This invention relates to an apparatus for handling tubulars. More specifically, but not by way of limitation, this invention relates to an elevator apparatus and method for lifting tubular members on a rig.
Most oilfield tubular connections have a larger outer diameter than the tubular body. This difference in diameter creates a shoulder that can be utilized for lifting the tubular. To lift up the tubular, a tool called an elevator wraps around the tubular body. Upon hoisting the elevator having been wrapped around the tubular, the upper section of the elevator makes contact with the corresponding shoulder of the connection. The contact area between the elevator and shoulder creates an interference providing a lifting surface for the tubular.
Elevators are comprised of a body, one or more hinged doors and a latch. To close the elevator around the tubular, it is lowered adjacent to the tubular (usually suspended from the traveling block) and the two portions are hingedly closed around the tubular below the connection. The latch closes after the portions come together and locks it shut.
Automation of tubular handling devices is a useful technique to incorporate safety and efficiency in the handling of tubular members. Prior art devices have attempted to automate the handling of tubular members with elevators. However, these prior art devices suffer from several deficiencies such as reliability, cost of manufacture, repair, maintenance, simplicity of operation, etc.
Most existing remote operated elevators are comprised of an elevator of conventional design, utilizing hydraulic or pneumatic cylinders, attached to the elevator, to offer the feature of remote operation. These mounted cylinders create operational and ergonomic issues that must be addressed to assure proper functionality.
Therefore, an object of the present invention is to provide an apparatus and method for handling a tubular member. Another object is to provide an elevator apparatus and method that can be activated remotely. Yet another object is an elevator apparatus that can be remotely opened or closed. Still yet another object is an elevator apparatus and method that can latch or unlatch remotely. These objects and many other objects will become apparent from a reading of the present disclosure.
An elevator apparatus is disclosed. The apparatus includes a circular member comprising a first and a second portion and a hinge pin means operatively associated with the first portion and the second portion, for pivoting the first portion relative to the second portion. The elevator apparatus further includes a first rotary actuator for activating the hinge pin so that the first and second portion pivot to form a circular member, a latch mechanism for latching the first portion and the second portion, and a second rotary actuator for actuating the latch mechanism.
In one preferred embodiment, the first rotary actuator comprises: a first cylinder; a first rack disposed within the cylinder, the first rack being responsive to a pressure within the cylinder; and a first roller having teeth disposed thereon, wherein the first rack and the teeth are engaged and wherein the first roller is connected to the hinge pin means.
The first cylinder, in the most preferred embodiment, is a hydraulic or pneumatic pressure cylinder receiving pressure from a source such as a hydraulic or pneumatic control unit. Also, in the most preferred embodiment, the second rotary actuator comprises: a second cylinder; a second rack disposed within the second cylinder, with the second rack being responsive to a pressure within the second cylinder; and a second roller having teeth disposed thereon, wherein the second rack and teeth are engaged and wherein the second roller is connected to a first pin so that lateral movement of the second rack causes extension of the first pin.
The second roller, in one preferred embodiment, is connected to a second pin offset from the first pin and wherein lateral movement of the second rack causes extension of the second pin in a direction opposite from the first pin.
The apparatus may further comprise an indicator means for detecting the extension of the first pin. In one preferred embodiment, the indicator means comprises a relay switch that is controlled by the position of the first pin.
In another preferred embodiment, the first pin has a first position that is recessed within an aperture within a housing and a second position that extends from the housing, and wherein the indicator means comprises a projection that is positioned within the aperture and a relay switch operatively connected to the projection, and wherein upon movement of the first pin from the recessed position to the extended position, the projection is lifted from the aperture which trips a relay switch.
A method of lifting a tubular member on a drilling rig is also disclosed. The method comprises suspending an elevator apparatus from the rig. The elevator apparatus includes: a first portion and a second portion; a hinge pin member operatively associated with the first portion and the second portions, for pivoting the first portion relative to the second portion; a hinge rotary actuator for moving the hinge pin; and, a latch member for latching the first portion and the second portion in order to form a circular member about the tubular.
