This application relates to a blood conduit filter for capturing blood clots within a blood vessel, particularly within a venous vessel and still more particularly within the inferior vena cava.
The migration of blood clot from the peripheral vasculature to the pulmonary arteries and lungs is known as pulmonary embolism. Typically, these clots originate in the lower limbs and migrate toward the heart and lungs. These clots can result from a variety of conditions such as trauma or deep vein thrombosis. If a clot is of sufficient size, it can occlude the pulmonary arteries and interfere with blood oxygenation in the lungs. This occlusion can result in shock or death. Individuals who experience a pulmonary embolism have a high likelihood of experiencing subsequent embolic events.
In these cases, blood thinning medications, e.g., anticoagulants such as heparin and warfarin sodium, or antiplatelet drugs such as aspirin, are given to the patient to prevent another embolic event. The utility of these medical therapies is limited because they may not be able to be administered to patients following surgery or stroke or for those patients presenting with a high risk of internal bleeding. Additionally, these medications are not always effective at preventing recurrent embolic events.
Therefore, surgical methods were developed in an effort to reduce the likelihood of pulmonary embolism recurrence by physically blocking the blood clot from migrating to the pulmonary artery and lungs. Since the inferior vena cava transports blood from the lower limbs to the heart, this vessel was a common site of surgical intervention. One method of treatment involved reducing the size of the inferior vena cava by application of ligatures or clips around the vessel. This prevented the migration of large clots from the lower vasculature to the heart. However, this required an extensive open surgical procedure with associated abdominal incision and general anesthesia. The effects of the surgical procedure coupled with lengthy recovery times led to complications such as vessel thrombosis and lower extremity swelling; thereby aggravating the condition of the patient.
To avoid this invasive surgical approach, less invasive catheter-based approaches have been developed. These involve the placement of filter devices in the inferior vena cava. These filters are inserted under local anesthesia through the femoral vein in the patient's leg, the right jugular vein in the patient's neck or the subclavian vein in the patient's arm. Using standard catheter techniques, the filters are then advanced intravascularly to the inferior vena cava where they are deployed and expanded against the vessel wall. These filters interrupt the migration of blood clots from the lower extremities to the heart and lungs. Once trapped in the filter, flow of blood around the clot helps to dissolve the embolic load in the device.
Previous filters take various forms. One type of filter is comprised of coiled or looped wires such as disclosed in U.S. Pat. Nos. 5,893,869 and 6,059,825. Another type of filter consists of legs with free ends having anchors for embedding and stabilizing in the vessel wall. Examples of these filters are disclosed in U.S. Pat. Nos. 4,688,553; 4,781,173; 4,832,055; 5,059,205; 5,984,947 and 6,007,558. Finally, filters that incorporate a means for removal are disclosed in U.S. Pat. Nos. 5,893,869; 5,984,947 and 6,783,538. U.S. Pat. No. 6,635,070 describes a temporary filter device that is removed by everting a portion of the filter structure to allow it to be withdrawn into a catheter device.
Several factors need to be considered in designing filters for use in the venous system. To prevent migration to the heart, the filter must be securely anchored to the adjacent vessel wall. However, filter anchoring must be accomplished in an atraumatic fashion so as to avoid vessel wall damage and perforation of the neighboring descending aorta and bowel. The area of contact with the vessel wall should be minimized in order to avoid vessel wall hypertrophy and caval stenosis. In addition, the filter must be capable of collapsing to an acceptable delivery profile to allow atraumatic intravascular delivery to the inferior vena cava. Additionally, the filter should direct blood clots away from the vessel wall to avoid vena cava thrombosis. Finally, it is preferred that such a filter device be removable from the implant site.
