Embodiments of the present invention generally relate to a damper assembly for a vehicle. More specifically, certain embodiments relate to a remotely operated bypass device used in conjunction with a vehicle damper.
Vehicle suspension systems typically include a spring component or components and a dampening component or components. Typically, mechanical springs, like helical springs are used with some type of viscous fluid-based dampening mechanism and the two are mounted functionally in parallel. In some instances features of the damper or spring are user-adjustable. What is needed is an improved method and apparatus for adjusting dampening characteristics, including remote adjustment.
The present invention may be used with a damper assembly having a bypass. In one aspect, the assembly comprises a cylinder with a piston and piston rod for limiting the flow rate of damping fluid as it passes from a first to a second portion of said cylinder. A bypass provides fluid pathway between the first and second portions of the cylinder and may be independent of, or in conjunction with, the aforementioned flow rate limitation. In one aspect, the bypass is remotely controllable from a passenger compartment of the vehicle. In another aspect, the bypass is remotely controllable based upon one or more variable parameters associated with the vehicle.
So that the manner in which the above recited features can be understood in detail, a more particular description may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
As used herein, the terms “down” “up” “downward” “upward” “lower” “upper” and other directional references are relative and are used for reference only.
A reservoir 125 is in fluid communication with the damper cylinder 102 for receiving and supplying damping fluid as the rod 107 moves in and out of the damper cylinder 102. The reservoir 125 includes a reservoir cylinder 128 in fluid communication with a rebound portion 103 of the damper cylinder 102 via fluid conduit 129. The reservoir also includes a floating piston 130 with a volume of gas on a backside 131 (“blind end” side) of it, the gas being compressible as the reservoir cylinder 128, on the “frontside” 132 fills with damping fluid due to movement of the rod 107 and piston 105 into the damper cylinder 102. Certain features of reservoir type dampers are shown and described in U.S. Pat. No. 7,374,028, which is incorporated herein, in its entirety, by reference. The upper portion of the rod 107 is supplied with a bushing set 109 for connecting to a portion of a vehicle wheel suspension linkage. In another embodiment, not shown, the upper portion of the rod 107 (opposite the piston) may be supplied with an eyelet to be mounted to one part of the vehicle, while the lower part of the housing shown with an eyelet 108 is attached to another portion of the vehicle, such as the frame, that moves independently of the first part. A spring member (not shown) is usually mounted to act between the same portions of the vehicle as the damper unit 100. As the rod 107 and piston 105 move into damper cylinder 102 (during compression), the damping fluid slows the movement of the two portions of the vehicle relative to each other due to the incompressible fluid moving through the flow paths 112 (past shims 116) provided in the piston 105 and/or through a metered bypass 150, as will be described herein. As the rod 107 and piston 105 move out of the damper cylinder 102 (during extension or “rebound”) fluid meters again through flow paths 110 and the flow rate and corresponding rebound rate is controlled by the shims 115.
In
The entry pathway 160 to the bypass assembly 150 in the embodiment shown in
Inlet 225 is formed in the valve body 204 for operation of the remotely controllable valve 200. In one embodiment inlet 225 may be pressurized to shift the remotely controllable valve 200 to a third or “locked-out” position. In
In the embodiment illustrated, the remotely controllable valve 200 is intended to be shifted to the locked-out position with control fluid acting upon piston 205. In one embodiment, the activating pressure via inlet 225 is adjusted so that the remotely controllable valve 200 is closed to rebound fluid (with the cone-shaped member 212 in seat 217) but with the spring 215 not fully compressed or stacked out. In such a position, a high enough compression force (e.g. compression flow) will still open the remotely controllable valve 200 and allow fluid to pass through the remotely controllable valve 200 in a compression stroke. In one arrangement, the activating pressure, controlled remotely, may be adjusted between levels where the lock-out is not energized and levels where the lock-out is fully energized. The activating pressure may also be adjusted at intermediate levels to create more or less damping resistance through the bypass assembly 150. The activating pressure may be created by hydraulic or pneumatic input or any other suitable pressure source.
In one example, the remotely controllable valve 200 is moved to a locked-out position and the bypass feature is disabled by remote control from a simple operator-actuated switch located in the passenger compartment of the vehicle. In one embodiment, fluid pressure for controlling (e.g. locking-out) the remotely controllable valve 200 is provided by the vehicle's on-board source of pressurized hydraulic fluid created by, for example, the vehicle power steering system. In one embodiment, pneumatic pressure is used to control (e.g. close) the remotely controllable valve 200 where the pneumatic pressure is generated by an on-board compressor and accumulator system and conducted to the remotely controllable valve 200 via a fluid conduit. In one embodiment, a linear electric motor (e.g. solenoid), or other suitable electric actuator, is used, in lieu of the aforementioned inlet 225 pressure, to move the “piston 205” axially within valve body 204. A shaft of the electric actuator (not shown) may be fixed to the piston 205 such that axial movement of the shaft causes axial movement of the piston 205 which in turn causes movement of the cone-shaped member 212 (and compression of the spring 215 as appropriate). In one embodiment, the electric actuator is configured to “push” the piston 205 towards a closed position and to “pull” the piston 205 away from the closed position depending on the direction of the current switched through the actuator.
As in other embodiments, the remotely controllable valve 200 may be solenoid operated or hydraulically operated or pneumatically operated or operated by any other suitable motive mechanism. The remotely controllable valve 200 may be operated remotely by a switch 415 or potentiometer located in the cockpit of a vehicle or attached to appropriate operational parts of a vehicle for timely activation (e.g. brake pedal) or may be operated in response to input from a microprocessor (e.g. calculating desired settings based on vehicle acceleration sensor data) or any suitable combination of activation means. In like manner, a controller for the adjustable pressure source (or for both the source and the valve) may be cockpit mounted and may be manually adjustable or microprocessor controlled or both or selectively either.
It may be desirable to increase the damping rate when moving a vehicle from off-road to on highway use. Off-road use often requires a high degree of compliance to absorb shocks imparted by the widely varying terrain. On highway use, particularly with long wheel travel vehicles, often requires more rigid shock absorption to allow a user to maintain control of a vehicle at higher speeds. This may be especially true during cornering or braking.
One embodiment comprises a four wheeled vehicle having solenoid valve equipped shock absorbers at each (of four) wheel. The remotely controllable valve 200 (which in one embodiment is cable operated instead of solenoid operated) of each of the front shock absorbers may be electrically connected with a linear switch 415 (such as that which operates an automotive brake light) that is activated in conjunction with the vehicle brake pedal. When the brake pedal is depressed beyond a certain distance, corresponding usually to harder braking and hence potential for vehicle nose dive, the electric switch 415 connects a power supply to the normally open solenoid in each of the front shocks thereby closing the paths in those shocks. As such the front shocks become more rigid during hard braking. Other mechanisms may be used to trigger the shocks such as accelerometers (e.g. tri-axial) for sensing pitch and roll of the vehicle and activating, via a microprocessor, the appropriate remotely controllable valve 200 for optimum vehicle control.
In one embodiment, a vehicle steering column includes right turn and left turn limit switches such that a hard turn in either direction activates the solenoid on the shocks opposite that direction (for example a hard right turn would cause more rigid shocks on the vehicle left side). Again, accelerometers in conjunction with a microprocessor and a switched power supply may perform the solenoid activation function by sensing the actual g-force associated with the turn (or braking; or throttle acceleration for the rear shock activation) and triggering the appropriate solenoid(s) at a preset threshold g-force.
In one embodiment, a pressure intensifier damper arrangement may be located within the fluid path such that the solenoid-controlled valve controls flow through that auxiliary damper which is then additive with the damper mechanism of the damping piston. In one embodiment the damper mechanism of the damping piston comprises a pressure intensifier. In one embodiment one or both of the dampers comprise standard shim type dampers. In one embodiment one or both of the dampers include an adjustable needle for low speed bleed. In one embodiment a blow off (e.g. checking poppet type or shim) is included in one of the flow paths or in a third parallel flow path.
While
A remotely controllable valve 200 like the one described above is particularly useful with an on/off road vehicle. These vehicles can have as much as 20″ of shock absorber travel to permit them to negotiate rough, uneven terrain at speed with usable shock absorbing function. In off-road applications, compliant dampening is necessary as the vehicle relies on its long travel suspension when encountering often large off-road obstacles. Operating a vehicle with very compliant, long travel suspension on a smooth road at higher speeds can be problematic due to the springiness/sponginess of the suspension and corresponding vehicle handling problems associated with that (e.g. turning roll, braking pitch). Such compliance can cause reduced handling characteristics and even loss of control. Such control issues can be pronounced when cornering at high speed as a compliant, long travel vehicle may tend to roll excessively. Similarly, such a vehicle may pitch and yaw excessively during braking and acceleration. With the remotely operated bypass dampening and “lock out” described herein, dampening characteristics of a shock absorber can be completely changed from a compliantly dampened “springy” arrangement to a highly dampened and “stiffer” (or fully locked out) system ideal for higher speeds on a smooth road. In one embodiment where compression flow through the piston is completely blocked, closure of the bypass assembly 150 results in substantial “lock out” of the suspension (the suspension is rendered essentially rigid except for the movement of fluid through shimmed valve). In one embodiment where some compression flow is allowed through the piston 105 (e.g. port 112 and shims 116), closure of the bypass assembly 150 (closure of remotely controllable valve 200) results in a stiffer but still functional compression damper.
In one embodiment, the shims 116 are sized, to optimize damping when the bypass assembly 150 is open and when bypass assembly 150 is closed based on total anticipated driving conditions. In one embodiment the remotely controllable valve 200 is closed but may be opened at a predetermined compression flow pressure resulting in fairly stiff handling but maintaining an ability for the vehicle to absorb relatively large bumps. In one embodiment a bypass assembly 150 having an entry pathway 160 located axially toward an upward (or “rebound” end) end of damper cylinder 102 remains wide open while other bypass channels having corresponding openings 160 located axially more toward the compression end of damper cylinder 102 are closed or highly restricted. Such would result in a suspension that would readily absorb small amplitude compressions (smooth highway ride) but would resist large compression deflections of low force magnitude (as during heavy cornering or braking) and would absorb large deflections of high force magnitude. A vehicle so configured would ride well on pavement (smooth surface), would absorb large unexpected bumps and would generally not wallow when cornering or braking.
