Remotely adjustable gastric banding system

Information

  • Patent Grant
  • 9050165
  • Patent Number
    9,050,165
  • Date Filed
    Wednesday, May 29, 2013
    11 years ago
  • Date Issued
    Tuesday, June 9, 2015
    9 years ago
Abstract
A fluid reservoir for use in a remotely adjustable gastric banding system comprises a housing and a flexible reservoir pouch positioned within the housing. The flexible reservoir pouch is coupled to an inflatable portion of a gastric band via flexible tubing. A pump coupled to the flexible reservoir pouch facilitates filling and draining the inflatable portion of the gastric band. The pump may be located within or outside of the housing. A receiving coil may be coupled to the housing, and the receiving coil forms a loop around the housing. The receiving coil receives radio frequency signals to drive the pump. A circuit board may be disposed in the housing for driving the pump to move the fluid between the flexible reservoir pouch and the inflatable portion of the gastric band. A portion of the circuit board may be a flexible circuit board to allow the housing to flex.
Description
FIELD

The present invention generally relates to medical systems and apparatus and uses thereof for treating obesity and/or obesity-related diseases, and more specifically, relates to gastric banding systems that are remotely adjustable.


BACKGROUND

Adjustable gastric banding apparatus have provided an effective and substantially less invasive alternative to gastric bypass surgery and other conventional surgical weight loss procedures. Despite the positive outcomes of invasive weight loss procedures, such as gastric bypass surgery, it has been recognized that sustained weight loss can be achieved through a laparoscopically-placed gastric band, for example, the LAP-BAND® (Allergan, Inc., Irvine, Calif.) gastric band or the LAP-BAND AP® (Allergan, Inc., Irvine, Calif.) gastric band. Generally, gastric bands are placed about the cardia, or upper portion, of a patient's stomach forming a stoma that restricts the food's passage into a lower portion of the stomach. When the stoma is of an appropriate size that is restricted by a gastric band, the food is held in the upper portion of the stomach provides a feeling of satiety or fullness that discourages overeating. Unlike gastric bypass procedures, gastric band apparatus are reversible and require no permanent modification to the gastrointestinal tract.


Over time, a stoma created by a gastric band may need adjustment in order to maintain an appropriate size, which is neither too restrictive nor too passive. Accordingly, prior art gastric band systems provide a subcutaneous fluid access port connected to an expandable or inflatable portion of the gastric band. By adding fluid to or removing fluid from the inflatable portion by means of a hypodermic needle inserted into the access port, the effective size of the gastric band can be adjusted to provide a tighter or looser constriction. Naturally, it would be desirable to allow for non-invasive adjustment of gastric band constriction, for example, without the use of a hypodermic needle.


A remotely adjustable gastric band is a medical device which allows a healthcare worker to adjust a gastric band without utilizing hypodermic needles to connect to an implanted access port. A handheld controller may be used to send radio frequency waves for powering and communicating with the implanted device. The implanted device can fill or drain the gastric band as requested by the healthcare worker via the handheld controller.


Birk, et al., U.S. Patent Pub. No. 2007/0265645, and Birk, U.S. Patent Pub. No. 2007/0156013, which are commonly-assigned and co-pending with the present application, are incorporated herein in their entirety by this specific reference. Both of these applications disclose certain approaches to implantable pumping systems that may be relevant.


Some versions of remotely adjustable gastric band systems may include a receiving coil for power induction to drive the pump. However, the location and/or orientation of the receiving coil may not provide desired power to the pump and/or other system components. Furthermore, the presence of metallic objects near the receiving coil may adversely affect the power provided to the system.


Additionally, some attempts have been made to utilize a remotely driven pump to inflate an inflatable portion of a gastric band. For example, Hassler, Jr., et al., U.S. Patent Pub. Nos. 2006/0252982 and 2005/0288739; Hassler, Jr., U.S. Pat. No. 7,390,294, and U.S. Patent Pub. Nos. 2005/0267406 and 2005/0267500; and Jordan, et al., U.S. Patent Pub. No. 2008/0108862 generally disclose remote adjustment of a gastric band. However, the location and/or position of the induction coils in these systems may not provide the desired energy for the system.


Thus, there continues to be a need for more effective remotely adjustable gastric banding systems, particularly for systems that have more available power for driving the implantable pump and/or other system components. Further, there is a need for remotely adjustable gastric banding systems that have a more effective electric coil for receiving transmitted energy.


SUMMARY

Generally described herein are remotely adjustable and powered gastric banding systems. The apparatus and systems described herein aid in facilitating obesity control and/or treating obesity-related diseases while being non-invasive once implanted.


In an embodiment, a fluid reservoir for use in the remotely adjustable gastric banding system comprises a housing and a flexible reservoir pouch positioned within the housing. The flexible reservoir pouch is coupled to an inflatable portion of a gastric band via flexible tubing. A pump coupled to the flexible reservoir pouch facilitates filling and draining of the inflatable portion of the gastric band.


In another embodiment, a receiving coil may be coupled to the housing, and the receiving coil forms a loop around the housing. For example, the receiving coil may be disposed in a coil channel along the periphery of the housing. The receiving coil receives radio frequency signals from a remote transmitter to drive the pump coupled to the flexible reservoir pouch. Certain embodiments may include two receiving coils disposed along the periphery of the housing to facilitate enhanced energy reception by the coils.


According to another embodiment, the pump may be disposed in the housing and coupled to the flexible reservoir pouch via a valve. Some embodiments include a plurality of pumps, each coupled to the flexible reservoir pouch. The pumps move a fluid in the flexible reservoir pouch between the flexible reservoir pouch and the inflatable portion of the gastric band.


A circuit board may also be disposed in the housing for driving the pump to move the fluid between the flexible reservoir pouch and the inflatable portion of the gastric band. At least a portion of the circuit board may be a flexible circuit board to allow the housing to flex.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B illustrate a location of a gastric banding system within a patient's body according to an embodiment of the present invention.



FIG. 2A illustrates a sectional view of a fluid reservoir with a receiving coil according to an embodiment of the present invention.



FIG. 2B illustrates another sectional view of a fluid reservoir with a receiving coil according to an embodiment of the present invention.



FIG. 2C illustrates a sectional view of a fluid reservoir with two receiving coils according to an embodiment of the present invention.



FIG. 3 illustrates a center tap circuit for adding energy received through two receiving coils according to an embodiment of the present invention.



FIG. 4A illustrates a sectional view of a fluid reservoir with pumps and a circuit board according to an embodiment of the present invention.



FIG. 4B illustrates another sectional view of a fluid reservoir with pumps and a circuit board according to an embodiment of the present invention.





DETAILED DESCRIPTION

The present invention generally provides remotely adjustable gastric banding systems, for example, for treatment of obesity and obesity related conditions, as well as systems for controlling inflation and deflation of gastric banding systems.


A remotely adjustable gastric band is a medical device which allows a healthcare worker to adjust a gastric band without utilizing hypodermic needles to connect to an implanted access port. An external, handheld controller can be used to send radio frequency signals for powering and communicating with the implanted device. The implanted device can fill or drain the gastric band as requested by the healthcare worker via the handheld controller. The handheld controller may be a remote device configured to produce a telemetric signal that controls the various components of the gastric banding system.


The filling and draining of the band is accomplished by a set of fluidic elements including pumps, valves, and sensors which monitor and/or move fluid between the gastric band and a reservoir. In accordance with various embodiments, different numbers, types, and orientations of the fluidic elements may be utilized to obtain the desired results. Any and/or all of these various components may be configured to be controlled by a remote transmitter, such as a handheld controller.


Turning now to FIGS. 1A-1B, in accordance with an embodiment, a gastric banding system 100 includes a gastric band 105, a reservoir unit 108, an access port 114, and a receiving coil 116. The flexible tubing 106 connects the gastric band 105 and the access port 114 to the reservoir unit 108. Each of the components of the system 100 is implantable in a patient using conventional surgical techniques. The reservoir unit 108 and the coil unit 116 may be used instead of or in addition to the conventional access port 114. In various embodiments, as will be discussed further below, the coil unit 116 may be incorporated into other components of the gastric banding system 100.


The reservoir unit 108 may move precisely metered volumes of fluid (e.g., saline, a drug, and/or combinations thereof) from the reservoir unit 108 through the flexible tubing 106 into the gastric band 105. The reservoir unit 108 may comprise a compressible reservoir, such as an elastic polymer, a balloon, a rubber container, a silicone container, a collapsible container, a non-elastomeric container, a bellows, and combinations thereof that are configured to contain the fluid. The gastric banding system 100 may include various pumps, motors, and the like that are configured to facilitate filling or draining the gastric band 105 by moving fluid between the reservoir unit 108 and the gastric band 105. The various pumps, motors, and the like may be separate components of the system 100, or they may be incorporated into existing components. For example, the reservoir unit 108 may comprise pumps, motors, and the like.


