The present invention relates generally to theft deterrent devices for automotive vehicles, and more specifically, to an engine immobilization system that allows rapid recovery of a vehicle.
Vehicle anti-theft systems typically sound an alarm upon the unauthorized entry into the automotive vehicle. Other anti-theft systems provide engine immobilization using an electronic circuit such as a transponder, which in addition to a cut key allows the engine to be started. Such systems are not effective to reduce carjacking or reduce risks in police pursuit. That is, once a thief obtains the keys for the vehicle the vehicle may be driven away. Also, many systems are capable of being bypassed and thus allow the vehicle to be driven away.
Telematic systems are becoming popular items on motor vehicles. Telematic systems include a network connection to a satellite or cellular phone system that allows directions or the like to be obtained. Such systems typically operate in conjunction with a global positioning system.
In a carjacking situation, it is desirable to let the thief drive away so that the proper authorities may apprehend the suspects. However, once away from the vehicle owner, the proper authorities have no means to restrict the operation of the vehicle.
It would therefore be desirable to provide a system that increases the likelihood of vehicle recovery after a vehicle has been stolen.
The present invention provides a system that increases the possibility of recovery using a centralized service provider that operates in connection with police or law enforcement intervention.
In one aspect of the invention, a vehicle immobilization system is coupled to a network system and includes a vehicle that has a speed sensor generating a vehicle speed signal, a telematics control unit receiving and transmitting signals to and from the network, and a speed control module. An immobilization controller is coupled to the speed sensor, the telematics control unit, and the speed control module. The immobilization controller receives an immobilization signal from the network and sets a maximum operating speed for the power train controller. When the vehicle speed signal is below the maximum operating speed, the immobilization controller reduces the maximum operating speed within the speed control module until a lower predetermined speed limit is met. The lower speed limit is preferably greater than zero so that some limited mobility of the vehicle may be achieved.
In a further aspect of the invention a method of operating a vehicle immobilization system comprising:receiving an immobilization signal; setting a maximum operating speed; and when the vehicle speed is below the maximum operating speed, reducing the maximum operating speed to the vehicle speed until the maximum operating speed is a predetermined lower speed limit.
One advantage of the invention is that the system, once the lower speed limit has been reached, allows the vehicle to have limited mobility to prevent, for example, stopping in an undesirable location such as on a railroad track. Also, the system has safeguards to help insure proper use of the system.
Other advantages and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.
In the following figures the same reference numerals will be used to illustrate the same components. While specific components are mentioned in the following description, various alternatives will be evident to those skilled in the art. Such variations are not limited to those set forth below.
Referring now to
Vehicle 12 has an immobilization controller 30 that controls the operation of the immobilization system 10 within the vehicle. Immobilization controller 30 is preferably microprocessor based. Although immobilization controller 30 is illustrated as a separate component, the immobilization controller 30 may be incorporated into or combined with various other controllers or control units not limited to those set forth herein.
Immobilization controller 30 is programmed to operate using software to perform the method described below. Immobilization controller 30 is coupled to an ignition status sensor 32 that senses the status of the ignition. Ignition status sensor 32 may for example, be a separate sensor that senses voltage or an ignition switch position sensor. Of course, those skilled in the art will recognize that other types of ignition status sensors may be used.
A vehicle speed sensor 34 is coupled to immobilization controller 30. Vehicle speed sensor 34 may be one of a variety of types of speed sensors typically used in automotive vehicles. For example, a toothed wheel such as that used in anti-lock brake systems may be used. Other types of vehicle speed sensors may also be used including a transmission sensor and obtaining the vehicle speed from a communications bus within the vehicle. Vehicle speed sensor 34 generates a vehicle speed signal.
Occupant sensors 36 are preferably also coupled to immobilization controller 30. Occupant sensors 36 generate an occupant sensor signal indicative of the number of occupants of the vehicle. Occupant sensors 36 may be stand-alone sensors or may be incorporated into a restraint system of the present invention. Immobilization controller 30 may also be coupled to a tire pressure release actuator 38 that is coupled to one or more vehicle tires 40. Tire pressure release actuator upon a command from immobilization controller 30 may release the tire pressure from tires 40. Immobilization controller 30 is coupled to a telematics control unit 48. Telematics control unit 48 includes a telematics controller 50 that is preferably microprocessor based. Telematics controller 50 is coupled to a transmitter 52 and a receiver 54. Transmitter 52 and receiver 54 receive communication from network 20 through antenna 56. A suitable antenna is used for the type of communications received. For example, antenna 56 may be configured to receive satellite signals, wireless cellular signals or the like.