The method further comprises surrounding the elevator apparatus about the tubular member, with the tubular member being suspended in a rotary table on the rig with a slip device or in a more horizontal position from the v-door, pipe rack or catwalk, and activating the hinge rotary actuator so that the first portion and the second portion pivots about the hinge pin. The method further includes latching the first portion and the second portion—together thereby forming the circular member, releasing the tubular member from the slip device, and lifting the tubular with the elevator apparatus. In one preferred embodiment, the method also includes detecting whether the first portion and the second portion are latched.
The method may further comprise suspending the tubular member within the rotary table on the rig, and unlatching the first portion from the second portion by activating a latch rotary actuator operatively associated with the latch member. Next, the hinge pin is activated via the first hinge rotary actuator, and the first portion and the second portion is pivoted in order to separate and open up the two portion.
In one preferred embodiment, the hinge rotary actuator comprises: a pressure cylinder; a rack disposed within said cylinder and responsive to a pressure; a roller having teeth thereon, with the teeth engaging the rack. In this embodiment, the step of activating the hinge rotary actuator comprises: selectively applying a pressure in the cylinder; moving the rack in response to the pressure; rotating the roller; and pivoting the hinge pin thereby separating the first portion from the second portion.
The second rotary actuator, in one preferred embodiment, comprises: a pressure cylinder; a rack disposed within the cylinder and responsive to a pressure; a roller having teeth thereon, with the teeth engaging the rack; and wherein the step of activating the door rotary actuator(s) comprises: selectively applying a pressure to the cylinder; moving the rack in response to the pressure; and rotating the roller so that the latching pin contracts so that the first and the second portion are no longer latched together.
An advantage of the present invention includes the device that can be remotely controlled. Another advantage is that the door mechanism and latch mechanism is dependable and can be activated numerous times. Yet another advantage is that the device provides a safety means to determine if the device is latched.
Another advantage is that the design incorporates rotary actuator(s) solidly affixed to the hinge boss area/areas, which is directly attached to the hinge pin/pins. Yet another advantage is that the design reduces the size and complexity of conventionally designed units. By minimizing the fabricated attachment areas and hydraulic/pneumatic cylinders, it also reduces the risk of failure in the attachment and linkage areas.
A feature of the elevator apparatus includes a rotary actuated hinge. Another is the use of a rotary actuated latch. Still yet another feature is the rotary actuator uses rack and pinion, and wherein the movement of the rack is initiated via a pressure.
Referring now to
A handle 22 is attached so that a roughneck can aid in opening, closing and/or handling the apparatus 2. The internal portion of the apparatus 2 is configured to receive a tubular member, such as a drill pipe.
Referring now to
The hinge rotary actuator further has a first end 52 connected to the cylinder 12 and a second end 54 connected to the cylinder 12, wherein end 52 can allow a hydraulic fluid in and the end 54 can allow hydraulic fluid out . . . thereby providing for the later movement of the rack 40. The hydraulic fluid (or pneumatic pressure) is controlled from the control unit 36 as seen in
Referring now to
The pin housing 66 will cooperate and engage a receptacle member 68. The receptacle member 68 has a prong member 70 that contains a first prong 72 and a second prong 74. The first prong 72 has an aperture 76 and the second prong 74 has an aperture 78. The pins from the pin housing 66 will engage the apertures 76, 78, as will be more fully explained below.
Referring now to
The indicator means 80 is also shown. The indicator means 80 has a pivoting arm 112 that contains the projection 114. As seen in
Referring now to
In order to unlatch the apparatus 2, the operator may simply activate the latch rotary actuator 14, and in particular the rack, which in turn will cause the roller 96 to rotate thereby contracting the pins 100, 102. Next, the hinge rotary actuator 10 (seen in
As seen in
Although the present invention has been described in terms of specific embodiments, it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It is therefore intended that the following claims be interpreted as covering all such alterations and modifications as fall within the true spirit and scope of the invention.