The present invention relates to an apparatus for remotely applying a fluid material. More particularly, the present invention is directed at a powered valve apparatus that couples an extension device with a manifold containing pressurized material and a remotely controllable valve.
Electric switchgear that controls or switches electric power is typically mounted in hard to reach places, e.g. on utility poles and substations. This equipment requires periodic maintenance, in particular application of penetrating oils, cleaners, and lubricants to keep it operable. In many cases, these devices require lubrication while they are powered on, where the operating voltages can reach into the tens or hundreds of thousands of volts. Thus it can be quite hazardous in terms of electrical shock to the personnel conducting the maintenance. A current lubrication solution typically involves a hand-held aerosol spray can, or an apparatus that can hold and disperse the contents of an aerosol spray can. This has disadvantages in that the user performing the maintenance may need to get in potentially dangerous close proximity to the live circuit, and also limits the application to whatever type of lubricant is available in an aerosol can. Another known solution involves attaching an aerosol spray can to the end of an extension, such as a pole or a “hot-stick” with a string or rope running down from the can to the operator. This device requires two hands to operate, with one holding the extension and another pulling the string or rope to activate the aerosol can. This can be physically awkward for the operator. If the operator pulls too hard on the rope, it may dislodge the can, possibly causing personal injury, or an electrical fault on the electric device, and at a minimum requiring the operator to re-attach the can. Additionally, the rope does not provide as high a degree of insulation as the hot stick, so in a high voltage environment, this usage could possibly cause electric shock to the operator by providing an arc path. This method is also prone to inaccurate dispersion of the lubricant, which is undesirable.
What is needed is an apparatus that provides safety for the maintenance personnel, accurate placement of the lubricant, and the flexibility of using different types of lubricants or other materials that may or may not be available in an aerosol can.
Provided is a remotely controlled material delivery system having at least one canister, for containing the material; a nozzle; a manifold to direct movement of the material from the canister to the nozzle; a valve mechanism to control the flow of material; a signal receiver; a power source; a mounting adapter; and a remote controller operable to generate a signal wherein the signal is transmitted from the remote controller to the signal receiver, wherein the receiver can open and close the valve in response to the remotely generated signal and wherein the signal can be transmitted through a wired connection, an optical connection, or wirelessly from the remote controller to the signal receiver.
With reference to
With continued reference to
With continued reference to
With continued reference to
With further reference to
With further reference to
With further reference to
With continued reference to
With reference to
With reference to
Another embodiment of the material delivery system 100 can include a tube or hose in place of the canister 102, which can provide a material to the manifold 104 in a like fashion as the canister 102, and can allow a prolonged operation of the system 100 without having to replace the canister 102. This can be useful in applications that are not related to high voltage electrical switching equipment such as painting, cleaning, firefighting and the like.
According to one embodiment of the material delivery system 100 can include a camera mounted on the manifold 104. According to this embodiment, the receiver 118 and remoted controller 120 can be in two-way communication such that an audio visual signal can be transmitted from the camera via the receiver 118 to the remote controller 120. According to this embodiment, the remote controller 120 can include a display screen such as an LCD, LED, AMOLED, or any other suitable display screen. Alternatively, the remote controller can include a port, such as USB, HDMI, DVI, VGA, Composite, Component, or another suitable port for connecting the remote controller 120 to a display screen. According to another embodiment, the remote controller 120 can communicate with a display screen wirelessly. According to another embodiment, the camera can include a wired or wireless transmitter that can communicate directly with a display screen, which can be separate or integrated into the remote controller 120.
According to one embodiment, the camera mounted on the manifold 104 of the material delivery system 100 can be controlled separate from the remote controller 120. By way of a non-limiting example, the camera can be in two-way communication with a separate controller such that an audio visual signal can be transmitted from the camera to the separate controller via a wired or a wireless connection. According to one embodiment, the separate controller can be a smart phone, a tablet, a smart watch, or a similar device that includes a display screen to allow a user to control the camera and remotely view what the camera is recording. According to this embodiment, the hot stick 114, other extension device, or drone controller can include a holder or mounting bracket configured to hold the separate controller. One example could be a smart phone holder disposed on the end of the hot stick 114 near the user's hand which would allow the user to view and control the camera separate from the material delivery system 100 while maintaining control over the hot stick 114 and/or the material delivery system 100.
Another embodiment of the material delivery system 100 can include more than one canister 102 to be attached to the manifold 104, wherein each canister 102 can contain a specific material, such as separate colors of paint or cleaning solutions, which can subsequently be combined in the manifold 104, and passed through the valve 106 and out through the nozzle 112. Additionally, one canister 102 may contain a material and the other canister 102 may contain a pressurized gas such as CO2, which can be used as a propellant, or other gases that can react in an intended way with the material.