In addition to, or in lieu of, the simple, switch operated remote arrangement of
While a transducer assembly located at the damper unit 100 measures rod speed and location, a separate wheel speed transducer for sensing the rotational speed of a wheel about an axle includes housing fixed to the axle and containing therein, for example, two permanent magnets. In one embodiment the magnets are arranged such that an elongated pole piece commonly abuts first surfaces of each of the magnets, such surfaces being of like polarity. Two inductive coils having flux-conductive cores axially passing therethrough abut each of the magnets on second surfaces thereof, the second surfaces of the magnets again being of like polarity with respect to each other and of opposite polarity with respect to the first surfaces. Wheel speed transducers are described in U.S. Pat. No. 3,986,118 which is incorporated herein by reference in its entirety.
In one embodiment, as illustrated in
In one embodiment, the logic shown in
While the examples illustrated relate to manual operation and automated operation based upon specific parameters, the remotely controllable valve 200 or the remote operation of pressure source 201 can be used in a variety of ways with many different driving and road variables. In one example, the remotely controllable valve 200 is controlled based upon vehicle speed in conjunction with the angular location of the vehicle's steering wheel. In this manner, by sensing the steering wheel turn severity (angle of rotation), additional dampening can be applied to one damper or one set of dampers on one side of the vehicle (suitable for example to mitigate cornering roll) in the event of a sharp turn at a relatively high speed. In another example, a transducer, such as an accelerometer, measures other aspects of the vehicle's suspension system, like axle force and/or moments applied to various parts of the vehicle, like steering tie rods, and directs change to the bypass valve positioning in response thereto. In another example, the bypass can be controlled at least in part by a pressure transducer measuring pressure in a vehicle tire and adding dampening characteristics to some or all of the wheels in the event of, for example, an increased or decreased pressure reading. In one embodiment, the damper bypass or bypasses are controlled in response to braking pressure (as measured, for example, by a brake pedal sensor or brake fluid pressure sensor or accelerometer). In still another example, a parameter might include a gyroscopic mechanism that monitors vehicle trajectory and identifies a “spin-out” or other loss of control condition and adds and/or reduces dampening to some or all of the vehicle's dampers in the event of a loss of control to help the operator of the vehicle to regain control.
In one embodiment, the logic shown in
While the examples illustrated relate to manual operation and automated operation based upon specific parameters, the remotely operated bypass can be used in a variety of ways with many different driving and road variables. In one example, the bypass is controlled based upon vehicle speed in conjunction with the angular location of the vehicle's steering wheel. In this manner, by sensing the steering wheel turn severity (angle of rotation), additional dampening can be applied to one damper unit 100 or one set of dampers on one side of the vehicle (suitable for example to mitigate cornering roll) in the event of a sharp turn at a relatively high speed. In another example, a transducer, such as an accelerometer measures other aspects of the vehicle's suspension system, like axle force and/or moments applied to various parts of the vehicle, like steering tie rods, and directs change to the bypass valve positioning in response thereto. In another example, the bypass can be controlled at least in part by a pressure transducer measuring pressure in a vehicle tire and adding dampening characteristics to some or all of the wheels in the event of, for example, an increased or decreased pressure reading. In one embodiment the damper bypass or bypasses are controlled in response to braking pressure (as measured for example by a brake pedal sensor or brake fluid pressure sensor or accelerometer) In still another example, a parameter might include a gyroscopic mechanism that monitors vehicle trajectory and identifies a “spin-out” or other loss of control condition and adds and/or reduces dampening to some or all of the vehicle's dampers in the event of a loss of control to help the operator of the vehicle to regain control.
Secondary Pressure Sensitive Bypass Check Valve
The remotely controllable valve 200 includes a valve body 204 housing a movable piston 205 which is sealed within the body. Two fluid communication points are provided in the body including an inlet 202 and outlet 203 for fluid passing through the remotely controllable valve 200. On one end of piston 205 is shaft 210 having a cone-shaped member 212 (other shapes such as spherical or flat, with corresponding seats, will also work suitably well) disposed on an end thereof. On the opposite end of piston 205 is shaft 830 which rests against coil spring piston 820. Coil spring piston 820 is being pressed on its other side by coil spring 810 which is sandwiched between coil spring piston 820 and preload adjuster 815. Preload adjuster 815 can be adjusted remotely or at the remotely controllable valve 200 by actions such as twisting, to increase or decrease the force applied to coil spring 810. By varying the force on coil spring 810, the force required to open the valve can be varied. By adjusting preload adjuster 815 low speed compression and rebound in the area governed by the bypass tubes can be changed. Further, the coil spring blow off setup will allow greater flow at high speed since the initial setting does not prevent full flow.
The characteristics of coil spring 810 are typically chosen to permit the remotely controllable valve 200 (e.g. cone-shaped member 212) to open at a predetermined bypass pressure, with a predetermined amount of control pressure applied to inlet 225, during a compression stroke of the damper unit 100. For a given spring 215, increased compression of coil spring 810 based on adjustments made to preload adjuster 815 will result in higher bypass pressure required to open the remotely controllable valve 200 and correspondingly higher damping resistance in the bypass assembly 150 (more compression damping due to that bypass assembly 150).
Preload adjuster 815 is formed in the valve body 204 for operation of the remotely controllable valve 200. When comparing
Gas inlet 915 is formed in the valve body 204 for operation of the remotely controllable valve 200. When comparing
As described above, gas inlet 915 is formed in the valve body 204 for operation of the remotely controllable valve 200. When comparing
However, in addition to the actions described in
Thus, using one or a combination of the additional features including coil spring 810, preload adjuster 815, coil spring piston 820, and inlet 915, internal pressure sensitivity can be added to the position sensitivity of the bypass shock. The secondary spring constantly adjusts flow to the pressure created with each suspension event. In one embodiment, using the gas plus spring 810 version adds infinite adjustability of check valve crack pressure to aid with tuning. Moreover, the coil spring 810 can be adjusted similarly with spring rate and preload. It also adds reliability due to the simple mechanical nature. By providing the pressure sensitive characteristics, the remotely controllable valve 200 only allows the amount of flow thru the check valve that the suspension event demands. This simply and automatically keeps the vehicle more stable in the low shaft speed events such as braking turning and acceleration yet allows the suspension to soak up the big hits and allows free movement in the square edge hits which makes the ride more comfortable and controlled. Moreover, the added redundancy of the secondary system to the shock will increase reliability. In the event of a failure of the secondary system, by retaining the primary check valve, the vehicle can continue on with the same characteristics as the current system provide.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit to and is a continuation of the U.S. patent application Ser. No. 15/686,933, filed on Aug. 25, 2017, entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety. The application with application Ser. No. 15/686,933 claims benefit of U.S. Provisional Patent Application Ser. No. 62/379,487, filed Aug. 25, 2016, entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, which is herein incorporated by reference in its entirety. The application with application Ser. No. 15/686,933 is a continuation-in-part of U.S. patent application Ser. No. 15/158,502 filed on May 18, 2016, now U.S. Pat. No. 10,415,662, entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, which is herein incorporated by reference in its entirety. The application with application Ser. No. 15/158,502 claims to and is a continuation of the then U.S. patent application Ser. No. 14/038,507 filed on Sep. 26, 2013, now U.S. Pat. No. 9,353,818, entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety. The application with application Ser. No. 14/038,507 claims to and is a continuation of the then U.S. patent application Ser. No. 13/010,697 filed on Jan. 20, 2011, now U.S. Pat. No. 8,857,580, entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety. The application with application Ser. No. 13/010,697 claims priority to the then U.S. Provisional Patent Application No. 61/296,826, entitled “BYPASS LOCK-OUT VALVE FOR A SUSPENSION DAMPER” with the filing date of Jan. 20, 2010, by John Marking, and assigned to the assignee of the present application.
