1. Field of Invention
The invention relates generally to a subsea wellhead assembly. More specifically, the invention relates to an external tieback connector that may be disconnected from a subsea wellhead housing either with a remote operated vehicle, electrically via an umbilical, or acoustically with am acoustic transducer.
2. Description of Prior Art
One technique for drilling and producing offshore wells involves what is referred to as tieback connections. A floating platform drills and produces the wells. During drilling, the operator will install a subsea wellhead housing at the sea floor at the upper end of the well. An external tieback connector on a lower end of a string of drilling riser locks to an external profile on the wellhead housing. The drilling riser extends from the wellhead housing to a blowout preventer at the upper end of the drilling riser.
After the well has been drilled and the drilling riser removed, the operator installs an internal tieback connector inside the wellhead housing. The internal tieback connecter connects a production riser to the wellhead housing. The production riser extends up to the floating platform. A production tree will be installed on the upper end of the production riser for controlling well field produced from the well.
The conventional method for releasing a drilling riser and external tieback connector from the subsea wellhead housing uses a remote operated vehicle (ROV). The operator deploys the ROV from the floating platform on an ROV umbilical. The ROV engages an ROV interface on the tieback connector, then injects hydraulic fluid under pressure from the ROV into the tieback collector to release the tieback connector locking element from the subsea wellhead housing.
During the drilling process, an emergency may occur in which the operator needs to quickly release the tieback connector and the drilling riser from the subsea wellhead housing. While releasing can be performed with an ROV, it might take two or more hours to deploy an ROV from the floating platform and perform the releasing procedure.
Emergency systems exist for subsea well drilling techniques that do not use an external tieback connector. Rather than connecting a tieback connector to a subsea wellhead housing, a large, complex blowout preventer (BOP) connects to the subsea wellhead assembly. The BOP has rams that may be closed in an emergency. A release mechanism disconnects the drilling riser and upper part of the BOP from the lower part containing the rams. An umbilical extends from the BOP to the drilling platform for performing these emergency steps. The BOP has accumulators with valves that when open deliver hydraulic fluid snider pressure to perform these and other functions. Some subsea BOPs have alternate ways to close rams and release the riser in the event of problems with the umbilical, such as techniques using ROV's and/or acoustic transducers.
A subsea well apparatus for releasing a drilling riser from a subsea wellhead includes an external tieback connector secured to a lower end of the riser. The tieback connector has a locking element for engaging an external profile on the wellhead housing. The tieback connector has a piston within a piston chamber for actuating the locking element. An umbilical having a communication line extends from a floating platform alongside the riser to the tieback connector. A first releasing means moves the piston and the locking element to a released position in response to a signal from the floating platform over the line of the umbilical.
Also, as an alternative, an acoustic transducer is deployed subsea on a transducer cable from the floating platform. The transducer is configured to emit an acoustic signal into the sea. An acoustic signal receiver mounted to the tieback connector receives the acoustic signal. A second releasing means moves the piston and the locking element to the released position in response to a signal from the floating platform over the transducer cable to the transducer to emit the acoustic signal.
The tieback connector has an ROV (remote operated vehicle) interface. A third releasing means moves the piston and the locking element to the released position in response to engagement by an ROV with the ROV interface.
The first releasing means and the second releasing meats comprise a hydraulic fluid pressure accumulator mounted to the riser adjacent the tieback connector. The accumulator is in fluid communication with the piston chamber.
The first releasing means and the second releasing means also comprise an electro-hydraulic circuit having valves connected to the piston chamber. The accumulator is coupled to the electro-hydraulic circuit.
The first releasing means further comprises an electrical connection between the umbilical and the valves for selectively opening the valves. The second releasing means comprises an electrical connection between the acoustic receiver and the valves for selectively opening the valves.
The umbilical also may include a hydraulic line. The apparatus has means for refilling the accumulator by delivering hydraulic fluid from the surface platform through the hydraulic line. The apparatus may also have means for refilling the accumulator by delivering hydraulic fluid front the ROV through an ROV interface to the accumulator.
Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
While the invention will be described in connection with certain embodiments, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which certain embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation. Accordingly, the improvements herein described are therefore to be limited only by the scope of the appended claims.
