCM may contain relatively complex multifunctional components such as system-on-a-chip devices. Additional names or designators for a BCM may include, but are not limited to, computer, control unit, electronic control unit (ECU) body computer, body computer module, body controller, body control module, and on board controller. The BCM may or may not control additional aspects of the vehicle in addition to hazard or signal lights.
An existing mounting point 210 may be provided on the vehicle for physically locating and affixing the original flasher relay. The same location 210 may be used to store and secure the strobe module 300. In embodiments where the strobe module 300 interfaces with the vehicle at least partially via the wiring harness 208, the mounting point may be near the connector 214.
Referring now to
It will also be appreciated that a system-on-a-chip device might be employed to fulfill the functions of the microcontroller 302 as well as providing integrated memory and storage, I/O ports, D/A, A/D, timing functions, and the like. In some cases, wireless communication capabilities may even be provided on a single chip. Such an embodiment is within the scope of the present disclosure and simply moves certain aspects or functions of the strobe module 300 from the various individual components as described herein and consolidates them onto a single silicon device.
In the illustrated embodiment of
As described, a strobing light appears substantially different than a normal flashing light as have been seen to date on automobiles. However, since strobing lights are attention grabbing devices associated with hazardous conditions, it may be a better choice not to strobe the relevant lights when a simple signal light is indicated on the analog input block 304. Accordingly, the microcontroller 302 may be programmed to flash, rather than strobe, the relevant lights or LEDs when a turn signal is indicated when such a distinction is supported by the existing vehicle wiring.
In some embodiment, the strobe module 300 is deployed or implemented in a newer automobile that may utilize a computer or set of computers that control non-engine related functions referred to as a body control module (BCM). In such cases, the signal stalk and the hazard flasher button may be connected directly to the BCM, which then deploys the signal lights as signal lights (one side only) or as hazard lights (both sides simultaneously). It is possible to implement the systems of the present disclosure by initial programming (or reprogramming where allowed) of the BCM. However, on vehicles that are already built and on the road, access to, and reprogramming of, the BCM is generally time consuming and cost prohibitive to a degree it may not be likely to gain wide acceptance. Further BCM schematics and programming routines are rarely made public. Accordingly, the strobe module 300 may have a BCM input block 306 instead of (or in addition to) the analog input block 304.
The BCM input block 306 may comprise a series of leads that are wired to intercept the outputs from the existing BCM that drives the vehicle signal and hazard lights. When the microcontroller 302 detects that the BCM indicates a signal light, it may utilize the output signal block 308 to activate the relevant lights in the traditional signaling manner. On the other hand, if the microcontroller 302 detects on the BCM input block 306 that the BCM indicates a hazard flash, the output signal block 308 will be used to drive the strobing effect on the exterior lights as described.
The output signal block 308 provides electrical connections to each bulb or LED that forms an existing part of the signal or hazard flasher system of the automobile into which it is installed. Such connections may include connections to lights visible outside the car, as well as indicator lights visible to the driver. The microcontroller 302 may or may not have the capacity to directly drive the LEDs comprising the flasher or signal system of the car. Consequently, as is known in the art, amplifiers, relays, or other circuitry that is capable of driving the LEDs in the required manner may comprise the output signal block 308, which, in turn, drives the LEDs.
A power supply module 310 may be integrated with the strobe module 300 to power the microcontroller 302, output signal block 308, and/or other components. The power supply module may be configured to draw power from the existing 12 volt system of the vehicle. In another embodiment, it may draw power from a regulated accessory bus (e.g., 5 V, 12 V, or other).
Power management circuitry 312 may be provided for converting voltage from that received by the power supply module 310 to that utilized by the other components of the strobe module 300. The power management circuitry 312 may also prevent power surges or spikes from reaching the microcontroller 302 and other sensitive components. In some embodiments, battery back-up may be provided the microcontroller 302. Where space and/or battery capacity permit, a backup battery could even drive the LEDs via the output signal block 308 when the vehicle electrical system becomes exhausted or fails due to damage sustained, for example, in a crash.
The microcontroller 302 may be configured to communicate with various existing vehicle subsystems for automatic deployment of strobing lights. For example, in the event of an air bag deployment, the emergency lights may be set to strobe. Similarly, if a deployment of an anti-lock brake system or stability system is detected, the microcontroller 302 may activate strobing lights. In some embodiments, deactivation of the strobing lights may be automatic as well based on information received from other vehicle subsystems.
In other embodiments, the strobe module 300 has one or more on-board (not presently shown) accelerometers that detect rapid acceleration (or deceleration), skids, overturns, and other non-typical driving maneuvers and can deploy strobing lights without input from the driver. The microcontroller 302 can be programmed such that the strobing ceases automatically upon resumption of a normal speed or orientation for the vehicle, or they may remain activated until the microcontroller 302 is reset (for example, by a press of the hazard light switch by the driver or occupant).
In some cases, it may be desirable to allow reprogramming of the microcontroller 302 after installation. Accordingly, the strobe module 300 may be equipped with a wireless module 316. The wireless module 316 may be a Bluetooth module that can communicate in an ad hoc fashion with a variety of devices. The wireless module 316 could also be an IEEE 802.11 or “WiFi” enabled chip to take advantage of the WiFi network provided by some newer cars or mobile hotspots. The wireless module 316 can allow reprogramming of the microcontroller 302 even if the strobe module 300 is installed in a location in the vehicle that is difficult to access.
