This application contains subject matter related to the subject matter of co-pending applications, which are assigned to the same assignee as this application, Baker Hughes Incorporated of Houston, Tex. The below listed applications are hereby incorporated by reference in their entirety:
U.S. patent application Ser. No. 12/497,158, entitled REMOTELY CONTROLLABLE MANIFOLD filed Jul. 2, 2009.
In fluid flowing systems, balance of a profile of fluid flow may be necessary in order to optimize the system. One example of such is in the downhole drilling and completion industry where fluids flowing into or out of a borehole, from or to a subterranean formation are subject to fingering due to varying permeability of the formation and frictional pressure drops. Controlling flow profiles that have traditionally been attempted using such devices are known in the art as inflow control devices. These devices work well for their intended use but are fixed tools that must be positioned in the completion as built and to be changed requires removal of the completion. As is familiar to one of ordinary skill in the art, this type of operation is expensive. Failure to correct profiles, however, is also costly in that for production wells that finger, undesirable fluid production is experienced and for injection wells, injection fluids can be lost to the formation. For other types of borehole systems, efficiency in operation is also lacking. For the foregoing reasons, the art would well receive a flow control configuration that alleviates the inefficiencies of current systems.
A remotely controllable flow control configuration including a body; one or more flow restrictors disposed in the body; and a selector fluidly connected with the body and capable of supplying or denying fluid to one or more of the one or more flow restrictors.
A remotely controllable flow control configuration including a body; one or more flow restrictors disposed in the body; an individual channel fluidly connected with each flow restrictor of the one or more flow restrictors; and a selector fluidly connected with the body and capable of supplying or denying fluid to a selected channel.
A method for remotely controlling flow downhole including initiating a signal at a remote location to actuate a flow control configuration, a remotely controllable flow control configuration including a body; one or more flow restrictors disposed in the body; and a selector fluidly connected with the body and capable of supplying or denying fluid to one or more of the one or more flow restrictors; and modifying a flow profile in response to adjusting the configuration.
A method for remotely controlling flow downhole including initiating a signal at a remote location to actuate a flow control configuration, a remotely controllable flow control configuration including a body; one or more flow restrictors disposed in the body; an individual channel fluidly connected with each flow restrictor of the one or more flow restrictors; and a selector fluidly connected with the body and capable of supplying or denying fluid to a selected channel; and modifying a flow profile in response to adjusting the configuration.
Referring now to the drawings wherein like elements are numbered alike in the several Figures:
Referring to
The reason there is a plurality of channels in each set of channels for a particular configuration and a plurality of restrictors for that same particular configuration is to present a number of selectable pathways (associated with each channel) for fluid flow that will be directed (in the illustrated embodiment): 1) through all of the plurality of restrictors; 2) through some of the plurality of restrictors; or 3) through one of the plurality of restrictors. Further, it is noted that each restrictor of the plurality of restrictors may have its own pressure drop thereacross or the same pressure drop thereacross. They may all be the same, some of them may be the same and others different, or all may be different. Any combination of pressure drops among each of the plurality of flow restrictors in a given configuration is contemplated.
Referring directly to
In addition to the foregoing, in this particular embodiment or in others with even more restrictors arranged in seriatim, another level of restriction is possible. It should be appreciable by a reader having understood the foregoing description that in the illustrated embodiment, since there is annular room in the body 16 as illustrated for another channel, that is not shown but could be created between channels 28 and 24, another level of restriction or pressure drop can be obtained within the same illustrated embodiment. This is by bypassing all of the restrictors 18, 20, 22. This would present effectively no pressure drop due to flow restrictors in the flow pathway since all of them will have been bypassed. In each case the final entry of the fluid into the inside dimension of the configuration is through orifices 32. As should be evident from the foregoing, the configuration provides a number of remotely selectable pressure drops depending upon which channel is selected or the remote ability to shut off flow by misaligning the selector ports with the flow channels, in one embodiment.
The selection capability is provided by selector 14. As was noted earlier, in one embodiment the selector will have a number of ports 30 that matches the number of sets of channels such that it is possible to align each one of the ports 30 with the same type of channel in each set of channels. For example, in the illustrated embodiment of
The configuration 10 possesses the capability of being reactive, not on its own, but with command from a remote source, to change the pressure drop as needed to optimize flow profiles either into or out of the borehole. It is important to note that while the terms “inflow control” have sometimes been used in connection with the configuration disclosed herein, “outflow” is equally controllable to modify an injection profile with this configuration.
In an alternate embodiment, configuration 110, referring to
It is further noted that the embodiment of
While preferred embodiments have been shown and described, modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation.
Number | Name | Date | Kind |
---|---|---|---|
3469591 | Odendahl | Sep 1969 | A |
3980135 | Garrett | Sep 1976 | A |
4026363 | Yonker et al. | May 1977 | A |
4066128 | Davis et al. | Jan 1978 | A |
4357952 | Knecht | Nov 1982 | A |
4360064 | O'Connor, III et al. | Nov 1982 | A |
4441558 | Welch et al. | Apr 1984 | A |
4629002 | Pringle | Dec 1986 | A |
4790378 | Montgomery et al. | Dec 1988 | A |
4951752 | Coleman | Aug 1990 | A |
4962815 | Schultz et al. | Oct 1990 | A |
4976314 | Crawford et al. | Dec 1990 | A |
5018575 | Parsons | May 1991 | A |
5291947 | Stracke | Mar 1994 | A |
5297634 | Loughlin | Mar 1994 | A |
5743497 | Michael | Apr 1998 | A |
5803119 | Steinke | Sep 1998 | A |
5803179 | Echols et al. | Sep 1998 | A |
5896928 | Coon | Apr 1999 | A |
6112817 | Voll et al. | Sep 2000 | A |
6334486 | Carmody et al. | Jan 2002 | B1 |
6382569 | Schattner et al. | May 2002 | B1 |
6619392 | Marangoni et al. | Sep 2003 | B2 |
6644412 | Bode et al. | Nov 2003 | B2 |
6810955 | Roth et al. | Nov 2004 | B2 |
6883610 | Depiak | Apr 2005 | B2 |
6883613 | Bode et al. | Apr 2005 | B2 |
7222676 | Patel et al. | May 2007 | B2 |
7255178 | Slup et al. | Aug 2007 | B2 |
7261155 | Ward et al. | Aug 2007 | B1 |
7273106 | Huckabee et al. | Sep 2007 | B2 |
7387165 | Lopez de Cardenas et al. | Jun 2008 | B2 |
20010040033 | Schnatzmeyer et al. | Nov 2001 | A1 |
20020020534 | Wilson et al. | Feb 2002 | A1 |
20070163774 | Hosatte et al. | Jul 2007 | A1 |
20070181312 | Kritzler et al. | Aug 2007 | A1 |
20080035350 | Henriksen et al. | Feb 2008 | A1 |
20080041581 | Richards | Feb 2008 | A1 |
20080047703 | Stoesz et al. | Feb 2008 | A1 |
20080190608 | Coronado et al. | Aug 2008 | A1 |
20080283238 | Richards et al. | Nov 2008 | A1 |
20090008078 | Patel | Jan 2009 | A1 |
20090095468 | Augustine et al. | Apr 2009 | A1 |
20090120647 | Turick et al. | May 2009 | A1 |
20110000660 | Joseph et al. | Jan 2011 | A1 |
20110000679 | Joseph et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
WO9905395 | Feb 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20110000680 A1 | Jan 2011 | US |