Number | Name | Date | Kind |
---|---|---|---|
435995 | Dunlop | Sep 1890 | A |
1078060 | Newman | Nov 1913 | A |
1307502 | Martin | Jun 1919 | A |
1313763 | Thomas | Aug 1919 | A |
1409849 | Haeberlein | Mar 1922 | A |
1468652 | Storey et al. | Sep 1923 | A |
1492731 | Kerr | May 1924 | A |
1560477 | Kessler | Nov 1925 | A |
1571788 | Bramlette, Jr. | Feb 1926 | A |
1575973 | Coleman | Mar 1926 | A |
1655786 | Guerritore et al. | Jan 1928 | A |
1923011 | Moulton | Aug 1933 | A |
1948600 | Templeton | Feb 1934 | A |
1970239 | Klaas | Aug 1934 | A |
2018312 | Moulton | Oct 1935 | A |
2098119 | White | Nov 1937 | A |
2115072 | Hunt et al. | Apr 1938 | A |
2122407 | Chisholm | Jul 1938 | A |
2186266 | Henry | Jan 1940 | A |
2259437 | Dean | Oct 1941 | A |
2354340 | Utter | Jul 1944 | A |
2363867 | Isely | Nov 1944 | A |
2379750 | Rossman | Jul 1945 | A |
2492331 | Spring | Dec 1949 | A |
2518553 | Kieber | Aug 1950 | A |
2540525 | Howarth et al. | Feb 1951 | A |
2559633 | Maurice et al. | Jul 1951 | A |
2588520 | Halgren et al. | Mar 1952 | A |
2697600 | Gregoire | Dec 1954 | A |
2705119 | Ingwer | Mar 1955 | A |
2725076 | Hansen et al. | Nov 1955 | A |
2729308 | Koski et al. | Jan 1956 | A |
2778378 | Presnell | Jan 1957 | A |
2784962 | Sherburne | Mar 1957 | A |
2809722 | Smith | Oct 1957 | A |
2838140 | Rasmusson et al. | Jun 1958 | A |
2846028 | Gunther | Aug 1958 | A |
2853974 | Hewitt | Sep 1958 | A |
2879971 | Demay | Mar 1959 | A |
2883181 | Hogan et al. | Apr 1959 | A |
2897613 | Davidson et al. | Aug 1959 | A |
2924304 | Patriquin | Feb 1960 | A |
2941629 | Etienne et al. | Jun 1960 | A |
2967065 | Schwendner | Jan 1961 | A |
2973744 | Hennells | Mar 1961 | A |
2991804 | Merkle | Jul 1961 | A |
3003595 | Patriquin et al. | Oct 1961 | A |
3056598 | Sutton et al. | Oct 1962 | A |
3071394 | John | Jan 1963 | A |
3073586 | Hartel et al. | Jan 1963 | A |
3074709 | Ellis et al. | Jan 1963 | A |
3085530 | Williamson | Apr 1963 | A |
3087583 | Bruns | Apr 1963 | A |
3107753 | Georgette et al. | Oct 1963 | A |
3127958 | Szostak | Apr 1964 | A |
3175645 | Schafer et al. | Mar 1965 | A |
3202413 | Colmerauer | Aug 1965 | A |
3206153 | Burke | Sep 1965 | A |
3207270 | Ellis | Sep 1965 | A |
3216535 | Schultze | Nov 1965 | A |
3238850 | Desmarchelier | Mar 1966 | A |
3284076 | Gibson | Nov 1966 | A |
3286797 | Leibfritz et al. | Nov 1966 | A |
3405625 | Carlson et al. | Oct 1968 | A |
3419849 | Anderson et al. | Dec 1968 | A |
3420493 | Kraft et al. | Jan 1969 | A |
3447644 | Duckett | Jun 1969 | A |
3494606 | Hanchen | Feb 1970 | A |
3528700 | Janu et al. | Sep 1970 | A |
3537722 | Moulton | Nov 1970 | A |
3556137 | Billeter et al. | Jan 1971 | A |
3559027 | Arsem | Jan 1971 | A |
3560033 | Barkus | Feb 1971 | A |
3575442 | Elliott et al. | Apr 1971 | A |
3584331 | Richard et al. | Jun 1971 | A |
3603575 | Arlasky et al. | Sep 1971 | A |
3605960 | Singer | Sep 1971 | A |
3618972 | Buhl | Nov 1971 | A |
3621950 | Lutz | Nov 1971 | A |
3650033 | Behne et al. | Mar 1972 | A |
3701544 | Stankovich | Oct 1972 | A |
3714953 | Solvang | Feb 1973 | A |
3750856 | Kenworthy et al. | Aug 1973 | A |
3784228 | Hoffmann et al. | Jan 1974 | A |
3791408 | Saitou et al. | Feb 1974 | A |
3792644 | Ferguson et al. | Feb 1974 | A |
3795291 | Naito et al. | Mar 1974 | A |
3830482 | Norris | Aug 1974 | A |
3842753 | Ross et al. | Oct 1974 | A |
3861487 | Gill | Jan 1975 | A |
3903613 | Bisberg | Sep 1975 | A |
3941402 | Jankowski et al. | Mar 1976 | A |
3981204 | Starbard et al. | Sep 1976 | A |
3981479 | Foster et al. | Sep 1976 | A |
3986118 | Madigan | Oct 1976 | A |
3995883 | Glaze | Dec 1976 | A |
4022113 | Blatt et al. | May 1977 | A |
4032829 | Schenavar et al. | Jun 1977 | A |
4036335 | Thompson et al. | Jul 1977 | A |
4045008 | Bauer | Aug 1977 | A |
4072087 | Mueller et al. | Feb 1978 | A |
4103881 | Simich | Aug 1978 | A |
4106522 | Manesse | Aug 1978 | A |
4114735 | Kato | Sep 1978 | A |
4121610 | Harms et al. | Oct 1978 | A |
4131657 | Ball et al. | Dec 1978 | A |
4139186 | Postema et al. | Feb 1979 | A |
4153237 | Supalla | May 1979 | A |
4159106 | Nyman et al. | Jun 1979 | A |
4166612 | Freitag et al. | Sep 1979 | A |
4174098 | Baker et al. | Nov 1979 | A |
4183509 | Nishikawa et al. | Jan 1980 | A |
4236613 | Van Der Lely | Dec 1980 | A |
4287812 | Iizumi | Sep 1981 | A |
4291850 | Sharples | Sep 1981 | A |
4305566 | Grawunde | Dec 1981 | A |
4311302 | Heyer et al. | Jan 1982 | A |
4333668 | Hendrickson et al. | Jun 1982 | A |
4334711 | Mazur et al. | Jun 1982 | A |
4337850 | Shimokura et al. | Jul 1982 | A |
4348016 | Milly | Sep 1982 | A |
4351515 | Yoshida | Sep 1982 | A |
4366969 | Benya et al. | Jan 1983 | A |
4387781 | Ezell et al. | Jun 1983 | A |
4437548 | Ashiba et al. | Mar 1984 | A |
4465299 | Stone et al. | Aug 1984 | A |
4474363 | Numazawa et al. | Oct 1984 | A |
4491207 | Boonchanta et al. | Jan 1985 | A |
4500827 | Merritt et al. | Feb 1985 | A |
4502673 | Clark et al. | Mar 1985 | A |
4529180 | Hill | Jul 1985 | A |
4546959 | Tanno | Oct 1985 | A |
4548233 | Wolfges | Oct 1985 | A |
4550899 | Holley | Nov 1985 | A |
4570851 | Cirillo et al. | Feb 1986 | A |
4572317 | Isono et al. | Feb 1986 | A |
4616810 | Richardson et al. | Oct 1986 | A |
4620619 | Emura et al. | Nov 1986 | A |
4624346 | Katz et al. | Nov 1986 | A |
4630818 | Saarinen | Dec 1986 | A |
4634142 | Woods et al. | Jan 1987 | A |
4647068 | Asami et al. | Mar 1987 | A |
4655440 | Eckert | Apr 1987 | A |
4657280 | Ohmori et al. | Apr 1987 | A |
4659104 | Tanaka et al. | Apr 1987 | A |
4660689 | Hayashi et al. | Apr 1987 | A |
4662616 | Hennells | May 1987 | A |
4673194 | Sugasawa | Jun 1987 | A |
4696489 | Fujishiro et al. | Sep 1987 | A |
4709779 | Takehara | Dec 1987 | A |
4723753 | Torimoto et al. | Feb 1988 | A |
4729459 | Inagaki et al. | Mar 1988 | A |
4732244 | Verkuylen | Mar 1988 | A |
4743000 | Karnopp | May 1988 | A |
4744444 | Gillingham | May 1988 | A |
4750735 | Furgerson et al. | Jun 1988 | A |
4765648 | Mander et al. | Aug 1988 | A |
4773671 | Inagaki | Sep 1988 | A |
4786034 | Heess et al. | Nov 1988 | A |
4802561 | Knecht et al. | Feb 1989 | A |
4806082 | Schenk | Feb 1989 | A |
4815575 | Murty et al. | Mar 1989 | A |
4821852 | Yokoya | Apr 1989 | A |
4826207 | Yoshioka et al. | May 1989 | A |
4830395 | Foley | May 1989 | A |
4836578 | Soltis | Jun 1989 | A |
4838306 | Horn | Jun 1989 | A |
4838394 | Lemme et al. | Jun 1989 | A |
4838527 | Holley | Jun 1989 | A |
4846317 | Hudgens | Jul 1989 | A |
4858733 | Noguchi et al. | Aug 1989 | A |
4919166 | Sims et al. | Apr 1990 | A |
4936423 | Karnopp | Jun 1990 | A |
4936424 | Costa | Jun 1990 | A |
4938228 | Righter | Jul 1990 | A |
4949262 | Buma et al. | Aug 1990 | A |
4949989 | Kakizaki et al. | Aug 1990 | A |
4958706 | Richardson et al. | Sep 1990 | A |
4972928 | Sirven | Nov 1990 | A |
4975849 | Ema et al. | Dec 1990 | A |
4984819 | Kakizaki et al. | Jan 1991 | A |
4986393 | Preukschat et al. | Jan 1991 | A |
5027303 | Witte | Jun 1991 | A |
5031455 | Cline | Jul 1991 | A |
5036934 | Nishina et al. | Aug 1991 | A |
5040381 | Hazen | Aug 1991 | A |
5044614 | Rau | Sep 1991 | A |
5060910 | Iwata et al. | Oct 1991 | A |
5060959 | Davis et al. | Oct 1991 | A |
5072812 | Imaizumi | Dec 1991 | A |
5074624 | Stauble et al. | Dec 1991 | A |
5076404 | Gustafsson | Dec 1991 | A |
5080392 | Bazergui | Jan 1992 | A |
5094325 | Smith | Mar 1992 | A |
5105918 | Hagiwara et al. | Apr 1992 | A |
5113980 | Furrer et al. | May 1992 | A |
5127634 | Le Gourvellec | Jul 1992 | A |
5152547 | Davis | Oct 1992 | A |
5161653 | Hare | Nov 1992 | A |
5161817 | Daum et al. | Nov 1992 | A |
5163742 | Topfer et al. | Nov 1992 | A |
5178242 | Nakamura et al. | Jan 1993 | A |