The wireless module 316 may also be used to interface with Bluetooth® equipped LED modules installed in place of original incandescent LED signal or flasher lights. In such embodiments, the LED lights may behave as customary flashing signal or hazard lights unless instructed via the wireless module 316 to strobe. Naturally, such a solution requires additional circuity at each LED or bulb location and may be more cumbersome to install and maintain. However, such a configuration would have the advantage of allowing the existing signal and hazard light switch gear to remain in place. In such an embodiment, some or all of the output signal block 308 of the strobe module 300 may be eliminated and the wiring passing to the signal or hazard lights may simply be a pass-through arrangement. The input for the microcontroller 302 may then be gathered from the analog input block 304 and/or BCM input block 306. A simple determination of which line or signal was active would be all that is needed in such an embodiment since the signal is passed “downstream” to the lights. The microcontroller 302 still determines whether to deploy a strobe or traditional flash based upon detection of whether a signal or hazard light was indicated. Further, in this and other embodiments, various capacities of the strobe module 300 might be turned on or off by a user via the wireless module 316.
Referring now to
It will be appreciated that a number of existing vehicle signal and hazard light wiring schemes are in existence, whether on an analog basis or on the basis of utilizing a newer BCM. Accordingly, in order to work with a wide array of vehicles, various embodiments of the present disclosure may have different pinouts and wire compatibilities. In some embodiments, leads that are not used are simply ignored. However, where it is more economical to do so, various embodiments of the present disclosure may be built with only the ports, pins, and wiring needed for the immediate application for which it is intended. In such case, a fit-list might be developed alongside that specifies, for particular embodiments, those makes and models of vehicle with which it is compatible. After describing the inputs and outputs that are available, a number of examples are given below as to how various embodiments of the present disclosure are adapted to work with various wide spread wiring schemes currently in existence.
An ignition connection 402 may be provided as a part of the power supply module 310. The 202 provides indication to the microcontroller 302 that the vehicle is switched on (normally, signal lights do not deploy when the vehicle ignition is off, but hazard lights do). A separate connection to power, battery connection 404 is also provided and allows for deployment of certain function (e.g., strobing hazard lights) when the ignition of off. The ignition connection 401 may also be part of the power supply module 310. A ground lead 406 is also provided. In some embodiments, ground is provided via the connector 214, but in other embodiments, it is a separately attached lead to the strobe module 300.
Forming a part of the analog input block 304 may be leads or connections for hazard switch input high 408, hazard switch input low 410, left turn signal switch 412, and right turn signal switch 414. Two hazard switch input options are provided to account for the fact that in some existing systems the existing relay is activated by providing a high voltage to the relay. In others, the activation lead remains high unless the relay is to be deployed to flash the hazard lights. In such case, a ground or low voltage signal indicates hazard deployment. By providing both hazard switch input high 408 and hazard switch input low 410 leads, the strobe module 300 is compatible with both types of systems.
The strobe module 300 can be programmed to be capable of multiple flashing and strobing patterns. For example, a single press of the existing hazard switch might be intended to signal the traditional slow cycling flash. A second press would be intended to select a high speed strobe. Therefore, when various embodiments of the strobe module 300 are installed, a driver or passenger can deploy hazard lights in the manner in which they are accustomed. This also eliminates the need for separate switches or controls to gain full functionality of what is considered a vehicle safety system.
Hazard switches on certain vehicles provide two discrete positions (high and low). Typically, hazard flashers in such systems are deployed when the button is pressed and then remains depressed. Such switches actually activate the existing flasher relay by operating as a power switch. A second press releases the switch to the high position and depowers the hazard lights. The strobe module 300 may still be configured to operate with such systems, even so far as providing both flashing and strobing, or multiple strobing patterns. The strobe module 300 in such case may be programmed to “count” the number of presses, or transitions from on to off and vice versa provided via the legacy two-position switch. Relying on the battery connection 404 and/or the on board battery to keep the microcontroller 302 and other components powered the strobe module 300 provides the programmed or desired operations notwithstanding that the existing relay may have been powered only by the power flowing through the existing switch.
The lead for the left turn signal switch 412 and the right turn signal switch 414 act to inform the strobe module 300 when left or right turn signals are activated. As described above, the strobe module 300 may activate the left or right turn signals in response to movement of the existing turn signal stalk in a manner that replicates the existing slower flash of the turn signals, or a strobing flash.
In embodiments where the strobe module 300 interfaces with a BCM, the BCM input block 306 provides a front left lamp input 418 and a front right lamp input 420. A rear left lamp input 422 and rear right lamp input 424 are also provided. If the vehicle is so equipped, a left mirror lamp input 426 and right mirror lamp input 428 may be provided as well. Since the BCM controls input or interface with the driver (e.g., via the turn signal stalk), the strobe module 300 may not receive any direct indication of the stalk position, nor of the position of the hazard light switch. Instead, the strobe module 300 may infer what the driver is doing based upon these inputs from the BCM. For example, if lights on one side or the other of the vehicle are activated based on the BCM inputs, the strobe module 300 simply replicates those outputs via the output signal block 308. On the other hand, where lights for both sides of the vehicle are activated at once, the hazard lights have been deployed. The strobe module 300 will then use the output signal block 308 to effect a strobe on the vehicle's signal lamps.