Three key shortcomings of current vena cava filter designs include: (1) inability or difficulty of filter removal, (2) non-optimal flow characteristics resulting in flow stasis, flow stagnation and filter occlusion and (3) caval stenosis. From a clinical perspective, there are many instances in which it would be desirable to place a venous filter in a patient on a prophylactic basis and then remove the filter when it is no longer required, e.g. young trauma patients, obese patients, or neurosurgical patients. In addition, current venous filters do not exhibit an optimized flow pattern in the presence of clot. It would be advantageous to develop a filter that distributes captured clot in such a way as to minimize significant central (mid-line, or about the longitudinal axis of the vessel) flow disturbances and avoid clot contacting the vessel wall. Finally, the hypertrophic tissue response in the regions of the vessel wall contacted by the filter device not only inhibits filter removal but also causes stenosis of the vena cava. This vessel stenosis can lead to thrombosis of the vena cava.
The present invention relates to a blood conduit filter (preferably a vena cava filter) that divides the transverse cross sectional area of a blood vessel (such as the inferior vena cava) into three annular regions or zones. The inner zone, the region immediately surrounding the longitudinal axis of the vessel, is maintained in a relatively open state with only minimal interference from the members making up the inner filter element (a clot deflector assembly) so that blood flow about the longitudinal axis (mid-line) of the vessel can be maintained substantially uninterrupted. Concentrically surrounding the inner zone is the intermediate zone, to which captured emboli are directed out of the bloodstream passing primarily through the inner zone. Finally, concentrically surrounding the intermediate zone is the outer zone adjacent to the vessel wall. This outer zone is intended to be maintained as a high flow region which is kept free of emboli. Emboli in the bloodstream immediately adjacent the vessel wall are directed away from the wall by the filter design and into the intermediate zone, thereby avoiding the accumulation of emboli adjacent the vessel wall that might otherwise lead to stenosis or stricture of the vessel.
The blood filter is intended primarily for use as a vena cava filter, although it can be made in a range of sizes allowing its use in vessels of various diameters. The filter is also preferably made to be removable with the use of flexible anchoring hooks.
The blood filter comprises multiple strut elements that extend outwardly and rearwardly from a center located along the longitudinal axis of the device. Preferably, some or all of the strut elements include an outwardly-directed flexible anchoring hook located some distance from the rearward end of the strut component.
Additionally, the device also includes a clot diverter component that includes multiple strut elements that also emanate from the device center. These diverter strut elements alternate radially around the device with the filter strut elements. They also extend outwardly and rearwardly from the center, but after reaching about half of the overall device maximum diameter, they turn back toward the longitudinal center line of the device and again converge at this longitudinal axis some distance rearward of the center from which they began. The clot diverter constructed in this fashion has elements spaced closely enough together to move clots outward from the longitudinal axis of the blood vessel and thus maintain this inner zone portion of the vessel open to blood flow.
The filter of the present invention is preferably made from a superelastic, highly flexible material such as nitinol. This material allows for strong and flexible struts and results in a device that may be easily compacted to a small diameter for insertion into a tubular delivery device such as a catheter tube. The filter device may be loaded into one end of a delivery catheter in either direction, depending on whether it is delivered distally or proximally to the implant site. When delivered to a desired site in the vasculature, the filter device is easily deployed by simply pushing it out of the end of the delivery catheter and allowing it to self-expand. It may be inserted into the vasculature at several different locations (e.g., a femoral vein, the right jugular vein or the subciavian vein).
The use of nitinol for the manufacture of the device allows for the device to be readily compacted for withdrawal from the vasculature into a retrieval catheter. The design of the struts results in a strong and non-evertable design, meaning that during retrieval the device is not everted back into itself but instead is collapsed diametrically and withdrawn into a catheter in the direction of the filter center component (i.e., in a proximal direction for a filter implanted in the venous system).
The filter device is most preferably made by cutting lengths of nitinol tubing, for example, by laser cutting. Devices constructed from a single nitinol tube, multiple tubes or combinations of tubes and wires might be used to implement the invention. Various other materials, alone or in combination including in combination with nitinol, may be used to construct these filter devices. These other materials may include, without limitation, various stainless steels and various polymeric materials including shape memory polymers.
A retrieval tool useful for retrieving the filter is also described; this tool can also be used for the retrieval or transport of various other devices. The design of the tool also allows it to be used as a temporary in vivo filter.