Moving the fluid into the gastric band 105 causes inflation of at least one bladder, or inflatable member of the gastric band 105, and constricts around the cardia, or upper portion of the stomach, forming a stoma that restricts the passage of food into a lower portion of the stomach. This stoma may provide a patient with a sensation of satiety or fullness that discourages overeating. In contrast, moving the fluid out of at least one inflatable member of the gastric band 105 contracts the pressure around the cardia and allows a stoma to be at least partially released and regains the patient's hunger sensation.


The receiving coil 116 receives radio frequency signals from an external/remote handheld controller or transmitter to control operation of the system 100. For example, the receiving coil 116 receives radio frequency energy to provide power to various system components (e.g., a pump, a motor, a circuit board, and the like). As noted above, and as will be discussed further below, the receiving coil 116 may be located in or near other components of the gastric banding system 100, such as in or near the reservoir unit 108 or the access port 114.


Although “transmitter” may be used herein, it should be understood that the remote transmitter may also be a wireless receiver and/or transceiver operable to take readings from the system 100 to determine the amount of fluid entering and/or exiting the gastric band 105, and/or to send or receive other types of information associated with the gastric banding system 100.


In accordance with various embodiments, the gastric banding system 100 allows for a remotely controlled adjustment without needles, non-invasively, by using the remote transmitter. A conventional access port 114 may be included as part of system 100 in order to provide alternate filling and draining capabilities, for example, to provide a fail-safe alternative in case the non-invasive functionality (e.g., motor, electronics, driving mechanism) becomes inoperative and/or ineffective. The access port 114 may be used to extract fluid from the system in case of an emergency or as a safety measure. However, non-invasively filling and draining the gastric band 105 using the reservoir unit 108 represents advantages over gastric banding systems that only use standard access ports. The access port 114 may further be used to prime the system with a desired amount of fluid upon implantation.


When compared to conventional gastric banding systems having standard access ports which exclusively require syringe access, the presently described systems and apparatus offer several benefits. First, for conventional access ports located under a thick layer of fatty tissue, which is generally the case as the devices are typically used to treat obesity, the access port can be difficult to locate. The present systems reduce or eliminate the need for port location as the use of the remote transmitter removes the necessity of adjustment using a syringe.


In various embodiments, the access port 114 may be incorporated into other system components in order to provide for backup and/or emergency filling and draining of the gastric band (e.g., when the remote filling and draining functionalities are ineffective or unresponsive). For example, an implantable pump may incorporate the access port 114 and may be implanted at a location similar to where the access port 114 may be implanted. Such an implantable pump may be referred to as a gastric restrictive implantable pump. The implantable pump may further include fluidics (e.g., pumps and valves) and associated electronics. In some embodiments, the receiving coil 116 for power induction may be included within the implantable pump housing. However, the size of the implantable pump housing, the depth of the implantable pump (e.g., up to four or more inches), and the presence of metal within the housing may affect the ability to achieve specific power requirements.


According to various embodiments, components of the gastric banding system 100 may be placed in their respective positions within a patient 101 using common surgical techniques. The surgical techniques may be similar to those used in the placement of conventional gastric banding systems. For example, the gastric band 105 may be placed around the stomach using laparoscopic techniques, as known to those of skill in the art.


Like a conventional access port, various components of the gastric banding system 100 may be sutured onto the rectus muscle sheath 102 or any other conveniently accessible muscle. For example, the access port 114 and/or the reservoir unit 108 may be sutured to the rectus muscle sheath 102. The rectus muscle sheath 102 provides a secure surface on which to attach the access port 114 under a layer of fat 103 that separates the patient's skin 104 from the muscle 102.


The receiving coil unit 116 may be located near the sternum of the patient 101, and a wire 117 may electronically couple the receiving coil unit 116 to the reservoir unit 108. In an embodiment, the reservoir unit 108 is located in the peritoneal cavity of the patient 101. In other embodiments, the components of the system 100 may be positioned in other locations in the patient 101 to facilitate filling or draining of the gastric band 105. For example, in an embodiment, the access port 114 may be incorporated into the reservoir unit 108, such that the reservoir unit 108 may be implanted on the rectus muscle sheath.


Turning to FIGS. 2A-2C, in various embodiments, the reservoir unit 108 comprises a housing 209 that is generally and/or substantially cylindrical in shape. Other shapes may be used without departing from the scope of the present invention. The housing 209 may be flexible, semi-flexible, semi-rigid, and/or rigid. A reservoir, such as a flexible reservoir pouch 210 is disposed in the housing 209. The flexible reservoir pouch 210 may be a compressible pouch, an elastic polymer, a balloon, a rubber container, a silicon container, and/or combinations thereof. Further, the flexible reservoir pouch 210 may be formed in the shape of a donut, a circle, an ellipse, a rectangle, and combinations thereof.


In an embodiment, the coil 116 may be implemented at the level of the reservoir unit 108, for example, by winding the coil 116 around the reservoir unit 108. The housing 209 of the reservoir unit 108 may comprise a coil channel 272 that receives the coil 116 and orients the coil 116 in a loop around the reservoir unit 108. The coil channel 272 may extend along the sides of the housing 209, extend parallel to a central axis of the housing 209, and/or extend around/along the periphery of the housing 209.


In various embodiments, the coil 116 is wound around the periphery of the reservoir unit 108 so as to be near the surface of the housing 209. In such a configuration, less of the material of the housing 209 would interfere with the induction between the coil 116 and the external transmitter. Further, locating the coil 116 near the periphery of the housing 209 would place the coil 116 nearer the transmitter to increase the power made available to the system 100.


Where the coil 116 forms a single loop around the reservoir unit 108, more power will be induced into the system 100 when the coil 116 is parallel to the skin surface 104 of the patient 101, compared to the coil 116 being perpendicular to the skin surface 104. In an embodiment, the reservoir unit 108 may be sutured in place to properly orient the coil 116 with respect to the skin surface 104, for example, so that the loop formed by the coil 116 is substantially parallel to the skin surface 104.


Other embodiments account for the situation where the coil 116 may be perpendicular to the skin surface 104. For example, with particular reference to FIG. 2C, and in accordance with an embodiment, the coil 116 may form one loop around the housing 209 through the coil channels 272, and a second coil 218 may form a second loop around the housing 209 and through coil channels 273. The coils 116 and 218 may be substantially perpendicular to each other, so that if one coil is oriented perpendicularly with respect to the skin surface 104, the other coil would be substantially parallel to the skin surface 104, allowing the parallel coil to pick up the RF energy from the transmitter.


In other embodiments, both of the coils 116 and 218 may pick up RF energy from the transmitter, for example, where neither of the coils 116 and 218 are perpendicular to the skin surface 104. As such, the energy picked up from both of the coils 116 and 218 would need to be added.


With reference to FIG. 3, and in accordance with an embodiment, the energy from the coils 116 and 218 may be added through a circuit, such as a center tap 375. A resistor (R1) 379 and a capacitor (C1) 378 may represent the load of the system 100. A rectifying diode 376 is coupled to the coil 116, and a rectifying diode 377 is coupled to the second coil 218. The rectifying diodes 376 and 377 restrict the flow of current from the coils 116 and 218 to one direction into the capacitor 378 and the resistor 379. In various embodiments, depending on the orientation of the coils 116 and 218, the center tap 375 may result in half-wave rectification. It should be understood that other circuits and/or components may be utilized to facilitate transferring inducted energy from the coils 116 and 218 to the components of the system 100 that utilize the energy, and that such other circuits and/or components are within the scope of the present invention.


In accordance with various embodiments, circuitry, such as the center tap circuit 375 may be located in or near the reservoir unit 108. In other embodiments, the circuitry may be located in or near other components of the system 100, such as in or near the access port 114.


Where the coils 116 and 218 are looped around the reservoir unit 108, in an embodiment, tuning capacitors may also be located in or near the reservoir unit 108. The tuning capacitors may facilitate adjusting the resonant frequency of the system, and locating the tuning capacitors closer to the coils 116 and 218 advantageously results in proper adjustment of the resonant frequency. For example, locating the tuning capacitors further away from the coils 116 and 218 may result in greater parasitic capacitance.


Further, in accordance with various embodiments, it may be desirable to reduce the distance between the skin surface 104 and the coils 116 and 218 which are looped around the reservoir unit 108. For example, the RF coupling between the transmitter and the coils 116 and 218 is inversely proportional to the distance between the coils 116 and 218 and the transmitter by a power of approximately 3. In other words, the closer the coils 116 and 218 are to the skin surface 104, the more RF energy may be received by the coils 116 and 218, resulting in more power for the system 100. Therefore, in various embodiments, the coils 116 and 218 are advantageously located near the skin surface 104.


Configurations of the system 100 according to embodiments of the present invention remedy deficiencies in prior art systems where the prior induction coils may be located in a manner that reception by the coils is poor. On the other hand, embodiments of the present invention increase energy reception by the coils 116 and 218 due to the advantageous location and configuration of the coils 116 and 218.