For ease of understanding, in
The strobe module 300 also provides two additional signal outputs that are utilized with certain existing vehicle wiring systems as will be explained below. These include a turn signal out indicator 444 and a hazard signal out indicator 446. The signals output on the turn signal out indicator 444 and hazard signal out indicator 446 are controlled by the microcontroller 302 as with the other outputs.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
It should be understood that the various configurations described above and illustrated in
In operation, once installation is complete, and depending upon the existing vehicle circuitry and the limitations inherent therein, more than one strobe pattern may be accessed and activated by the driver or user. For example, upon an initial activation of the strobe module 300 in the context of deployment of a hazard switch, the strobe module 300 may be programmed to flash in the traditional manner (e.g., with a cycle of about 2 Hz). A second press of activation of the vehicle's hazard switch (e.g., hazard switch 206 of
An exemplary state diagram corresponding to the operation of the strobe module 300 is shown in
Referring now to
As shown in
Although the auxiliary light output 2102 could be used to power a light having no additional purpose (e.g., a light or set of lights purposely installed only for strobing), the auxiliary light output 2102 is utilized in other embodiments to control or strobe a light that may already be configured to operate in an existing circuit. In one particular embodiment, the auxiliary light output 2102 may be used to activate a vehicle's existing high center mounted stop lamp (CHMSL). The existing CHMSL (or any other auxiliary light) could be disconnected from its original circuit and simply used as a part of the strobing systems of the present disclosure. However, it may be strongly preferred to not only provide strobing operations to the existing light, but also to retain its original function.
As one possible means for allowing consideration and integration of the existing function of the auxiliary multi-purpose light, the strobe module 2000 may provide an auxiliary light input 2104 that accepts input that would otherwise signal or power the associated auxiliary multi-purpose light. This input 2104 may be utilized to signal the strobe module 2000, and specifically the microcontroller 302, when the existing vehicle systems indicate that the auxiliary multi-purpose light should be activated or illuminated whether the strobe module 2000 is currently employing the associated auxiliary multi-purpose light in a strobing capacity or not.
Referring now also to
The OR circuit 2200 may be implemented within the same physical packaging as the other components of the strobe module 2000, or may be implemented externally. Again, the illustrated OR gate 2202 is only a logical representation. Physically, the OR gate 2202 and the functionality of the circuit 2200 may be implemented via mechanical relays, solid state relays, field effect transistors, bipolar junction transistors, or any other switching scheme that is appropriate for reliable operation of the system.
Referring now to
Except where otherwise indicated, the strobe module 2000 integrates with the five-pin system similarly to the manner in which the strobe module 300 does. In the case of the strobe module 2000 having auxiliary multi-purpose light controls, the auxiliary light input 2104 of the OR circuit 2200 is connected to the power lead or signal that would normally feed to the CHMSL. An internal strobe signal 2204 feeds into the logical OR gate 2202 along with the input 2104. If either of these inputs 2104, 2204 are active, the gate 2202 provides a signal or power on the multi-purpose auxiliary output 2102 resulting in illumination of the CHMSL.
From the described arrangement, it should be understood that the application of the brake pedal in the vehicle in which the strobe module 2000 is installed will always result in steady illumination of the CHMSL as a user would expect. Only if the CHMSL is not otherwise activated by the vehicle will the strobe module 2000 be able to activate the same. In this way, function of any auxiliary lamp or light is only enhanced by the strobe module 2000. The CHMSL or any other auxiliary multi-purpose lamp to which the strobe module 2000 is connected may be strobe activated along with the existing hazard flasher lights. In cases where the hazard lights are strobed in groups (e.g., left to right or right to left) the auxiliary multi-purpose lamp may be strobed along with one of these groups, or may be strobed as its own groups (e.g., left, center, then right strobe, or vice versa). In some embodiments the connected auxiliary multi-purpose lamps may be strobed alone. It should be appreciated that all of these functions may be controlled by the vehicle's existing hazard switch (e.g., hazard switch 206 of
In some embodiments, the strobe module 2000 is activated solely by the switch 260 but may be controlled via Bluetooth or another wireless protocol. The wireless module 316 may be used to allow a user to set or select a particular strobe pattern or protocol. For example, with a single press of the switch 216 the traditional hazard flashers may be activated. Using wireless communication, the user might select that the CHMSL should be strobed while the existing hazard lights are flashed. The user might also select that all connected lights should strobe, or that a left to right or right to left pattern should be implemented. It should be understood that not only a CHMSL, but any auxiliary light might be employed in a similar manner by the strobe module 2000.
The strobe module 2000 can be integrated into any type of existing hazard flasher system in a similar manner as the strobe module 300 previously described. Further, in any system where deployment of an auxiliary or auxiliary multi-purpose lamp or light is desired (or a plurality of these), the same may be wired an implemented as shown in
Referring now to
In parallel with the phototransistor 2404 is a second transistor 2406 which may be activated to allow current flow by the internal circuitry of the strobe module 2000 (e.g., it may be controlled directly via the microcontroller 302). Internally this may be denoted as strobe signal 2204.
It should be appreciated that the OR circuit 2200 as shown in
Referring now to
Referring now to
Here, the existing output to the CHMSL 120 is shown as output 2604 from a brake light activation circuit 2602 activated by a driver or vehicle occupant pressing the brake pedal. This output now becomes input to brake signal input 2104 feeding into the OR circuit 2200 or the strobe module 2000. It should be understood that whether the BCM itself controls the CHMSL 120 or whether it is controlled by a separate system or circuit of the automobile (e.g., brake light activation circuit 2602), the strobe module 2000 accepts the vehicle's normal output to the CHMSL 120 into input 2104. As previously described the OR circuit 2200 (which may be internal or external to the rest of the strobe module 2000) activates output 2102 in response to either an internal strobe signal (e.g., from the microcontroller 1602) or activation of the input 2104. Thus, as shown, the strobe module 2000 has functional control over all lights or lamps existing in the vehicle's signal light or hazard light circuit as well as the CHMSL 120 or other multi-purpose auxiliary lights. Thus the strobe module 2000 can provide strobing functionality as described herein on a BCM controlled automobile setup including both signal or hazard lights as well as the CHMSL and/or other auxiliary or multi-purpose auxiliary lights. Any multi-purpose auxiliary lights will retain their original function (whether as a brake light or otherwise) as well as partake in strobing functionality when they are not otherwise deployed.
