Removable applicator nozzle for ultrasound wound therapy device

Information

  • Patent Grant
  • 7713218
  • Patent Number
    7,713,218
  • Date Filed
    Monday, June 27, 2005
    19 years ago
  • Date Issued
    Tuesday, May 11, 2010
    14 years ago
Abstract
A removable applicator nozzle for use in treating a wound is provided. The removable applicator nozzle includes a nozzle, a valve and a cup. The nozzle includes a proximal portion, a distal opening and a valve interface. The proximal portion of the nozzle is engagable with a portion of a transducer of an ultrasound wound therapy device. The distal opening of the nozzle allows at least a portion of a tip of the transducer to pass therethrough. The valve is engagable with the valve interface of the nozzle and the valve selectively allows fluid to flow therethrough. The cup includes an aperture and a puncturing device. The aperture is engagable with the valve and the puncturing device is able to puncture a bottle that is inserted on the cup. Fluid flows from the bottle, through the aperture and the valve and onto a tip of the transducer. The fluid is then moved to the distal opening of the nozzle by a vacuum effect.
Description
BACKGROUND

Ultrasound waves have been widely used in medical applications, including both diagnostics and therapy as well as many industrial applications. One diagnostic use of ultrasound waves includes using ultrasonic waves to detect underlying structures in an object or a human tissue. In this procedure, an ultrasonic transducer is placed in contact with the object or tissue via a coupling medium and high frequency (1-10 MHz) ultrasonic waves are directed into the tissue. Upon contact with various underlying structures, the waves are reflected back to a receiver adjacent the transducer. By comparison of the signals of the ultrasonic wave as sent with the reflected ultrasonic wave as received, an image of the underlying structure can be produced. This technique is particularly useful for identifying boundaries between components of tissue and can be used to detect irregular masses, tumors, and the like.


Two therapeutic medical uses of ultrasound waves include aerosol mist production and contact physiotherapy. Aerosol mist production makes use of a nebulizer or inhaler to produce an aerosol mist for creating a humid environment and delivering drugs to the lungs. Ultrasonic nebulizers operate by the passage of ultrasound waves of sufficient intensity through a liquid, the waves being directed at an air-liquid interface of the liquid at a point underneath or within the liquid. Liquid particles are ejected from the surface of the liquid into the surrounding air following the disintegration of capillary waves produced by the ultrasound. This technique can produce a very fine dense fog or mist. Aerosol mists produced by ultrasound are preferred over aerosol mists produced by other methods because a smaller particle size of aerosol can be obtained with the ultrasonic waves. One of the major shortcoming of inhalers and nebulizers is that the aerosol mist cannot be directed to a target area without an air stream, which decreases the efficiency of ultrasound.


Ultrasonic sprayers such as those sold by Sonic and Materials Inc., Misonix Inc., Sono-Tek Inc. (see, for example, U.S. Pat. Nos. 4,153,201, 4,655,393, and 5,516,043) operate by passing liquid through a central orifice of an ultrasound instrument-tip. Major disadvantages of these sprayers include non-uniform particle size, heating of liquid flow, and less efficiency of the ultrasound waves.


Contact physiotherapy applies ultrasonic waves directly to tissue in an attempt to produce a physical change in the tissue. In conventional ultrasound physiotherapy, an ultrasonic wave contacts the tissue via a coupling medium. Ultrasonic waves produced by the transducer travel through the coupling medium and into the tissue. The coupling medium is typically a bath of liquid, a jelly applied to the surface to be treated, or a water-filled balloon. Conventional techniques provide ultrasonic waves having an intensity of about 0.25 w/cm2 to about 3 w/cm2 at a frequency of about 0.8 to about 3 Megahertz. The treatment is applied to a skin surface for about 1 to about 30 minutes, for multiple times a week. The coupling medium can provide a cooling effect which dissipates some of the energy produced by the ultrasonic transducer.


More importantly, a coupling medium or direct contact between the tissue and ultrasonic transducer is desirable to transmit the ultrasonic waves from the to the skin surface because ambient air is a relatively poor medium for the propagation of ultrasonic waves.


Several beneficial effects have been reported from contact ultrasound physiotherapy, such as, for example, the following: local improvement of the blood circulation, heating of the tissue, accelerated enzyme activity, muscle relaxation, pain reduction, and enhancement of natural healing processes. Despite these beneficial effects, current techniques of medical physiotherapy using ultrasonic waves are limited by the desire of providing a direct contact interface between the ultrasonic transducer and the tissue to maintain an effective transmission of the ultrasonic waves from the transducer to the tissue.