5186481 | Turner | Feb 1993 | A |
5203584 | Butsuen et al. | Apr 1993 | A |
5207300 | Engel et al. | May 1993 | A |
5207774 | Wolfe et al. | May 1993 | A |
5230364 | Leng et al. | Jul 1993 | A |
5231583 | Lizell | Jul 1993 | A |
5236169 | Johnsen et al. | Aug 1993 | A |
5246247 | Runkel | Sep 1993 | A |
5248014 | Ashiba | Sep 1993 | A |
5259487 | Petek et al. | Nov 1993 | A |
5263559 | Mettner | Nov 1993 | A |
5265902 | Lewis | Nov 1993 | A |
5275086 | Stallings, Jr. | Jan 1994 | A |
5277283 | Yamaoka et al. | Jan 1994 | A |
5283733 | Colley | Feb 1994 | A |
5284330 | Carlson et al. | Feb 1994 | A |
5293971 | Kanari | Mar 1994 | A |
5295074 | Williams | Mar 1994 | A |
5295563 | Bennett | Mar 1994 | A |
5297045 | Williams et al. | Mar 1994 | A |
5301776 | Beck | Apr 1994 | A |
5307907 | Nakamura et al. | May 1994 | A |
5310203 | Chen | May 1994 | A |
5311709 | Kobori et al. | May 1994 | A |
5318066 | Burgorf et al. | Jun 1994 | A |
5328004 | Fannin et al. | Jul 1994 | A |
5346242 | Karnopp | Sep 1994 | A |
5347186 | Konotchick et al. | Sep 1994 | A |
5348112 | Vaillancourt | Sep 1994 | A |
5372223 | Dekock et al. | Dec 1994 | A |
5372224 | Samonil et al. | Dec 1994 | A |
5381952 | Duprez | Jan 1995 | A |
5390949 | Naganathan et al. | Feb 1995 | A |
5392885 | Patzenhauer et al. | Feb 1995 | A |
5392886 | Drummond | Feb 1995 | A |
5396973 | Schwemmer et al. | Mar 1995 | A |
5398787 | Woessner et al. | Mar 1995 | A |
5413196 | Forster | May 1995 | A |
5445366 | Shih et al. | Aug 1995 | A |
5467280 | Kimura | Nov 1995 | A |
5475593 | Townend | Dec 1995 | A |
5480011 | Nagai et al. | Jan 1996 | A |
5485417 | Wolf et al. | Jan 1996 | A |
5487006 | Kakizaki et al. | Jan 1996 | A |
5503258 | Clarke et al. | Apr 1996 | A |
5517898 | Kim et al. | May 1996 | A |
5542150 | Tu | Aug 1996 | A |
5551674 | Johnsen | Sep 1996 | A |
5553836 | Ericson | Sep 1996 | A |
5558190 | Chang | Sep 1996 | A |
5566794 | Wiard | Oct 1996 | A |
5578877 | Tiemann | Nov 1996 | A |
5586637 | Aidlin et al. | Dec 1996 | A |
5588510 | Wilke | Dec 1996 | A |
5592401 | Kramer | Jan 1997 | A |
5597180 | Ganzel et al. | Jan 1997 | A |
5598337 | Butsuen et al. | Jan 1997 | A |
5601164 | Ohsaki et al. | Feb 1997 | A |
5611413 | Feigel | Mar 1997 | A |
5634563 | Peng | Jun 1997 | A |
5651433 | Wirth et al. | Jul 1997 | A |
5657840 | Lizell | Aug 1997 | A |
5687575 | Keville et al. | Nov 1997 | A |
5697477 | Hiramoto et al. | Dec 1997 | A |
5699885 | Forster | Dec 1997 | A |
5722645 | Reitter | Mar 1998 | A |
5735372 | Hamilton et al. | Apr 1998 | A |
5803443 | Chang | Sep 1998 | A |
5806159 | Ohnishi et al. | Sep 1998 | A |
5810128 | Eriksson et al. | Sep 1998 | A |
5810384 | Iwasaki et al. | Sep 1998 | A |
5813456 | Milner et al. | Sep 1998 | A |
5813731 | Newman et al. | Sep 1998 | A |
5816281 | Mixon | Oct 1998 | A |
5818132 | Konotchick et al. | Oct 1998 | A |
5826935 | Defreitas et al. | Oct 1998 | A |
5828843 | Samuel et al. | Oct 1998 | A |
5829733 | Becker | Nov 1998 | A |
5833036 | Gillespie | Nov 1998 | A |
5850352 | Moezzi et al. | Dec 1998 | A |
5850896 | Tanaka | Dec 1998 | A |
5853071 | Robinson | Dec 1998 | A |
5872418 | Wischnewskiy | Feb 1999 | A |
5884921 | Katsuda et al. | Mar 1999 | A |
5937975 | Forster | Aug 1999 | A |
5947238 | Jolly et al. | Sep 1999 | A |
5952823 | Sprecher et al. | Sep 1999 | A |
5954318 | Kluhsman | Sep 1999 | A |
5956951 | O'Callaghan | Sep 1999 | A |
5957252 | Berthold | Sep 1999 | A |
5971116 | Franklin | Oct 1999 | A |
5987368 | Kamimae et al. | Nov 1999 | A |
5988330 | Morris | Nov 1999 | A |
5988655 | Sakai et al. | Nov 1999 | A |
5992450 | Parker et al. | Nov 1999 | A |
5996745 | Jones et al. | Dec 1999 | A |
5996746 | Turner et al. | Dec 1999 | A |
5999868 | Beno et al. | Dec 1999 | A |
6000702 | Streiter | Dec 1999 | A |
6013007 | Root et al. | Jan 2000 | A |
6017047 | Hoose | Jan 2000 | A |
6029958 | Larsson et al. | Feb 2000 | A |
6035979 | Forster | Mar 2000 | A |
6050583 | Bohn | Apr 2000 | A |
6058340 | Uchiyama et al. | May 2000 | A |
6067490 | Ichimaru et al. | May 2000 | A |
6073536 | Campbell | Jun 2000 | A |
6073700 | Tsuji et al. | Jun 2000 | A |
6073708 | Brown et al. | Jun 2000 | A |
6073736 | Franklin | Jun 2000 | A |
6079526 | Nezu et al. | Jun 2000 | A |
6092011 | Hiramoto et al. | Jul 2000 | A |
6092816 | Sekine et al. | Jul 2000 | A |
6105988 | Turner et al. | Aug 2000 | A |
6112868 | Graham et al. | Sep 2000 | A |
6120049 | Gonzalez et al. | Sep 2000 | A |
6131709 | Jolly et al. | Oct 2000 | A |
6135434 | Marking | Oct 2000 | A |
6141969 | Launchbury et al. | Nov 2000 | A |
6151930 | Carlson | Nov 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6157103 | Ohta et al. | Dec 2000 | A |
6179098 | Hayakawa et al. | Jan 2001 | B1 |
6182687 | Förster et al. | Feb 2001 | B1 |
6196555 | Gaibler | Mar 2001 | B1 |
6199669 | Huang et al. | Mar 2001 | B1 |
6203026 | Jones | Mar 2001 | B1 |
6213263 | De Frenne | Apr 2001 | B1 |
6215217 | Kurosawa et al. | Apr 2001 | B1 |
6217049 | Becker | Apr 2001 | B1 |
6219045 | Leahy et al. | Apr 2001 | B1 |
6244398 | Girvin et al. | Jun 2001 | B1 |
6254067 | Yih | Jul 2001 | B1 |
6279702 | Koh | Aug 2001 | B1 |
6290034 | Ichimaru | Sep 2001 | B1 |
6293530 | Delorenzis et al. | Sep 2001 | B1 |
6296091 | Hamilton | Oct 2001 | B1 |
6296092 | Marking et al. | Oct 2001 | B1 |
6311962 | Marking | Nov 2001 | B1 |
6318525 | Vignocchi et al. | Nov 2001 | B1 |
6321888 | Reybrouck et al. | Nov 2001 | B1 |
6322468 | Wing et al. | Nov 2001 | B1 |
6336648 | Bohn | Jan 2002 | B1 |
6343807 | Rathbun | Feb 2002 | B1 |
6359837 | Tsukamoto et al. | Mar 2002 | B1 |
6360857 | Fox et al. | Mar 2002 | B1 |
6371262 | Katou et al. | Apr 2002 | B1 |
6371267 | Kao et al. | Apr 2002 | B1 |
6378816 | Pfister | Apr 2002 | B1 |
6378885 | Ellsworth et al. | Apr 2002 | B1 |
6382370 | Girvin | May 2002 | B1 |
6389341 | Davis | May 2002 | B1 |
6390747 | Commins | May 2002 | B1 |
6394238 | Rogala | May 2002 | B1 |
6401883 | Nyce et al. | Jun 2002 | B1 |
6412788 | Ichimaru | Jul 2002 | B1 |
6415895 | Marking et al. | Jul 2002 | B2 |
6418360 | Spivey et al. | Jul 2002 | B1 |
6427812 | Crawley et al. | Aug 2002 | B2 |
6434460 | Uchino et al. | Aug 2002 | B1 |
6446771 | Sintorn et al. | Sep 2002 | B1 |
6458060 | Watterson et al. | Oct 2002 | B1 |
6460567 | Hansen et al. | Oct 2002 | B1 |
6467593 | Corradini et al. | Oct 2002 | B1 |
6474454 | Matsumoto et al. | Nov 2002 | B2 |
6474753 | Rieth et al. | Nov 2002 | B1 |
6501554 | Hackney et al. | Dec 2002 | B1 |
6502837 | Hamilton et al. | Jan 2003 | B1 |
6510929 | Gordaninejad et al. | Jan 2003 | B1 |
6520297 | Lumpkin et al. | Feb 2003 | B1 |
6527093 | Oliver et al. | Mar 2003 | B2 |
6592136 | Becker et al. | Jul 2003 | B2 |
6604751 | Fox | Aug 2003 | B2 |
6609686 | Malizia | Aug 2003 | B2 |
6619615 | Mayr et al. | Sep 2003 | B1 |
6623389 | Campagnolo | Sep 2003 | B1 |
6648109 | Farr et al. | Nov 2003 | B2 |
6651788 | Wohlfarth | Nov 2003 | B1 |
6659240 | Dernebo | Dec 2003 | B2 |
6659241 | Sendrea | Dec 2003 | B2 |
6672687 | Nishio | Jan 2004 | B2 |
6701234 | Vogelsang et al. | Mar 2004 | B1 |
6722678 | McAndrews | Apr 2004 | B2 |
6732033 | Laplante et al. | May 2004 | B2 |
6755113 | Shih | Jun 2004 | B2 |
6782980 | Nakadate | Aug 2004 | B2 |
6817454 | Nezu et al. | Nov 2004 | B2 |
6837827 | Lee et al. | Jan 2005 | B1 |
6840257 | Dario et al. | Jan 2005 | B2 |
6853955 | Burrell et al. | Feb 2005 | B1 |
6857625 | Löser et al. | Feb 2005 | B2 |
6863291 | Miyoshi | Mar 2005 | B2 |
6883650 | Van Wonderen et al. | Apr 2005 | B2 |
6902513 | McClure et al. | Jun 2005 | B1 |
6905203 | Kremers et al. | Jun 2005 | B2 |
6920951 | Song et al. | Jul 2005 | B2 |
6921351 | Hickman et al. | Jul 2005 | B1 |