On the other hand, in some embodiments, a separate strobe capable output 2610 from the BCM 1510 may feed into OR circuit 2200 to the strobe signal lead 2204. Output 2604 from brake activation circuit 2602 is connected to brake signal input 2104. In this manner, strobe activation may be controlled entirely by the BCM 1510 and one or more multi-purpose auxiliary lights, such as the CHMSL 120, may be integrated into the strobe functions while retaining its original function as well.
In another embodiment, additional chips or memories are not needed as the BCM 1510 contains all of the necessary logic and timing information to drive the vehicle lights (including the new output 2610) in a strobing fashion in response to inputs from the hazard switch and/or signal stalk. It should be appreciated that where the BCM 1510 can be made to control the strobing functions directly (either via auxiliary chip 1604 or by original programming or coding of a microcontroller), a separate OR circuit 2200 or may still be necessary to allow the multi-purpose auxiliary lights to be made a part of the strobing functions without loss of their original function. In cases of control of multi-purpose auxiliary lights exclusively by the BCM 1510 (e.g., where separate function of the auxiliary light is not needed or intended to be shared with another circuit such as a brake light circuit) all functionality might be achieved exclusively by programming, reprogramming, or augmented the logic on board the BCM 1510.
Referring now to
In the illustrated embodiment, the beacon 2700 provides a resilient body 2702. The body 2702 may be formed from a polymer or a combination of metals, alloys, and polymers. In some embodiments, various components may comprise rubberized portions, or may be provided with rubberized protectors, to increase resiliency and impact resistance.
The body 2702 may be generally in the shape of a warning or caution triangle. Even when not illuminated, it may comprise high visibility colors such as red, orange, or fluorescent colors and having contrasting colors or appearance. The body 2702 may provide contrasting segments such as an outer, darker triangle 2704, surrounding a lighter, outer triangle 2708, surrounding a darker, inner triangle 2706, surrounding a lighter, inner triangle 2710. In some embodiments, the light/dark segments are reversed. In some embodiments, the light and/or dark segments are highly reflective so as to draw attention when illuminated externally, even if the device 2700 is powered off. The light/dark segments may be formed from contrasting materials, or may comprise the same or similar underlying materials with paint, appliques, stickers, reflective tape, or other mechanisms to increase contrast.
The apices of the outer triangle 2704 may provide selectively illuminated corner lights 2712. In some embodiments, these lights 2712 comprise LED lights with strobing capability. In some configurations, each of the lights 2712 operates in unison. In other embodiments, the lights may be selectively operable to as to provide directional signaling, chase patterns, or other high visibility communication cues. The lights 2712 may provide the same or a different color compared to the dark segments 2704, 2706 and light segments 2708, 2710.
As described further below, the beacon 2700 may be communicatively coupled to a vehicle such that the lights 2712 are configured to strobe when the associated vehicle's lights strobe. In other embodiments, the beacon 2700 may strobe even if the associated vehicle's on-board lights have only the ability to flash at the standard slower rate.
In further embodiments, entire segments of portions of the body 2702 may illuminate and/or strobe. For example, the darker triangle portions 2704, 2706 may be strobe enabled (along with, or separately from the lights 2712). In yet further embodiments, the lighter portions 2708, 2710 may strobe or illuminate in a different color from the darker portions 2704, 2706. In some embodiments, light or dark segments may strobe while the others remain steadily illuminated or strobe or flash at a different rate. The different segments (2704, 2706, 2708, 2710) may comprise back-illuminated lenses, LED panels, or another arrangement for providing a high visibility glow or illumination (strobing or non-strobing) of the entire segment.
Referring now to
In various embodiments, the beacon 2700 remains in communication with the associated vehicle. A tether 2806 may be provided for supplying control signals and/or power from the associated vehicle. The tether 2806 may be considered an interface to the vehicle 100 or its wiring harness to detect when an emergency event has been signaled (either manually or automatically). In some embodiments, the beacon 2700 is powered with an on-board power supply (e.g., such as a battery). In some embodiments, the beacon 2700 is controlled via wireless technology (e.g., such as Bluetooth). In such case, the tether 2806 may only be necessary for charging, and is not necessarily connected to the vehicle (or the beacon 2700) during operation.
Referring now to
The beacon 2700 may become active (e.g., illuminating or strobing) as soon as it is removed from the vehicle, as soon as it is placed a minimum distance from the vehicle, as soon as the trunk 2902 opens with the vehicle running, when the vehicle's own hazard lights are deployed, when the tether 2806 is disconnected from the car 100 or the beacon 2700, when the kick stand or leg (2802,
Referring now to
It should be understood that the location and positioning of the beacons 2700, both on, in, and away from the vehicle, is not necessarily limited to the illustrated locations. In some embodiments, one or more beacons 2700 is provided with magnetic mounts, suction mounts, adhesives, or other implements that allow the beacon 2700 to be affixed at virtually any location on the vehicle 100 or elsewhere. In some embodiments, a user may deploy one or more beacons 2700 on the vehicle, and one or more remotely from the vehicle to maximize the warning or communication function. It should also be understood that the storage location illustrated (e.g., the trunk) is not exhaustive as to potential locations. Beacons may be stored or provided in glove compartments, consoles, the engine compartment, a spare tire compartment, or other location associated with the vehicle 100 and suitable for ready access by a driver or operator.