The desire of direct contact with or without a coupling medium makes current methods undesirable. Some tissue conditions may be accessible to contact ultrasound devices but would be impractical for contact ultrasound treatment. For example, fresh or open wounds resulting from trauma, burns, surgical interventions are not suitable for direct contact ultrasound treatment because of the structural nature of the open wound and the painful condition associated with those wounds. Moreover, conventional contact ultrasound may have a destructive effect on these types of open wounds due to the close proximity of an oscillating tip of an ultrasonic transducer relative to the already damaged tissue surface.


Commonly-owned U.S. Pat. No. 6,569,099 discloses an ultrasonic device and method for wound treatment, the entire contents of which are incorporated herein by reference. This patent discloses, inter alia, a device that sprays liquid particles to a wound via an applicator. The liquid particles provide a medium for propagation of the ultrasonic waves.


As can be appreciated, an improved applicator may be desired to produce a more reliable and consistent flow of liquid particles to a wound bed or site.


SUMMARY

The present disclosure generally relates to the field of ultrasound wound therapy devices, and more particularly relates to a removable applicator nozzle for enabling a fluid to be sprayed towards a patient, thus providing a medium for ultrasonic waves to travel through and penetrate the tissue to a beneficial depth to provide bactericidal, therapeutic and other effects.


According to an aspect of the present disclosure, a removable applicator nozzle for use in treating a wound is provided. The removable applicator nozzle or applicator includes a nozzle, a valve and a cup. The nozzle includes a proximal portion, a distal opening and a valve interface. The proximal portion of the nozzle is engagable with a portion of an ultrasound wound therapy device. The distal opening of the nozzle allows at least a portion of a transducer tip of the ultrasound wound therapy device to pass therethrough. The valve interface defines an axis therethrough. The valve comprises a valve opening, an upper portion and a lower portion. The lower portion is engagable with the valve interface of the nozzle and the valve opening selectively allows fluid to flow therethrough. The cup includes an aperture which is engagable with at least the upper portion of the valve.


In use, fluid flows through the aperture of the cup, through the valve and onto at least a portion of the tip of the ultrasound wound therapy device. The fluid drips from the nozzle to a top surface of the transducer tip, drips/wraps around the transducer tip and then a vacuum effect takes place which moves the fluid forward to a distal end of the transducer tip.


It is envisioned for the fluid to drip onto a portion of the ultrasound wound therapy device that is proximal to the distal-most portion of the tip of the ultrasound wound therapy device. It is also envisioned for the fluid to drip on or about the most distal-most portion of the tip of the ultrasound wound therapy device.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:



FIG. 1 is a perspective view of the removable applicator nozzle of the present disclosure including a nozzle, a cup and a valve, the removable applicator nozzle being illustrated operatively attached to a transducer of an ultrasound wound therapy device and with a bottle inserted therein;



FIG. 2 is a perspective view of the removable applicator nozzle of FIG. 1;



FIG. 3 is a perspective view of the cup and the valve of FIG. 1;



FIG. 4 is a perspective view of a removable applicator nozzle of an alternate embodiment partially inserted into a transducer of an ultrasound wound therapy device;



FIG. 5 is a perspective view of the removable applicator nozzle of FIG. 4 illustrated fully inserted into the transducer of FIG. 4; and



FIG. 6 is a cross-sectional view a valve interface of the removable applicator nozzle of FIGS. 2 and 4.





DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS

Embodiments of the presently disclosed removable applicator nozzle will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein and as is traditional, the term “distal” refers to that portion which is farthest from the user while the term “proximal” refers to that portion which is closest to the user. Further, as used herein, the word “wound” refers to surface wounds, such as burns and skin lesions; internal wounds, such as ulcers and surgical cuts due to surgery; surgical incisions; injuries, including broken bones; and other conditions or applications requiring treatment using ultrasound wound therapy.


In the figures, a removable applicator nozzle or applicator according to an aspect of the present disclosure is generally designated as reference numeral 100. Applicator 100 generally includes a nozzle 200 (FIG. 2), a cup 300 (FIG. 3), and a valve 400 (FIG. 3). Referring to FIG. 2, the nozzle 200 includes a proximal portion 202, a distal portion 204, a plurality of alignment slots 212, a distal opening 214, and a valve interface 220 (also shown in FIG. 6). In an alternate embodiment, the applicator 100 includes a chip housing 230 (see FIGS. 4 and 5). The portion of the nozzle 200 that extends the farthest distally is distal tip 205.


It is envisioned for the applicator 100 in accordance with the present disclosure to be designed for use with an ultrasound wound therapy device, such as the device described in U.S. Pat. No. 6,569,099, the entire contents of which are incorporated herein by reference. The present disclosure is also related to U.S. Pat. Nos. 6,478,754 and 6,663,554 and U.S. patent application Ser. No. 09/684,044, the entire contents of both patents and the patent application are incorporated herein by reference.