As noted above, in various embodiments, a pump may be located in or near the access port 114. In other embodiments, and with reference to FIGS. 4A-4B, a pump or pumps 481 may be located within the reservoir unit 108. Further, other components of the system 100 may be located within or near the reservoir unit 108 to facilitate simpler implantation of the system 100. Where other components are contained within the reservoir unit 108, the reservoir housing 209 may be semi-flexible, semi-rigid, and/or rigid. In various embodiments, currently existing access ports may be coupled to the reservoir unit 108 resulting in simpler and less expensive incorporation of the reservoir unit 108 into existing gastric banding systems.


In an embodiment, where the pumps 481 are located within the reservoir unit 108, the coil 116 may also be located within or around the reservoir unit 108, as discussed above. However, as illustrated in FIG. 1A, the coil 116 may be located near the sternum to facilitate increased power inducted through the coil 116. Although the pumps 481 may be described herein as being located within the reservoir unit 108, it should also be understood that various embodiments of the invention include systems 100 where the reservoir unit 108, the pumps 481, and/or other components may be located in or near the access port 114 to facilitate simpler implantation of the system 100.


With continued reference to FIGS. 4A-4B, various embodiments of the present invention include a pump or pumps 481 disposed in the housing 209 of the reservoir unit 108. The valves 482 couple the pumps 481 to the flexible reservoir pouch 210. The pumps 481 are also coupled to the tubing 106 to facilitate moving fluid between the flexible reservoir pouch 210 and the inflatable portion of the gastric band 105. The pumps 481 are coupled to a circuit board 483, such as a flexible circuit board, which drives the pumps 481. In an embodiment, the flexible reservoir pouch 210 comprises a flaccid reservoir on top of fluidic and electronic elements such as the pumps 481, the valves 482, and the circuit board 483. The flexible reservoir pouch 210 adds flexibility to the reservoir unit 108, for example, in the cross-sectional plane.


The circuit board 483 may include various circuits for driving the gastric banding system 100. For example, the circuit board 483 may include the center tap circuit 375 for adding the signals received through the coils 116 and 218.


The pumps 481 operate on the fluid in the flexible reservoir pouch 210 to facilitate moving the fluid between the flexible reservoir pouch 210 and the inflatable portion of the gastric band 105. In an embodiment, the pumps 481 comprise piezoelectric pumps. Further in an embodiment, each pump 481 may comprise two or more piezoelectric actuators to increase pumping capability without adding additional pumps. For example, in an embodiment, six piezoelectric actuators may be utilized to provide the desired pumping capability, but these six actuators may be included in only three pumps 481 which allows for a reduced amount of space needed in the housing 209 for the pumps 481. In other embodiments, more or fewer pumps 481 or piezoelectric actuators may be utilized depending on the designed pumping capacity. Additionally, other types of pumps may be utilized without departing from the scope of the present invention.


In various embodiments, the circuit board 483 may comprise a flexible circuit board. The entire circuit board 483 may be a flexible circuit board, or only portions of the circuit board 483 may comprise a flexible circuit board. In an embodiment, the center of the circuit board 483 is a flexible circuit board to allow the reservoir unit 108 to flex in the middle of the unit 108.


As noted above, the coil 116 may be looped around the reservoir unit 108, or the coil 116 may be located near the sternum of the patient 101, or in another advantageously determined location. Locating the coil 116 around the periphery of the reservoir unit 108 may allow the coil 116 to have a larger area for increased power transfer. However, locating the coil 116 near the sternum may allow the coil 116 to be nearer the skin surface 104 to also allow for increased power transfer. Thus, depending on the patient 101 and/or other variables, some embodiments comprise the coil 116 near the sternum, and other embodiments comprise the coil 116 near the reservoir unit 108. Locating the coil 116 near the reservoir unit 108 as opposed to near the access port 114 reduces the amount of metallic elements near the coil 116, which in turn increases the amount of RF energy available to be absorbed by the coil 116. Locating the coil 116 near the reservoir unit 108 also reduces the length of the wiring utilized to couple the coil 116 to the pumps 481, thereby advantageously reducing the possibility that these wires will fail.


Various embodiments of the present invention provide for modular design of gastric banding system 100. For example, the reservoir unit 108 may contain components that allow a remotely adjustable gastric banding system to be utilized in connection with access ports that are currently used in existing gastric banding systems. Thus, a physician may have the option of implanting an existing system or a system 100 according to embodiments of the present invention depending on the circumstances of a particular implantation procedure.


Unless otherwise indicated, all numbers expressing quantities of ingredients, volumes of fluids, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.


The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.


Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.


Certain embodiments of this invention are described herein, including the best mode known to the inventor for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventor intends for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


Furthermore, certain references have been made to patents and printed publications throughout this specification. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.


Specific embodiments disclosed herein may be further limited in the claims using “consisting of” and/or “consisting essentially of” language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.


In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

Claims
  • 1. A fluid reservoir for connecting to a remotely adjustable gastric banding system that is implantable in a patient for the treatment of obesity, the fluid reservoir comprising: a housing defining separately enclosed first and second coil channels;a flexible reservoir pouch positioned within the housing and coupled to an inflatable portion of a gastric band via tubing, the flexible reservoir pouch for storing a fluid for filling and draining the inflatable portion of the gastric band;a first receiving coil coupled to the housing and extending within the first coil channel, wherein the first receiving coil forms a first loop around the housing, and wherein the first receiving coil receives radio frequency signals from a remote transmitter to drive a pump in the remotely adjustable gastric banding system; anda second receiving coil coupled to the housing and extending within the second coil channel, wherein the second receiving coil forms a second loop around the housing.
  • 2. The fluid reservoir of claim 1, wherein the housing is substantially cylindrical.
  • 3. The fluid reservoir of claim 1, wherein the housing is at least one of flexible, semi-flexible, rigid, or semi-rigid.
  • 4. The fluid reservoir of claim 1, wherein the housing has sides and defines a central axis, and the first coil channel extends along the sides of the housing, substantially parallel to the central axis of the housing.
  • 5. The fluid reservoir of claim 1, wherein the first loop formed by the first receiving coil defines a plane, and when the fluid reservoir is in an implanted condition, the plane is oriented substantially parallel to an overlying skin surface of the patient.
  • 6. The fluid reservoir of claim 5, wherein the housing is adapted to be sutured to a muscle of a patient to facilitate maintaining the loop of the first receiving coil substantially parallel to the overlying skin surface.
  • 7. The fluid reservoir of claim 1, wherein the second receiving coil forms a second loop around the housing.
  • 8. The fluid reservoir of claim 7, wherein the first loop formed by the first receiving coil is substantially perpendicular to the second loop formed by the second receiving coil.
  • 9. The fluid reservoir of claim 8, further comprising a center tap circuit for adding the radio frequency signals received through the first receiving coil and the second receiving coil when both the first receiving coil and the second receiving coil receive the radio frequency signals.
  • 10. The fluid reservoir of claim 9, wherein the center tap circuit comprises a first rectifying diode coupled between the first receiving coil and a load so that current from the first receiving coil is restricted to one direction.
  • 11. The fluid reservoir of claim 10, wherein the center tap circuit comprises a second rectifying diode coupled between the second receiving coil and the load.
  • 12. The fluid reservoir of claim 1, further comprising a pump disposed within the housing to move fluid between the flexible reservoir pouch and the inflatable portion of the gastric band, wherein the pump receives energy from the radio frequency signals received through the first receiving coil.
  • 13. The fluid reservoir of claim 12, further comprising a circuit board for driving the pump.
  • 14. The fluid reservoir of claim 13, wherein at least a portion of the circuit board comprises a flexible circuit board.
  • 15. The fluid reservoir of claim 12, wherein the pump is a piezoelectric pump comprising a piezo actuator.
  • 16. The fluid reservoir of claim 12, wherein the pump is a piezoelectric pump comprising a plurality of piezo actuators.
  • 17. The fluid reservoir of claim 1, wherein the housing is flexible.
  • 18. The fluid reservoir of claim 1, wherein the reservoir pouch is elastic.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/877,046, filed Sep. 7, 2010, the contents of which is incorporated herein by reference.