In additional embodiments, the beacon 2700 may be provided such that it automatically deploys from a conspicuous location on the vehicle following an accident or based upon user activation of the hazard lights to strobe. In some embodiments, the beacon 2700 is configured to lie flat or substantially flush on a portion of the associated vehicle 100 (e.g., the roof, hood, trunk, bumper, windshield pillar or the like) and then deploy (e.g., lift or move to a position of high visibility) under spring loaded tension or using a mechanical or electromechanical actuator when needed or activated.
Referring now to
Here, the tether 2806 is shown to have a functional division between lead 2806A, which is a communication and control link with the BCM 1510 and lead 2806B which may be a power lead to a battery or other power source. In cases where the beacon 2700 has an on-board battery or power supply the power lead 2806B may not be connected all the time, and the beacon 2700 retains full functionality. Similarly, in embodiments where the beacon 2700 is controlled wirelessly, the communication and control link 2806 may not always be a physical wire, but may represent wireless control commands and signals.
Referring now to
In some embodiments, the beacon 2700 functions only as a part of the vehicle 100 an its associated electrical system. In such cases, the BCM 1510, for example, may control the components of the body 2700 such that a separate microcontroller 3206 is not needed or not utilized. In such cases, the beacon 2700 may only be able to function while it remains electrically connected to the vehicle (e.g., by tether 2806). However, in some embodiments, the beacon 2700 can function independently from the vehicle 100 and may therefore provide some degree of independent functionality. In such cases, an on-board power supply 3202 may be provided for powering the beacon 2700 if power from the vehicle 100 is depleted, disconnected, damaged, or otherwise unavailable. The on-board power supply 3202 may comprise a battery or one or more battery cells based on various battery chemistries.
The beacon 2700 may include a wireless communication module 3208 that includes an antenna, amplifier, and other components needed for wireless control and/or communication. In some embodiments, the microcontroller 3206 may comprise a system-on-a-chip device that includes wireless functionality such that a separate wireless module 3208 is note needed. The wireless module 3208 (or microcontroller 3206) may implement Wi-Fi, Bluetooth, or another wireless protocol. In some embodiments, control signals are received from the vehicle 100 wirelessly instead of, or in addition to, the tether 2806. The beacon 2700 may also receive control signals from a personal wireless device such as a smartphone 3210 or other device. In such cases, a smartphone 3210 may pair with the beacon 2700 via Bluetooth or another protocol and provide a simple app for turning the beacon on or off or activating other functions (e.g., strobe patterns the like).
The beacon 2700 may attach to the vehicle 100 via the tether 2806. However, the tether 2806 may be detachable such that the beacon 2700 is not restriction to being deployed any particular distance from the vehicle 100. In some embodiments, the tether 2806 provides both power and control signals to the beacon 2700. The tether may comprise multiple leads (as shown in
Referring now to
The various subdivisions allow for left-to-right and to right-to-left signal and strobe displays. Chasing effects can also be implemented. In some case, the triangle subcomponents (left, right, bottom) complement the strobing or lighting program of the corner lights 2712′ 2712″, 2712′″. Adjacent triangles 2704, 2708, 2706, 2710 or their subsegments may flash or strobe in alternating layers (for example, triangle 2704 may illuminate in unison with triangle 2706, and alternately with triangle 2708 and triangle 2710). It will be appreciated that additional, more finely grained lighting arrangements may be implemented with the subdivision of the triangles into the segments as discussed above.
The beacon 2700 may also be divided into left and right sides as shown by dividing line 3302 (this may result in further subdivisions of segments 2704″, 2708″, 2706″ a triangle 2710, for example). This the beacon 2700 may be operated in additional right-to-left, or left-to right operational modes. It is understood that the microcontroller 3206 (or BCM 1510, for example) may have a separate control lead to each discrete segment or subsegment of the beacon body 2702 to enable this fine-grained control. It should also be understood that the beacon body 2702 could have a different shape altogether, which would require different divisions than those discussed. However, the general upward pointing triangular shape of the body 2702 as shown may have advantageous in that this is already widely recognized as a caution symbol.
Referring now to
The appliqué 3402 may comprise a plurality of separately controllable translucent or transparent LEDs as are known in the art. For example, inner triangles 2706, 2710, outer triangles 2704, 2708, and corner lights 2712 (or their subdivisions) may be separately illuminated and controllable by microcontroller 3206 and/or BCM 1510. The appliqué 3402 may be applied to the vehicle glass such as rear window 3406 or embedded therein. Power to the beacon 3400, and particularly the appliqué 3404 may come from various leads embedded with, or applied to the glass, with a defroster element 3408.
In another embodiment, the beacon 3400 comprises only the outline of one or more portions (inner triangles 2706, 2710, outer triangles 2704, 2708, and corner lights 2712) of the appliqué 3404 with very thin LED strips that may or may not be translucent. In either event, the driver's view through the rear window 3406 is not substantially impaired but the benefits and advantages associated with safety beacons according to the present disclosure still obtain.
It is to be understood that the terms “including”, “comprising”, “consisting” and grammatical variants thereof do not preclude the addition of one or more components, features, steps, or integers or groups thereof and that the terms are to be construed as specifying components, features, steps or integers.
If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.
It is to be understood that where the claims or specification refer to “a” or “an” element, such reference is not be construed that there is only one of that element.
It is to be understood that where the specification states that a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, that particular component, feature, structure, or characteristic is not required to be included.
Where applicable, although state diagrams, flow diagrams or both may be used to describe embodiments, the invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described.
Methods of the present invention may be implemented by performing or completing manually, automatically, or a combination thereof, selected steps or tasks.
The term “method” may refer to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the art to which the invention belongs.