6923853 | Kremers et al. | Aug 2005 | B2 |
6935157 | Miller | Aug 2005 | B2 |
6952060 | Goldner et al. | Oct 2005 | B2 |
6959906 | Hoenig et al. | Nov 2005 | B2 |
6959921 | Rose | Nov 2005 | B2 |
6966412 | Braswell et al. | Nov 2005 | B2 |
6978871 | Holiviers | Dec 2005 | B2 |
6978872 | Turner | Dec 2005 | B2 |
6991076 | McAndrews | Jan 2006 | B2 |
7025367 | McKinnon et al. | Apr 2006 | B2 |
7076351 | Hamilton et al. | Jul 2006 | B2 |
7128192 | Fox | Oct 2006 | B2 |
7128693 | Brown et al. | Oct 2006 | B2 |
7135794 | Kühnel | Nov 2006 | B2 |
7147207 | Jordan et al. | Dec 2006 | B2 |
7163222 | Becker et al. | Jan 2007 | B2 |
7166062 | Watterson et al. | Jan 2007 | B1 |
7166064 | Ashby et al. | Jan 2007 | B2 |
7204466 | Hsieh | Apr 2007 | B2 |
7208845 | Schaefer et al. | Apr 2007 | B2 |
7217224 | Thomas | May 2007 | B2 |
7234574 | Matsunaga et al. | Jun 2007 | B2 |
7234575 | Anderfaas et al. | Jun 2007 | B2 |
7234680 | Hull et al. | Jun 2007 | B2 |
7243763 | Carlson | Jul 2007 | B2 |
7255210 | Larsson et al. | Aug 2007 | B2 |
7270221 | McAndrews | Sep 2007 | B2 |
7270222 | Aymar et al. | Sep 2007 | B1 |
7287760 | Quick et al. | Oct 2007 | B1 |
7289138 | Foote et al. | Oct 2007 | B2 |
7292867 | Werner et al. | Nov 2007 | B2 |
7293764 | Fang | Nov 2007 | B2 |
7299112 | Laplante et al. | Nov 2007 | B2 |
7302961 | Martin et al. | Dec 2007 | B2 |
7306206 | Turner | Dec 2007 | B2 |
7316406 | Kimura et al. | Jan 2008 | B2 |
7325660 | Norgaard et al. | Feb 2008 | B2 |
7363129 | Barnicle et al. | Apr 2008 | B1 |
7374028 | Fox | May 2008 | B2 |
7397355 | Tracy | Jul 2008 | B2 |
7413062 | Vandewal | Aug 2008 | B2 |
7413063 | Davis | Aug 2008 | B1 |
7415336 | Burch et al. | Aug 2008 | B1 |
7422092 | Hitchcock et al. | Sep 2008 | B2 |
7441638 | Hanawa | Oct 2008 | B2 |
7469910 | Münster et al. | Dec 2008 | B2 |
7484603 | Fox | Feb 2009 | B2 |
7490705 | Fox | Feb 2009 | B2 |
7513490 | Robertson | Apr 2009 | B2 |
7523617 | Colpitts et al. | Apr 2009 | B2 |
7558313 | Feher | Jul 2009 | B2 |
7558574 | Feher et al. | Jul 2009 | B2 |
7566290 | Lee et al. | Jul 2009 | B2 |
7569952 | Bono et al. | Aug 2009 | B1 |
7581743 | Graney et al. | Sep 2009 | B2 |
7591352 | Hanawa | Sep 2009 | B2 |
7600616 | Anderfaas et al. | Oct 2009 | B2 |
7628259 | Norgaard et al. | Dec 2009 | B2 |
7628414 | Dobson et al. | Dec 2009 | B2 |
7631882 | Hirao et al. | Dec 2009 | B2 |
7654369 | Murray et al. | Feb 2010 | B2 |
7673936 | Hsu et al. | Mar 2010 | B2 |
7684911 | Seifert et al. | Mar 2010 | B2 |
7694785 | Nakadate | Apr 2010 | B2 |
7694987 | McAndrews | Apr 2010 | B2 |
7699753 | Daikeler et al. | Apr 2010 | B2 |
7703585 | Fox | Apr 2010 | B2 |
7722056 | Inoue et al. | May 2010 | B2 |
7722069 | Shirai | May 2010 | B2 |
7726042 | Meschan | Jun 2010 | B2 |
7730906 | Kleinert et al. | Jun 2010 | B2 |
7736272 | Martens | Jun 2010 | B2 |
7744097 | Noguchi | Jun 2010 | B2 |
7764990 | Martikka et al. | Jul 2010 | B2 |
7766794 | Oliver et al. | Aug 2010 | B2 |
7770701 | Davis | Aug 2010 | B1 |
7775128 | Roessingh et al. | Aug 2010 | B2 |
7779974 | Timoney et al. | Aug 2010 | B2 |
7795711 | Sauciuc et al. | Sep 2010 | B2 |
7828125 | Sekiya et al. | Nov 2010 | B2 |
7828126 | Lun | Nov 2010 | B2 |
7837213 | Colegrove et al. | Nov 2010 | B2 |
7840346 | Huhtala et al. | Nov 2010 | B2 |
7841258 | Komatsu et al. | Nov 2010 | B2 |
7845602 | Young et al. | Dec 2010 | B1 |
7857325 | Copsey et al. | Dec 2010 | B2 |
7872764 | Higgins-Luthman et al. | Jan 2011 | B2 |
7874567 | Ichida et al. | Jan 2011 | B2 |
7901292 | Uhlir et al. | Mar 2011 | B1 |
7909348 | Klieber et al. | Mar 2011 | B2 |
7927253 | DiBenedetto et al. | Apr 2011 | B2 |
7931132 | Braun | Apr 2011 | B2 |
7931563 | Shaw et al. | Apr 2011 | B2 |
7946163 | Gartner | May 2011 | B2 |
7975814 | Soederdahl | Jul 2011 | B2 |
8016349 | Mouri et al. | Sep 2011 | B2 |
8021270 | D'Eredita | Sep 2011 | B2 |
8042427 | Kawakami et al. | Oct 2011 | B2 |
8056392 | Ryan et al. | Nov 2011 | B2 |
8069964 | Deferme et al. | Dec 2011 | B2 |
8087676 | McIntyre | Jan 2012 | B2 |
8091910 | Hara et al. | Jan 2012 | B2 |
8104591 | Barefoot et al. | Jan 2012 | B2 |
8121757 | Extance et al. | Feb 2012 | B2 |
8121785 | Swisher et al. | Feb 2012 | B2 |
8127900 | Inoue | Mar 2012 | B2 |
8136877 | Walsh et al. | Mar 2012 | B2 |
8141438 | Roessingh et al. | Mar 2012 | B2 |
8151952 | Lenz et al. | Apr 2012 | B2 |
8191964 | Hsu et al. | Jun 2012 | B2 |
8201476 | Tsumiyama | Jun 2012 | B2 |
8210106 | Tai et al. | Jul 2012 | B2 |
8210330 | Vandewal | Jul 2012 | B2 |
8246065 | Kodama et al. | Aug 2012 | B1 |
8256587 | Bakke et al. | Sep 2012 | B2 |
8256732 | Young et al. | Sep 2012 | B1 |
8262058 | Kot | Sep 2012 | B2 |
8262062 | Kamo et al. | Sep 2012 | B2 |
8262100 | Thomas | Sep 2012 | B2 |
8265825 | Kajino et al. | Sep 2012 | B2 |
8285447 | Bennett et al. | Oct 2012 | B2 |
8286982 | Plantet et al. | Oct 2012 | B2 |
8291889 | Shafer et al. | Oct 2012 | B2 |
8292274 | Adoline et al. | Oct 2012 | B2 |
8307965 | Föster et al. | Nov 2012 | B2 |
8308124 | Hsu | Nov 2012 | B2 |
8317261 | Walsh et al. | Nov 2012 | B2 |
8328454 | McAndrews et al. | Dec 2012 | B2 |
8336683 | McAndrews et al. | Dec 2012 | B2 |
8364389 | Dorogusker et al. | Jan 2013 | B2 |
8393446 | Haugen | Mar 2013 | B2 |
8413773 | Anderfaas et al. | Apr 2013 | B2 |
8423244 | Proemm et al. | Apr 2013 | B2 |
8430770 | Dugan et al. | Apr 2013 | B2 |
8458080 | Shirai | Jun 2013 | B2 |
8480064 | Talavasek | Jul 2013 | B2 |
8495947 | Hata | Jul 2013 | B2 |
8550223 | Cox et al. | Oct 2013 | B2 |
8550551 | Shirai | Oct 2013 | B2 |
8556048 | Maeda et al. | Oct 2013 | B2 |
8556049 | Jee | Oct 2013 | B2 |
8596663 | Shirai et al. | Dec 2013 | B2 |
8616351 | Roessle et al. | Dec 2013 | B2 |
8622180 | Wootten et al. | Jan 2014 | B2 |
8627930 | Smith et al. | Jan 2014 | B2 |
8627932 | Marking | Jan 2014 | B2 |
8641073 | Lee et al. | Feb 2014 | B2 |
8651251 | Preukschat et al. | Feb 2014 | B2 |
8655548 | Ichida et al. | Feb 2014 | B2 |
8684367 | Haugen | Apr 2014 | B2 |
8727947 | Tagliabue | May 2014 | B2 |
8744699 | Yamaguchi et al. | Jun 2014 | B2 |
8752682 | Park et al. | Jun 2014 | B2 |
8763770 | Marking | Jul 2014 | B2 |
8770357 | Sims et al. | Jul 2014 | B2 |
8781680 | Ichida et al. | Jul 2014 | B2 |
8781690 | Hara et al. | Jul 2014 | B2 |
8814109 | Calendrille et al. | Aug 2014 | B2 |
8833786 | Camp et al. | Sep 2014 | B2 |
8838335 | Bass et al. | Sep 2014 | B2 |
8845496 | Arrasvuori et al. | Sep 2014 | B2 |
8857580 | Marking | Oct 2014 | B2 |
8868253 | Hashimoto et al. | Oct 2014 | B2 |
8888115 | Chubbuck et al. | Nov 2014 | B2 |
8935036 | Christensen et al. | Jan 2015 | B1 |
8936139 | Galasso et al. | Jan 2015 | B2 |
8950771 | Felsl et al. | Feb 2015 | B2 |
8955653 | Marking | Feb 2015 | B2 |
8967343 | Battlogg et al. | Mar 2015 | B2 |
8985594 | Yabumoto | Mar 2015 | B2 |
8991571 | Murakami | Mar 2015 | B2 |
9033122 | Ericksen et al. | May 2015 | B2 |
9038791 | Marking | May 2015 | B2 |
9047778 | Cazanas et al. | Jun 2015 | B1 |
9057416 | Talavasek | Jun 2015 | B2 |
9073592 | Hsu | Jul 2015 | B2 |
9103400 | Becker | Aug 2015 | B2 |
9108098 | Galasso et al. | Aug 2015 | B2 |
9120362 | Marking | Sep 2015 | B2 |
9126647 | Kuo | Sep 2015 | B2 |
9140325 | Cox et al. | Sep 2015 | B2 |
9157523 | Miki et al. | Oct 2015 | B2 |
9186949 | Galasso et al. | Nov 2015 | B2 |
9194456 | Laird et al. | Nov 2015 | B2 |
9199690 | Watarai | Dec 2015 | B2 |
9217482 | Schürmann et al. | Dec 2015 | B2 |
9229712 | Takamoto et al. | Jan 2016 | B2 |
9239090 | Marking et al. | Jan 2016 | B2 |
9278598 | Galasso et al. | Mar 2016 | B2 |
9303712 | Cox | Apr 2016 | B2 |
9353818 | Marking | May 2016 | B2 |
9366307 | Marking | Jun 2016 | B2 |