US Referenced Citations (530)
Number Name Date Kind
1174814 Brennan Mar 1916 A
1830947 Klingel Nov 1931 A
1999683 Borresen Apr 1935 A
2163048 McKee Jun 1939 A
2339138 Black Jan 1944 A
2405667 Andrew Aug 1946 A
2438231 Schultz Mar 1948 A
2635907 Heimbuch Apr 1953 A
2714469 Carlson Aug 1955 A
2936980 Rapata May 1960 A
3059645 Hasbrouck Oct 1962 A
3189961 Heller Jun 1965 A
3667081 Burger Jun 1972 A
3840018 Heifetz Oct 1974 A
3955834 Ahlrot May 1976 A
4053176 Hilbush Oct 1977 A
4118805 Reimels Oct 1978 A
4133315 Berman Jan 1979 A
4157713 Clarey Jun 1979 A
4176412 Peterson Dec 1979 A
4236521 Lauterjung Dec 1980 A
4271827 Angelchik Jun 1981 A
4299012 Oetiker Nov 1981 A
4340083 Cummins Jul 1982 A
4399809 Baro et al. Aug 1983 A
4408597 Tenney Oct 1983 A
4417567 Trick Nov 1983 A
4424208 Wallace Jan 1984 A
4442153 Meltsch Apr 1984 A
4450375 Siegal May 1984 A
4485805 Foster Dec 1984 A
4492004 Oetiker Jan 1985 A
4551862 Haber Nov 1985 A
4558699 Bashour Dec 1985 A
4559699 Owen Dec 1985 A
4582640 Smestad Apr 1986 A
4582865 Balazs Apr 1986 A
4592339 Kuzmak Jun 1986 A
4592355 Antebi Jun 1986 A
4601713 Fuqua Jul 1986 A
4667672 Romanowski May 1987 A
4671351 Rappe Jun 1987 A
4693695 Cheng Sep 1987 A
4694827 Weiner Sep 1987 A
4696288 Kuzmak Sep 1987 A
4708140 Baron Nov 1987 A
4716154 Maelson Dec 1987 A
4753086 Schmidt Jun 1988 A
4760837 Petit Aug 1988 A
4803075 Wallace Feb 1989 A
4881939 Newman Nov 1989 A
4883467 Franetzki Nov 1989 A
4886787 de Belder et al. Dec 1989 A
4896787 Delamour Jan 1990 A
4915690 Cone Apr 1990 A
4925446 Garay May 1990 A
4944487 Holtermann Jul 1990 A
4944659 Labbe Jul 1990 A
4958791 Nakamura Sep 1990 A
4969899 Cox Nov 1990 A
4994019 Fernandez Feb 1991 A
5045060 Melsky Sep 1991 A
5074868 Kuzmak Dec 1991 A
5084061 Gau Jan 1992 A
5091171 Yu Feb 1992 A
5116652 Alzner May 1992 A
5120313 Elftman Jun 1992 A
5143724 Leshchiner Sep 1992 A
5152770 Bengmark Oct 1992 A
5160338 Vincent Nov 1992 A
5188609 Bayless Feb 1993 A
5224494 Enhorning Jul 1993 A
5226429 Kuzmak Jul 1993 A
5246456 Wilkinson Sep 1993 A
5246698 Leshchiner Sep 1993 A
5259399 Brown Nov 1993 A
5326349 Baraff Jul 1994 A
5343894 Frisch Sep 1994 A
5356883 Kuo Oct 1994 A
5360445 Goldowsky Nov 1994 A
5391156 Hildwein Feb 1995 A
5399351 Leshchiner Mar 1995 A
5449363 Brust Sep 1995 A
5449368 Kuzmak Sep 1995 A
5458568 Racchini Oct 1995 A
5509888 Miller Apr 1996 A
5531716 Luzio Jul 1996 A
5535752 Halperin Jul 1996 A
5554113 Novak Sep 1996 A
5562714 Grevious Oct 1996 A
5601604 Vincent Feb 1997 A
5607418 Arzbaecher Mar 1997 A
5633001 Ågerup May 1997 A
5653718 Yoon Aug 1997 A
5658298 Vincent Aug 1997 A
5676162 Larson Oct 1997 A
5695504 Gifford Dec 1997 A
5704893 Timm Jan 1998 A
5713911 Racenet Feb 1998 A
5733257 Sternby Mar 1998 A
5748200 Funahashi May 1998 A
5766232 Grevious Jun 1998 A
5769877 Barreras Jun 1998 A
5785295 Tsai Jul 1998 A
5817113 Gifford Oct 1998 A
5827529 Ono Oct 1998 A
5833698 Hinchliffe Nov 1998 A
5861014 Familoni Jan 1999 A
RE36176 Kuzmak Mar 1999 E
5886042 Yu Mar 1999 A
5904697 Gifford May 1999 A
5910149 Kuzmak Jun 1999 A
5928195 Malamud Jul 1999 A
5938669 Klaiber Aug 1999 A
5944696 Bayless Aug 1999 A
5944751 Laub Aug 1999 A
5993473 Chan Nov 1999 A
6009350 Renken Dec 1999 A
6013679 Kuo Jan 2000 A
6024340 Lazarus Feb 2000 A
6024704 Meador Feb 2000 A
6048309 Flom Apr 2000 A
6067991 Forsell May 2000 A
6074341 Anderson Jun 2000 A
6074378 Mouri Jun 2000 A
6083249 Familoni Jul 2000 A
6090131 Daley Jul 2000 A
6102678 Peclat Aug 2000 A
6102922 Jakobsson Aug 2000 A
6171321 Gifford Jan 2001 B1
6193734 Bolduc Feb 2001 B1
6203523 Haller et al. Mar 2001 B1
6210345 Van Brunt Apr 2001 B1
6210347 Forsell Apr 2001 B1
6221024 Miesel Apr 2001 B1
6224857 Romeo May 2001 B1
6306088 Krausman Oct 2001 B1
6327503 Familoni Dec 2001 B1
6371965 Gifford Apr 2002 B2
6372494 Naughton Apr 2002 B1
6383218 Sourdile May 2002 B1
6383219 Telandro May 2002 B1
6387105 Gifford May 2002 B1
6417750 Sohn Jul 2002 B1
6418934 Chin Jul 2002 B1
6419696 Ortiz Jul 2002 B1
6432040 Meah Aug 2002 B1
6439539 Powell Aug 2002 B1
6443957 Addis Sep 2002 B1
6443965 Gifford Sep 2002 B1
6450173 Forsell Sep 2002 B1
6450946 Forsell Sep 2002 B1
6451034 Gifford Sep 2002 B1
6453907 Forsell Sep 2002 B1
6454699 Forsell Sep 2002 B1
6454700 Forsell Sep 2002 B1
6454701 Forsell Sep 2002 B1
6454785 De Hoyos Sep 2002 B2
6457801 Fish Oct 2002 B1
6460543 Forsell Oct 2002 B1
6461293 Forsell Oct 2002 B1
6463935 Forsell Oct 2002 B1
6464628 Forsell Oct 2002 B1
6470892 Forsell Oct 2002 B1
6474584 Ekich Nov 2002 B2
6475136 Forsell Nov 2002 B1
6485496 Suyker Nov 2002 B1
6491704 Gifford Dec 2002 B2
6491705 Gifford Dec 2002 B2
6511490 Robert Jan 2003 B2
6517556 Monassevitch Feb 2003 B1
6527701 Sayet Mar 2003 B1
6547801 Dargent Apr 2003 B1
6565582 Gifford May 2003 B2
6579301 Bales Jun 2003 B1
6601604 Cooper Aug 2003 B1
6615084 Cigaina Sep 2003 B1
6627620 Nielsen Sep 2003 B1
6630486 Royer Oct 2003 B1
6632239 Snyder Oct 2003 B2
6646628 Shirochi Nov 2003 B2
6676674 Dudai Jan 2004 B1
6685668 Cho Feb 2004 B1
6685963 Taupin Feb 2004 B1
6691047 Fredericks Feb 2004 B1
6715731 Post Apr 2004 B1
6729600 Mattes May 2004 B2
6754527 Stroebel Jun 2004 B2
6767924 Yu Jul 2004 B2
6791447 Scheible et al. Sep 2004 B2
6811136 Eberhardt Nov 2004 B2
6820651 Seuret Nov 2004 B2
6834201 Gillies Dec 2004 B2
6871090 He Mar 2005 B1
6889086 Mass May 2005 B2
6916326 Benchetrit Jul 2005 B2
6921819 Piron Jul 2005 B2
6924273 Pierce Aug 2005 B2
6940467 Fischer Sep 2005 B2
6966875 Longobardi Nov 2005 B1
6997914 Smith et al. Feb 2006 B2
7017583 Forsell Mar 2006 B2
7021147 Subramanian Apr 2006 B1
7037344 Kagan May 2006 B2
7040349 Moler May 2006 B2
7054690 Imran May 2006 B2
7058434 Wang Jun 2006 B2
7060080 Bachmann Jun 2006 B2
7066486 Lee Jun 2006 B2
7118526 Egle Oct 2006 B2
7119062 Alvis Oct 2006 B1
7128750 Stergiopulos Oct 2006 B1
7144400 Byrum Dec 2006 B2
7172607 Hofle Feb 2007 B2
7177693 Starkebaum Feb 2007 B2
7191007 Desai et al. Mar 2007 B2
7204821 Clare Apr 2007 B1
7223239 Schulze May 2007 B2
7238191 Bachmann Jul 2007 B2
7240607 Fish Jul 2007 B2
7255675 Gertner Aug 2007 B2
7263405 Boveja Aug 2007 B2
7282023 Frering Oct 2007 B2
7288064 Boustani Oct 2007 B2
7297103 Jarsaillon Nov 2007 B2
7299082 Feldman Nov 2007 B2
7310557 Maschino Dec 2007 B2
7311716 Byrum Dec 2007 B2
7311717 Egle Dec 2007 B2
