1. Technical Field
The invention relates generally to a remotely controlled ignition system for pyrotechnic devices. More particularly, the invention relates to such a control system which is capable of wirelessly igniting pyrotechnic devices. Specifically, the invention relates to such a system where ignition is accomplished via electromagnetic induction.
2. Background Information
Ignition systems for fireworks or pyrotechnic devices are within three primary categories, namely manual firing, electrical firing and digital firing. Manual firing is the age-old process of igniting a fuse with a torch or some sort of hand lighter whereby a flame is the catalyst for igniting the fuse. In more recent decades, electrical firing has been utilized wherein an electrical ignitor known as an E-match or squib is inserted into the fuse or black powder of the pyrotechnic device so that an electrical current initiates the ignition of the fuse or black powder. Digital firing also involves the use of E-matches which are connected in the same manner to the pyrotechnic device and are also wired to a computer system in order to automatically shoot the fireworks. The digital systems are very expensive and are typically used with pyro-musical productions.
The typical firework or pyrotechnic show or production typically involves the shooting of from 100 to 40,000 pyrotechnic devices. While manual firing is still the least expensive method of igniting pyrotechnic devices, the manual firing method presents obvious safety issues from the inability to ignite the fireworks remotely. While the electrical and digital firing methods provide for remote ignition of the pyrotechnic devices, nonetheless each firework requires one E-match. The labor for wiring each of these E-matches to the firing system is very time-consuming and cumbersome, and results in many wires disposed above the firing mortars of the pyrotechnic devices. It has been estimated that approximately half of the labor of setting up a pyrotechnic show is due to the wiring of these devices.
In addition, aside from the digital firing systems, there is a need within the pyrotechnic industry for a control mechanism to control the ignition of the lift charge and the burst charge of a pyrotechnic device, in particular the firing sequence thereof. The present invention addresses these and other problems within the art.
The present invention provides an apparatus comprising a pyrotechnic mortar tube adapted to receive therein a pyrotechnic device which is launchable therefrom and which is adapted to be in electrical communication with a receiving induction member; and a transmitting induction coil which is adjacent the mortar tube and which is adapted to produce an electromagnetic field for inducing an electric current in the receiving induction member when the pyrotechnic device is within the mortar tube.
The present invention also provides an apparatus comprising a pyrotechnic device; and a receiving induction coil in electrical communication with the pyrotechnic device.
The present invention further provides a method comprising the steps of causing an electric current to flow in a transmitting induction coil to produce an electromagnetic field which induces an electrical current in a receiving induction member; and igniting a pyrotechnic device with the induced electric current.
Preferred embodiments of the invention, illustrative of the best modes in which applicant contemplates applying the principles, are set forth in the following description and are shown in the drawings and are particularly and distinctly pointed out and set forth in the appended claims.
Similar numbers refer to similar parts throughout the specification.
A first embodiment of the ignition system of the present invention is indicated generally at 100 in
With reference to
Power supply 112 of control 102 is typically in the form of a battery or batteries although other power sources may be used. Charge button 114 is an electric switch for selectively opening and closing the charging circuit of control cable 120 for selectively charging capacitor 122. Fire button 116 is also an electrical switch for selectively opening and closing the triggering circuit of control cable 120 to selectively discharge capacitor 122. Thus, the charging circuit and triggering circuit of control cable 120 are in electrical communication with capacitor 122, which is in electrical communication with induction coil 124. Coils 124 and 126 are spaced from one another by wireless portion 128 of communication pathway 104 and by a portion of mortar tube 136. Each of coils 124 and 126 are substantially cylindrical although this may vary. Receiving coil 126 is in electrical communication with circuit board 130 which is in electrical communication with ignition device 132 (
Preferably, housing 134 has an inner surface 140 which is of a mating configuration with an outer surface 142 of mortar tube 136. It is preferred that housing 134 is slidable over mortar tube 136 while inner surface 140 is in frictional engagement with outer surface 142 to a degree which allows this slidable characteristic while also allowing housing 134 to be positioned on tube 136 and held in place simply by the frictional engagement therebetween. However, housing 134 may be held in position on tube 136 by any securing mechanism known in the art. Mortar tube 136 has a sectional width or diameter D1, transmitting coil 124 has a sectional width or diameter D2 which is greater than diameter D1 and receiving coil 126 has a sectional width or diameter D3 which is less than diameter D1. Diameter D1 of mortar tube 136 typically ranges from approximately 2 inches to 24 inches. The diameters of mortar tubes 136 which are commonly in use include 2″, 2.5″, 3″, 4″, 5″, 6″, 8″, 10″, 12″, 16″ and 24″. Depending on the diameter D1 of tube 136, diameters D2 and D3 will vary accordingly.
Transmitting coil 124 is configured to be tuned to a specific frequency or narrow frequency range and receiving coil 126 is likewise configured so that the frequency or narrow range of each of coils 124 and 126 are matched in order to only allow the proper pyrotechnic device to be fired. Thus, for instance, if a pyrotechnic device of the wrong size is placed in mortar tube 136 and thus has a receiving coil 126 which is not matched in frequency to transmitting coil 124, an electrical current will not be induced in receiving coil 126 when an electrical current is passed through transmitting coil 124 and the improper pyrotechnic device will not be ignited, or an insufficient current will be produced in coil 126 for igniting such a device. Mortar tube 136 is formed of a non-metallic material in order to allow the electromagnetic field produced by the electric current within transmitting coil 124 to pass through tube 136 and induce an electrical current within receiving coil 126. Typically, mortar tube 136 is formed of a fiber composite material although this may vary.
