The present invention relates generally to an apparatus for remotely adjusting the volume in the inflatable portion of a surgically implanted gastric band encircling the stomach. A method for treating morbid obesity utilizing a remotely adjustable gastric banding device is also disclosed.
A belt-like gastric band for encircling the stomach to control morbid obesity is disclosed by Vincent in U.S. Pat. No. 5,601,604, incorporated herein by reference. The band comprises a belt that can be passed around the stomach and locked into an encircling position in order to create a stoma opening within the stomach. An adjustable portion of the band comprises an inflatable member which permits fine adjustment of the stoma opening after the stoma is created by locking the band in place.
The gastric banding procedure may involve placement of a calibrating apparatus in the stomach to position the stoma and size the pouch created above the stoma. The gastric band is fastened in position about the stomach to prevent slippage, usually by gastro-gastric sutures.
The stoma opening may be adjusted by injecting or withdrawing a fluid into or from an inflatable member, which is preferably coextensive with a portion of the inner stomach-contacting surface of the band. The means for injecting the fluid into the inflatable member usually comprises a fill port located beneath the skin that can be accessed extracorporeally by transdermal injection. Thus, following implantation, the gastric band can be adjusted to enlarge or reduce the stoma as required.
A potential disadvantage of prior art gastric bands is the difficulty in finely adjusting the stoma created by the implanted band. For example, the fill port located beneath the skin can be difficult to locate precisely. In addition, the fill procedure requires an invasive transdermal injection to adjust the band. Hence, repeated adjustments may be painful or worrisome to the patient. Moreover, exposure to x-rays may be required to facilitate location of the port. It would therefore be desirable to provide a band having an inflatable member that can be easily, precisely, and readily adjusted remotely, without the need to undergo an invasive procedure or radiographic exposure.
To address this problem, several prior art remote control gastric banding devices have been proposed. Klaiber et al. (U.S. Pat. No. 5,938,669) discloses a radio controlled gastric band adjusted by means of an electric pump and a balancing reservoir. Forsell (U.S. Pat. No. 6,210,347) discloses a remotely controlled and powered gastric band adjusted by a motorized mechanical or hydraulic means. Each of these proposed devices operates by pumping fluid to or from the gastric band. Unfortunately, because of their energy requirements, these devices pose problems for practical use. These devices are also not suitable for use with existing gastric banding systems, such as that disclosed by Vincent.
Recent developments in implantable drug delivery devices have shown that small, reliable, and energy-efficient implantable devices are feasible.
Drug delivery devices currently exist in which drugs are administered periodically or continuously to a patient having an implanted device by applying pressure from a pressurized reservoir and opening an outlet valve to allow a pressure differential to cause a flow of the drug. For example, Malamud et al. (U.S. Pat. No. 5,928,195) discloses a remotely controlled drug delivery device suitable for implantation in a body cavity. A pressurized gas chamber presses upon a drug storage chamber thereby administering a dose of the drug when a valve is remotely opened.
Similarly, Arzbaecher (U.S. Pat. No. 5,607,418) discloses an implantable drug apparatus having nested deformable chambers with the outer chamber being pressurized. The pressure from the outer pressurized chamber forces the drug from a reservoir chamber into an inner dispensing chamber. A remotely controlled valve is used to administer a dose of the drug from the dispensing chamber.
Further, Haller et al. (U.S. Pat. No. 6,203,523) discloses an implantable drug infusion device having a flow regulating mechanism that permits the flow rate to be independent of reservoir pressure. Some of the tradeoffs between “passive” (pressurized reservoir-based) devices and “active” (pump-based) devices are discussed in Haller, as follows.
Active drug or programmable infusion devices feature a pump or a metering system to deliver the drug into the patient's system. An example of such an active drug infusion device currently available is the Medtronic SynchroMed™ programmable pump. Such pumps typically include a drug reservoir, a peristaltic pump to pump out the drug from the reservoir, and a catheter port to transport the pumped out drug from the reservoir via the pump to a patient's anatomy. Such devices also typically include a battery to power the pump as well as an electronic module to control the flow rate of the pump. The Medtronic SynchroMed™ pump further includes an antenna to permit the remote programming of the pump. Needless to say, in view of these various components, the cost as well as the size of active drug infusion devices is greater than desired.
Passive drug infusion devices, in contrast, do not feature a pump, but rather rely upon a pressurized drug reservoir to deliver the drug. Thus such devices tend to be both smaller as well as cheaper as compared to active devices. An example of such a device includes the Medtronic IsoMed™ This device delivers the drug into the patient through the force provided by a pressurized reservoir. In particular, this reservoir is pressurized with a drug to between 20 to 40 psi (1.3 to 2.5 bar) and is used to deliver the drug into the patient's system. Typically the flow path of the drug from the reservoir to the patient includes a flow restrictor, which permits a constant flow rate. The flow rate, however, is only constant, if the pressure difference between reservoir and patient does not change. Factors that could impact this pressure difference include temperature, pressure-volume dependence of reservoir and altitude, among others. The selected pressure for the reservoir is thus typically quite high, so that absolute pressure changes only cause small and acceptable errors in flow rate. This also requires, however, the drug to be injected into the reservoir using still higher pressure. This is often a very difficult to achieve using a hand operated syringe.
The foregoing demonstrates a need for a practical, accurate and easy means of remotely adjusting an implanted gastric band.
It is therefore an object of the present invention to provide a practical, accurate and efficient means for remotely adjusting an implanted gastric band.
It is another object of the present invention to remotely adjust an implanted gastric band having an inflatable member.
It is yet another object of the invention to provide a remote control means suitable for use with existing gastric banding devices and technology.
Still another an object of the present invention is to minimize device complexity for an implanted remotely adjustable gastric banding device to ensure maximum device longevity/durability, in light of the fact that repair would require additional surgery.
Various other objects, advantages and features of the present invention will become readily apparent from the ensuing detailed description and the novel features will be particularly pointed out in the appended claims.
The present invention applies recent developments in implantable drug delivery device technology to the field of gastric banding.
A preferred embodiment of the invention provides a gastric banding device for treatment of morbid obesity. The device has a gastric band suited for laparoscopic placement around the stomach of a patient to form an adjustable stoma opening. The gastric band has an inflatable chamber for adjusting the inner circumference of the band. The inflatable chamber is preferably substantially coextensive with an inner stomach-facing surface of the gastric band. The inflatable member does not wrinkle or fold when adjusted, thereby presenting a substantially smooth contour along the inner circumference. A fluid-filled pressurized reservoir provides a source of fluid to inflate the inflation chamber of the gastric band. First and second valves control the flow between the pressurized reservoir, the inflatable chamber, and an unpressurized or negatively pressurized outlet. A controller is used to control the valves, thereby regulating the volume change in the inflatable chamber to adjust the inner circumference of the band. The controller is remotely controllable from outside of the patient.
Other aspects of the invention include a remote control for remotely transmitting control signals to the controller, a receiver for receiving control signals from the remote control, and a power source for providing power to the controller and the valves. The power source may be an induction coil. The power source may also be a battery or capacitor charged by a piezoelectric device which converts body motion into electrical energy.
In a method according to the invention, a remotely adjustable gastric banding system may be use for the treatment of obesity. The method comprises the steps of implanting a gastric band, preferably laparoscopically, around the stomach of the patient to create a stoma; remotely transmitting control signals from outside of the patient to a controller of the implanted gastric banding device; and actuating a first valve, between a pressurized reservoir and an inflatable chamber, and/or a second valve, between the inflatable chamber and an outlet, on the basis of the control signals received by the controller to increase or decrease the fluid volume in the inflatable chamber, thereby adjusting the inner circumference of the band to adjust the stoma.
The following detailed description given by way of example, but not intended to limit the invention solely to the specific embodiments described, may best be understood in conjunction with the accompanying drawings in which:
The present invention combines the implantable drug delivery device technology discussed above with gastric banding technology. The preferred embodiments of the apparatus and method according to the present invention will be described with reference to the accompanying drawings.
Referring to
In use, the gastric band is placed in an encircling position around the stomach and locked in place as shown in
In the present invention, the pressure relationship between reservoir 20, inflatable member 16 and outlet 23 is initially represented by the formula P1>P2>P3. Hence, valve 31 may be used to increase the pressure P2 up to a maximum pressure of P2=P1, thereby inflating inflatable member 16. Similarly, valve 32 may be used to decrease the pressure P2 down to a minimum of P2=P3, thereby deflating inflatable member 16. Thus, by actuating valves 31 and 32, the fluid volume in the inflatable member 16 may be regulated, thereby adjusting the size of the stoma formed by the gastric band.