According to another embodiment of the material delivery system 100, at least one additional valve 106 can be added to the manifold 104 to control the flow of material into the manifold 104, or to control material flowing out of the manifold 104.
Another embodiment of the material delivery system 100 can include the tube or hose in place of the canister 102 or in combination with at least one additional canister 102 so that the material provided by the hose or tube can be combined with the material in the attached canister 102 in the manifold 104. The material provided by the hose or tube could also act as a propellant, such as compressed air or water under pressure. This could be useful, for example, in the application of water based paints, insecticides, cleaning solutions, etc. that require a mixture of a concentrated material with water. This and other embodiments of the system 100 can have an environmental enclosure to protect it from the spray of material, water, or from rain or other potential environmental contaminants.
The remotely controlled material delivery system 100 can be used on electrical distribution equipment such as switchgear, transformers, capacitors, or the like. The utility of this apparatus lies in the safety and functionality provided by the remote control feature. Other embodiments as described above can take advantage of the features that extend its usefulness beyond that of lubrication of electrical distribution equipment.
As described above, the present disclosure has been described with preferred embodiments thereof and it is understood that many changes and modifications to the described embodiments can be carried out without departing from the scope and the spirit of the present disclosure that is intended to be limited only by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3229859 | Conroy | Jan 1966 | A |
3485206 | Smrt | Dec 1969 | A |
3716195 | Silva | Feb 1973 | A |
3856209 | Hickson | Dec 1974 | A |
3952923 | Tison | Apr 1976 | A |
4023711 | Sena | May 1977 | A |
4789084 | Yoshitomi | Dec 1988 | A |
4969579 | Behar | Nov 1990 | A |
5518148 | Smrt | May 1996 | A |
5634571 | Cataneo | Jun 1997 | A |
5868103 | Boyd | Feb 1999 | A |
6450423 | Gurule | Sep 2002 | B1 |
6551001 | Aberegg | Apr 2003 | B2 |
6889920 | Nance | May 2005 | B2 |
6948637 | Jacobs | Sep 2005 | B1 |
7021499 | Hansen | Apr 2006 | B2 |
7040510 | Hester | May 2006 | B1 |
7083125 | Westphal | Aug 2006 | B2 |
7252210 | Schultz | Aug 2007 | B1 |
7299950 | Laveault | Nov 2007 | B2 |
7717300 | Yarrusso, Jr. | May 2010 | B1 |
7798366 | Hoshino | Sep 2010 | B2 |
7967220 | Hansen | Jun 2011 | B2 |
8444020 | Kenny | May 2013 | B1 |
8500039 | Allen, Jr. | Aug 2013 | B2 |
8596498 | Werner | Dec 2013 | B2 |
8757514 | Perello | Jun 2014 | B1 |
9421568 | Reith | Aug 2016 | B1 |
9579676 | Burrowes | Feb 2017 | B1 |
10059504 | Olsson | Aug 2018 | B2 |
10315834 | Carrette | Jun 2019 | B2 |
20050199653 | Warner | Sep 2005 | A1 |
20060071036 | Gervais | Apr 2006 | A1 |
20060118656 | Griffith | Jun 2006 | A1 |
20070014108 | Uke | Jan 2007 | A1 |
20080006727 | Roh | Jan 2008 | A1 |
20080099588 | Zinski | May 2008 | A1 |
20090008479 | Domizio | Jan 2009 | A1 |
20090308946 | Dube | Dec 2009 | A1 |
20100108779 | Filsouf | May 2010 | A1 |
20100185322 | Bylsma | Jul 2010 | A1 |
20100326470 | Seippel | Dec 2010 | A1 |
20110031334 | Merritt | Feb 2011 | A1 |
20110072956 | Wall | Mar 2011 | A1 |
20130200108 | Di Bono | Aug 2013 | A1 |
20150344136 | Dahlstrom | Dec 2015 | A1 |
20160058262 | Charlton | Mar 2016 | A1 |
20160082460 | McMaster | Mar 2016 | A1 |
20160344170 | Tamm | Nov 2016 | A1 |
20170030516 | Kinner | Feb 2017 | A1 |
Entry |
---|
Hastings Catalog; p. 211, 2015. |
Petsafe Remote Spray Trainer Operating and Training Guide; Radio Systems Corporation, 2007. |
Nye Lubricants; Lubenotes: Design Engineer's Guide to Selecting Lubricants; 2013. |
Number | Date | Country | |
---|---|---|---|
20170030516 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
62197400 | Jul 2015 | US |