9415659 | Kikuchi et al. | Aug 2016 | B2 |
9422018 | Pelot et al. | Aug 2016 | B2 |
9422025 | Pezzi et al. | Aug 2016 | B2 |
9452654 | Ericksen et al. | Sep 2016 | B2 |
9523406 | Galasso et al. | Dec 2016 | B2 |
9528565 | Marking | Dec 2016 | B2 |
9550405 | Marking et al. | Jan 2017 | B2 |
9556925 | Marking | Jan 2017 | B2 |
9616728 | Marking | Apr 2017 | B2 |
9650094 | Laird et al. | May 2017 | B2 |
9663181 | Ericksen et al. | May 2017 | B2 |
9682604 | Cox et al. | Jun 2017 | B2 |
9784333 | Marking | Oct 2017 | B2 |
9810282 | Roessle et al. | Nov 2017 | B2 |
9975598 | Bender et al. | May 2018 | B2 |
10029172 | Galasso et al. | Jul 2018 | B2 |
10036443 | Galasso et al. | Jul 2018 | B2 |
10040328 | Marking | Aug 2018 | B2 |
10040329 | Ericksen et al. | Aug 2018 | B2 |
10054185 | Cox | Aug 2018 | B2 |
10072724 | Haugen et al. | Sep 2018 | B2 |
10086670 | Galasso et al. | Oct 2018 | B2 |
10089868 | Hayward | Oct 2018 | B1 |
10094443 | Marking | Oct 2018 | B2 |
10145435 | Galasso et al. | Dec 2018 | B2 |
10180171 | Laird et al. | Jan 2019 | B2 |
10330171 | Cox et al. | Jun 2019 | B2 |
10336148 | Ericksen et al. | Jul 2019 | B2 |
10336149 | Ericksen et al. | Jul 2019 | B2 |
10406883 | Marking | Sep 2019 | B2 |
10415662 | Marking | Sep 2019 | B2 |
10443671 | Marking | Oct 2019 | B2 |
10473179 | Ripa | Nov 2019 | B2 |
10550909 | Haugen | Feb 2020 | B2 |
10697514 | Marking | Jun 2020 | B2 |
10718397 | Marking | Jul 2020 | B2 |
10737546 | Tong | Aug 2020 | B2 |
11162555 | Haugen | Nov 2021 | B2 |
11279198 | Marking | Mar 2022 | B2 |
11472252 | Tong | Oct 2022 | B2 |
20010017334 | Vincent | Aug 2001 | A1 |
20010022621 | Squibbs | Sep 2001 | A1 |
20010030408 | Miyoshi et al. | Oct 2001 | A1 |
20010042663 | Marking et al. | Nov 2001 | A1 |
20010055373 | Yamashita | Dec 2001 | A1 |
20020000352 | Matsumoto et al. | Jan 2002 | A1 |
20020032508 | Uchino et al. | Mar 2002 | A1 |
20020045987 | Ohata et al. | Apr 2002 | A1 |
20020050112 | Koch et al. | May 2002 | A1 |
20020050518 | Roustaei | May 2002 | A1 |
20020053493 | Sintorn et al. | May 2002 | A1 |
20020055422 | Airmet et al. | May 2002 | A1 |
20020063469 | Nishio | May 2002 | A1 |
20020089107 | Koh | Jul 2002 | A1 |
20020095979 | Shirato et al. | Jul 2002 | A1 |
20020113347 | Robbins et al. | Aug 2002 | A1 |
20020121416 | Katayama et al. | Sep 2002 | A1 |
20020130000 | Lisenker et al. | Sep 2002 | A1 |
20020130003 | Lisenker et al. | Sep 2002 | A1 |
20020185581 | Trask et al. | Dec 2002 | A1 |
20020187867 | Ichida et al. | Dec 2002 | A1 |
20030001346 | Hamilton et al. | Jan 2003 | A1 |
20030001358 | Becker et al. | Jan 2003 | A1 |
20030034697 | Goldner et al. | Feb 2003 | A1 |
20030040348 | Martens et al. | Feb 2003 | A1 |
20030051954 | Sendrea | Mar 2003 | A1 |
20030054327 | Evensen et al. | Mar 2003 | A1 |
20030065430 | Lu et al. | Apr 2003 | A1 |
20030075403 | Dernebo | Apr 2003 | A1 |
20030103651 | Novak | Jun 2003 | A1 |
20030128275 | Maguire | Jul 2003 | A1 |
20030160369 | Laplante et al. | Aug 2003 | A1 |
20030191567 | Gentilcore | Oct 2003 | A1 |
20030216845 | Williston | Nov 2003 | A1 |
20040004659 | Foote et al. | Jan 2004 | A1 |
20040017455 | Kremers et al. | Jan 2004 | A1 |
20040021754 | Kremers et al. | Feb 2004 | A1 |
20040075350 | Kuhnel | Apr 2004 | A1 |
20040091111 | Levy et al. | May 2004 | A1 |
20040099312 | Boyer et al. | May 2004 | A1 |
20040103146 | Park | May 2004 | A1 |
20040172178 | Takeda et al. | Sep 2004 | A1 |
20040208687 | Sicz et al. | Oct 2004 | A1 |
20040220708 | Owen et al. | Nov 2004 | A1 |
20040220712 | Takeda et al. | Nov 2004 | A1 |
20040222056 | Fox | Nov 2004 | A1 |
20040256778 | Verriet | Dec 2004 | A1 |
20050055156 | Maltagliati et al. | Mar 2005 | A1 |
20050056507 | De Molina et al. | Mar 2005 | A1 |
20050077131 | Russell | Apr 2005 | A1 |
20050098401 | Hamilton | May 2005 | A1 |
20050104320 | Wesling et al. | May 2005 | A1 |
20050107216 | Lee et al. | May 2005 | A1 |
20050110229 | Kimura et al. | May 2005 | A1 |
20050121269 | Namuduri | Jun 2005 | A1 |
20050173849 | Vandewal | Aug 2005 | A1 |
20050195094 | White | Sep 2005 | A1 |
20050199455 | Browne et al. | Sep 2005 | A1 |
20050216186 | Dorfman et al. | Sep 2005 | A1 |
20050227798 | Ichida et al. | Oct 2005 | A1 |
20050239601 | Thomas | Oct 2005 | A1 |
20050288154 | Lee et al. | Dec 2005 | A1 |
20060040793 | Martens et al. | Feb 2006 | A1 |
20060064223 | Voss | Mar 2006 | A1 |
20060065496 | Fox | Mar 2006 | A1 |
20060066074 | Turner et al. | Mar 2006 | A1 |
20060076757 | Bromley | Apr 2006 | A1 |
20060081431 | Breese et al. | Apr 2006 | A1 |
20060096817 | Norgaard et al. | May 2006 | A1 |
20060113834 | Hanawa | Jun 2006 | A1 |
20060124414 | Hanawa | Jun 2006 | A1 |
20060136173 | Case et al. | Jun 2006 | A1 |
20060137934 | Kurth | Jun 2006 | A1 |
20060144311 | Heyring et al. | Jul 2006 | A1 |
20060163551 | Coenen et al. | Jul 2006 | A1 |
20060163787 | Munster et al. | Jul 2006 | A1 |
20060175792 | Sicz et al. | Aug 2006 | A1 |
20060176216 | Hipskind | Aug 2006 | A1 |
20060181034 | Wilde et al. | Aug 2006 | A1 |
20060185951 | Tanaka | Aug 2006 | A1 |
20060213082 | Meschan | Sep 2006 | A1 |
20060219503 | Kim | Oct 2006 | A1 |
20060225976 | Nakadate | Oct 2006 | A1 |
20060231359 | Matsunaga et al. | Oct 2006 | A1 |
20060237272 | Huang | Oct 2006 | A1 |
20060253210 | Rosenberg | Nov 2006 | A1 |
20060254365 | Hamel | Nov 2006 | A1 |
20060289258 | Fox | Dec 2006 | A1 |
20070006489 | Case et al. | Jan 2007 | A1 |
20070007743 | Becker et al. | Jan 2007 | A1 |
20070008096 | Tracy | Jan 2007 | A1 |
20070021885 | Soehren | Jan 2007 | A1 |
20070032981 | Merkel et al. | Feb 2007 | A1 |
20070034464 | Barefoot | Feb 2007 | A1 |
20070039790 | Timoney et al. | Feb 2007 | A1 |
20070051573 | Norgaard et al. | Mar 2007 | A1 |
20070070069 | Samarasekera et al. | Mar 2007 | A1 |
20070080515 | McAndrews et al. | Apr 2007 | A1 |
20070088475 | Nordgren et al. | Apr 2007 | A1 |
20070090518 | Sauciuc et al. | Apr 2007 | A1 |
20070119669 | Anderfaas et al. | May 2007 | A1 |
20070170688 | Watson | Jul 2007 | A1 |
20070199401 | Kawakami et al. | Aug 2007 | A1 |
20070213126 | Deutsch et al. | Sep 2007 | A1 |
20070239479 | Arrasvuori et al. | Oct 2007 | A1 |
20070260372 | Langer | Nov 2007 | A1 |
20070272458 | Taniguchi et al. | Nov 2007 | A1 |
20080006494 | Vandewal | Jan 2008 | A1 |
20080009992 | Izawa et al. | Jan 2008 | A1 |
20080015089 | Hurwitz et al. | Jan 2008 | A1 |
20080018065 | Hirao et al. | Jan 2008 | A1 |
20080029730 | Kamo et al. | Feb 2008 | A1 |
20080041677 | Namuduri | Feb 2008 | A1 |
20080059025 | Furuichi et al. | Mar 2008 | A1 |
20080067019 | Jensen et al. | Mar 2008 | A1 |
20080093820 | McAndrews | Apr 2008 | A1 |
20080096726 | Riley et al. | Apr 2008 | A1 |
20080099968 | Schroeder | May 2008 | A1 |
20080109158 | Huhtala et al. | May 2008 | A1 |
20080116622 | Fox | May 2008 | A1 |
20080119330 | Chiang et al. | May 2008 | A1 |
20080163718 | Chiang | Jul 2008 | A1 |
20080185244 | Maeda et al. | Aug 2008 | A1 |
20080200310 | Tagliabue | Aug 2008 | A1 |
20080250844 | Gartner | Oct 2008 | A1 |
20080254944 | Muri et al. | Oct 2008 | A1 |
20080303320 | Schranz et al. | Dec 2008 | A1 |
20080312799 | Miglioranza | Dec 2008 | A1 |
20080314706 | Lun et al. | Dec 2008 | A1 |
20090000885 | McAndrews | Jan 2009 | A1 |
20090001684 | McAndrews et al. | Jan 2009 | A1 |
20090020382 | Van Weelden et al. | Jan 2009 | A1 |
20090038897 | Murakami | Feb 2009 | A1 |
20090048070 | Vincent et al. | Feb 2009 | A1 |
20090069972 | Templeton et al. | Mar 2009 | A1 |
20090070037 | Templeton et al. | Mar 2009 | A1 |
20090071772 | Cho et al. | Mar 2009 | A1 |
20090071773 | Lun | Mar 2009 | A1 |
20090098981 | Del et al. | Apr 2009 | A1 |
20090118100 | Oliver et al. | May 2009 | A1 |