In the present invention, valves 31 and 32 are controlled by a controller 41. The valves are preferably controlled in accordance with externally transmitted signals (not shown) received by a receiver 42 but may ultimately be controlled by any control system, including internal, mechanical, wired, or the like. The signals are preferably radio frequency (RF) signals transmitted by a remote control device 40 located external to the implanted gastric banding system. Power may be supplied to the receiver, the controller, and/or the valves either from an implanted power source 43 or from an induction coil 43 that receives power from a concentric coil external to the body, as described for instance for hearing aids in Baumann et al. (U.S. Pat. No. 5,279,292), which is hereby incorporated by reference.
The entirety of the remote gastric banding system 100 shown in
The remote control device 40 can be in the form of a typical television remote control, a personal computer interfaced device, or any other format. A unique identification code may be assigned to each remotely adjustable gastric band, so that access to and control of the device is restricted. This code may be a PIN code and may also act to prevent accidental adjustment of the band.
The system may be pressurized using a saline solution, or any other biocompatible fluid. If desired, a concentrated saline solution may be used as the inflation medium, thereby allowing water from the patient's body to diffuse into the inflatable member 16 over time and further inflate the band. After repeated adjustments the reservoir 20 may be refilled through an access port (not shown) or replaced altogether. As a backup and safety measure, the system may also allow for inflation/deflation of inflatable member 16 by transdermal injection through a fill port (not shown) as in prior art gastric banding devices.
Because this system uses a pressurized reservoir rather than a mechanical pressurization means (i.e. a pump or screw), the present system is more energy-efficient than those disclosed in the existing remote-controlled adjustable gastric band systems of Klaiber or Forsell (U.S. Pat. Nos. 5,938,669 and 6,210,347). Power is only required when operating the valves 31 and/or 32, and then only for relatively short time intervals.
Alternative embodiments of the present invention may include means for measuring fluid flow through the valves 31 and/or 32, such as a mass flowmeter, to ensure accuracy in adjusting the stoma when inflatable member 16 is inflated or deflated. Also, the controller 41 may be positioned external to the body. An alternate gastric band design might also be used, provided that the inflation medium remains a fluid.
A further embodiment of the present invention is a method of treating obesity using the remotely adjustable gastric banding system disclosed herein. The method includes implanting a gastric band, preferably laparoscopically, around the stomach of the patient to create a stoma; remotely transmitting control signals from outside of the patient to controller 41 of the gastric banding device inside of the patient; and opening and closing valve 31, between pressurized reservoir 20 and inflatable chamber 16, and/or valve 32, between the inflatable chamber and outlet 23, on the basis of the control signals received by controller 23 to increase or decrease the pressure in the inflatable chamber, thereby adjusting the inner circumference of the band to adjust the stoma size.
Although the invention has been particularly shown and described with reference to certain preferred embodiments, it will be readily appreciated by those of ordinary skill in the art that various changes and modifications may be made therein, without departing from the spirit and scope of the invention. It is intended that the claims be interpreted as including the foregoing as well as various other such changes and modifications.
The present application is a continuation of U.S. application Ser. No. 12/041,547, filed on Mar. 3, 2008, which is a continuation of U.S. application Ser. No. 10/524,864, filed on Jun. 23, 2005, now U.S. Pat. No. 7,338,433, issued on Mar. 4, 2008, which was a National Stage Entry of PCT/US02/25654, filed on Aug. 13, 2002.
Number | Name | Date | Kind |
---|---|---|---|
1174814 | Brennan et al. | Mar 1916 | A |
1830947 | Klingel | Nov 1931 | A |
1999683 | Borresen | Apr 1935 | A |
2163048 | McKee | Jun 1939 | A |
2339138 | Black | Jan 1944 | A |
2405667 | Ottesen | Aug 1946 | A |
2438231 | Schultz et al. | Mar 1948 | A |
2635907 | Heimbuch | Apr 1953 | A |
2714469 | Carlson | Aug 1955 | A |
2936980 | Rapata | May 1960 | A |
3059645 | Hasbrouck et al. | Oct 1962 | A |
3189961 | Heller | Jun 1965 | A |
3667081 | Burger | Jun 1972 | A |
3840018 | Heifetz | Oct 1974 | A |
3955834 | Ahlrot | May 1976 | A |
4053176 | Hilbush | Oct 1977 | A |
4118805 | Reimels | Oct 1978 | A |
4133315 | Berman et al. | Jan 1979 | A |
4157713 | Clarey | Jun 1979 | A |
4176412 | Peterson | Dec 1979 | A |
4236521 | Lauterjung | Dec 1980 | A |
4271827 | Angelchick | Jun 1981 | A |
4299012 | Oetiker | Nov 1981 | A |
4340083 | Cummins | Jul 1982 | A |
4399809 | Baro et al. | Aug 1983 | A |
4408597 | Tenney, Jr. et al. | Oct 1983 | A |
4417567 | Trick | Nov 1983 | A |
4424208 | Wallace et al. | Jan 1984 | A |
4442153 | Meltsch | Apr 1984 | A |
4450375 | Siegal | May 1984 | A |
4485805 | Foster, Jr. | Dec 1984 | A |
4492004 | Oetiker | Jan 1985 | A |
4551862 | Haber | Nov 1985 | A |
4558699 | Bashour | Dec 1985 | A |
4559699 | Owen et al. | Dec 1985 | A |
4582640 | Smestad et al. | Apr 1986 | A |
4582865 | Balazs et al. | Apr 1986 | A |
4592339 | Kuzmak et al. | Jun 1986 | A |
4592355 | Antebi | Jun 1986 | A |
4601713 | Fuqua | Jul 1986 | A |
4667672 | Romanowski | May 1987 | A |
4671351 | Rappe | Jun 1987 | A |
4693695 | Cheng | Sep 1987 | A |
4694827 | Weiner et al. | Sep 1987 | A |
4696288 | Kuzmak et al. | Sep 1987 | A |
4708140 | Baron | Nov 1987 | A |
4716154 | Malson et al. | Dec 1987 | A |
4753086 | Schmidt | Jun 1988 | A |
4760837 | Petit | Aug 1988 | A |
4803075 | Wallace et al. | Feb 1989 | A |