With reference to
The operation of system 100 is now described with reference to FIGS. 1 and 3-5. Once system 100 is properly set up, an operator is ready to remotely ignite or shoot pyrotechnic device 106. With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
In operation, system 600 would operate as described with regard to systems 100 and 200 except that button 114A would be pushed to close the charging circuit in order to charge all of capacitors 122A-D associated with the pyrotechnic devices located within mortar tubes 136A-D, and then fire buttons 116A-D may be pushed individually to respectively control the ignition of the pyrotechnic devices located respectively within tubes 136A-D. Each of fire buttons 116A-D may control the ignition of a single pyrotechnic device or a plurality thereof, for instance a row of such devices. As previously noted with regard to system 100, each housing 134A-D includes a shielding device which is important with regard to having the pyrotechnic devices located in relatively close proximity to one another. The electronic shielding device prevents inadvertent firing of a pyrotechnic device which is adjacent another pyrotechnic device being fired. More particularly, the shielding device prevents the electromagnetic field produced by the transmitting coil from extending to another transmitting or receiving coil associated with another pyrotechnic device in nearby proximity.
Thus, systems 100-600 of the present invention provide remote ignition systems which allow for the reuse of mortar tubes and the reuse of the capacitors and transmitting coils. For instance, an operator of the systems may fire a first pyrotechnic device or a set thereof from one or more mortar tubes 136 and then reload these mortar tubes with additional pyrotechnic devices during a show in order to minimize the number of mortar tubes and associated elements of the system needed in order to fire a given number of pyrotechnic devices. In addition, the present invention substantially reduces the amount of time for setting up a fireworks show due to the elimination of the vast amount of wiring required with prior art devices. The present invention also provides a two-stage firing sequence in addition to the on/off switch for the control and power supply. This two-stage firing sequence, involving activation of the charge button to charge the capacitor and subsequent activation of the fire button to discharge the capacitor, provides a safety mechanism to help ensure that none of the fireworks will be shot while the operator is reloading the mortar tubes with additional fireworks. The wireless ignition of the pyrotechnic device allows for a safe separation of the device from the mortar.
Preferably, the transmitting coils and associated receiving coils used with pyrotechnic devices which are shot from a mortar tube of a particular diameter will be tuned to a certain frequency or frequency range which is different from analogous coils for pyrotechnics associated with mortar tubes having a different diameter. This would prevent the inadvertent firing of pyrotechnic devices which are not sized to fit with a particular mortar tube.
The induction system of the present invention has primarily been described with reference to a transmitting induction coil and a receiving induction coil. However, any suitable electrically conductive members may be used as the transmitting and the receiving members of the induction system as long as they are suitably configured for the purpose. In addition, while it is preferred that the transmitting member be an induction coil within a housing as described which may be slid onto the mortar tube, the transmitting induction member may be, for example, simply disposed to one side of the mortar tube in order to produce an electromagnetic field sufficient to create the electrical current within the receiving induction member. In addition, it is noted that the induction system of the present invention may be used without the circuit board and vice versa although the wireless aspect of the induction system facilitates the launching of the pyrotechnic device with the circuit board without concern for separation of a physical connection between an E-match and the circuit board. Various other changes within the scope of the present invention will be evident to one skilled in the art.
In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed.
Moreover, the description and illustration of the invention is an example and the invention is not limited to the exact details shown or described.
This application is a continuation of U.S. patent application Ser. No. 11/500,762, filed Aug. 7, 2006, now U.S. Pat. No. 7,757,607, which claims priority from U.S. Provisional Application Ser. No. 60/708,935 filed Aug. 17, 2005; the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2459854 | Swift, Jr. | Jan 1949 | A |
2640417 | Bjork et al. | Jun 1953 | A |
3038384 | Gaugler | Jun 1962 | A |
3809964 | Ceyrat | May 1974 | A |
4145968 | Klein | Mar 1979 | A |
4158447 | Humphries et al. | Jun 1979 | A |
4350096 | Cannavo et al. | Sep 1982 | A |
4445434 | Brede et al. | May 1984 | A |
4653211 | Brede et al. | Mar 1987 | A |
6422145 | Gavrilovic et al. | Jul 2002 | B1 |
6439097 | Loving | Aug 2002 | B1 |
6945174 | Aebi et al. | Sep 2005 | B2 |
7011220 | Deye | Mar 2006 | B2 |
7194959 | Bossarte et al. | Mar 2007 | B2 |
7314005 | Deye | Jan 2008 | B2 |
7327550 | Meyer et al. | Feb 2008 | B2 |
7493859 | Russell | Feb 2009 | B2 |
7568429 | Hummel et al. | Aug 2009 | B2 |
7597047 | Doyle et al. | Oct 2009 | B2 |
7617777 | Bossarte et al. | Nov 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20100242770 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
60708935 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11500762 | Aug 2006 | US |
Child | 12813170 | US |