Now referring to FIG. 3, the cup 300 includes a puncturing device 302, a lower portion 304 with an aperture 306 extending therethrough, and may include an alignment structure 308. The cup 300 may be designed to hold at least a portion of a bottle 600 (FIG. 1) therein. The bottle 600 generally holds a fluid 602, which may be saline. The cup 300 include structure, such as indent(s) 301, on the lower inside surface of the cup 300 as shown by FIG. 3 for enhancing the grip and fit of the bottle 600 within the cup 300. Indent(s) 301 are configured for damaging the bottle 600 upon removal of the bottle 600 from the cup 300, thereby preventing reuse of the bottle 600.


The valve 400 is also illustrated in FIG. 3. The valve 400 includes an upper portion 402, a lower portion 404 and a slot 406. The valve 400 selectively allows the fluid 602 from the bottle 600 to pass therethrough and towards the nozzle 200. It is envisioned for the valve 400 to be separate or removable from the applicator 100 for enabling removal of the valve from the applicator 100, in order for the valve 400 to be reused with other applicators 100 and for lowering production costs for the applicator 100.


Referring to FIGS. 1-3, the nozzle 200, the cup 300 and the valve 400 mechanically engage with one another to form the applicator 100. Specifically, the lower portion 404 of the valve 400 fits over the valve interface 220 of nozzle 200; the upper portion 402 of the valve 400 fits into the aperture 306 of the cup 300. When mechanically engaged, the cup 300 is capable of turning approximately 90° with respect to an axis A-A, as defined by the valve interface 220 (FIG. 2). Turning the cup 300 adjusts the valve 400 from a closed position where the fluid 602 cannot flow through, to an open position which provides a passage for the flow or the fluid 602. Turning the cup 300 back towards its original position closes the valve 400.


With specific reference to FIGS. 1, 4 and 5, the applicator 100 is mechanically connectable with an ultrasound wound therapy device 500, hereinafter referred to as a transducer assembly. When activated, the transducer assembly 500 produces ultrasonic waves having a frequency of about 1 kHz to about 10,000 MHz. The ultrasonic waves deliver ultrasonic energy to a wound surface, including below the wound surface, via a spray which acts as the coupling agent for the ultrasonic energy as further described below. The ultrasonic energy provides bactericidal, therapeutic and other effects for decreasing the healing time for the wound as disclosed by U.S. Pat. No. 6,569,099, the entire contents of which are incorporated herein by reference.


Specifically, the proximal portion 202 of the nozzle 200 slides over a distal portion 504 of the transducer assembly 500. The plurality of aligning slots 212 (illustrated as two slots) of the nozzle 200 engage with a plurality of aligning pins 508 (FIG. 4) of the transducer assembly 500. When connected, the distal end 506 of a tip 505 of the transducer assembly 500 may extend distally of the distal opening 214 of the nozzle 200 but not to a location that is distal of the tip 205 of the nozzle 200. That is, when the transducer assembly 500 is inserted through the applicator 100, the distal end 504 of the transducer assembly 500 extends between the distal opening 214 and the distal tip 205 of the nozzle 200, such that the distal dip 205 of the nozzle 200 is coaxially disposed about the distal end 504 of the transducer assembly 500.


In use, the cup 300 is inserted onto the “valve” 400 (as shown in FIG. 3) and the valve 400 is inserted onto the valve interface 220 of the nozzle 200. The transducer assembly 500 is then aligned and coupled with the nozzle 200, via aligning slots 212 and alignment pins 508. The distal end 506 of the transducer assembly 500 is inserted through the proximal portion 202 of the nozzle 200, continues through the distal portion 204 of the nozzle 200, and out through the distal opening 214 of the nozzle 200. The bottle 600 may then be placed into the cup 300. Upon insertion of the bottle 600 into the cup 300, the puncturing device 302 of the cup 300 punctures a hole in the bottle 600. The alignment structure 308 may assist the user in properly positioning the bottle 600 in the cup 300. It is envisioned for the bottle 600 to be inserted into the cup 300 prior to the applicator 100 being coupled with the transducer assembly 500. The insertion of the cup 300 and valve 400 into the nozzle 200, the coupling of the applicator 100 and the transducer assembly 500, and the insertion of the bottle 600 into the cup 300 allow the applicator 100 to be utilized vis-à-vis the transducer assembly 500.