4881939 | Newman | Nov 1989 | A |
4883467 | Franetzki et al. | Nov 1989 | A |
4886787 | de Belder et al. | Dec 1989 | A |
4896787 | Delamour et al. | Jan 1990 | A |
4915690 | Cone et al. | Apr 1990 | A |
4925446 | Garay et al. | May 1990 | A |
4944487 | Holtermann | Jul 1990 | A |
4944659 | Labbe et al. | Jul 1990 | A |
4958791 | Nakamura | Sep 1990 | A |
4969899 | Cox, Jr. | Nov 1990 | A |
4976735 | Griffith et al. | Dec 1990 | A |
4994019 | Fernandez et al. | Feb 1991 | A |
5045060 | Melsky et al. | Sep 1991 | A |
5074868 | Kuzmak | Dec 1991 | A |
5084061 | Gau et al. | Jan 1992 | A |
5091171 | Yu et al. | Feb 1992 | A |
5116652 | Alzner | May 1992 | A |
5120313 | Elftman | Jun 1992 | A |
5143724 | Leshchiner et al. | Sep 1992 | A |
5152770 | Bengmark et al. | Oct 1992 | A |
5160338 | Vincent | Nov 1992 | A |
5188609 | Bayless et al. | Feb 1993 | A |
5224494 | Enhorning | Jul 1993 | A |
5226429 | Kuzmak | Jul 1993 | A |
5246456 | Wilkinson | Sep 1993 | A |
5246698 | Leshchiner et al. | Sep 1993 | A |
5259399 | Brown | Nov 1993 | A |
5326349 | Baraff | Jul 1994 | A |
5343894 | Frisch et al. | Sep 1994 | A |
5356883 | Kuo et al. | Oct 1994 | A |
5360445 | Goldowsky | Nov 1994 | A |
5391156 | Hildwein et al. | Feb 1995 | A |
5399351 | Leshchiner et al. | Mar 1995 | A |
5449363 | Brust et al. | Sep 1995 | A |
5449368 | Kuzmak | Sep 1995 | A |
5458568 | Racchini et al. | Oct 1995 | A |
5509888 | Miller | Apr 1996 | A |
5531716 | Luzio et al. | Jul 1996 | A |
5535752 | Halperin et al. | Jul 1996 | A |
5554113 | Novak et al. | Sep 1996 | A |
5562714 | Grevious | Oct 1996 | A |
5601604 | Vincent | Feb 1997 | A |
5607418 | Arzbaecher | Mar 1997 | A |
5633001 | Agerup | May 1997 | A |
5653718 | Yoon | Aug 1997 | A |
5658298 | Vincent et al. | Aug 1997 | A |
5676162 | Larson, Jr. et al. | Oct 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5704893 | Timm | Jan 1998 | A |
5713911 | Racenet et al. | Feb 1998 | A |
5733257 | Sternby | Mar 1998 | A |
5748200 | Funahashi | May 1998 | A |
5766232 | Grevious et al. | Jun 1998 | A |
5769877 | Barreras, Sr. | Jun 1998 | A |
5785295 | Tsai | Jul 1998 | A |
5817113 | Gifford, III et al. | Oct 1998 | A |
5827529 | Ono et al. | Oct 1998 | A |
5833698 | Hinchliffe et al. | Nov 1998 | A |
5861014 | Familoni | Jan 1999 | A |
RE36176 | Kuzmak | Mar 1999 | E |
5886042 | Yu et al. | Mar 1999 | A |
5904697 | Gifford, III et al. | May 1999 | A |
5910149 | Kuzmak | Jun 1999 | A |
5928195 | Malamud et al. | Jul 1999 | A |
5938669 | Klaiber et al. | Aug 1999 | A |
5944696 | Bayless et al. | Aug 1999 | A |
5944751 | Laub | Aug 1999 | A |
5993473 | Chan et al. | Nov 1999 | A |
6013679 | Kuo et al. | Jan 2000 | A |
6024340 | Lazarus et al. | Feb 2000 | A |
6024704 | Meador et al. | Feb 2000 | A |
6048309 | Flom et al. | Apr 2000 | A |
6067991 | Forsell | May 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6074378 | Mouri et al. | Jun 2000 | A |
6083249 | Familoni | Jul 2000 | A |
6090131 | Daley | Jul 2000 | A |
6102678 | Peclat | Aug 2000 | A |
6102922 | Jakobsson et al. | Aug 2000 | A |
6171321 | Gifford, III et al. | Jan 2001 | B1 |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6203523 | Haller et al. | Mar 2001 | B1 |
6210345 | Van Brunt | Apr 2001 | B1 |
6210347 | Forsell | Apr 2001 | B1 |
6221024 | Miesel | Apr 2001 | B1 |
6224857 | Romeo et al. | May 2001 | B1 |
6306088 | Krausman et al. | Oct 2001 | B1 |
6327503 | Familoni | Dec 2001 | B1 |
6371965 | Gifford, III et al. | Apr 2002 | B2 |
6372494 | Naughton et al. | Apr 2002 | B1 |
6383218 | Sourdile et al. | May 2002 | B1 |
6383219 | Telandro et al. | May 2002 | B1 |
6387105 | Gifford, III et al. | May 2002 | B1 |
6417750 | Shon | Jul 2002 | B1 |
6418934 | Chin | Jul 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6432040 | Meah | Aug 2002 | B1 |
6439539 | Powell | Aug 2002 | B1 |
6443957 | Addis | Sep 2002 | B1 |
6443965 | Gifford, III et al. | Sep 2002 | B1 |
6450173 | Forsell | Sep 2002 | B1 |
6450946 | Forsell | Sep 2002 | B1 |
6451034 | Gifford, III et al. | Sep 2002 | B1 |
6453907 | Forsell | Sep 2002 | B1 |
6454699 | Forsell | Sep 2002 | B1 |
6454700 | Forsell | Sep 2002 | B1 |
6454701 | Forsell | Sep 2002 | B1 |
6454785 | De Hoyos Garza | Sep 2002 | B2 |
6457801 | Fish et al. | Oct 2002 | B1 |
6460543 | Forsell | Oct 2002 | B1 |
6461293 | Forsell | Oct 2002 | B1 |
6463935 | Forsell | Oct 2002 | B1 |
6464628 | Forsell | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6474584 | Ekich | Nov 2002 | B2 |
6475136 | Forsell | Nov 2002 | B1 |
6485496 | Suyker et al. | Nov 2002 | B1 |
6491704 | Gifford, III et al. | Dec 2002 | B2 |
6491705 | Gifford, III et al. | Dec 2002 | B2 |
6511490 | Robert | Jan 2003 | B2 |
6517556 | Monassevitch | Feb 2003 | B1 |
6527701 | Sayet et al. | Mar 2003 | B1 |
6547801 | Dargent et al. | Apr 2003 | B1 |
6565582 | Gifford, III et al. | May 2003 | B2 |
6579301 | Bales et al. | Jun 2003 | B1 |
6601604 | Cooper | Aug 2003 | B1 |
6615084 | Cigaina | Sep 2003 | B1 |
6627620 | Nielsen | Sep 2003 | B1 |
6630486 | Royer | Oct 2003 | B1 |
6632239 | Snyder et al. | Oct 2003 | B2 |
6646628 | Shirochi et al. | Nov 2003 | B2 |
6676674 | Dudai | Jan 2004 | B1 |
6685668 | Cho et al. | Feb 2004 | B1 |
6685963 | Taupin et al. | Feb 2004 | B1 |
6691047 | Fredricks | Feb 2004 | B1 |
6715731 | Post et al. | Apr 2004 | B1 |
6729600 | Mattes et al. | May 2004 | B2 |
6754527 | Stroebel et al. | Jun 2004 | B2 |
6767924 | Yu et al. | Jul 2004 | B2 |
6811136 | Eberhardt et al. | Nov 2004 | B2 |
6820651 | Seuret et al. | Nov 2004 | B2 |
6834201 | Gillies et al. | Dec 2004 | B2 |
6871090 | He et al. | Mar 2005 | B1 |
6889086 | Mass et al. | May 2005 | B2 |
6916326 | Benchetrit | Jul 2005 | B2 |
6921819 | Piron et al. | Jul 2005 | B2 |
6924273 | Pierce | Aug 2005 | B2 |
6940467 | Fisher et al. | Sep 2005 | B2 |
6966875 | Longobardi | Nov 2005 | B1 |
7017583 | Forsell | Mar 2006 | B2 |
7021147 | Subramanian et al. | Apr 2006 | B1 |
7037344 | Kagan et al. | May 2006 | B2 |
7040349 | Moler et al. | May 2006 | B2 |
7054690 | Imran | May 2006 | B2 |
7058434 | Wang et al. | Jun 2006 | B2 |
7060080 | Bachmann | Jun 2006 | B2 |