The term “at least” followed by a number is used herein to denote the start of a range beginning with that number (which may be a ranger having an upper limit or no upper limit, depending on the variable being defined). For example, “at least 1” means 1 or more than 1. The term “at most” followed by a number is used herein to denote the end of a range ending with that number (which may be a range having 1 or 0 as its lower limit, or a range having no lower limit, depending upon the variable being defined). For example, “at most 4” means 4 or less than 4, and “at most 40%” means 40% or less than 40%.
When, in this document, a range is given as “(a first number) to (a second number)” or “(a first number)-(a second number)”, this means a range whose lower limit is the first number and whose upper limit is the second number. For example, 25 to 100 should be interpreted to mean a range whose lower limit is 25 and whose upper limit is 100. Additionally, it should be noted that where a range is given, every possible subrange or interval within that range is also specifically intended unless the context indicates to the contrary. For example, if the specification indicates a range of 25 to 100 such range is also intended to include subranges such as 26-100, 27-100, etc., 25-99, 25-98, etc., as well as any other possible combination of lower and upper values within the stated range, e.g., 33-47, 60-97, 41-45, 28-96, etc. Note that integer range values have been used in this paragraph for purposes of illustration only and decimal and fractional values (e.g., 46.7-91.3) should also be understood to be intended as possible subrange endpoints unless specifically excluded.
It should be noted that where reference is made herein to a method comprising two or more defined steps, the defined steps can be carried out in any order or simultaneously (except where context excludes that possibility), and the method can also include one or more other steps which are carried out before any of the defined steps, between two of the defined steps, or after all of the defined steps (except where context excludes that possibility).
Further, it should be noted that terms of approximation (e.g., “about”, “substantially”, “approximately”, etc.) are to be interpreted according to their ordinary and customary meanings as used in the associated art unless indicated otherwise herein. Absent a specific definition within this disclosure, and absent ordinary and customary usage in the associated art, such terms should be interpreted to be plus or minus 10% of the base value.
Thus, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned above as well as those inherent therein. While the inventive device has been described and illustrated herein by reference to certain preferred embodiments in relation to the drawings attached thereto, various changes and further modifications, apart from those shown or suggested herein, may be made therein by those of ordinary skill in the art, without departing from the spirit of the inventive concept the scope of which is to be determined by the following claims.
This application claims the benefit of U.S. provisional patent application Ser. No. 62/825,345, filed on Mar. 28, 2019, and incorporates such provisional application by reference into this disclosure as if fully set out at this point.
Number | Name | Date | Kind |
---|---|---|---|
3553644 | Elmer | Jan 1971 | A |
4176340 | Steinmeier | Nov 1979 | A |
4227174 | Belcher et al. | Oct 1980 | A |
4357594 | Ehrlich et al. | Nov 1982 | A |
4550305 | Bookbinder | Oct 1985 | A |
4981363 | Lipman | Jan 1991 | A |
5043699 | Hayden | Aug 1991 | A |
5264826 | Henderson et al. | Nov 1993 | A |
5374920 | Evens | Dec 1994 | A |
5434758 | Zeidler | Jul 1995 | A |
5481243 | Lurie et al. | Jan 1996 | A |
5510763 | Deckard et al. | Apr 1996 | A |
5515026 | Ewert | May 1996 | A |
5519389 | Degunther et al. | May 1996 | A |
5646385 | Bogovican et al. | Jul 1997 | A |
5736925 | Knauff | Apr 1998 | A |
5775712 | Link et al. | Jul 1998 | A |
5850177 | Zimmerman | Dec 1998 | A |
6023221 | Michelotti | Feb 2000 | A |
6025775 | Erlandson | Feb 2000 | A |
6028512 | Schropp et al. | Feb 2000 | A |
6078145 | Tillinghast et al. | Jun 2000 | A |
6081188 | Kutlucinar et al. | Jun 2000 | A |
6181243 | Yang | Jan 2001 | B1 |
6229438 | Kutlucinar et al. | May 2001 | B1 |
6323766 | Bartlett et al. | Nov 2001 | B1 |
6351211 | Bussard | Feb 2002 | B1 |
6397133 | Van Der Pol et al. | May 2002 | B1 |
6420799 | Sakamoto et al. | Jul 2002 | B1 |
6445289 | Roberts | Sep 2002 | B1 |
6456206 | Rocca et al. | Sep 2002 | B1 |