To utilize the applicator 100 with the transducer assembly 500, a user turns the cup 300 approximately 90°. The turning of the cup 300 “opens” the “valve” 400 by aligning a valve opening 222 (FIG. 6) with the hole in the nozzle 200 and allows the fluid 602 to pass through the valve 400. The nozzle 200 is specifically designed such that the fluid 602 drips through the valve interface 220 of the nozzle 200 and onto a portion of the tip 505 of the transducer assembly 500. The fluid 602 drips onto a portion of the tip 505 that is proximal the location of the distal end 506 of the tip 505 of the transducer assembly 500.


In a particularly useful embodiment, the valve opening 222 (FIG. 6) is appropriately sized to allow a desired amount of fluid 602 to pass therethrough such that the fluid 602 that drips onto the tip 505 of the transducer assembly 500 can wrap around the circumference of the tip 505. Such an effect is known as the Babaev effect, or vacuum effect, and creates a capillary action that wicks or applies the fluid 602 around the circumference of the tip 505 of the transducer assembly 500.


It is envisioned for the diameter of the valve opening 222 to be in the range of about 0.027 inches to about 0.037 inches and may be in the more specific range of about 0.031 inches to about 0.033 inches. Additionally, this size valve opening 222 may generate relatively uniform particle sizes of fluid 602. These particle sizes may be approximately equal to 60 μm in diameter. It is also envisioned for the fluid 602 to drip onto a front face 507 of the tip 505 of the transducer assembly 500, as shown by FIG. 4a of U.S. Pat. No. 6,569,099.


A user may then wait for approximately three seconds for the fluid 602 to coat the circumference of the tip 505 of the transducer assembly 500 before he activates the transducer assembly 500. To activate the transducer assembly 500, the user engages the switch 510. Two switches 510a, 510b are depicted in the figures (FIG. 1; and FIGS. 4 and 5, respectively) and other types of switches 510 are also envisioned and are within the scope of the present disclosure. Upon activation of the switch 510, the tip 505 of the transducer assembly 500 is displaced between about 60 μm to about 70 μm as the tip 505 vibrates at a rate of about 1 kHz to about 10,000 MHz.


Such a displacement provides the energy levels needed to provide therapeutic benefit and may minimize the aerosolization of bacteria and/or other tissue exudates. The displacement of the tip 505 causes a vacuum effect between the tip 505 of the transducer assembly 500 and the distal opening 214 of the nozzle 200, which moves the fluid 602 from the circumference of the tip 505 distally out through the distal opening 214 of the nozzle 200. Upon exiting the applicator 100, the fluid 602 is in the form of a mist. Such a fluid mist medium ameliorates the dissipation effect that ultrasonic energy typically undergoes as ultrasonic waves travel in air.


The separation distance between the free end surface of the transducer tip 505 and the surface or object to be sprayed should be a non-contact distance of at least 0.1 inches (2.5 mm). Preferably, the separation distance is from about 2.5 mm to about 51 cm, more preferably, from about 15 mm to about 25 mm. The fluid 602 to be sprayed and provided within the bottle 600 can be any appropriate carrier, such as saline, water (regular or distilled), or oil to be applied to tissue, such as a vegetable, peanut, or canola oil, optionally with a soluble pharmaceutical (e.g., an antibiotic), antiseptic, conditioner, surfactant, emollient, or other active ingredient. The fluid 602 can also be a combination of two or more fluids and/or substances having microscopic particles, such as powder and the like.


As can be appreciated, the apparatus as described enables a gravity feed system for delivery of the fluid 602 to the transducer assembly 500. Such a system may not pressurize the fluid 602. Pressurization of the fluid 602 may create inconsistent particle size and/or velocity, which may create aerosolization.


It is envisioned for the bottle 600 of the present disclosure to be eliminated and/or replaced with another structure for delivering the fluid 602 to the transducer assembly 500, such as a fluid bag (not shown). In such an embodiment, it is envisioned for the fluid 602 to be delivered to the transducer assembly 500 in a pressurized state. Desirably, the pressurized fluid 602 in such an embodiment may be approximately equal to the pressure of the fluid 602 exiting the bottle 600, as in the previous embodiment. This pressure may be relatively small and may be dictated by the pressure associated with gravity and the size opening of the valve opening 222. This type of arrangement, using a fluid bag as opposed to a bottle 600, may be useful in situations where the bottle 600 may interfere with accessing a particular site. It may also be useful to use a fluid bag in situations where the transducer assembly 500 is held in a general vertical orientation and/or to allow for a greater amount of fluid to be used (i.e., a fluid bag may be able to hold more fluid 602 than the bottle 600). Moreover, when the bottle 600 is replaced with a fluid bag (or another suitable replacement), the cup 300 may not be necessary.