20090121398 | Inoue | May 2009 | A1 |
20090131224 | Yuen | May 2009 | A1 |
20090138157 | Hagglund | May 2009 | A1 |
20090140501 | Taylor et al. | Jun 2009 | A1 |
20090171532 | Ryan et al. | Jul 2009 | A1 |
20090192673 | Song et al. | Jul 2009 | A1 |
20090200126 | Kondo et al. | Aug 2009 | A1 |
20090200127 | Janes | Aug 2009 | A1 |
20090236807 | Wootten et al. | Sep 2009 | A1 |
20090258710 | Quatrochi et al. | Oct 2009 | A1 |
20090261542 | McIntyre | Oct 2009 | A1 |
20090277736 | McAndrews et al. | Nov 2009 | A1 |
20090288924 | Murray et al. | Nov 2009 | A1 |
20090294231 | Carlson et al. | Dec 2009 | A1 |
20090302558 | Shirai | Dec 2009 | A1 |
20090314592 | Nygren | Dec 2009 | A1 |
20090324327 | McAndrews et al. | Dec 2009 | A1 |
20100004097 | D'Eredita | Jan 2010 | A1 |
20100010709 | Song | Jan 2010 | A1 |
20100025946 | Inoue et al. | Feb 2010 | A1 |
20100032254 | Anderfaas et al. | Feb 2010 | A1 |
20100044975 | Yablon et al. | Feb 2010 | A1 |
20100059964 | Morris | Mar 2010 | A1 |
20100066051 | Haugen | Mar 2010 | A1 |
20100109277 | Furrer | May 2010 | A1 |
20100133764 | Greaves | Jun 2010 | A1 |
20100139442 | Miyama | Jun 2010 | A1 |
20100147640 | Jones et al. | Jun 2010 | A1 |
20100160014 | Galasso et al. | Jun 2010 | A1 |
20100170760 | Marking | Jul 2010 | A1 |
20100186836 | Yoshihiro et al. | Jul 2010 | A1 |
20100198453 | Dorogusker et al. | Aug 2010 | A1 |
20100207351 | Klieber et al. | Aug 2010 | A1 |
20100224454 | Chen et al. | Sep 2010 | A1 |
20100244340 | Wootten et al. | Sep 2010 | A1 |
20100252972 | Cox et al. | Oct 2010 | A1 |
20100276238 | Crasset | Nov 2010 | A1 |
20100276906 | Galasso et al. | Nov 2010 | A1 |
20100308628 | Hsu et al. | Dec 2010 | A1 |
20100314917 | Hsieh et al. | Dec 2010 | A1 |
20100324781 | Gagliano | Dec 2010 | A1 |
20100326780 | Murakami | Dec 2010 | A1 |
20100327542 | Hara et al. | Dec 2010 | A1 |
20110022266 | Ippolito et al. | Jan 2011 | A1 |
20110067965 | McAndrews | Mar 2011 | A1 |
20110086686 | Avent et al. | Apr 2011 | A1 |
20110095507 | Plantet et al. | Apr 2011 | A1 |
20110097139 | Hsu et al. | Apr 2011 | A1 |
20110109060 | Earle et al. | May 2011 | A1 |
20110127706 | Sims et al. | Jun 2011 | A1 |
20110174582 | Wootten et al. | Jul 2011 | A1 |
20110202236 | Galasso et al. | Aug 2011 | A1 |
20110204201 | Kodama et al. | Aug 2011 | A1 |
20110214956 | Marking | Sep 2011 | A1 |
20110257848 | Shirai | Oct 2011 | A1 |
20110284333 | Krog et al. | Nov 2011 | A1 |
20110315494 | Marking | Dec 2011 | A1 |
20120006949 | Laird et al. | Jan 2012 | A1 |
20120007327 | Talavasek | Jan 2012 | A1 |
20120018263 | Marking | Jan 2012 | A1 |
20120018264 | King | Jan 2012 | A1 |
20120048665 | Marking | Mar 2012 | A1 |
20120074660 | Thomas | Mar 2012 | A1 |
20120080279 | Galasso et al. | Apr 2012 | A1 |
20120136537 | Galasso et al. | May 2012 | A1 |
20120181126 | De Kock | Jul 2012 | A1 |
20120222927 | Marking | Sep 2012 | A1 |
20120228906 | McAndrews et al. | Sep 2012 | A1 |
20120253599 | Shirai | Oct 2012 | A1 |
20120253600 | Ichida et al. | Oct 2012 | A1 |
20120274043 | Lee et al. | Nov 2012 | A1 |
20120305350 | Ericksen et al. | Dec 2012 | A1 |
20120312648 | Yu et al. | Dec 2012 | A1 |
20130001030 | Goldasz et al. | Jan 2013 | A1 |
20130037361 | Park et al. | Feb 2013 | A1 |
20130081273 | McAndrews et al. | Apr 2013 | A1 |
20130090195 | Yamaguchi et al. | Apr 2013 | A1 |
20130119634 | Camp et al. | May 2013 | A1 |
20130144489 | Galasso et al. | Jun 2013 | A1 |
20130168195 | Park et al. | Jul 2013 | A1 |
20130220110 | Zhan et al. | Aug 2013 | A1 |
20130221713 | Pelot et al. | Aug 2013 | A1 |
20130228404 | Marking | Sep 2013 | A1 |
20130292218 | Ericksen et al. | Nov 2013 | A1 |
20130333993 | Yu | Dec 2013 | A1 |
20140008160 | Marking et al. | Jan 2014 | A1 |
20140027219 | Marking et al. | Jan 2014 | A1 |
20140048365 | Kim | Feb 2014 | A1 |
20140061419 | Wehage et al. | Mar 2014 | A1 |
20150073656 | Takamoto et al. | Mar 2015 | A1 |
20150081171 | Ericksen et al. | Mar 2015 | A1 |
20150090547 | Haugen | Apr 2015 | A1 |
20150141056 | Fefilatyev et al. | May 2015 | A1 |
20150175236 | Walthert et al. | Jun 2015 | A1 |
20150179062 | Ralston et al. | Jun 2015 | A1 |
20150191069 | Zuleger et al. | Jul 2015 | A1 |
20150197308 | Butora et al. | Jul 2015 | A1 |
20150233442 | Noguchi | Aug 2015 | A1 |
20150291248 | Fukao et al. | Oct 2015 | A1 |
20160025178 | Kamakura et al. | Jan 2016 | A1 |
20160031506 | Lloyd et al. | Feb 2016 | A1 |
20160076617 | Marking | Mar 2016 | A1 |
20160153515 | Ebersbach et al. | Jun 2016 | A1 |
20160153516 | Marking | Jun 2016 | A1 |
20160185178 | Galasso et al. | Jun 2016 | A1 |
20160200163 | Tsukahara | Jul 2016 | A1 |
20160200164 | Tabata et al. | Jul 2016 | A1 |
20160265615 | Marking | Sep 2016 | A1 |
20160290431 | Marking | Oct 2016 | A1 |
20160319899 | Franklin et al. | Nov 2016 | A1 |
20160355226 | Pelot et al. | Dec 2016 | A1 |
20160364989 | Speasl et al. | Dec 2016 | A1 |
20170008363 | Ericksen et al. | Jan 2017 | A1 |
20170136843 | Marking | May 2017 | A1 |
20170184174 | Marking | Jun 2017 | A1 |
20170227083 | Janes | Aug 2017 | A1 |
20170247072 | Laird et al. | Aug 2017 | A1 |
20170259876 | Ericksen et al. | Sep 2017 | A1 |
20170268595 | Inagaki et al. | Sep 2017 | A1 |
20170282669 | Cox et al. | Oct 2017 | A1 |
20170291466 | Tong | Oct 2017 | A1 |
20180010666 | Marking | Jan 2018 | A1 |
20180031071 | Marking | Feb 2018 | A1 |
20180118302 | Fukao et al. | May 2018 | A1 |
20180150764 | Stenneth | May 2018 | A1 |
20180174446 | Wang | Jun 2018 | A1 |
20180222541 | Madau et al. | Aug 2018 | A1 |
20180304149 | Galasso et al. | Oct 2018 | A1 |
20180326805 | Marking | Nov 2018 | A1 |
20180326808 | Ericksen et al. | Nov 2018 | A1 |
20180328442 | Galasso et al. | Nov 2018 | A1 |
20180328446 | Ericksen et al. | Nov 2018 | A1 |
20180334007 | Ericksen et al. | Nov 2018 | A1 |
20180334008 | Ericksen et al. | Nov 2018 | A1 |
20180335102 | Haugen | Nov 2018 | A1 |
20180339565 | Ericksen et al. | Nov 2018 | A1 |
20180339566 | Ericksen et al. | Nov 2018 | A1 |
20180339567 | Ericksen et al. | Nov 2018 | A1 |
20180355943 | Cox | Dec 2018 | A1 |
20180355946 | Ericksen et al. | Dec 2018 | A1 |
20190030975 | Galasso et al. | Jan 2019 | A1 |
20190031264 | Laird et al. | Jan 2019 | A1 |
20190032745 | Marking | Jan 2019 | A1 |
20190154100 | Coaplen et al. | May 2019 | A1 |
20190176557 | Marking et al. | Jun 2019 | A1 |
20190184782 | Shaw et al. | Jun 2019 | A1 |
20190203798 | Cox et al. | Jul 2019 | A1 |
20190247744 | Galasso et al. | Aug 2019 | A1 |
20220252129 | Haugen | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
101468587 | Jul 2009 | CN |
1555311 | Aug 1970 | DE |
3613386 | Oct 1986 | DE |
3532292 | Mar 1987 | DE |
3536655 | Apr 1987 | DE |
3709447 | Oct 1988 | DE |
3711442 | Oct 1988 | DE |
3738048 | May 1989 | DE |
3924166 | Feb 1991 | DE |
4022099 | Dec 1991 | DE |
4029090 | Mar 1992 | DE |
4406918 | Sep 1994 | DE |
19757276 | Jun 1999 | DE |
202004005229 | Aug 2004 | DE |
10326675 | Dec 2004 | DE |
102005025811 | Dec 2006 | DE |
102007063365 | Jul 2009 | DE |
202008015968 | Apr 2010 | DE |
202010012738 | Dec 2010 | DE |
207409 | Jan 1987 | EP |
304801 | Mar 1989 | EP |
0403803 | Dec 1990 | EP |
552568 | Jul 1993 | EP |
0735280 | Oct 1996 | EP |
1050696 | Nov 2000 | EP |
1138530 | Oct 2001 | EP |
1188661 | Mar 2002 | EP |
1241087 | Sep 2002 | EP |
1355209 | Oct 2003 | EP |
1394439 | Mar 2004 | EP |
1449688 | Aug 2004 | EP |
1623856 | Feb 2006 | EP |
1757473 | Feb 2007 | EP |
1825220 | Aug 2007 | EP |
2103512 | Sep 2009 | EP |
2116739 | Nov 2009 | EP |
2189191 | May 2010 | EP |
2248691 | Nov 2010 | EP |
2357098 | Aug 2011 | EP |
2410203 | Jan 2012 | EP |
2479095 | Jul 2012 | EP |
2495472 | Sep 2012 | EP |