6515584 | Deyoung | Feb 2003 | B2 |
6623151 | Pederson | Sep 2003 | B2 |
6674182 | Maynard et al. | Jan 2004 | B2 |
6744359 | Wasilewski et al. | Jun 2004 | B1 |
6842111 | Smithson | Jan 2005 | B1 |
6858986 | Monk | Feb 2005 | B2 |
6879251 | Robbins et al. | Apr 2005 | B2 |
6922137 | Bycroft | Jul 2005 | B1 |
7046160 | Pederson et al. | May 2006 | B2 |
7119672 | Subbaraman | Oct 2006 | B2 |
7150554 | Calderas | Dec 2006 | B2 |
7199704 | Herrig et al. | Apr 2007 | B2 |
7455139 | Lee | Nov 2008 | B2 |
7852203 | Herrig et al. | Dec 2010 | B2 |
7961086 | Bradley | Jun 2011 | B2 |
8049610 | Malik | Nov 2011 | B2 |
8319662 | Bontemps et al. | Nov 2012 | B1 |
8393750 | Clement | Mar 2013 | B2 |
8398284 | Dvorzsak | Mar 2013 | B1 |
8405498 | Smith et al. | Mar 2013 | B1 |
8415901 | Recker et al. | Apr 2013 | B2 |
8669853 | Gardner | Mar 2014 | B1 |
8903617 | Braunberger et al. | Dec 2014 | B2 |
9481331 | Tucker et al. | Nov 2016 | B1 |
9494940 | Kentley | Nov 2016 | B1 |
9616810 | Tucker et al. | Apr 2017 | B1 |
9643533 | Houss | May 2017 | B1 |
10055985 | Hayward | Aug 2018 | B1 |
10173674 | Bidner | Jan 2019 | B2 |
10351050 | Elwell | Jul 2019 | B1 |
10598332 | Elwell | Mar 2020 | B1 |
20020036908 | Pederson | Mar 2002 | A1 |
20020078879 | Wood | Jun 2002 | A1 |
20020105432 | Pederson | Aug 2002 | A1 |
20030001728 | Flick | Jan 2003 | A1 |
20030132852 | Povey et al. | Jul 2003 | A1 |
20040100373 | Ponziani | May 2004 | A1 |
20040257214 | Smithson | Dec 2004 | A1 |
20050099286 | DeYoung | May 2005 | A1 |
20050134448 | Perlman et al. | Jun 2005 | A1 |
20060022520 | Matheny | Feb 2006 | A1 |
20060043433 | Matsushita | Mar 2006 | A1 |
20060125616 | Song | Jun 2006 | A1 |
20060209547 | Biondo et al. | Sep 2006 | A1 |
20070142977 | Munoz | Jun 2007 | A1 |
20070159319 | Maldonado | Jul 2007 | A1 |
20070194905 | Herrig et al. | Aug 2007 | A1 |
20080100432 | Hoffman | May 2008 | A1 |
20090045754 | Jozwik | Feb 2009 | A1 |
20090219150 | DeYoung | Sep 2009 | A1 |
20090322508 | Malik | Dec 2009 | A1 |
20100109859 | Lakosky | May 2010 | A1 |
20100134271 | Edwards et al. | Jun 2010 | A1 |
20100225465 | Ekchian et al. | Sep 2010 | A1 |
20100253499 | Haab et al. | Oct 2010 | A1 |
20110205521 | Mimeault et al. | Aug 2011 | A1 |
20120043888 | Salter et al. | Feb 2012 | A1 |
20120185130 | Ekchian et al. | Jul 2012 | A1 |
20120268262 | Popovic | Oct 2012 | A1 |
20120313792 | Behm et al. | Dec 2012 | A1 |
20130054087 | Mohamed | Feb 2013 | A1 |
20130093582 | Walsh et al. | Apr 2013 | A1 |
20130141251 | Sims et al. | Jun 2013 | A1 |
20130190985 | Nakano et al. | Jul 2013 | A1 |
20130229289 | Bensoussan et al. | Sep 2013 | A1 |
20140055619 | Holland et al. | Feb 2014 | A1 |
20140146552 | Hui | May 2014 | A1 |
20140149025 | Fazi | May 2014 | A1 |
20140300462 | Russ | Oct 2014 | A1 |
20140306826 | Ricci | Oct 2014 | A1 |
20140361686 | Wolfe | Dec 2014 | A1 |
20140368324 | Seifert | Dec 2014 | A1 |
20140375810 | Rodriguez | Dec 2014 | A1 |
20150061492 | Braunberger | Mar 2015 | A1 |
20150061895 | Ricci | Mar 2015 | A1 |
20150088397 | Burton | Mar 2015 | A1 |
20150116133 | Mawbey et al. | Apr 2015 | A1 |
20150127212 | Chacon et al. | May 2015 | A1 |
20150151671 | Refior et al. | Jun 2015 | A1 |
20150314723 | Ghiata et al. | Nov 2015 | A1 |
20160039336 | Nordstrom et al. | Feb 2016 | A1 |
20160144778 | Tucker | May 2016 | A1 |
20160152176 | Kang | Jun 2016 | A1 |
20160257243 | Son et al. | Sep 2016 | A1 |
20160339837 | Bolduc et al. | Nov 2016 | A1 |
20170072835 | Shank et al. | Mar 2017 | A1 |
20170080850 | Drexler et al. | Mar 2017 | A1 |
20170124876 | Rogers | May 2017 | A1 |
20170243450 | Keller et al. | Aug 2017 | A1 |
20170246987 | Liljestrand | Aug 2017 | A1 |
20170274816 | Zhao | Sep 2017 | A1 |
20170274819 | Domingo | Sep 2017 | A1 |
20170305349 | Naboulsi | Oct 2017 | A1 |
20170352274 | Kodama et al. | Dec 2017 | A1 |
20170364070 | Oba | Dec 2017 | A1 |
20180056857 | Natale et al. | Mar 2018 | A1 |
20180061225 | Miglianico | Mar 2018 | A1 |
20180094777 | Vargas-Chambers | Apr 2018 | A1 |
20190210515 | Aust | Jul 2019 | A1 |
20190234601 | Wescott | Aug 2019 | A1 |
20190279447 | Ricci | Sep 2019 | A1 |
20190283693 | Tucker et al. | Sep 2019 | A1 |
20190361453 | Kentley-Klay et al. | Nov 2019 | A1 |
20200094734 | King | Mar 2020 | A1 |
20200189446 | Tucker et al. | Jun 2020 | A1 |
20200189453 | Tucker et al. | Jun 2020 | A1 |
20200236745 | Garrett et al. | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
203273673 | Nov 2013 | CN |
107650778 | Feb 2018 | CN |
110949241 | Apr 2020 | CN |
111216624 | Jun 2020 | CN |