7066486 | Lee | Jun 2006 | B2 |
7118526 | Egle | Oct 2006 | B2 |
7119062 | Alvis et al. | Oct 2006 | B1 |
7128750 | Stergiopulos | Oct 2006 | B1 |
7144400 | Byrum et al. | Dec 2006 | B2 |
7172607 | Hofle et al. | Feb 2007 | B2 |
7177693 | Starkebsum | Feb 2007 | B2 |
7191007 | Desai et al. | Mar 2007 | B2 |
7204821 | Clare et al. | Apr 2007 | B1 |
7223239 | Schulze et al. | May 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7240607 | Fish | Jul 2007 | B2 |
7255675 | Gertner et al. | Aug 2007 | B2 |
7263405 | Boveja et al. | Aug 2007 | B2 |
7282023 | Frering | Oct 2007 | B2 |
7288064 | Boustani et al. | Oct 2007 | B2 |
7297103 | Jarsaillon et al. | Nov 2007 | B2 |
7299082 | Feldman et al. | Nov 2007 | B2 |
7310557 | Maschino et al. | Dec 2007 | B2 |
7311716 | Byrun | Dec 2007 | B2 |
7311717 | Egle | Dec 2007 | B2 |
7314443 | Jordan et al. | Jan 2008 | B2 |
7314636 | Caseres et al. | Jan 2008 | B2 |
7338433 | Coe | Mar 2008 | B2 |
7340306 | Barrett et al. | Mar 2008 | B2 |
7351198 | Byrum et al. | Apr 2008 | B2 |
7351240 | Hassler, Jr. et al. | Apr 2008 | B2 |
7364542 | Jambor et al. | Apr 2008 | B2 |
7367340 | Nelson et al. | May 2008 | B2 |
7367937 | Jambor et al. | May 2008 | B2 |
7374565 | Hassler, Jr. et al. | May 2008 | B2 |
7390294 | Hassler, Jr. | Jun 2008 | B2 |
7396353 | Lorenzen et al. | Jul 2008 | B2 |
7416528 | Crawford et al. | Aug 2008 | B2 |
7457668 | Cancel et al. | Nov 2008 | B2 |
7481763 | Hassler, Jr. et al. | Jan 2009 | B2 |
7500944 | Byrum et al. | Mar 2009 | B2 |
7502649 | Ben-Haim et al. | Mar 2009 | B2 |
7530943 | Lechner | May 2009 | B2 |
7594885 | Byrum | Sep 2009 | B2 |
7599743 | Hassler, Jr. et al. | Oct 2009 | B2 |
7599744 | Giordano et al. | Oct 2009 | B2 |
7601162 | Hassler, Jr. et al. | Oct 2009 | B2 |
7615001 | Jambor et al. | Nov 2009 | B2 |
7618365 | Jambor et al. | Nov 2009 | B2 |
7658196 | Ferreri et al. | Feb 2010 | B2 |
7670279 | Gertner | Mar 2010 | B2 |
7699770 | Hassler, Jr. et al. | Apr 2010 | B2 |
7712470 | Gertner | May 2010 | B2 |
7727141 | Hassler, Jr. et al. | Jun 2010 | B2 |
7741476 | Lebreton | Jun 2010 | B2 |
7758493 | Gingras | Jul 2010 | B2 |
7763039 | Ortiz et al. | Jul 2010 | B2 |
7766815 | Ortiz | Aug 2010 | B2 |
7771439 | Griffiths | Aug 2010 | B2 |
7775215 | Hassler, Jr. et al. | Aug 2010 | B2 |
7775966 | Dlugos et al. | Aug 2010 | B2 |
7775967 | Gertner | Aug 2010 | B2 |
7794386 | Brooks | Sep 2010 | B2 |
7811298 | Birk | Oct 2010 | B2 |
7824422 | Benchetrit | Nov 2010 | B2 |
7828813 | Mouton | Nov 2010 | B2 |
7832407 | Gertner | Nov 2010 | B2 |
7841978 | Gertner | Nov 2010 | B2 |
7844342 | Dlugos, Jr. et al. | Nov 2010 | B2 |
7862502 | Pool et al. | Jan 2011 | B2 |
7879068 | Dlugos et al. | Feb 2011 | B2 |
7951067 | Byrum et al. | May 2011 | B2 |
20010011543 | Forsell | Aug 2001 | A1 |
20020072780 | Foley | Jun 2002 | A1 |
20020091395 | Gabbay | Jul 2002 | A1 |
20020095181 | Beyar | Jul 2002 | A1 |
20020098097 | Singh | Jul 2002 | A1 |
20020139208 | Yatskov | Oct 2002 | A1 |
20020183765 | Adams | Dec 2002 | A1 |
20020193679 | Malave et al. | Dec 2002 | A1 |
20020198548 | Robert | Dec 2002 | A1 |
20030014003 | Gertner | Jan 2003 | A1 |
20030019498 | Forsell | Jan 2003 | A1 |
20030045775 | Forsell | Mar 2003 | A1 |
20030045902 | Weadock | Mar 2003 | A1 |
20030060873 | Gertner et al. | Mar 2003 | A1 |
20030066536 | Forsell | Apr 2003 | A1 |
20030073880 | Polsky et al. | Apr 2003 | A1 |
20030093157 | Casares et al. | May 2003 | A1 |
20030100910 | Gifford, III et al. | May 2003 | A1 |
20030120288 | Benchetrit | Jun 2003 | A1 |
20030148995 | Piron et al. | Aug 2003 | A1 |
20030158564 | Benchetrit | Aug 2003 | A1 |
20030158569 | Wazne | Aug 2003 | A1 |
20030181890 | Schulze et al. | Sep 2003 | A1 |
20030181917 | Gertner | Sep 2003 | A1 |
20030191433 | Prentiss | Oct 2003 | A1 |
20030208212 | Cigaina | Nov 2003 | A1 |
20040000843 | East | Jan 2004 | A1 |
20040044332 | Stergiopulos | Mar 2004 | A1 |
20040049209 | Benchetrit | Mar 2004 | A1 |
20040059393 | Policker et al. | Mar 2004 | A1 |
20040068847 | Belisle et al. | Apr 2004 | A1 |
20040106899 | McMichael et al. | Jun 2004 | A1 |
20040133219 | Forsell | Jul 2004 | A1 |
20040147816 | Policker et al. | Jul 2004 | A1 |
20040148034 | Kagan et al. | Jul 2004 | A1 |
20040153106 | Dudai | Aug 2004 | A1 |
20040162595 | Foley | Aug 2004 | A1 |
20040215159 | Forsell | Oct 2004 | A1 |
20040230137 | Mouton | Nov 2004 | A1 |
20040254536 | Conlon et al. | Dec 2004 | A1 |
20040254537 | Conlon et al. | Dec 2004 | A1 |
20040260319 | Egle | Dec 2004 | A1 |
20040267288 | Byrum et al. | Dec 2004 | A1 |
20040267291 | Byrum et al. | Dec 2004 | A1 |
20040267292 | Byrum et al. | Dec 2004 | A1 |
20040267293 | Byrum et al. | Dec 2004 | A1 |
20040267377 | Egle | Dec 2004 | A1 |
20050002984 | Byrum et al. | Jan 2005 | A1 |
20050038484 | Knudson et al. | Feb 2005 | A1 |
20050038498 | Dubrow et al. | Feb 2005 | A1 |
20050055039 | Burnett et al. | Mar 2005 | A1 |
20050070934 | Tanaka et al. | Mar 2005 | A1 |
20050070937 | Jambor et al. | Mar 2005 | A1 |
20050100779 | Gertner | May 2005 | A1 |
20050104457 | Jordan et al. | May 2005 | A1 |
20050119672 | Benchetrit | Jun 2005 | A1 |
20050119674 | Gingras | Jun 2005 | A1 |
20050131383 | Chen et al. | Jun 2005 | A1 |
20050131485 | Knudson et al. | Jun 2005 | A1 |
20050136122 | Sadozai et al. | Jun 2005 | A1 |
20050142152 | Leshchiner et al. | Jun 2005 | A1 |
20050143765 | Bachmann et al. | Jun 2005 | A1 |
20050143766 | Bachmann et al. | Jun 2005 | A1 |
20050154274 | Jarsaillon et al. | Jul 2005 | A1 |
20050171568 | Duffy | Aug 2005 | A1 |
20050183730 | Byrum | Aug 2005 | A1 |
20050192531 | Birk | Sep 2005 | A1 |
20050192601 | Demarais | Sep 2005 | A1 |
20050192629 | Saadat et al. | Sep 2005 | A1 |
20050216042 | Gertner | Sep 2005 | A1 |
20050226936 | Agerup | Oct 2005 | A1 |
20050228415 | Gertner | Oct 2005 | A1 |
20050228504 | Demarais | Oct 2005 | A1 |
20050240155 | Conlon | Oct 2005 | A1 |
20050240156 | Conlon | Oct 2005 | A1 |
20050240279 | Kagan et al. | Oct 2005 | A1 |
20050244288 | O'Neil | Nov 2005 | A1 |
20050250979 | Coe | Nov 2005 | A1 |
20050251181 | Bachmann | Nov 2005 | A1 |