2357098 | Oct 2014 | EP |
2848582 | Mar 2015 | EP |
3786049 | Mar 2021 | EP |
3786049 | May 2023 | EP |
1343760 | Nov 1963 | FR |
2432424 | Feb 1980 | FR |
2449236 | Sep 1980 | FR |
2529002 | Dec 1983 | FR |
2617928 | Jan 1989 | FR |
2952031 | May 2011 | FR |
806307 | Dec 1958 | GB |
1185074 | Mar 1970 | GB |
2104183 | Mar 1983 | GB |
2159234 | Nov 1985 | GB |
2159604 | Dec 1985 | GB |
2180320 | Mar 1987 | GB |
2282864 | Apr 1995 | GB |
2289111 | Nov 1995 | GB |
2347479 | Sep 2000 | GB |
57173632 | Oct 1982 | JP |
57173632 | Nov 1982 | JP |
57182506 | Nov 1982 | JP |
01106721 | Apr 1989 | JP |
H0193637 | Apr 1989 | JP |
H02168038 | Jun 1990 | JP |
H03113139 | May 1991 | JP |
04203540 | Jul 1992 | JP |
05149364 | Jun 1993 | JP |
H05319054 | Dec 1993 | JP |
06101735 | Apr 1994 | JP |
06185562 | Jul 1994 | JP |
H084818 | Jan 1996 | JP |
2005119548 | May 2005 | JP |
2005119549 | May 2005 | JP |
2007302211 | Nov 2007 | JP |
2008238921 | Oct 2008 | JP |
20070076226 | Jul 2007 | KR |
20100041679 | Apr 2010 | KR |
2469224 | Dec 2012 | RU |
9840231 | Sep 1998 | WO |
9906231 | Feb 1999 | WO |
0027658 | May 2000 | WO |
03070546 | Aug 2003 | WO |
2007017739 | Feb 2007 | WO |
2007117884 | Oct 2007 | WO |
2008086605 | Jul 2008 | WO |
2008114445 | Sep 2008 | WO |
2013066159 | May 2013 | WO |
Entry |
---|
Electronic Translation of DE3709447A1. |
English language abstract for EP 0207409 (No. date). |
European Search Report, European Patent Application No. 14189773.6, dated May 4, 2015, 4 Pages. |
EP Search Report for European Application No. 15163428.4, dated Jul. 3, 2017, 7 Pages. |
“European Patent Office Final Decision dated Mar. 21, 2013”, European Patent Application No. 10161906.2. |
“European Search Report for European Application No. 10187320, 12 pages, dated Sep. 25, 2017 (Sep. 25, 2017)”. |
“European Search Report and Written Opinion, European Patent Application No. 13165362.8”, dated Sep. 24, 2014, 6 Pages. |
Nilsson, “Opposition Letter Against EP-2357098”, Oct. 13, 2017, 7. |
European Search Report for European Application No. 19155995, 11 pages, dated Aug. 28, 2019. |
European Search Report for European Application No. 19206334.5, 6 pages, dated May 12, 2020 (May 12, 2020). |
European Search Report for European Application No. 19212356.0, 8 pages, dated May 7, 2020 (May 7, 2020). |
European Search Report for European Application No. 20206708.8, 11 pages, dated May 17, 2021. |
Machine translation DE3613386; Oct. 1986. |
Machine translation EP 0403803; Dec. 1990. |
Machine translation KR20100041679; Apr. 2010. |
European Search Report for European Application No. 19157767, dated Oct. 16, 2019, 9 Pages. |
EP Search Report for European Application No. 21173940.4, dated Nov. 12, 2021, 9 Pages. |
European Search Report for European Application No. 20187747, dated Nov. 18, 2020, 11 Pages. |
Fachkunde Fahrradtechnik 4 Auflage, Gressmann_Inhaltv und S, 2011, 206-207. |
Statement of Grounds of Appeal, EP App. No. 11153607.4, May 28, 2018, 88 Pages. |
Grounds of Appeal, EP App. No. 11153607.4, Jun. 1, 2018,28 Pages. |
“17 Years of Innovation and Still Evolving”, https://www.powertap.com/post/blog-15-17-years-of-innovation-and-still-evolving, Nov. 28, 2018, 8 Pages. |
“ANT Message Protocol and Usage”, Dynastream Innovations, Inc., Jul. 2, 2007, 68 Pages. |
“Basis For Claims Filed Jan. 15, 2023”, European Patent Application No. 14189773.6, 2 Pages. |
“Communication Re Oral Proceedings for European Application No. 10/161,906, dated Feb. 15, 2013 (Feb. 15, 2013)”. |
“European Search Report for European Application No. 09159949, 2 pages, dated Sep. 11, 2017 (Sep. 11, 2017)”. |
“European Search Report for European Application No. 09177128, 4 pages, dated Aug. 25, 2010 (Aug. 25, 2010)”. |
“European Search Report for European Application No. 10161906, 3 pages, dated Sep. 15, 2010 (Sep. 15, 2010)”. |
“European Search Report for European Application No. 11153607, 3 pages, dated Aug. 10, 2012 (Aug. 10, 2012))”. |
“European Search Report for European Application No. 11172553, 2 pages, dated Sep. 25, 2017 (Sep. 25, 2017)”. |
“European Search Report for European Application No. 11172612, 2 pages, dated Oct. 6, 2011 (Oct. 6, 2011))”. |
“European Search Report for European Application No. 11175126, 2 pages, dated Sep. 25, 2017 (Sep. 25, 2017)”. |
“European Search Report for European Application No. 11275170, 2 pages, dated Jan. 10, 2018 (Jan. 10, 2018)”. |
“European Search Report for European Application No. 12170370, 2 pages, dated Nov. 15, 2017 (Nov. 15, 2017)”. |
“European Search Report for European Application No. 12184150, 10 pages, dated Dec. 12, 2017 (Dec. 12, 2017)”. |
“European Search Report for European Application No. 13158034, 4 pages, dated Jun. 28, 2013 (Jun. 28, 2013))”. |
“European Search Report for European Application No. 13174817.0, 13 pages, dated Jan. 8, 2018 (Jan. 8, 2018))”. |
“European Search Report for European Application No. 13189574, 2 pages, dated Feb. 19, 2014 (Feb. 19, 2014)”. |
“European Search Report for European Application No. 15167426, 4 pages, dated Sep. 18, 2015 (Sep. 18, 2015))”. |
“European Search Report for European Application No. 16167306, 2 pages, dated Mar. 23, 2017 (Mar. 23, 2017)”. |
“European Search Report for European Application No. 17154191, 2 pages, dated Jun. 28, 2017 (Jun. 28, 2017)”. |
“European Search Report for European Application No. 17188022, 9 pages, Feb. 1, 2018 (Feb. 1, 2018))”. |
“European Search Report for EP Application No. 18154672, 3 pages, dated Aug. 28, 2018 (Aug. 28, 2018))”. |
“Notice of Intent to Grant EP Application 09159949.8 dated Nov. 14, 2019, p. 48”. |
“Office Action for European Application No. 13158034.2, 5 pages, dated May 22, 2014”. |
“The Lee Company Technical Hydraulic Handbook”, 1996, 1-696. |
Healey, “The Tyre as Part of the Suspension System”, The Institution of Automobile Engineers, Nov. 1924, 26-128. |
Kasprzak, “Understanding Your Dampers: A guide from Jim Kasprzak”, http://www.kaztechnologies.com/downloads/kaz-tech-tips/ Accessed: Oct. 24, 2018, 25 pages. |
Litchfield, “Pneumatic Tires”, Transactions (Society of Automobile Engineers), vol. 8, Part II, 1913, 208-223. |
Puhn, “How To Make Your Car Handle”, HPBooks, 1981, 7 Pages. |
Shiozaki, et al., “SP-861-Vehicle Dynamics and Electronic Controlled Suspensions SAE Technical Paper Series No. 910661”, International Congress and Exposition, Detroit, Mich , Feb. 25-Mar. 1, 1991. |
Smith, ““The Bump Stop” in Engineer to win—Chapter 13: Springs and Shock Absorbers”, MBI Publishing Company and Motorbooks, USA XP055430818, ISBN: 978-0-87938-186-8, Dec. 31, 1984, 207. |
Thum, Notice of Opposition to a European Patent, EP App. No. 14189773.6, dated Dec. 13, 2018, 49 Pages. |
Thum, “Oppostion Letter Against EP2357098”, Oct. 16, 2018, 39. |
Thum, “Oppostion Letter Against EP2357098”, Dec. 17, 2019, 25 Pages. |
Waechter, et al., “A Multibody Model for the Simulation of Bicycle Suspension Systems”, Vehicle System Dynamics, vol. 37, No. 1, 2002, 3-28. |
Kensuke, Suspension Control Device, machine translation of JPH05319054 (A), Dec. 3, 1993 (Year: 1993). |
Haller, E, EPO machine translation of CN 101468587 (A) Device with a suspension system and method for setting a suspension system, published on Jul. 1, 2009. |
Number | Date | Country | |
---|---|---|---|
20210025472 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
62379487 | Aug 2016 | US | |
61296826 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15686933 | Aug 2017 | US |
Child | 16909829 | US | |
Parent | 14038507 | Sep 2013 | US |
Child | 15158502 | US | |
Parent | 13010697 | Jan 2011 | US |
Child | 14038507 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15158502 | May 2016 | US |
Child | 15686933 | US |