It is envisioned for a plurality of valve openings 222 to be included in the applicator 100. A plurality of valve openings 222 may be particularly useful to allow the tip 505 of the transducer assembly 500 to be evenly coated with fluid 602, especially when the transducer assembly 500 is orientated in a generally vertical direction.


It is envisioned for the applicator 100 to include an aligning structure (not shown) for creating a uniform gap between the tip 505 of the transducer assembly 500 and the distal opening 214 of the nozzle 200. This uniform gap may be in the range of about 10 mm to about 20 mm with 18 mm currently being used and may further ensure a proper vacuum effect between the tip 505 of the transducer assembly 500 and the distal opening 214 of the nozzle 200.


As shown in FIGS. 4 and 5, the alternate embodiment of the applicator 100 includes a chip housing 230. The chip housing 230 is keyed to interlock with the switch 510b of the transducer. A IC chip (not shown) is housed within the chip housing 230 and may be programmed to limit the number of times the applicator 100 is attached to the transducer assembly 500. Specifically, the IC chip may only allow the applicator 100 to be used one time and/or for a limited amount of time. This feature could help ensure that the applicator 100 is used, e.g., only once, thus preventing potential non-sterile use and/or possible cross-contamination, if used/maintained improperly.


In operation, the IC chip keeps count of the number of times the applicator 100 is attached to the transducer assembly 500. After the applicator 100 has been attached more than a predetermined number of times, e.g., five times, the IC chip transmits a signal to activate a solenoid or other device (software as well and is the current method being considered) for positioning a blocker to prevent the applicator 100 from being re-attached to the transducer assembly 500. The signal is transmitted after the applicator 100 is removed from the transducer assembly 500. Other functions of the chip are also envisioned and are within the scope of the present disclosure.


The IC chip includes a power source, such as a battery, for powering the IC chip and/or the solenoid. The IC chip can be an ASIC and/or a combination of components, such as timing circuitry; memory for storing data and the number of times the applicator 100 has been attached to the transducer assembly 500; battery; solenoid; control circuitry for activating the solenoid; and a blocker in operative communication with the solenoid.


In order to count the number of times the applicator 100 is attached to the transducer assembly 500, the IC chip includes a toggle switch which is toggled every time the applicator 100 is attached to the transducer assembly 500. The toggling of the toggle switch is sensed by the IC chip and causes the IC chip to increase its count by one. If the count exceeds the predetermined number stored by the IC chip, following removal of the applicator 100, the IC chip transmits the signal for activating the solenoid or software as described above.


It is envisioned for the applicator 100 to include an LCD or other display for displaying the number of times the applicator 100 has been attached to the transducer assembly 500. A sterilization icon can also be displayed by the LCD or other display. The sterilization icon is selected from a group of pre-stored sterilization icons for informing the user that sterilization of the applicator 100 is not required, recommended or required.


A message can also be displayed by the LCD or other display after a single use (or multiple uses) of the applicator 100. The message can state that additional use of the applicator 100 is not allowed or recommended and to replace the applicator 100 with another applicator 100.


It is also envisioned for the switch 510 on the transducer assembly 500 to be able to simultaneously open/close the valve 400 and activate/deactivate the transducer assembly 500. Such a switch 510 would allow a user to effectively utilize the transducer assembly 500/applicator 100 in a singe motion (i.e., the user would not first have to turn the cup 300 and then activate the switch 510 of the transducer assembly 500). Use of a solenoid valve (not shown) is envisioned to accomplish such utilization of the transducer assembly 500/applicator 100.


It is further envisioned for a plurality of vent holes 210 (FIG. 2) to be disposed on the nozzle 200. The vent holes 210 would help provide a pressure relationship for the fluid and may help provide the vacuum effect. It is also envisioned for the bottle 600 to include a plurality of vent holes (not shown).


As illustrated in FIGS. 1, 3, 4 and 5, the distal portion 204 of the nozzle 200 may be curved and/or contoured to focus ultrasonic energy as well as to complement standing wave potential. A similar characteristic is described in U.S. patent application Ser. No. 09/774,145, the entire contents of which are incorporated herein by reference. This shape may also limit inadvertent contact between the transducer tip 505 and a patient and/or a user of the transducer assembly 500.


It is further envisioned that the applicator 100 is able to ionize fluid (saline) particles as the particles are atomized off a face of the transducer assembly 500 to support cell stimulation.


The applicator 100 or ultrasound wound therapy device 500 can be provided with a laser or ultrasonic transducer for measuring the non-contact distance or stand-off distance from a wound surface. A feedback control mechanism can also be provided for indicating whether the measured non-contact distance is suitable for effecting optimum beneficial bactericidal, therapeutic and/or other effects. The feedback assembly is integrated with the transducer assembly and corresponding electronics housed within an ultrasonic generator for obtaining the measured non-contact distance data and processes the data to determine whether the measured non-contact distance is optimum for treatment purposes.