20050251182 | Bachmann | Nov 2005 | A1 |
20050267406 | Hassler, Jr. | Dec 2005 | A1 |
20050267500 | Hassler, Jr. | Dec 2005 | A1 |
20050267533 | Gertner | Dec 2005 | A1 |
20050271729 | Wang | Dec 2005 | A1 |
20050277899 | Conlon et al. | Dec 2005 | A1 |
20050283041 | Egle | Dec 2005 | A1 |
20050288739 | Hassler, Jr. et al. | Dec 2005 | A1 |
20050288740 | Hassler, Jr. et al. | Dec 2005 | A1 |
20060015138 | Gertner | Jan 2006 | A1 |
20060020298 | Camilleri et al. | Jan 2006 | A1 |
20060041183 | Massen et al. | Feb 2006 | A1 |
20060074439 | Garner et al. | Apr 2006 | A1 |
20060074473 | Gertner | Apr 2006 | A1 |
20060089571 | Gertner | Apr 2006 | A1 |
20060122147 | Wohlrab | Jun 2006 | A1 |
20060142700 | Sobelman et al. | Jun 2006 | A1 |
20060142790 | Gertner | Jun 2006 | A1 |
20060161139 | Levine et al. | Jul 2006 | A1 |
20060161186 | Hassler, Jr. et al. | Jul 2006 | A1 |
20060167531 | Gertner et al. | Jul 2006 | A1 |
20060173238 | Starkebaum | Aug 2006 | A1 |
20060173424 | Conlon | Aug 2006 | A1 |
20060183967 | Lechner | Aug 2006 | A1 |
20060189887 | Hassler, Jr. et al. | Aug 2006 | A1 |
20060189888 | Hassler, Jr. et al. | Aug 2006 | A1 |
20060189889 | Gertner | Aug 2006 | A1 |
20060194758 | Lebreton | Aug 2006 | A1 |
20060195139 | Gertner | Aug 2006 | A1 |
20060197412 | Rasmussen | Sep 2006 | A1 |
20060199997 | Hassler, Jr. et al. | Sep 2006 | A1 |
20060211912 | Dlugos et al. | Sep 2006 | A1 |
20060211913 | Dlugos et al. | Sep 2006 | A1 |
20060211914 | Hassler, Jr. et al. | Sep 2006 | A1 |
20060212051 | Snyder et al. | Sep 2006 | A1 |
20060212053 | Gertner | Sep 2006 | A1 |
20060235448 | Roslin et al. | Oct 2006 | A1 |
20060246137 | Hermitte et al. | Nov 2006 | A1 |
20060247721 | Maschino et al. | Nov 2006 | A1 |
20060247722 | Maschino et al. | Nov 2006 | A1 |
20060252982 | Hassler, Jr. | Nov 2006 | A1 |
20060252983 | Lembo et al. | Nov 2006 | A1 |
20060257488 | Hubbard | Nov 2006 | A1 |
20060264699 | Gertner | Nov 2006 | A1 |
20060276812 | Hill et al. | Dec 2006 | A1 |
20060293627 | Byrum et al. | Dec 2006 | A1 |
20070015954 | Dlugos | Jan 2007 | A1 |
20070015955 | Tsonton | Jan 2007 | A1 |
20070015956 | Crawford et al. | Jan 2007 | A1 |
20070016231 | Jambor et al. | Jan 2007 | A1 |
20070016262 | Gross et al. | Jan 2007 | A1 |
20070027356 | Ortiz | Feb 2007 | A1 |
20070027358 | Gertner et al. | Feb 2007 | A1 |
20070044655 | Fish | Mar 2007 | A1 |
20070077292 | Pinsky | Apr 2007 | A1 |
20070078476 | Hull, Sr. et al. | Apr 2007 | A1 |
20070125826 | Shelton | Jun 2007 | A1 |
20070156013 | Birk | Jul 2007 | A1 |
20070167672 | Dlugos et al. | Jul 2007 | A1 |
20070167982 | Gertner et al. | Jul 2007 | A1 |
20070173685 | Jambor et al. | Jul 2007 | A1 |
20070173888 | Gertner et al. | Jul 2007 | A1 |
20070179335 | Gertner et al. | Aug 2007 | A1 |
20070185373 | Tsonton | Aug 2007 | A1 |
20070185462 | Byrum | Aug 2007 | A1 |
20070213836 | Paganon | Sep 2007 | A1 |
20070218083 | Brooks | Sep 2007 | A1 |
20070232848 | Forsell | Oct 2007 | A1 |
20070232849 | Gertner | Oct 2007 | A1 |
20070233170 | Gertner | Oct 2007 | A1 |
20070235083 | Dlugos | Oct 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070250085 | Bachmann et al. | Oct 2007 | A1 |
20070250086 | Wiley et al. | Oct 2007 | A1 |
20070255335 | Herbert et al. | Nov 2007 | A1 |
20070255336 | Herbert et al. | Nov 2007 | A1 |
20070265598 | Karasik | Nov 2007 | A1 |
20070265645 | Birk et al. | Nov 2007 | A1 |
20070265646 | McCoy et al. | Nov 2007 | A1 |
20070293716 | Baker et al. | Dec 2007 | A1 |
20070298005 | Thibault | Dec 2007 | A1 |
20080009680 | Hassler, Jr. | Jan 2008 | A1 |
20080015406 | Dlugos et al. | Jan 2008 | A1 |
20080015501 | Gertner | Jan 2008 | A1 |
20080027269 | Gertner | Jan 2008 | A1 |
20080027469 | Bachmann | Jan 2008 | A1 |
20080071306 | Gertner | Mar 2008 | A1 |
20080097496 | Chang et al. | Apr 2008 | A1 |
20080108862 | Jordan et al. | May 2008 | A1 |
20080147002 | Gertner | Jun 2008 | A1 |
20080161717 | Gertner | Jul 2008 | A1 |
20080161875 | Stone | Jul 2008 | A1 |
20080167647 | Gertner | Jul 2008 | A1 |
20080167648 | Gertner | Jul 2008 | A1 |
20080172072 | Pool et al. | Jul 2008 | A1 |
20080188766 | Gertner | Aug 2008 | A1 |
20080195092 | Kim et al. | Aug 2008 | A1 |
20080208240 | Paz | Aug 2008 | A1 |
20080221598 | Dlugos et al. | Sep 2008 | A1 |
20080243071 | Quijano et al. | Oct 2008 | A1 |
20080249806 | Dlugos et al. | Oct 2008 | A1 |
20080250340 | Dlugos et al. | Oct 2008 | A1 |
20080250341 | Dlugos et al. | Oct 2008 | A1 |
20080255403 | Voegele et al. | Oct 2008 | A1 |
20080255414 | Voegele et al. | Oct 2008 | A1 |
20080255425 | Voegele et al. | Oct 2008 | A1 |
20080255459 | Voegele et al. | Oct 2008 | A1 |
20080255537 | Voegele et al. | Oct 2008 | A1 |
20080275294 | Gertner | Nov 2008 | A1 |
20080275295 | Gertner | Nov 2008 | A1 |
20080275484 | Gertner | Nov 2008 | A1 |
20080281347 | Gertner | Nov 2008 | A1 |
20080287969 | Tsonton et al. | Nov 2008 | A1 |
20080287974 | Widenhouse et al. | Nov 2008 | A1 |
20080287976 | Weaner et al. | Nov 2008 | A1 |
20080300618 | Gertner | Dec 2008 | A1 |
20080319435 | Rioux et al. | Dec 2008 | A1 |
20090054914 | Lechner | Feb 2009 | A1 |
20090062825 | Pool et al. | Mar 2009 | A1 |
20090062826 | Steffen | Mar 2009 | A1 |
20090082793 | Birk | Mar 2009 | A1 |
20090118572 | Lechner | May 2009 | A1 |
20090149874 | Ortiz et al. | Jun 2009 | A1 |
20090157106 | Marcotte et al. | Jun 2009 | A1 |
20090157107 | Kierath et al. | Jun 2009 | A1 |
20090157113 | Marcotte et al. | Jun 2009 | A1 |
20090171375 | Coe et al. | Jul 2009 | A1 |
20090171378 | Coe et al. | Jul 2009 | A1 |
20090171379 | Coe et al. | Jul 2009 | A1 |
20090187202 | Ortiz et al. | Jul 2009 | A1 |
20090192404 | Ortiz et al. | Jul 2009 | A1 |
20090192415 | Ortiz et al. | Jul 2009 | A1 |
20090192533 | Dlugos, Jr. et al. | Jul 2009 | A1 |
20090192534 | Ortiz et al. | Jul 2009 | A1 |
20090192541 | Ortiz et al. | Jul 2009 | A1 |
20090198261 | Schweikert | Aug 2009 | A1 |
20090202387 | Dlugos, Jr. et al. | Aug 2009 | A1 |
20090204131 | Ortiz et al. | Aug 2009 | A1 |
20090204132 | Ortiz et al. | Aug 2009 | A1 |
20090209995 | Byrum et al. | Aug 2009 | A1 |