7314443 Jordan Jan 2008 B2
7314636 Caseres Jan 2008 B2
7338433 Coe Mar 2008 B2
7340306 Barrett Mar 2008 B2
7351198 Byrum Apr 2008 B2
7351240 Hassler Apr 2008 B2
7364542 Jambor Apr 2008 B2
7367340 Nelson May 2008 B2
7367937 Jambor May 2008 B2
7374565 Hassler May 2008 B2
7390294 Hassler Jun 2008 B2
7396353 Lorenzen Jul 2008 B2
7416528 Crawford Aug 2008 B2
7457668 Cancel Nov 2008 B2
7481763 Hassler Jan 2009 B2
7500944 Byrum Mar 2009 B2
7502649 Ben-Haim Mar 2009 B2
7530943 Lechner May 2009 B2
7594885 Byrum Sep 2009 B2
7599743 Hassler Oct 2009 B2
7599744 Giordano Oct 2009 B2
7601162 Hassler Oct 2009 B2
7615001 Jambor Nov 2009 B2
7618365 Jambor Nov 2009 B2
7658196 Ferreri Feb 2010 B2
7670279 Gertner Mar 2010 B2
7699770 Hassler Apr 2010 B2
7712470 Gertner May 2010 B2
7727141 Hassler Jun 2010 B2
7741476 Lebreton Jun 2010 B2
7758493 Gingras Jul 2010 B2
7763039 Ortiz et al. Jul 2010 B2
7766815 Ortiz Aug 2010 B2
7771439 Griffiths Aug 2010 B2
7775215 Hassler Aug 2010 B2
7775966 Dlugos Aug 2010 B2
7775967 Gertner Aug 2010 B2
7794386 Brooks Sep 2010 B2
7811298 Birk Oct 2010 B2
7824422 Benchetrit Nov 2010 B2
7828813 Mouton Nov 2010 B2
7832407 Gertner Nov 2010 B2
7841978 Gertner Nov 2010 B2
7844342 Dlugos Nov 2010 B2
7862502 Pool Jan 2011 B2
7879068 Dlugos Feb 2011 B2
7951067 Byrum May 2011 B2
20010011543 Forsell Aug 2001 A1
20020072780 Foley Jun 2002 A1
20020091395 Gabbay Jul 2002 A1
20020095181 Beyar Jul 2002 A1
20020098097 Singh Jul 2002 A1
20020139208 Yatskov Oct 2002 A1
20020183765 Adams Dec 2002 A1
20020193679 Malave Dec 2002 A1
20020198548 Robert Dec 2002 A1
20030014003 Gertner Jan 2003 A1
20030019498 Forsell Jan 2003 A1
20030045775 Forsell Mar 2003 A1
20030045902 Weadock Mar 2003 A1
20030060873 Gertner Mar 2003 A1
20030066536 Forsell Apr 2003 A1
20030073880 Polsky Apr 2003 A1
20030093157 Casares May 2003 A1
20030100910 Gifford May 2003 A1
20030120288 Benchetrit Jun 2003 A1
20030148995 Piron Aug 2003 A1
20030158564 Benchetrit Aug 2003 A1
20030158569 Wazne Aug 2003 A1
20030181890 Schulze Sep 2003 A1
20030181917 Gertner Sep 2003 A1
20030191433 Prentiss Oct 2003 A1
20030208212 Cigaina Nov 2003 A1
20040000843 East Jan 2004 A1
20040044332 Stergiopulos Mar 2004 A1
20040049209 Benchetrit Mar 2004 A1
20040059393 Policker Mar 2004 A1
20040068847 Belisle Apr 2004 A1
20040106899 McMichael Jun 2004 A1
20040133219 Forsell Jul 2004 A1
20040147816 Policker Jul 2004 A1
20040148034 Kagan Jul 2004 A1
20040153106 Dudai Aug 2004 A1
20040162595 Foley Aug 2004 A1
20040215159 Forsell Oct 2004 A1
20040230137 Mouton Nov 2004 A1
20040254536 Conlon Dec 2004 A1
20040254537 Conlon Dec 2004 A1
20040260319 Egle Dec 2004 A1
20040267288 Byrum Dec 2004 A1
20040267291 Byrum Dec 2004 A1
20040267292 Byrum Dec 2004 A1
20040267293 Byrum Dec 2004 A1
20040267377 Egle Dec 2004 A1
20050002984 Byrum Jan 2005 A1
20050038484 Knudson Feb 2005 A1
20050038498 Dubrow Feb 2005 A1
20050055039 Burnett Mar 2005 A1
20050070934 Tanaka Mar 2005 A1
20050070937 Jambor Mar 2005 A1
20050082793 Lee Apr 2005 A1
20050100779 Gertner May 2005 A1
20050104457 Jordan May 2005 A1
20050119672 Benchetrit Jun 2005 A1
20050119674 Gingras Jun 2005 A1
20050131383 Chen Jun 2005 A1
20050131485 Knudson Jun 2005 A1
20050136122 Sadozai Jun 2005 A1
20050142152 Leshchiner Jun 2005 A1
20050143765 Bachmann Jun 2005 A1
20050143766 Bachmann Jun 2005 A1
20050154274 Jarsaillon Jul 2005 A1
20050171568 Duffy Aug 2005 A1
20050183730 Byrum Aug 2005 A1
20050192531 Birk Sep 2005 A1
20050192601 Demarais Sep 2005 A1
20050192629 Saadat Sep 2005 A1
20050216042 Gertner Sep 2005 A1
20050226936 Agerup Oct 2005 A1
20050228415 Gertner Oct 2005 A1
20050228504 Demarais Oct 2005 A1
20050240155 Conlon Oct 2005 A1
20050240156 Conlon Oct 2005 A1
20050240279 Kagan Oct 2005 A1
20050244288 O'Neill Nov 2005 A1
20050250979 Coe Nov 2005 A1
20050251181 Bachmann Nov 2005 A1
20050251182 Bachmann Nov 2005 A1
20050267406 Hassler Dec 2005 A1
20050267500 Hassler Dec 2005 A1
20050267533 Gertner Dec 2005 A1
20050271729 Wang Dec 2005 A1
20050277899 Conlon Dec 2005 A1
20050283041 Egle Dec 2005 A1
20050288739 Hassler Dec 2005 A1
20050288740 Hassler Dec 2005 A1
20050288743 Ahn et al. Dec 2005 A1
20060015138 Gertner Jan 2006 A1
20060020298 Camilleri Jan 2006 A1
20060041183 Massen Feb 2006 A1
20060074439 Garner Apr 2006 A1
20060074473 Gertner Apr 2006 A1
20060089571 Gertner Apr 2006 A1
20060122147 Wohlrab Jun 2006 A1
20060142700 Sobelman Jun 2006 A1
20060142790 Gertner Jun 2006 A1
20060161139 Levine Jul 2006 A1
20060161186 Hassler Jul 2006 A1
20060167531 Gertner Jul 2006 A1
20060173238 Starkebaum Aug 2006 A1
20060173424 Conlon Aug 2006 A1
20060183967 Lechner Aug 2006 A1
20060189887 Hassler Aug 2006 A1
20060189888 Hassler Aug 2006 A1
20060189889 Gertner Aug 2006 A1
20060194758 Lebreton Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060197412 Rasmussen Sep 2006 A1
20060199997 Hassler Sep 2006 A1
20060211912 Dlugos Sep 2006 A1
20060211913 Dlugos Sep 2006 A1
20060211914 Hassler Sep 2006 A1
20060212051 Snyder Sep 2006 A1
20060212053 Gertner Sep 2006 A1
20060235448 Roslin Oct 2006 A1
20060246137 Hermitte Nov 2006 A1
20060247721 Maschino Nov 2006 A1
20060247722 Maschino Nov 2006 A1
20060252982 Hassler Nov 2006 A1
20060252983 Lembo Nov 2006 A1
20060257488 Hubbard Nov 2006 A1
20060264699 Gertner Nov 2006 A1
20060276812 Hill Dec 2006 A1
20060293627 Byrum Dec 2006 A1
20070015954 Dlugos Jan 2007 A1
20070015955 Tsonton Jan 2007 A1
20070015956 Crawford Jan 2007 A1
20070016231 Jambor Jan 2007 A1
20070016262 Gross Jan 2007 A1
20070027356 Ortiz Feb 2007 A1
20070027358 Gertner Feb 2007 A1
20070044655 Fish Mar 2007 A1
20070077292 Pinsky Apr 2007 A1
20070078476 Hull Apr 2007 A1
20070125826 Shelton Jun 2007 A1
20070156013 Birk Jul 2007 A1
20070167672 Dlugos Jul 2007 A1
20070167982 Gertner Jul 2007 A1
20070173685 Jambor Jul 2007 A1
20070173888 Gertner Jul 2007 A1
20070179335 Gertner Aug 2007 A1
20070185373 Tsonton Aug 2007 A1
20070185462 Byrum Aug 2007 A1
20070213836 Paganon Sep 2007 A1
20070218083 Brooks Sep 2007 A1
20070232848 Forsell Oct 2007 A1
20070232849 Gertner Oct 2007 A1
20070233170 Gertner Oct 2007 A1
20070235083 Dlugos Oct 2007 A1
20070243227 Gertner Oct 2007 A1
20070250085 Bachmann Oct 2007 A1
20070250086 Wiley Oct 2007 A1
20070255335 Herbert Nov 2007 A1
20070255336 Herbert Nov 2007 A1
20070265598 Karasik Nov 2007 A1