If the non-contact distance is determined not to be the optimum non-contact distance, the feedback control mechanism can sound an audible alarm or display a message on a display, such as the LCD display of the applicator 100. The alarm or message can indicate if the non-contact distance should be decreased or increased. If the applicator 100/ultrasound wound therapy device 500 is mounted to a robotic arm, the feedback control mechanism can in turn control the robotic arm for increasing or decreasing the non-contact distance.


It is to be understood that the foregoing description is merely a disclosure of particular embodiments and is in no way intended to limit the scope of the disclosure. Other possible modifications will be apparent to those skilled in the art and all modifications will be apparent to those in the art and all modifications are to be defined by the following claims.

Claims
  • 1. A method for promoting wound healing comprising the steps of: providing a transducer which emits ultrasonic energy;providing an applicator, comprising: a nozzle including a proximal portion, a distal opening and a valve interface, the proximal portion being engageable with a portion of an ultrasound wound therapy device, the distal opening allowing at last a portion of a transducer tip of the ultrasound wound therapy device to pass therethrough;a valve comprising a valve opening, an upper portion and a lower portion, the upper and lower portion being rotatable with respect to each other, the lower portion being selectively engageable with the valve interface of the nozzle, the upper portion being in fluid communication with a fluid source, and the valve opening selectively allowing fluid to flow therethrough; anda cup including an aperture, the aperture in fluid communication with at least the upper portion of the valve;activating the transducer to emit ultrasonic energy; andturning the cup to selectively allow fluid to flow from the fluid source through the valve opening towards a portion of the transducer;wherein, following activation of the transducer and contact of said portion of the transducer with said fluid a spray is generated, and wherein the emitted ultrasonic energy is delivered to the wound through the spray to decrease the healing time of the wound.
  • 2. The method according to claim 1, wherein when the transducer is activated, the transducer tip vibrates at a rate of about 1 kHz to about 10,000 MHz.
  • 3. The method of claim 1, wherein the fluid is saline.
  • 4. The method of claim 1, wherein the emitted ultrasonic energy is delivered to the wound through the spray from a non-contact distance of at least 0.1 inches between the transducer and the wound.
  • 5. The method of claim 1, wherein the fluid source is a fluid bag.
  • 6. The method of claim 1, wherein the fluid source is a bottle containing saline.
  • 7. The method of claim 1, wherein the ultrasonic energy penetrates the tissue to a beneficial depth to provide bactericidal and/or other therapeutic effects.
  • 8. The method of claim 1, wherein the fluid source is a bottle containing saline, and wherein the bottle is inserted on the cup.
  • 9. The method of claim 1, wherein the step of turning the cup to selectively allow fluid to flow from the fluid source through the valve opening towards a portion of the transducer is performed prior to the step of activating the transducer to emit ultrasonic energy.
  • 10. The method of claim 1, wherein the valve opening has a diameter in the range of about 0.027 inches to about 0.037 inches.
  • 11. The method of claim 1, wherein one or more vent holes are disposed on the nozzle.
  • 12. The method of claim 1, wherein the cup contains a single puncturing device.
  • 13. The method of claim 3, wherein the ultrasonic energy penetrates the tissue to a beneficial depth to provide bactericidal and/or other therapeutic effects.
  • 14. The method of claim 4, wherein the ultrasonic energy penetrates the tissue to a beneficial depth to provide bactericidal and/or other therapeutic effects.
  • 15. The method of claim 9, wherein the valve opening has a diameter in the range of about 0.027 inches to about 0.037 inches.
  • 16. The method of claim 10, wherein the valve opening has a diameter in the range of about 0.031 inches to about 0.033 inches.
  • 17. The method of claim 15, wherein the valve opening has a diameter in the range of about 0.031 inches to about 0.033 inches.
PRIORITY

This application hereby claims priority to U.S. Provisional Patent Application Ser. No. 60/693,560 titled “REMOVABLE APPLICATOR NOZZLE FOR ULTRASOUND WOUND THERAPY DEVICE,” filed on Jun. 23, 2005, the entire contents of which are incorporated herein by reference.