20090216255 | Coe et al. | Aug 2009 | A1 |
20090220176 | Fusco | Sep 2009 | A1 |
20090222031 | Axelsson | Sep 2009 | A1 |
20090222065 | Dlugos, Jr. et al. | Sep 2009 | A1 |
20090228063 | Dlugos, Jr. et al. | Sep 2009 | A1 |
20090228072 | Coe et al. | Sep 2009 | A1 |
20090270904 | Birk et al. | Oct 2009 | A1 |
20090306462 | Lechner | Dec 2009 | A1 |
20100010291 | Birk et al. | Jan 2010 | A1 |
20100049224 | Vargas | Feb 2010 | A1 |
20100087843 | Bertolote et al. | Apr 2010 | A1 |
20100099945 | Birk et al. | Apr 2010 | A1 |
20100100079 | Berkcan | Apr 2010 | A1 |
20100145378 | Gertner | Jun 2010 | A1 |
20100152532 | Marcotte | Jun 2010 | A1 |
20100168508 | Gertner | Jul 2010 | A1 |
20100185049 | Birk et al. | Jul 2010 | A1 |
20100191265 | Lau et al. | Jul 2010 | A1 |
20100191271 | Lau et al. | Jul 2010 | A1 |
20100204647 | Gertner | Aug 2010 | A1 |
20100204723 | Gertner | Aug 2010 | A1 |
20100217071 | Ricol | Aug 2010 | A1 |
20100226988 | Lebreton | Sep 2010 | A1 |
20100228080 | Tavori et al. | Sep 2010 | A1 |
20100234682 | Gertner | Sep 2010 | A1 |
20100249803 | Griffiths | Sep 2010 | A1 |
20100280310 | Raven | Nov 2010 | A1 |
20100305397 | Birk et al. | Dec 2010 | A1 |
20100312046 | Lau et al. | Dec 2010 | A1 |
20100312147 | Gertner | Dec 2010 | A1 |
20100324358 | Birk et al. | Dec 2010 | A1 |
20100324359 | Birk | Dec 2010 | A1 |
20110201874 | Birk et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
949965 | Jun 1974 | CA |
1250382 | Apr 2000 | CN |
1367670 | Sep 2002 | CN |
4225524 | Feb 1994 | DE |
10020688 | Dec 2000 | DE |
0119596 | Sep 1984 | EP |
0230747 | Aug 1987 | EP |
0416250 | Mar 1991 | EP |
0611561 | Aug 1994 | EP |
0695558 | Feb 1996 | EP |
0876808 | Nov 1998 | EP |
1036545 | Sep 2000 | EP |
1072282 | Jan 2001 | EP |
1105073 | Jun 2001 | EP |
1396242 | Mar 2004 | EP |
1396243 | Mar 2004 | EP |
1491167 | Dec 2004 | EP |
1491168 | Dec 2004 | EP |
1529502 | May 2005 | EP |
1547549 | Jun 2005 | EP |
1574189 | Sep 2005 | EP |
1600183 | Nov 2005 | EP |
1602346 | Dec 2005 | EP |
1704833 | Sep 2006 | EP |
1719480 | Nov 2006 | EP |
1736123 | Dec 2006 | EP |
1736195 | Dec 2006 | EP |
1736202 | Dec 2006 | EP |
1743605 | Jan 2007 | EP |
1829504 | Sep 2007 | EP |
1829505 | Sep 2007 | EP |
1829506 | Sep 2007 | EP |
1967168 | Sep 2008 | EP |
1992315 | Nov 2008 | EP |
2074970 | Jul 2009 | EP |
2074971 | Jul 2009 | EP |
2074972 | Jul 2009 | EP |
2095796 | Sep 2009 | EP |
2095798 | Sep 2009 | EP |
2191796 | Jun 2010 | EP |
2688693 | Sep 1993 | FR |
2769491 | Apr 1999 | FR |
2783153 | Mar 2000 | FR |
2797181 | Feb 2001 | FR |
2799118 | Apr 2001 | FR |
2823663 | Oct 2002 | FR |
2921822 | Apr 2009 | FR |
1174814 | Dec 1969 | GB |
2090747 | Jul 1982 | GB |
57-171676 | Oct 1982 | JP |
2-019147 | Jan 1990 | JP |
2-132104 | Nov 1990 | JP |
11-244395 | Sep 1999 | JP |
2003-526410 | Sep 2003 | JP |
2005-131380 | May 2005 | JP |
2005-334658 | Dec 2005 | JP |
WO 8600079 | Jan 1986 | WO |
WO 8600912 | Feb 1986 | WO |
WO 8911701 | Nov 1989 | WO |
WO 9000369 | Jan 1990 | WO |
WO 9220349 | Nov 1992 | WO |
WO 9402517 | Feb 1994 | WO |
WO 9633751 | Jan 1996 | WO |
WO 9835639 | Aug 1998 | WO |
WO 9835640 | Aug 1998 | WO |
WO 0000108 | Jan 2000 | WO |
WO 0001428 | Jan 2000 | WO |
WO 0009047 | Feb 2000 | WO |
WO 0009049 | Feb 2000 | WO |
WO 0015158 | Mar 2000 | WO |
WO 0066196 | Nov 2000 | WO |
WO 0110359 | Feb 2001 | WO |
WO 0112078 | Feb 2001 | WO |
WO 0141671 | Jun 2001 | WO |
WO 0147435 | Jul 2001 | WO |
WO 0147575 | Jul 2001 | WO |
WO 0149245 | Jul 2001 | WO |
WO 0152777 | Jul 2001 | WO |
WO 0168007 | Sep 2001 | WO |
WO 0185071 | Nov 2001 | WO |
WO 0205753 | Jan 2002 | WO |
WO 0209792 | Feb 2002 | WO |
WO 0219953 | Mar 2002 | WO |
WO 0226317 | Apr 2002 | WO |
WO 0253093 | Jul 2002 | WO |
WO 02065948 | Aug 2002 | WO |
WO 02096326 | Dec 2002 | WO |
WO 03007782 | Jan 2003 | WO |
WO 03055420 | Jul 2003 | WO |
WO 03057092 | Jul 2003 | WO |
WO 03059215 | Jul 2003 | WO |
WO 03077191 | Sep 2003 | WO |
WO 03101352 | Dec 2003 | WO |
WO 03105732 | Dec 2003 | WO |
WO 2004014245 | Feb 2004 | WO |
WO 2004019671 | Mar 2004 | WO |
WO 2004108025 | Dec 2004 | WO |
WO 2004112563 | Dec 2004 | WO |
WO 2005007232 | Jan 2005 | WO |
WO 2005009305 | Feb 2005 | WO |
WO 2005067994 | Jul 2005 | WO |
WO 2005072195 | Aug 2005 | WO |
WO 2005087147 | Sep 2005 | WO |
WO 2005094447 | Oct 2005 | WO |
WO 2005112888 | Dec 2005 | WO |
WO 2006040647 | Apr 2006 | WO |
WO 2006049725 | May 2006 | WO |
WO 2006083885 | Aug 2006 | WO |
WO 2006108203 | Oct 2006 | WO |
WO 2007067206 | Jun 2007 | WO |
WO 2007081304 | Jul 2007 | WO |
WO 2007106727 | Sep 2007 | WO |
WO 2007114905 | Oct 2007 | WO |
WO 2007145638 | Dec 2007 | WO |
WO 2008063673 | May 2008 | WO |
WO 2008134755 | Nov 2008 | WO |
WO 2009050709 | Apr 2009 | WO |
WO 2009132127 | Oct 2009 | WO |
WO 2009136126 | Nov 2009 | WO |
WO 2010042493 | Apr 2010 | WO |
Entry |
---|
Brown et al; “Symmetrical Pouch Dilation After Laparoscopic Adjustable Gastric Banding: Incidence and Management”; Obesity Surgery; V. 18, pp. 1104-1108; 2008. |
Ceelen et al.; “Surgical Treatment of Severe Obesity With a Low-Pressure Adjustable Gastric Band: Experimental Data and Clinical Results in 625 Patients”; Annals of Surgery; V. 237, No. 1; pp. 10-16; 2003. |
Dixon et al.; “Pregnancy After Lap-Band Surgery: Management of the Band to Achieve Healthy Weight Outcomes”; Obesity Surgery; V. 11, pp. 59-65; 2001. |
Neary et al.; “Peptide YY(3-36) and Glucagon-Like Peptide-1(7-36) Inhibit Food Intake Additively”; Endocrinology; V.146; pp. 5120-5127; 2005. |
Padidela et al.; “Elevated basal and post-feed glucagon-like petide 1 (GLP-1) concentrations in the neonatel period”; European Journal of Endocrinology; v. 160; pp. 53-58; 2009. |
Shi et al.; “Sexually Dimorphic Responses to Fat Loss After Caloric Restriction or Surgical Lipectomy”; Am. J. Physiol. Endocrinol. Metab.; V. 293; E316-E326; 2007. |
Xanthakos et al.; “Bariatric Surgery for Extreme Adolescent Obesity: Indications, Outcomes, and Physiologic Effects on the Gut-Brain Axis”; Pathophysiology; V. 15; pp. 135-146; 2008. |