10218652 | Nov 2003 | DE |
102009051837 | May 2011 | DE |
102015205368 | Sep 2016 | DE |
202017100790 | Mar 2017 | DE |
102017215865 | Mar 2019 | DE |
102018128565 | May 2020 | DE |
2827250 | Jan 2015 | EP |
3178698 | Jun 2017 | EP |
3287320 | Feb 2018 | EP |
3702213 | Sep 2020 | EP |
2833903 | Jun 2003 | FR |
3056801 | Mar 2018 | FR |
2002274295 | Sep 2002 | JP |
2003-205782 | Jul 2003 | JP |
2006069245 | Mar 2006 | JP |
4485901 | Apr 2006 | JP |
2006182172 | Jul 2006 | JP |
2009012554 | Jan 2009 | JP |
2013-86657 | May 2013 | JP |
2013133071 | Jul 2013 | JP |
2014201298 | Oct 2014 | JP |
2015009647 | Jan 2015 | JP |
2015-44491 | Mar 2015 | JP |
2018020751 | Feb 2018 | JP |
6561286 | Aug 2019 | JP |
2019206225 | Dec 2019 | JP |
2020090183 | Jun 2020 | JP |
2019970032975 | Jul 1997 | KR |
2019980031131 | Aug 1998 | KR |
1020030015908 | Feb 2003 | KR |
100656243 | Dec 2006 | KR |
1020120048948 | May 2012 | KR |
1020120106036 | Sep 2012 | KR |
200484734 | Nov 2017 | KR |
25623 | Oct 2019 | SI |
202022812 | Jun 2020 | TW |
202041101 | Nov 2020 | TW |
0100446 | Jan 2001 | WO |
2004018256 | Mar 2004 | WO |
2008056186 | May 2008 | WO |
WO2011154691 | Dec 2011 | WO |
2018063253 | Apr 2018 | WO |
2020096060 | May 2020 | WO |
Entry |
---|
Christianson et al, “Workzone Safety Improvements through Enhanced Warning Signal Devices”, “https://escholarship.org/content/qt6nm2g4tg/qt6nm2g4tg.pdf”,, Publisher: Univerisity of California, Berkeley 2008, Published in: US. |
“99630 Strobe Power Module”, , Publisher http://www.grote.com/products/99630-alternating-x-pattern-led-strobe-lamp-kit-strobe-power-module/. |
“Amber Vehicle Car Truck Emergency Hazard Warning”, , Publisher www.amazon.com/Vehicle-Emergency-Hazard-Warning-Strobe/dp/B00MA7744G#productDetails. |
“Brake Light Strobe Module”, Publisher: https://www.superbrightleds.com/moreinfo/strobe-controllers/brake-light-strobe-module/195/. |
EPO, “EPO Search Report for EPO App. No. 16/917,956-1 dated May 13, 2020”, “Extended European Search Report prepared for EPO U.S. Appl. No. 16/917,956.1 dated May 13, 2020”, dated May 13, 2020, Publisher: European Patent Office. |
Publisher: European Search Report dated Oct. 2, 2019 prepared for EPO Appl. No. EP19181421. |
Jan. 12, 2018, Publisher: Extended European Search Report. |
“ELFR-1 QD Electronic LED Flasher Relay With Quick Disconnects”, Publisher: www.customled.com/products/elfr-1-qd-electronic-led-flasher-relay. |
“ELFR-P Programmable Electronic LED Flasher With OEM Connector”, Publisher: www.customled.com/products/elfr-p-led-flasher-relay. |
“Flashing Brakes Lights Make a Difference—Look At The Facts”, Publisher: http://www.flashingbrakelights.com/. |
“Flashing LED Brake Lights”, Publisher: http://www.ebay.com/bhp/flashing-led-brake-lights. |
“How to Change Hazard Flashers to STrobe Flashers—Chevy Blazer Forums”, Publisher: http://blazerforum.com/forum/2nd-gen-s-series-1995-2005-tech-41/how-change-hazard-flashers-strobe-flashers-62080/. |
“Intelligent Flashing LED Brake Lights (See How They Work)”, Publisher: http://safelightstore.com/. |
“ELFR-1 Electronic LED Flasher Relay With OEM Connector”, Publisher: www.customled.com/products/elfr-1-electronic-led-flasher-relay. |
“Motorcycle Run Brake Turn Conversion Kit”, Publisher: http://www.customdynamics.com/tailconversion_kit.htm. |
ISA/US, “International Search Report for PCT/US2016/054489”, dated Dec. 29, 2016. |
PCT/ISA/US, “PCT International Search Report for PCT/US2016/015125”, dated Mar. 31, 2016. |
“10 Car Options the Law Won't Let You Have: Strobe Brake Lights”, Publisher: http://www.popularmechanics.com/cars/news/industry/10-car-options-the-law-wont-let-you-have-4#slide-4. |
“Vehicle Brake Light Flasher Module Safety Flash Light Alert”, Publisher: http://www.amazon.com/Vehicle-Flasher-Module-Safety-Universal/dp/B00FADDOL4. |
Chris Davies, “Inside Cadillac's early bet on Vehicle-to-Vehicle tech”, “Inside Cadillac's early bet on Vehicle-to-Vehicle tech”, Mar. 10, 2017, Publisher: https://www.slashgear.com/inside-cadillacs-early-bet-on-v2v-vehicle-to-vehicle-tech-10478130/. |
“V2V Safety Technology Now Standard on Cadillace CTS Sedans video”, Publisher: https://media.chevrolet.com/media/ca/en/cadillac/bcportal.html/currentVideold/5353289496001/pnld/0/typeId/c/currentChannelId/Most%20Recent.html. |
Kelley Blue Book, “2017 Cadillac CTS Sedan Adds V2V Capability”, Mar. 10, 2017, Publisher: https://www.kbb.com/car-news/2017-cadillac-cts-sedan-adds-v2v-capability/. |
Number | Date | Country | |
---|---|---|---|
20200307447 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62825345 | Mar 2019 | US |