20070265645 Birk Nov 2007 A1
20070265646 McCoy Nov 2007 A1
20070293716 Baker Dec 2007 A1
20070298005 Thibault Dec 2007 A1
20080009680 Hassler Jan 2008 A1
20080015406 Dlugos Jan 2008 A1
20080015501 Gertner Jan 2008 A1
20080027269 Gertner Jan 2008 A1
20080027469 Bachmann Jan 2008 A1
20080071306 Gertner Mar 2008 A1
20080097496 Chang Apr 2008 A1
20080108862 Jordan May 2008 A1
20080147002 Gertner Jun 2008 A1
20080161717 Gertner Jul 2008 A1
20080161875 Stone Jul 2008 A1
20080167647 Gertner Jul 2008 A1
20080167648 Gertner Jul 2008 A1
20080172072 Pool Jul 2008 A1
20080188766 Gertner Aug 2008 A1
20080195092 Kim Aug 2008 A1
20080208240 Paz Aug 2008 A1
20080221598 Dlugos Sep 2008 A1
20080243071 Quijano Oct 2008 A1
20080249806 Dlugos Oct 2008 A1
20080250340 Dlugos Oct 2008 A1
20080250341 Dlugos Oct 2008 A1
20080255403 Voegele Oct 2008 A1
20080255414 Voegele Oct 2008 A1
20080255425 Voegele Oct 2008 A1
20080255459 Voegele Oct 2008 A1
20080255537 Voegele Oct 2008 A1
20080275294 Gertner Nov 2008 A1
20080275295 Gertner Nov 2008 A1
20080275484 Gertner Nov 2008 A1
20080281347 Gertner Nov 2008 A1
20080287969 Tsonton Nov 2008 A1
20080287974 Widenhouse Nov 2008 A1
20080287976 Weaner Nov 2008 A1
20080300618 Gertner Dec 2008 A1
20080319435 Rioux Dec 2008 A1
20090054914 Lechner Feb 2009 A1
20090062825 Pool Mar 2009 A1
20090062826 Steffen Mar 2009 A1
20090082793 Birk Mar 2009 A1
20090118572 Lechner May 2009 A1
20090149874 Ortiz Jun 2009 A1
20090157106 Marcotte Jun 2009 A1
20090157107 Kierath Jun 2009 A1
20090157113 Marcotte Jun 2009 A1
20090171375 Coe Jul 2009 A1
20090171378 Coe Jul 2009 A1
20090171379 Coe Jul 2009 A1
20090187202 Ortiz Jul 2009 A1
20090192404 Ortiz Jul 2009 A1
20090192415 Ortiz Jul 2009 A1
20090192533 Dlugos Jul 2009 A1
20090192534 Ortiz Jul 2009 A1
20090192541 Ortiz Jul 2009 A1
20090198261 Schweikert Aug 2009 A1
20090202387 Dlugos Aug 2009 A1
20090204131 Ortiz Aug 2009 A1
20090204132 Ortiz Aug 2009 A1
20090209995 Byrum Aug 2009 A1
20090216255 Coe Aug 2009 A1
20090220176 Fusco Sep 2009 A1
20090222031 Axelsson Sep 2009 A1
20090222065 Dlugos Sep 2009 A1
20090228063 Dlugos Sep 2009 A1
20090228072 Coe Sep 2009 A1
20090270904 Birk Oct 2009 A1
20090306462 Lechner Dec 2009 A1
20100010291 Birk Jan 2010 A1
20100049224 Vargas Feb 2010 A1
20100087843 Bertolote Apr 2010 A1
20100099945 Birk Apr 2010 A1
20100100079 Berkcan Apr 2010 A1
20100145378 Gertner Jun 2010 A1
20100152532 Marcotte Jun 2010 A1
20100168508 Gertner Jul 2010 A1
20100185049 Birk Jul 2010 A1
20100191265 Lau Jul 2010 A1
20100191271 Lau Jul 2010 A1
20100204647 Gertner Aug 2010 A1
20100204723 Gertner Aug 2010 A1
20100217071 Ricol Aug 2010 A1
20100226988 Lebreton Sep 2010 A1
20100228080 Tavori Sep 2010 A1
20100234682 Gertner Sep 2010 A1
20100249803 Griffiths Sep 2010 A1
20100280310 Raven Nov 2010 A1
20100305397 Birk Dec 2010 A1
20100312046 Lau Dec 2010 A1
20100312147 Gertner Dec 2010 A1
20100324358 Birk Dec 2010 A1
20100324359 Birk Dec 2010 A1
20110201874 Birk Aug 2011 A1
Foreign Referenced Citations (125)
Number Date Country
949965 Jun 1974 CA
1250382 Apr 2000 CN
1367670 Sep 2002 CN
4225524 Feb 1994 DE
10020688 Dec 2000 DE
0119596 Sep 1984 EP
0230747 Aug 1987 EP
0416250 Mar 1991 EP
0611561 Aug 1994 EP
0695558 Feb 1996 EP
0876808 Nov 1998 EP
1036545 Sep 2000 EP
1072282 Jan 2001 EP
1105073 Jun 2001 EP
1396242 Mar 2004 EP
1396243 Mar 2004 EP
1491167 Dec 2004 EP
1491168 Dec 2004 EP
1529502 May 2005 EP
1547549 Jun 2005 EP
1574189 Sep 2005 EP
1600183 Nov 2005 EP
1602346 Dec 2005 EP
1704833 Sep 2006 EP
1719480 Nov 2006 EP
1736123 Dec 2006 EP
1736195 Dec 2006 EP
1736202 Dec 2006 EP
1743605 Jan 2007 EP
1829504 Sep 2007 EP
1829505 Sep 2007 EP
1829506 Sep 2007 EP
1967168 Sep 2008 EP
1992315 Nov 2008 EP
2074970 Jul 2009 EP
2074971 Jul 2009 EP
2074972 Jul 2009 EP
2095796 Sep 2009 EP
2095798 Sep 2009 EP
2191796 Jun 2010 EP
1566202 May 1969 FR
2688693 Sep 1993 FR
2769491 Apr 1999 FR
2783153 Mar 2000 FR
2797181 Feb 2001 FR
2799118 Apr 2001 FR
2823663 Oct 2002 FR
2855744 Dec 2004 FR
2921822 Apr 2009 FR
1174814 Dec 1969 GB
2090747 Jul 1982 GB
57171676 Oct 1982 JP
167309 Apr 1989 JP
2019147 Jan 1990 JP
2132104 Nov 1990 JP
3105702 Nov 1991 JP
11244395 Sep 1999 JP
2003526410 Sep 2003 JP
2005131380 May 2005 JP
2005334658 Dec 2005 JP
8503144 Dec 1986 SE
8600079 Jan 1986 WO
8600912 Feb 1986 WO
8911701 Nov 1989 WO
9000369 Jan 1990 WO
9220349 Nov 1992 WO
9402517 Feb 1994 WO
9633751 Jan 1996 WO
9835639 Aug 1998 WO
9835640 Aug 1998 WO
0000108 Jan 2000 WO
0001428 Jan 2000 WO
0009047 Feb 2000 WO
0009049 Feb 2000 WO
0015158 Mar 2000 WO
0066196 Nov 2000 WO
0110359 Feb 2001 WO
0112078 Feb 2001 WO
0141671 Jun 2001 WO
0147435 Jul 2001 WO
0147575 Jul 2001 WO
0149245 Jul 2001 WO
0152777 Jul 2001 WO
0168007 Sep 2001 WO
0185071 Nov 2001 WO
0205753 Jan 2002 WO
0209792 Feb 2002 WO
0219953 Mar 2002 WO
0226317 Apr 2002 WO
02053093 Jul 2002 WO
02065948 Aug 2002 WO
02096326 Dec 2002 WO
03007782 Jan 2003 WO
03055420 Jul 2003 WO
03057092 Jul 2003 WO
03059215 Jul 2003 WO
03077191 Sep 2003 WO
03101352 Dec 2003 WO
03105732 Dec 2003 WO
2004014245 Feb 2004 WO
2004019671 Mar 2004 WO
2004108025 Dec 2004 WO
2004112563 Dec 2004 WO
2005007232 Jan 2005 WO
2005009305 Feb 2005 WO
2005067994 Jul 2005 WO
2005072195 Aug 2005 WO
2005087147 Sep 2005 WO
2005094447 Oct 2005 WO
2005112888 Dec 2005 WO
2006040647 Apr 2006 WO
2006049725 May 2006 WO
2006083885 Aug 2006 WO
2006108203 Oct 2006 WO
2007067206 Jun 2007 WO
2007081304 Jul 2007 WO
2007106727 Sep 2007 WO
2007114905 Oct 2007 WO
2007145638 Dec 2007 WO
2008063673 May 2008 WO
2008134755 Nov 2008 WO
2009050709 Apr 2009 WO
2009132127 Oct 2009 WO
2009136126 Nov 2009 WO
2010042493 Apr 2010 WO
Non-Patent Literature Citations (86)
Entry
Acuna-Goycolea et al.; ‘Mechanism of Neuropeptide Y, Peptide YY, and Pancreatic Polypeptide Inhibition of Identified Green Fluorescent Protein-Expressing GABA Neurons in the Hypothalamic Neuroendocrine Acruate Nucleus’; The Journal of Neuroscience; V. 25(32); pp. 7406-7419; Aug. 10, 2005.
Adrian et al.; ‘Mechanism of Pancreatic Polypeptide Release in Man.’ The Lancet; pp. 161-163; Jan. 22, 1977.
Anson; ‘Shape Memory Alloys—Medical Applications,’ Source: Materials World, vol. 7, No. 12, pp. 745-747, Dec. 1999.
Asakawa et al; ‘Antagonism of Ghrelin Receptor Reduces Food Intake and Body Weight Gain in Mice’; Gut.; V.52; pp. 947-952; 2003.