Referring to
Tieback connector 11 slides over the upper end of a wellhead housing 15 and releasably connects to an external profile 17 on wellhead housing 15. Wellhead housing 15 lands in an outer wellhead 19 and connects to casing (not shown) that will be cemented in the well. After the well has been completed, and after external tieback connector 11 has been removed, an internal tieback connector (not shown) secured to a production riser will he lowered into the bore of wellhead housing 15 and secured. Tieback connector 11 has features to quickly and remotely release itself and drilling riser 14 from wellhead housing 15 in the event of an emergency during drilling operations.
The left side of
A plurality of lower rods 29 (only one shown) connect to and extend downward from cam ring 27. A primary piston 31 secures to the lower ends of lower rods 29. Primary piston 31 moves upward and downward in a primary chamber 33 when supplied with hydraulic fluid pressure below and above primary piston 31.
Referring to
A plurality of upper rods 39 have lower ends connected to cam ring 27 and extend upward to a yoke 41 that encircles and is axially movable relative to stress joint 13, as shown also in
A load transfer ring 43 locates within the cavity between outer and inner walls 21, 23. Load transfer ring 43 has an upper inner surface that engages lower ends of dogs 25. Load transfer ring 43 has a lower outer surface that engages a shoulder in the interior of outer wall 21. Load transfer ring 43 transfers load between dogs 25 and outer wall 21.
Referring again to
At least one hydraulic fluid accumulator 47 mounts to stress joint 13 a short distance above tieback connector 11. Two accumulators 47 are shown, and they are cylindrical elongated pressure vessels with axes (not show) roughly parallel with the axis of stress joint 13. Accumulators 47 may be conventional, having a lower hydraulic fluid chamber portion containing hydraulic fluid and an upper portion filled with a compressed gas such as nitrogen. The gas and liquid portions may be separated by a movable barrier.
Tieback connector 11 has an ROV (remote operated vehicle) interface 49 on its exterior for engagement by an ROV (not shown) for locking and unlocking tieback connector 11. Tieback connector 11 may have at least one utility ROV interface 51 on its exterior for engagement by an ROV for re-filling accumulators 47 with hydraulic fluid and optionally recharging with gas. ROV interface 51 could be combined with ROV utility interface 49. The ROV may be a conventional ROV, which is lowered on an ROV umbilical (not shown) for controlling the ROV. ROV interfaces 49, 51 have valve handles that can be engaged and turned by the ROV. Also, ROV interfaces 49, 51 have a hot stab engagement to dispense hydraulic fluid under pressure from the ROV into tieback connector 11.
Referring to
Primary lock line 61 has an ROV valve 65, which may be manually manipulated by an ROV at ROV interface 49. Primary lock line 61 joins an ROV hydraulic fluid inject line 67 leading from ROV interface 49.
Primary chamber unlock line 57 has an ROV valve 69 that also may be controlled by an ROV at ROV interface 49. ROV interface 49 has a hydraulic fluid return line 71 connected to ROV valve 69. ROV valve 69 has one position connecting primary unlock line 57 to ROV inject line 67, another position connecting primary unlock line 57 to ROV return line 71, and a third position that is closed.
A vent line 73 joins primary lock line 61 and vents into the sea. Vent line 73 has a vent valve 75 that is an electrically actuated solenoid type. A branch of vent line 73 leads to primary unlock line 59 and has a solenoid actuated valve 76. Another branch of vent line 73 leads to secondary unlock line 79 and has a solenoid actuated valve 77.
A secondary unlock line or passage 79 connects to secondary unlock chamber 37 (
Accumulators 47 are connected in parallel to an accumulator line or passage 83. A branch of Accumulator line 83 connects to primary unlock line 57 and has an electrically actuated valve 85. A branch of accumulator line 83 joins accumulator line 83 to secondary unlock line 79. An electrically actuated valve 87 is located in the branch of accumulator unlock line 83 leading to secondary unlock line 79. An electrically actuated valve 89 is located in the branch of accumulator unlock line 83 leading to primary unlock line 57.
Electro-hydraulic circuit 55 may also have an accumulator lock line or passage 84 that joins accumulator line 83 and leads to primary chamber lock line 61. One or more solenoid actuated valves 86, 88 are connected in accumulator lock line 84.