US Referenced Citations (186)
Number Name Date Kind
2534046 Mau Dec 1950 A
2889852 Dunlap Jun 1959 A
3207181 Elizabeth Sep 1965 A
3243122 Snaper Mar 1966 A
3275059 McCullough Sep 1966 A
3392916 Engstrom et al. Jul 1968 A
3504887 Okerblom Apr 1970 A
3561444 Boucher Feb 1971 A
3685694 Ianelli Aug 1972 A
3765606 Moss et al. Oct 1973 A
3860173 Sata Jan 1975 A
3952918 Poitras et al. Apr 1976 A
4052004 Martin et al. Oct 1977 A
4085893 Durley, III Apr 1978 A
4153201 Berger et al. May 1979 A
4251031 Martin et al. Feb 1981 A
4271705 Crostack Jun 1981 A
4294407 Reichl et al. Oct 1981 A
4301093 Eck et al. Nov 1981 A
4301968 Berger et al. Nov 1981 A
4309989 Fahim Jan 1982 A
4319155 Nakai et al. Mar 1982 A
4334531 Reichl et al. Jun 1982 A
4352459 Berger et al. Oct 1982 A
4414202 Silvetti Nov 1983 A
4428531 Martin Jan 1984 A
4466571 Muhlbauer Aug 1984 A
4530360 Duarte Jul 1985 A
4541564 Berger et al. Sep 1985 A
4582149 Slaughter, Jr. Apr 1986 A
4582654 Karnicky et al. Apr 1986 A
4619400 Van der Burgt Oct 1986 A
4642581 Erickson Feb 1987 A
4655393 Berger Apr 1987 A
4659014 Soth et al. Apr 1987 A
4679551 Anthony Jul 1987 A
4726523 Kokubo et al. Feb 1988 A
4726525 Yonekawa et al. Feb 1988 A
4733820 Endo et al. Mar 1988 A
4756478 Endo et al. Jul 1988 A
4783003 Hirabayashi et al. Nov 1988 A
4790479 Matsumoto et al. Dec 1988 A
4793339 Matsumoto et al. Dec 1988 A
4818697 Liboff et al. Apr 1989 A
4850534 Takahashi et al. Jul 1989 A
4877989 Drews et al. Oct 1989 A
4905671 Senge et al. Mar 1990 A
4930700 McKown Jun 1990 A
4941614 Ilott Jul 1990 A
4941618 Hildebrand et al. Jul 1990 A
4961885 Avrahami et al. Oct 1990 A
4982730 Lewis, Jr. Jan 1991 A
5002059 Crowley et al. Mar 1991 A
5013241 von Gutfeld et al. May 1991 A
5040537 Katakura Aug 1991 A
5063922 Hakkinen Nov 1991 A
5076266 Babaev Dec 1991 A
5104042 McKown Apr 1992 A
5115805 Bommannan et al. May 1992 A
5134993 van der Linden et al. Aug 1992 A
5143588 Liboff et al. Sep 1992 A
5163433 Kagawa et al. Nov 1992 A
5172692 Kulow et al. Dec 1992 A
5186162 Talish et al. Feb 1993 A
5197946 Tachibana Mar 1993 A
5211160 Talish et al. May 1993 A
5231975 Bommannan et al. Aug 1993 A
5259384 Kaufman et al. Nov 1993 A
5269291 Carter Dec 1993 A
5309898 Kaufman et al. May 1994 A
5315998 Tachibana et al. May 1994 A
5316000 Chapelon et al. May 1994 A
5318014 Carter Jun 1994 A
5323769 Bommannan et al. Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5345940 Seward et al. Sep 1994 A
5347998 Hodson et al. Sep 1994 A
5362309 Carter Nov 1994 A
5374266 Kataoka et al. Dec 1994 A
5380411 Schlief Jan 1995 A
5393296 Rattner Feb 1995 A
5437606 Tsukamoto Aug 1995 A
5515841 Robertson et al. May 1996 A
5515842 Ramseyer et al. May 1996 A
5516043 Manna et al. May 1996 A
5520166 Ritson et al. May 1996 A
5520612 Winder et al. May 1996 A
5527350 Grove et al. Jun 1996 A
5529572 Spector Jun 1996 A
5545124 Krause et al. Aug 1996 A
5547459 Kaufman et al. Aug 1996 A
5551416 Stimpson et al. Sep 1996 A
5554172 Horner et al. Sep 1996 A
5556372 Talish et al. Sep 1996 A
5573497 Chapelon Nov 1996 A
5616140 Prescott Apr 1997 A
5618275 Bock Apr 1997 A
5626554 Ryaby et al. May 1997 A
5643179 Fujimoto Jul 1997 A
5656016 Ogden Aug 1997 A
5658323 Miller Aug 1997 A