Acuna-Goycolea et al.; “Mechanism of Neuropeptide Y, Peptide YY, and Pancreatic Polypeptide Inhibition of Identified Green Fluorescent Protein-Expressing GABA Neurons in the Hypothalamic Neuroendocrine Acruate Nucleus”; The Journal of Neuroscience; V. 25(32); pp. 7406-7419; Aug. 10, 2005. |
Adrian et al.; “Mechanism of Pancreatic Polypeptide Release in Man.” The Lancet; pp. 161-163; Jan. 22, 1977. |
Anson; “Shape Memory Alloys—Medical Applications,” Source: Materials World, vol. 7, No. 12, pp. 745-747, Dec. 1999. |
Asakawa et al; “Antagonism of Ghrelin Receptor Reduces Food Intake and Body Weight Gain in Mice”; Gut.; V.52; pp. 947-952; 2003. |
Baggio et al. “Biology of Incretins: GLP-1 and GIP”; Gastroenrology; V. 132; pp. 2131-2157; 2007. |
Ballantyne; “Peptide YY(1-36) and Peptide YY(3-36): Part I. Distribution, Release, and Actions”; Obesity Surgery; V.16; pp. 651-658; 2006. |
Ballantyne; “Peptide YY(1-36) and Peptide YY(3-36): Part II. Changes after Gastrointestinal Surgery and Bariatric Surgery”; Obesity Surgery; V.16; pp. 795-803; 2006. |
Berne et al; “Physiology”; V. 5; pp. 55-57, 210, 428, 540, 554, 579, 584, 591; 2004. |
BioEnterics Corporation, an Inamed Company, BioEnterics Intragastric Balloon; Directions for Use Published Document, P/N 94200 Rev: B, pp. 1-56. |
BioEnterics Lap-Band Adjustable Gastric Banding System, Inamed Health, pub., pp. 1-115; Aug. 28, 2003. |
Boulant et al.; “Cholecystokinin in Transient Lower Oesophageal Sphincter Relaxation Due to Gastric Distension in Humans”; Gut.; V. 40; pp. 575-581; 1997. |
Bradjewin et al.; “Dose Ranging Study of the Effects of Cholecystokinin in Healthy Volunteers”; J. Psychiatr. Neurosci.; V. 16 (2); pp. 91-95; 1991. |
Burdyga et al.; “Cholecystokinin Regulates Expression of Y2 Receptors in Vagal Afferent Neurons Serving the Stomach”; The Journal of Neuroscience; V. 28; No. 45; pp. 11583-11592; Nov. 5, 2008. |
Chaptini et al.; “Neuroendocrine Regulation of Food Intake”; Current Opinion in Gastroenterology; V. 24; pp. 223-229; 2008. |
Chaudhri; “Can Gut Hormones Control Appetite and Prevent Obesity?” Diabetes Care; V. 31; Supp 2; pp. S284-S289; Feb. 2008. |
Cohen et al.; “Oxyntomodulin Suppresses Appetite and Reduces Food Intake in Humans”; J. Clin. Endocrinol. Metab.; V. 88; No. 10; pp. 4696-4701; 2003. |
Corno et al.; “A new implantable device for telemetric control of pulmonary blood flow”; New ideas; received Apr. 24, 2004; received in revised form Jul. 12, 2002; 10 pages. |
Corno et al.; “FlowWatchTM in clipped and inclipped position”; Interact Cardio Vase Thorac Surg 2002; 1:46-49; Copyright @ 2002 The European Asociation for Cardio-thoracic Surgery; 1 page. |
Cummings et al.; “Plasma Ghrelin Levels After Diet-Induced Weight Loss or Gastric Bypass Sugery”; N. Engl J. Med; V. 346, No. 21; pp. 1623-1630; May 23, 2002. |
Cummings; “Gastrointestinal Regulation of Foot Intake”; The Food Journal of Clinical Investigation; V. 117, N. 1; pp. 13-23; Jan. 2007. |
Dakin et al.; “Oxyntomodulin Inhibits Food Intake in the Rat”; Endocrinology; V. 142; No. 10; pp. 4244-4250; 2001. |
Dakin et al.; “Peripheral Oxyntomodulin Reduces Food Intake and Body Weight gain in Rats”; Endocrinology; V. 145; No. 6; pp. 2687-2695; Jun. 2004. |
Davison; “Activation of Vagal-Gastric Mechanoreceptors by Cholecystokinin”; Proc. West. Pharmocol. Soc.; V. 29; pp. 363-366; 1986. |
De Waele et al.; “Endoscopic Volume Adjustment of Intragastric Balloons for Intolerance”; Obesity Surgery; V. 11; pp. 223-224; 2001. |
De Waele et al.; “Intragastric Balloons for Preoperative Weight Reduction”; Obesity Surgery; V. 58; pp. 58-60; 2001. |
Desai et al.; “Molecular Weight of Heparin Using 13C Nuclear Magnetic Resonance Spectroscopy” Journal of Pharmaceutical Science, V. 84, I 2; 1995, Abstract only. |
Doldi et al.; “Intragastric Balloon: Another Option for Treatment of Obesity and Morbid Obesity”; Hepato-Gastroenterology; V. 51, N. 55; pp. 294-307; Jan.-Feb. 2004. |
Doldi et al.; “Treatment of Morbid Obesity with Intragastric Balloon in Association with Diet”; Obesity Surgery; V. 10, pp. 583-587; 2000. |
Doldi et al; “Intragastric Balloon in Obese Patients”; Obesity Surgery; V. 10, 578-581; 2000. |
Ekblad et al.; “Distribution of Pancreatic Peptide and Peptide-YY”; Peptides; V. 23; pp. 251-261; 2002. |
El Khoury et al.; “Variation in Postprandial Ghrelin Status Following Ingestion of High-Carbohydrate, High Fat, and High Protein Meals in Males”; Ann Nutr Metab; V. 50; pp. 260-269; 2006. |
Galloro et al; “Preliminary Endoscopic Technical Report of an New Silicone Intragastric Balloon in the Treatment of Morbid Obesity”; Obesity Surgery; V. 9, pp. 68-71; 1999. |
GinShiCel MH Hydroxy Propyl Methyl Cellulose, Web Page http://www.ginshicel.cn/MHPC.html, Nov. 12, 2008. |
Girard; “The incretins: From the concept to their use in the treatment of type 2 diabetes. Part A: Incretins: Concept and physiological functions”; Diabetes and Metabolism; V. 34; pp. 550-559; 2008. |
Greenough et al.; “Untangling the Effects of Hunger, Anxiety, and Nausea on Energy Intake During Intravenous Cholecystokinin Octapeptide (CCK-8) Infusion”; Physiology & Behavior; V. 65, No. 2; pp. 303-310; 1998. |
Grise et al.; “Peptide YY Inhibits Growth of Human Breast Cancer in Vitro and in Vivo”; Journal of Surgical Research; V. 82; pp. 151-155; 1999. |
Grundy; “Signaling the State of the Digestive Tract”; Autonomic Neuroscience: Basic and Clinical; V. 125; pp. 76-80; 2006. |
Grundy; “Vagal Control of Gastrointestinal Function”; Bailliere's Clinical Gastroenterology; V. 2; No. 1; pp. 23-43; 1988. |
Hallden et al. “Evidence for a Role of the Gut Hormone PYY in the Regulation of Intestinal Fatty Acid Binding Protein Transcripts in Differentiated Subpopulations of Intestinal Epithelial Cell Hybrids”; Journal of Biological Chemistry; V. 272 (19); pp. 125916-126000; 1997. |
Hameed et al.; “Gut hormones and appetite control.” Oral Diseases; V. 15; pp. 18-26; 2009. |
Hassan et al.; “Effects of Adjuvants to Local Anesthetics on Their Duration III Experimental Studies of Hyaluronic Acid” Abstract Pub Med [Acta Anesthesiol Scand.; 29 (4): 384-8], 1 page; May 1985. |
Hodson et al.; “Management of Obesity with the New Intragastric Balloon”; Obesity Surgery; V. 11, pp. 327-329, 2001. |