Telematics controller 50 may also be coupled to a microphone 58 and a speaker 60. Microphone 58 receives voice signals and transmits them to telematics controller 50, which may in turn transmit them through antenna 56. A speaker 60 is also coupled to telematics controller. Speaker 60 broadcasts information within the vehicle, such as those received by receiver 54 through antenna 56. Both microphone 58 and speaker 60 may be stand-alone units or may be incorporated into a hands-free cellular telephone set.
Telematics controller 50 may also be coupled to another input device such as a keypad 62 or other data entry device.
Telematics controller 50 may also be coupled to a global positioning system (GPS) 64. GPS 64 may be coupled to a separate antenna 66 or through antenna 56. GPS 64 generates a position signal of the vehicle and couples that to telematics controller 50.
Immobilization controller 30 is also coupled to a powertrain controller 70. Powertrain controller 70 has a speed control module 72 therein. Powertrain controller 70 may be one of various types of controllers such as an engine controller or a combination engine and transmission controller. Powertrain controller 70 is also preferably microprocessor based. Immobilization controller 30 in conjunction with speed control module 72 may limit the speed of the vehicle to the vehicle speed sensed by vehicle speed sensor 34. The speed control module, as will be further described below, may keep resetting the maximum speed of the vehicle to the vehicle speed as the vehicle speed falls below the maximum vehicle speed. The speed control module will limit the speed up until a lower speed limit such as five miles per hour to allow the vehicle to have a minimum amount of maneuverability.
Service provider 14 includes a transmitter 74 for transmitting various information such as an immobilization signal to vehicle 12. Service provider 14 also includes an operator interface 76. Operator interface 76 may be coupled to a memory 78 and a peripheral device 80. Service provider receives information from law enforcement agent 16 and determines the validity of the signal by a password stored in memory 78. Operator interface 76 may then generate an immobilization signal in response to the law enforcement agent 16.
Law enforcement agent 16 has an agent identification 82 that is transmitted through network 20 to service provider 14. The agent identification 82 may include information transmitted through service provider for verification such as the receiving officer's badge number and the accident report number. Of course, other information such as a law enforcement agent's password may also be required. Law enforcement agent 16 communicates the password from vehicle owner 18 to service provider 14 by way of network 20 which, as mentioned above, may include various means such as public service telephone network, wireless network, or satellite wireless network.
Referring now to
Referring back to step 118, if the vehicle is running the telematics control unit sends the current location from GPS 64 to service provider 14 which in turn provides the position signal to law enforcement agent 16 through network 20.
In step 128 the service provider may establish a voice connection through telematics control unit and speaker 60 to the current operators of the vehicle. The service provider instructs the current vehicle operator to speak the password, which is received by microphone 58 and transmitted through transmitter 52 to service provider 14. In step 130, if the password is a valid password the immobilization is canceled in step 132. In step 130, if the password is not valid the telematics control unit sends a message to the speed control module 72 through immobilization controller 30 to prevent the vehicle from accelerating. That is, the maximum vehicle speed is set to the current vehicle speed. As the current vehicle speed is reduced, the maximum vehicle speed is also reduced and not allowed to increase. Thus, the maximum vehicle speed is reduced down to a predetermined limit that is greater than zero. This allows the vehicle to still be somewhat maneuvered but at extremely low speed such as five miles per hour. In step 136 the law enforcement agent 16 may also establish a voice connection through service provider 14 to the vehicle operator. Also in step 138 the tire pressure relief actuator 38 may be controlled through immobilization controller 30 at the request of a law enforcement agent if the thief tries to outrun the police officers.
Referring now to
As can be seen by the above description, the present invention advantageously allows the vehicle to be driven away from a vehicle operator but, when activated, the vehicle will eventually slow to a very slow speed. This will allow the law enforcement agents to quickly recover the vehicle since vehicle position is provided to the service provider.
While particular embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5769051 | Bayron et al. | Jun 1998 | A |
5815822 | Iu | Sep 1998 | A |
5939975 | Tsuria et al. | Aug 1999 | A |
5942971 | Fauci et al. | Aug 1999 | A |
5995898 | Tuttle | Nov 1999 | A |
6028537 | Suman et al. | Feb 2000 | A |
6072248 | Muise et al. | Jun 2000 | A |
6157317 | Walker | Dec 2000 | A |
6198996 | Berstis | Mar 2001 | B1 |
6411887 | Martens et al. | Jun 2002 | B1 |
6474683 | Breed et al. | Nov 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20030210129 A1 | Nov 2003 | US |