5688224 Forkey et al. Nov 1997 A
5699805 Seward et al. Dec 1997 A
5707402 Heim Jan 1998 A
5707403 Grove et al. Jan 1998 A
5730705 Talish et al. Mar 1998 A
5735811 Brisken Apr 1998 A
5743863 Chapelon Apr 1998 A
5752924 Kaufman et al. May 1998 A
5762616 Talish Jun 1998 A
5785972 Tyler Jul 1998 A
5835678 Li et al. Nov 1998 A
5843139 Goedeke et al. Dec 1998 A
5879314 Peterson et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5882302 Driscoll, Jr. et al. Mar 1999 A
5894841 Voges Apr 1999 A
5904659 Duarte et al. May 1999 A
5947921 Johnson et al. Sep 1999 A
5960792 Lloyd et al. Oct 1999 A
5989245 Prescott Nov 1999 A
6001069 Tachibana et al. Dec 1999 A
6014970 Irvi et al. Jan 2000 A
6024718 Chen et al. Feb 2000 A
6026808 Armer et al. Feb 2000 A
6027495 Miller Feb 2000 A
6041253 Kost et al. Mar 2000 A
6061597 Rieman et al. May 2000 A
6076519 Johnson Jun 2000 A
6083159 Driscoll, Jr. et al. Jul 2000 A
6095141 Armer et al. Aug 2000 A
6098620 Lloyd et al. Aug 2000 A
6102298 Bush et al. Aug 2000 A
6106547 Huei-Jung Aug 2000 A
6113558 Rosenschein et al. Sep 2000 A
6113570 Siegel et al. Sep 2000 A
RE36939 Tachibana et al. Oct 2000 E
6158388 Wenstrand Dec 2000 A
6158431 Poole Dec 2000 A
6161536 Redmon et al. Dec 2000 A
6176839 DeLuis et al. Jan 2001 B1
6186963 Schwarze et al. Feb 2001 B1
6190315 Kost et al. Feb 2001 B1
6190336 Duarte et al. Feb 2001 B1
6206842 Tu et al. Mar 2001 B1
6206843 Iger et al. Mar 2001 B1
6231528 Kaufman et al. May 2001 B1
6234990 Rowe et al. May 2001 B1
6251099 Kollias et al. Jun 2001 B1
6254294 Muhar Jul 2001 B1
6273864 Duarte et al. Aug 2001 B1
6311573 Bhardwaj Nov 2001 B1
6321109 Ben-Haim et al. Nov 2001 B2
6322527 Talish Nov 2001 B1
6325769 Klopotek Dec 2001 B1
6450417 Gipson et al. Sep 2002 B1
6478754 Babaev Nov 2002 B1
6500133 Martin et al. Dec 2002 B2
6533484 Osei et al. Mar 2003 B1
6533803 Babaev Mar 2003 B2
6569099 Babaev May 2003 B1
6583071 Weidman et al. Jun 2003 B1
6601581 Babaev Aug 2003 B1
6623444 Babaev Sep 2003 B2
6659365 Gipson et al. Dec 2003 B2
6663554 Babaev Dec 2003 B2
6666431 McCusker Dec 2003 B2
6723064 Babaev Apr 2004 B2
6732744 Olshavsky et al. May 2004 B2
6761729 Babaev Jul 2004 B2
6916296 Soring et al. Jul 2005 B2
6960173 Babaev Nov 2005 B2
6964647 Babaev Nov 2005 B1
7316664 Kadziauskas et al. Jan 2008 B2
20020080206 Lin Jun 2002 A1
20020177846 Mulier et al. Nov 2002 A1
20030195644 Borders et al. Oct 2003 A1
20030236560 Babaev Dec 2003 A1
20040028552 Bhardwaj et al. Feb 2004 A1
20040030254 Babaev Feb 2004 A1
20040034982 Wieber et al. Feb 2004 A1
20040055376 Thompson et al. Mar 2004 A1
20040073175 Jacobson et al. Apr 2004 A1
20040186384 Babaev Sep 2004 A1
20060025716 Babaev Feb 2006 A1
20060058710 Babaev Mar 2006 A1
Foreign Referenced Citations (14)
Number Date Country
0 156 4009 Feb 1985 EP
0 437 155 Feb 1990 EP
416106 Mar 1991 EP
0 657 226 Nov 1994 EP
2 099 710 Dec 1982 GB
2 101 500 Jan 1983 GB
2000237275 Sep 2000 JP
1106485 Oct 1982 RU
1827239 May 1990 RU
1106485 Oct 1982 SU
WO 9635383 Nov 1996 WO
9717933 May 1997 WO
WO-2002024150 Mar 2002 WO
WO-0228350 Apr 2002 WO
Related Publications (1)
Number Date Country
20070016110 A1 Jan 2007 US
Provisional Applications (1)
Number Date Country
60693560 Jun 2005 US