Holzer; “Gastrointestinal Afferents as Targets of Novel Drugs for the Treatment of Functional Bowel Disorders and Visceral Pain”; European Journal of Pharmacology; V. 429; pp. 177-193; 2001. |
Houpt; “Gastrointestinal Factors in Hunger and Satiety.” Neuroscience and Behavioral Reviews; V. 6; pp. 145-164; 1982. |
Jones; “Molecular, pharmacological, and clinical aspects of liraglutide, a oncedaily human GLP-1 analogue”; Molecular and Cellular Endocrinology; V. 297; pp. 137-140; 2009. |
Kerem et al.; “Exogenous Ghrelin Enhances Endocrine and Exocrine Regeneration in Pancreatectomized Rats”; J Gastrointest Surg.; V.13; pp. 775-783, 2009. |
Kesty et al.; “Hormone-based therapies in the regulation of fuel metabolism and body weight”; Expert Opin. Biol. Ther.; V. 8; No. 11; pp. 1733-1747; 2008. |
Kissileff et al.; “Peptides that Regulate Food Intake: Cholecystokinin and Stomach Distension Combine to Reduce Food Intake in Humans”; Am. J. Physiol. Regul. Integr. Comp. Physiol; V. 285; pp. 992-998; 2003. |
Kojima et al.; “A role for pancreatic polypeptide in feeding and body weight regulation.” Peptides; V. 28; pp. 459-463; 2007. |
Kulicke et al. “Visco-Elastic Propeerties of Sodium Hyaluronate Solutions,” American Institute of Physics; pp. 585-587; 2008. |
Lap-Band AP System Adjustable Gastric Banding System With OmniformTM Design: Directions for Use (DFU); Allergan, 16 pages; 2009. |
Le Roux et al.; “Gut Hormone Profiles Following Bariatric Surgery Favor an Anorectic State, Facilitate Weight Loss, and Improve Metabolic Parameters”; Ann. Surg; V. 243; No. 1; pp. 108-114; Jan. 2006. |
Liu et al.; “Adjuvant Hormonal Treatment With Peptide YY or Its Analog Decreases Human Pancreatic Carcinoma Growth”; The American Journal of Surgery; V. 171; pp. 192-196; Jan. 1996. |
Mathus-Vliegen et al. “Intragastric Balloons for Morbid Obesity: Results, Patient Tolerance and Balloon Life Span”; Br. J. Surg.; V. 77, No. 7, pp. 76-79; Jan. 1990. |
Mathus-Vliegen et al. “Treating Morbid and Supermorbid Obesity” International Journal of Gastroenterology; V. 5, No. 1, pp. 9-12; 2000. |
Medeiros et al.; “Processing and metabolism of Peptide-YY: Pivotal roles of Dipeptidase-IV, Aminopeptidase-P, and Endopeptidase-24.11”; Endocrinology; V. 134, No. 5; pp. 2088-2094; 1994. |
Naslund et al. “Pranidal subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects”; British Journal of Nutrition; V. 91; pp. 439-446; 2004. |
Potier et al.; “Protein, amino acids, and the control of food intake”; Current Opinion in Clinical Nutrition and Metabolic Care; V. 12; pp. 54-58; 2009. |
Qjan et al.; “Pulmonary delivery of a GLP-1 receptor agonist, BMS-686117”; International Journal of Pharmaceutics; V. 366; pp. 218-220; 2008. |
Rang et al.; “Pharmacology”; V. 5; pp. 203, 397, 402, 524; 2004. |
Raybould et al.; “Integration of Postprandial Gastrointestinal Tract: Role of CCK and Sensory Pathways”; Annals of New York Academy of Science; pp. 143-156; 1994. |
Renshaw et al. “Peptide YY: A Potential Therapy for Obesity”; Current Drug Targets; V. 6; pp. 171-179; 2005. |
Sannino et al.; “Crosslinking of Cellulose Derivatives and Hyaluronic Acid with Water-Soluble Carbodiimide” Polymer 46; pp. 11206-11212; 2005. |
Shechter et al.; “Reversible PEGylation of peptide YY3-36 prolongs its inhibition of food intake in mice”; FEBS Letters; V. 579; pp. 2439-2444; 2005. |
Silver et al.; “Physical Properties of Hyaluronic Acid and Hydroxypropylmethylcellulose in Solution: Evaluation of Coating Abillity” Journal of Applied Biomaterials, V. 5; pp. 89-98, 1994. |
Small et al.; “Gut hormones and the control of appetite”; Trends in Endocrinology and Metabolism; V. 15. No. 6; pp. 259-263; Aug. 2004. |
Stanley et al.; “Gastrointestinal Satiety Signals III. Glucagon-like Peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide”; Am. J. Physiol Gastrointest Liver Physiol; V. 286; pp. 693-697; 2004. |
Tezel; “The Science of Hyaluronic Acid Dermal Fillers,” Journal of Cosmetic and Laser Therapy (2008) 10: pp. 35-42. |
Tolhurst et al.; “Nutritional regulation of glucagon-like peptidel secretion”; J. Physiol.; V. 587, No. 1; pp. 27-32; 2009. |
Totte et al.; “Weight Reduction by Means of Intragastric Device: Experience with the Bioenterics Intragastric Balloon”; Obesity Surgery; V. 11, pp. 519-523; 2001. |
Tough et al.; “Y4 Receptors Mediate the Inhibitory Responses of Pancreatic Polypeptide in Human and Mouse Colon Mucosa”; The Journal of Pharmacology and Experimental Therapeutics; V. 319, No. 1; pp. 20-30; 2006. |
Tseng et al; “Peptide YY and cancer: Current findings and potential clinical applications”; Peptides; V. 23; pp. 389-395; 2002. |
Valassi et al.; “Neuroendocrine control of food intake”; Nut. Metab. & Cariovasc. Disease; V. 18; pp. 158-168; 2008. |
Van Der Lely et al.; “Biological, Physiological, Pathophysiological Aspects of Ghrelin”; Endocrine Reviews; V. 25, No. 3; pp. 426-457; 2004. |
Verdich et al. “A Meta-Analysis of the Effect of Glucagon-Like-Peptide-1 (7-36) Amide on ad Libitum Energy Intake in Humans”; J. Clin. Endocrinal. Metab. V. 86; pp. 4382-4389; Sep. 2001. |
Wahlen et al.; “The BioEnterics Intragastric Balloon (BIB): How to Use It”; Obesity Surgery; V. 11; pp. 524-527; 2001. |
Wang et al.; “Plasma Ghrelin Modulation in Gastric Band Operation and Sleeve Gastrectomy”; Obes. Surg.; pp. 357-362; 2008. |
Weiner et al.; “Preparation of Extremely Obese Patients for Laparoscopic Gastric Banding by Gastric Balloon Therapy”; Obesity Surgery; V. 9, pp. 261-264, 1999. |
Wynne et al.; “Subcutaneous Oxyntomodulin Reduces Body Weight in Overweight and Obese Subjects: A Double-Blind Randomized, Controlled Trial”; Diabetes; V. 54; pp. 2390-2395; 2005. |
Yuzuriha et al.; “Gastrointestinal Hormones (anorexigenic peptide YY and orexigenic ghrelin) influence neural tube development”; FASEB J.; V. 21; pp. 2108-2112; 2007. |
Number | Date | Country | |
---|---|---|---|
20120215062 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12041547 | Mar 2008 | US |
Child | 13040204 | US | |
Parent | 10524864 | US | |
Child | 12041547 | US |