Umbilical 45 (
Umbilical 45 (
An acoustic transducer 95 may be deployed from the floating platform or another vessel in the vicinity with a transducer cable 97. Acoustic transducer 95 emits an acoustic signal into the sea when activated by signals through transducer cable 97. Electro-hydraulic circuit 55 has an acoustic receiver 99. Acoustic transducer 95 will be deployed close enough to tieback connector 11 for acoustic receiver 99 to receive the acoustic signals emitted by acoustic transducer 95. Acoustic receiver 99 has a battery pack and associated circuitry 101 to send an electrical signal over an electrical lead 103 in response to receiving an acoustic signal from acoustic transducer 95. Electrical lead 103 connects to electric lead 93, which in turn is electrically connected to valves 75, 85, 87 and 89.
Tieback connector 11 has features to allow refilling of accumulators 47 If their internal pressures drop below a desired level. A hydraulic fluid refill valve 105 that is normally open connects into accumulator line 83 between accumulators 47 and accumulator valve 85. Another hydraulic fluid refill valve 107 connects to accumulator line 83 between accumulators 47 and an ROV utility line 109 extending from ROV utility interface 51. Umbilical 45 (
Hydraulic fluid may be injected into accumulators 47 from umbilical refill line 111 by closing valve 105, opening valve 108, and with valve 107, connecting umbilical refill line 111 with accumulator line 83. Alternately, hydraulic fluid may be injected into accumulators 47 by closing valve 105, opening valve 108, and with valve 107, connecting ROV utility line 109 with accumulator line 83. An ROV connects with ROV utility interface 51 to inject the hydraulic fluid through ROV utility line 109.
Tieback connector 11 may also have a feature to add additional pressurized gas, normally nitrogen, to accumulators 47. Umbilical 45 (
The gas in accumulators 47 may be recharged from umbilical gas line 113 by opening valve 117 and connecting umbilical gas line 113 to accumulators 47 with gas recharge valve 115. Alternately, an ROV may recharge accumulators 47 by connecting ROV gas recharge line 116 to accumulators 47 with valve 115.
In the connecting operation, tieback connector 11 may be connected to wellhead housing 15 in a conventional manner using an ROV. Referring to
Umbilical 45 (
An ROV can also be employed in a conventional manner to disconnect tieback connector 11 from wellhead housing 15. The ROV connects primary unlock valve 69 to ROV inject line 67 and optionally connects secondary unlock valve 81 to ROV inject line 67. The ROV injects hydraulic fluid into primary unlock chamber 59 and optionally secondary unlock chamber 37 and vents in a conventional manner. Cam ring 27 moves upward to release dogs 25 (
However, if an emergency occurs wherein the floating platform needs to quickly release tieback connector 11, considerable time would be required to deploy an ROV subsea and cause it to release tieback connector 11. In that event, the operator may elect to send a signal over umbilical communication line 91. That signal would shift electrically actuated valves 75, 85, 87 and 89 to the open positions. The open valves 85, 87 and 89 direct pressurized hydraulic fluid from accumulators 47 to primary unlock chamber 59 and secondary unlock chamber 37. The open vent valve 75 vents hydraulic fluid on the upper side of primary piston 63 into the sea while primary piston 63 moves upward. Hydraulic fluid will not need to be vented from the upper side of secondary piston 35 in secondary chamber 37 because secondary piston 35 is employed only for unlocking purposes, not locking. Lock line valves 86, 88 and vent line valve 76, 77 remain closed while hydraulic pressure is applied to primary unlock chamber 59 via unlock line 57 and secondary unlock chamber 37 via unlock line 79.
Acoustic transducer 95 may be used in the event umbilical 45 has been damaged such that a communication signal cannot he sent over umbilical communication line 91. The floating platform cause acoustic transducer 95 to emit an acoustic signal. Acoustic receiver 99 receives the signal and sends an electrical signal over electrical leads 103 and 93. Valves 75, 85, 87 and 89 open in response. Hydraulic fluid flows from accumulators 47 to primary and second unlock chambers 59, 37 to release tieback connector 11 from wellhead housing 15 (
The present invention described herein, therefore, id well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While certain embodiments of the invention have been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.