Baggio et al. ‘Biology of Integrins: GLP-1 and GIP’; Gastroenrology; V. 132; pp. 2131-2157; 2007.
Ballantyne; ‘Peptide YY(1-36) and Peptide YY(3-36): Part I. Distribution, Release, and Actions’; Obesity Surgery; V.16; pp. 651-658; 2006.
Ballantyne; “Peptide YY(1-36) and Peptide YY(3-36): Part II. Changes after Gastrointestinal Surgery and Bariatric Surgery”; Obesity Surgery; V.16; pp. 795-803; 2006.
Berne et al; ‘Physiology’; V. 5; pp. 55-57, 210, 428, 540, 554, 579, 584, 591; 2004.
BioEnterics Corporation, an Inamed Company, BioEnterics Intragastric Balloon; Directions for Use Published Document, P/N 94200 Rev: B, pp. 1-56.
Bio Enterics Lap-Band Adjustable Gastric Banding System, Inamed Health, pub. Aug. 28, 2003, pp. 1-115.
Boulant et al.; ‘Cholecystokinin in Transient Lower Oesophageal Sphincter Relation Due to Gastric Distension in Humans’; Gut; V. 40; pp. 575-581; 1997.
Bradjewin et al; ‘Dose Ranging Study of the Effects of Cholecystokinin in Healthy Volunteers’; J. Psychiatr. Neurosci.; V. 16 (2); pp. 91-95; 1991.
Burdyga et al.; ‘Cholecystokinin Regulates Expression of Y2 Receptors in Vagal Afferent Neurons Serving the Stomach’; The Journal of Neuroscience; V. 28; No. 45; pp. 11583-11592; Nov. 5, 2008.
Chaptini et al.; “Neuroendocrine Regulation of Food Intake”; Current Opinion in Gastroenterology; V. 24; pp. 223-229; 2008.
Chaudhri; ‘Can Gut Hormones Control Appetite and Prevent Obesity?’ Diabetes Care; V. 31; Supp 2; pp. S284-S289; Feb. 2008.
Cohen et al.; ‘Oxyntomodulin Suppresses Appetite and Reduces Food in Humans’; J. Clin. Endocrinol. Metab.; V. 88; pp. 4696-4701; 2003.
Corno et al.; ‘A new implantable device for telemetric control of pulmonary blood flow’; New ideas; received Apr. 24, 2004; received in revised form Jul. 12, 2002; 10 pages.
Corno et al.; ‘FlowWatchTM in clipped and inclipped position’; Interact Cardio Vase Thorac Surg 2002; 1:46-49; Copyright@2002 The European Asociation for Cardio-thoracic Surgery; 1 page.
Cummings et al.; ‘Plasma Ghrelin Levels After Diet-Induced Weight Loss or Gastric Bypass Surgery’; N. Engl J. Med; V. 346, No. 21; pp. 1623-1630; May 23, 2002.
Cummings; ‘Gastrointestinal Regulation of Foot Intake’; The Food Journal of Clinical Investigation; V. 117, N. 1; pp. 13-23; Jan. 2007.
Dakin et al.; ‘Oxyntomodulin Inhibits Food Intake in the Rat’; Endocrinology; V. 142; pp. 4244-4250; 2001.
Dakin et al.; ‘Peripheral Oxyntomodulin Reduces Food Intake and Body Weight gain in Rats’; Endocrinology; V. 145; No. 6; pp. 2687-2695; Jun. 2004.
Davison; ‘Activation of Vagal-Gastric Mechanoreceptors by Cholecystokinin’; Proc. West. Pharmocol. Soc; V. 29; pp. 363-366; 1986.
De Waele et al.; “Endoscopic Volume Adjustment of Intragastric Balloons for Intolerance”; Obesity Surgery; V. 11; pp. 223-224; 2001.
De Waele et al.; “Intragastric Balloons for Preoperative Weight Reduction”; Obesity Surgery; V. 58; pp. 58-60; 2001.
Desai et al.; ‘Molecular Weight of Heparin Using 13C Nuclear Magnetic Resonance Spectroscopy’ Journal of Pharmaceutical Science, V. 84,12; 1995, Abstract only.
Doldi et al.; ‘Intragastric Balloon: Another Option for Treatment of Obesity and Morbid Obesity’; Hepato-Gastroenterology; V. 51, N. 55; pp. 294-307; Jan.-Feb. 2004.
Doldi et al.; ‘Treatment of Morbid Obesity with Intragastric Balloon in Association with Diet’; Obesity Surgery; V. 10, pp. 583-587; 2000.
Ekblad et al.; ‘Distribution of Pancreatic Peptide and Peptide-YY’; Peptides; V. 23; pp. 251-261;2002.
El Khoury et al.; “Variation in Postprandial Ghrelin Status Following Ingestion of High-Carbohydrate, High Fat, and High Protein Meals in Males”; Ann Nutr Metab; V. 50; pp. 260-269; 2006.
Galloro et al; “Preliminary Endoscopic Technical Report of an New Silicone Intragastric Balloon in the Treatment of Morbid Obesity”; Obesity Surgery; V. 9, pp. 68-71; 1999.
GinShiCel MH Hydroxy Propyl Methyl Cellulose, Web Page http://www.ginshicel.cn/MHPC.html, Nov. 12, 2008.
Girard; ‘The Incretins: From the concept to their use in the treatment of type 2 diabetes. Part A: IncretinsIncretinsIncretinsIncretinsIncretins: Concept and physiological functions’; Diabetes and Metabolism; V. 34; pp. 550-559; 2008.
Greenough et al.; ‘Untangling the Effects of Hunger, Anxiety and Nausea on Energy Intake During Intravenous Cholecystokinin Octapeptide (CCK-8) Infusion’ Physiology and Behavior; V. 65 (2); pp. 303-310; 1998.
Grise et al.; “Peptide YY Inhibits Growth of Human Breast Cancer in Vitro and in Vivo”; Journal of Surgical Research; V. 82; pp. 151-155; 1999.
Grundy; “Signaling the State of the Digestive Tract”; Autonomic Neuroscience: Basic and Clinical; V. 125; pp. 76-80; 2006.
Grundy; “Vagal Control of Gastrointestinal Function”; Bailliere's Clinical Gastroenterology; V. 2; No. 1; pp. 23-43; 1988.
Hallden et al. “Evidence for a Role of the Gut Hormone PYY in the Regulation of Intestinal Fatty Acid Binding Protein Transcripts in Differentiated Subpopulations of Intestinal Epithelial Cell Hybrids”; Journal of Biological Chemistry; V. 272 (19); pp. 125916-126000; 1997.
Hameed et al., ‘Gut Hormones and Appetite Control’, Oral Diseases, 2009, 15:18-26.
Hassan et al.; ‘Effects of Adjuvants to Local Anesthetics on Their Duration III Experimental Studies of Hyaluronic Acid’ Abstract Pub Med [Acta Anesthesiol Scand.; 29 (4): 384-8], 1 page; May 1985.
Hodson et al.; ‘Management of Obesity with the New Intragastric Balloon’; Obesity Surgery; V. 11, pp. 327-329,2001.
Holzer; “Gastrointestinal Afferents as Targets of Novel Drugs for the Treatment of Functional Bowel Disorders and Visceral Pain”; European Journal of Pharmacology; V. 429; pp. 177-193; 2001.
Houpt; ‘Gastrointestinal Factors in Hunger and Satiety’; Neurosci. and Behav. Rev.; V. 6; pp. 145-164; 1982.
Jones; “Molecular, pharmacological, and clinical aspects of liraglutide, a oncedaily human GLP-1 analogue”; Molecular and Cellular Endocrinology; V. 297; pp. 137-140; 2009.
Kerem et al.; ‘Exogenous Ghrelin Enhances Endocrine and Exocrine Regeneration in Pancreatectomized Rats’; J. Gastrointest Surg.; V. 13; pp. 775-783, 2009.
Kesty et al., ‘Hormone-based Therapies in the Regulation of Fuel Metabolism and Body Weight’, Expert Opin. Biol. Ther., 2008, 8(11): 1733-1747.
Kissileff et al.; ‘Peptides that Regulate Food Intake: Cholecystokinin and Stomach Distension Combine to Reduce Food Intake in Humans’; Am. J. Physiol. Regul. Integr. Comp. Physiol.; V. 285; pp. 992-998; 2003.
Kojima et al., ‘A Role for Pancreatic Polypeptide in Feeding and Body Weight Regulation’, Peptides, 2007, 28:459-463.
Kulicke et al. “Visco-Elastic Propeerties of Sodium Hyaluronate Solutions,” American Institute of Physics; pp. 585-587; 2008.
Lap-Band AP System Adjustable Gastric Banding System With OmniformTM Design: Directions for Use (DFU); Allergan, 16 pages; 2009.
Le Roux et al.; ‘Gut Hormone Profiles Following Bariatric Surgery Favor an Anorectic State, Facilitate Weight Loss, and Improve Metabolic Parameters’; Ann. Surg; V. 243; No. 1; pp. 108-114; Jan. 2006.
Liu et al.; ‘Adjuvant Hormonal Treatment With Peptide YY or Its Analog Decreases Human Pancreatic Carcinoma Growth’; The American Journal of Surgery; V. 171; pp. 192-196; Jan. 1996.
Mathus-Vliegen et al. ‘Intragastric Balloons for Morbid Obesity: Results, Patient Tolerance and Balloon Life Span’; Br. J. Surg.; V. 77, No. 7, pp. 76-79; Jan. 1990.
Mathus-Vliegen et al. “Treating Morbid and Supermorbid Obesity” International Journal of Gastroenterology; V. 5, No. 1, pp. 9-12; 2000.
Medeiros et al.; ‘Processing and metabolism of Peptide-YY: Pivotal roles of Dipeptidase-IV, Aminopeptidase-P, and Endopeptidase-24.11’; Endocrinology; V. 134, No. 5; pp. 2088-2094;1994.
Naslund et al.; ‘Prandial Subcutaneous Injection of Glucagon-Like Peptide’; Br. J. Nutr.; V. 91; pp. 439-446; 2004.
Potier et al.; “Protein, amino acids, and the control of food intake”; Current Opinion in Clinical Nutrition and Metabolic Care; V. 12; pp. 54-58; 2009.
Qjan et al.; ‘Pulmonary delivery of a GLP-1 receptor agonist, BMS-686117’; International Journal of Pharmaceutics; V. 366; pp. 218-220; 2008.
Rang et al.; ‘Pharmacology’; V. 5; pp. 203, 397,402, 524; 2004.
Raybould et al.; “Integration of Postprandial Gastrointestinal Tract: Role of CCK and Sensory Pathways”; Annals of New York Academy of Science; pp. 143-156; 1994.
Renshaw et al. ‘Peptide YY: A Potential Therapy for Obesity’; Current Drug Targets; V. 6; pp. 171-179; 2005.
Sannino et al., ‘Crosslinking of Cellulose Derivatives and Hyaluronic Acid with Water-Soluble Carbodiimide,’ Polymer 46(2005)pp. 11206-11212.
Shechter et al.; “Reversible PEGylation of peptide YY3-36 prolongs its inhibition of food intake in mice”; FEBS Letters; V. 579; pp. 2439-2444; 2005.
Silver et al.; ‘Physical Properties of Hyaluronic Acid and Hydroxypropylmethylcellulose in Solution: Evaluation of Coating Ability’ Journal of Applied Biomaterials, V. 5; pp. 89-98, 1994.
Small et al.; ‘Gut hormones and the control of appetite’; Trends in Endocrinology and Metabolism; V. 15; No. 6; pp. 259-263; Aug. 2004.
Stanley et al.; ‘Gastrointestinal Satiety Signals III. Glucagon-like Peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide’; Am. J. Physiol Gastrointest Liver Physiol; V. 286; pp. 693-697; 2004.
Tezel, ‘The Science of Hyaluronic Acid Dermal Fillers,’ Journal of Cosmetic and Laser Therapy (2008) 10: pp. 35-42.
Tolhurst et al.; ‘Nutritional regulation of glucagon-like peptidel secretion’; J. Physiol.; V. 587, No. I;pp. 27-32; 2009.
Totte et al.; “Weight Reduction by Means of Intragastric Device: Experience with the Bioenterics Intragastric Balloon”; Obesity Surgery; V. 11, pp. 519-523; 2001.
Tough et al.; ‘Y4 Receptors Mediate the Inhibitory Responses of Pancreatic Polypeptide in Human and Mouse Colon Mucosa’; The Journal of Pharmacology and Experimental Therapeutics; V. 319, No. 1; pp. 20-30; 2006.
Tseng et al; “Peptide YY and cancer: Current findings and potential clinical applications”; Peptides; V. 23; pp. 389-395; 2002.
Valassi et al.; “Neuroendocrine control of food intake”; Nut. Metab. & Cariovasc. Disease; V. 18; pp. 158-168; 2008.
Van Der Lely et al.; “Biological, Physiological, Pathophysiological Aspects of Ghrelin”; Endocrine Reviews; V. 25, No. 3; pp. 426-457; 2004.
Verdich et al. ‘A Meta-Analysis of the Effect of Glucagon-Like-Peptide-1 (7-36) Amide on ad Libitum Energy Intake in Humans’; J. Clin. Endocrinal. Metab. V. 86; pp. 4382-4389; Sep. 2001.
Wahlen et al.; ‘The BioEnterics Intragastric Balloon (BIB): How to Use It’; Obesity Surgery; V. 11; pp. 524-527; 2001.
Wang et al.; “Plasma Ghrelin Modulation in Gastric Band Operation and Sleeve Gastrectomy”; Obes. Surg.; pp. 357-362; 2008.
Weiner et al.; ‘Preparation of Extremely Obese Patients for Laparoscopic Gastric Banding by Gastric Balloon Therapy’; Obesity Surgery; V. 9, pp. 261-264, 1999.
Wynne et al.; ‘Subcutaneous Oxyntomodulin Reduces Body Weight in Overweight and Obese Subiects: A Double-Blind Randomized, Controlled Trial’: Diabetes; V. 54; pp. 2390-2395; 2005.
Yuzuriha et al.; “Gastrointestinal Hormones (anorexigenic peptide YY and orexigenic ghrelin) influence neural tube development”; FASEB J.; V. 21; pp. 2108-2112; 2007.
Brown et al; ‘Symmetrical Pouch Dilation After Laparoscopic Adjustable Gastric Banding: Incidence and Management’; Obesity Surgery; V. 18, pp. 1104-1108; 2008.
Ceelen et al.; ‘Surgical Treatment of Severe Obesity With a Low-Pressure Adjustable Gastric Band: Experimental Data and Clinical Results in 625 Patients’; Annals of Surgery; V. 237, No. I;pp. 10-16; 2003.
Dixon et al.; ‘Pregnancy After Lap-Band Surgery: Management of the Band to Achieve Healthy Weight Outcomes’; Obesity Surgery; V. 11, pp. 59-65; 2001.
Neary et al.; ‘Peptide YY(3-36) and Glucagon-Like Peptide-1.sub.(7-36) Inhibit Food Intake Additively’; Endocrinology; V.146; pp. 5120-5127; 2005.
Padidela et al.; ‘Elevated basal and post-feed glucagon-like petide 1 (GLP-1) concentrations in the neonatel period’; European Journal of Endocrinology; v. 160; pp. 53-58; 2009.
Shi et al; ‘Sexually Dimorphic Responses to Fat Loss After Caloric Restriction or Surgical Lipectomy’; Am. J. Physiol. Endocrinol. Metab.; V. 293; E316-E326; 2007.
Xanthakos et al.; ‘Bariatric Surgery for Extreme Adolescent Obesity: Indications, Outcomes, and Physiologic Effects on the Gut-Brain Axis’; Pathophysiology; V. 15; pp. 135-146; 2008.
Related Publications (1)
Number Date Country
20130261384 A1 Oct 2013 US
Continuations (1)
Number Date Country
Parent 12877046 Sep 2010 US
Child 13905019 US