Filter 20 further includes multiple clot deflector struts or elements 24 that also emanate from filter center 26. These clot deflector struts 24 alternate radially about the circumference of the filter device 20 with the filter struts 22. The clot deflector struts 24 extend outward radially only a portion of the inside diameter of the blood vessel 10 and then return to the filter device longitudinal axis 13 as they move rearwardly away from the filter center 26, until these clot deflector struts 24 again converge at the distal center 28, located along the longitudinal axis 13 some distance distally from filter center 26.
Blood flow in vessel 10 is indicated by arrows 11. Dimension arrows 14, 15 and 16 respectively define (as noted above for
Blood filter 20 is preferably anchored to the wall of vessel 10 by flexible anchoring hooks 29 as will be further described. These flexible anchoring hooks 29 are preferably located at some distance proximal to the distal end the filter strut 22 to which they are attached.
Hooks 29 are preferably located some distance proximal of the distal end 32 of filter struts 22. The base of a hook 29 may be located, for example, at a distance from distal end of about 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, 6.5 mm, 7 mm, 7.5 mm, 8 mm, 8.5 mm, 9 mm, 9.5 mm, 10 mm or greater. Not having the hook 29 located at the distal end 32 of a filter strut 22 avoids excessive penetration of hooks 29 into the vessel wall. Locating the hooks 29 as shown provides some length of filter strut 22 on either side of hook 29 and thereby provides supporting contact area of strut 22 on either side of hook 29 that prevents excessive penetration of hook 29 which could interfere with later retrievability of filter 20. This hook position also assures that contact with the vessel wall is maintained over a wide range of vessel diameters. It is further noted that the distal ends 32 of filter struts 22 may optionally be flattened to provide greater width and surface area at distal end 32. Likewise, the distal ends 32 (flattened or not) may be provided with radiopaque plating or radiopaque inserts to enhance visualization of filter 20 during and following implantation.
The longitudinal cross section of the perspective view of
The filter struts 22 may be cut (e.g., laser cut) from an outer tube, of which only one tubular end remains after cutting, at filter center 26o (which, as shown is an outer tube that fits tightly and concentrically around one end of the inner tube forming the clot deflector struts at 26i). A preferred way of manufacturing this filter strut component allows the making of a pair of filter strut assemblies 23, wherein a length of tubing sufficiently long to make two filter strut assemblies 23 is used. A suitable nitinol tubing (for example) is of 2.2 mm diameter with a 0.35 mm wall thickness. A sufficient length is left at each end of this length of tubing to provide a filter center 26o at each end. The length between these two ends is then cut longitudinally through the wall of the tubing at (for example) six evenly spaced intervals (i.e., at 60 degree intervals around the circumference of the tube for six filter struts; using the tubing described above cut into six struts results in a strut width of about 0.45 mm). When these longitudinal cuts are complete, the lengthwise cut tubing is cut in half transversely at the mid-point of the length to provide two filter strut assemblies 23; the transverse cut becomes the distal end 32 of each of the two resulting filter strut assemblies 23. Following the transverse cutting step, the individual filter struts 22 are bent outwardly from the position they held previously in the precursor tube to a shape as desired for use as the filter strut assembly 23 of the blood filter 20. One method of accomplishing this is to force the transversely cut end against the point of a conical form, thereby flaring the struts outward.
Other angular orientations for hooks 29 (other than about 90 degrees to filter strut 22) may also prove advantageous. For example, it is possible to fold hook 29 back on itself to the extent that it is pointing proximally or at some desired angle between a proximal direction and 90 degrees to the strut. Likewise, the hook 29 may be provided to point distally if desired.
While further shaping of the pointed tip of anchor hooks 29 is not required, hooks 29 may be modified to any configuration desired by a variety of known metal forming techniques. One such method involves simply cutting the tip at any desired angle with cutting pliers to create a sharp point at the tip of hook 29.
After the filter strut assembly 23 and the clot deflector assembly 25 are fitted concentrically together at the filter center 26, they are permanently joined together to create essentially a one-piece filter device by a suitable method such as by welding. Welding together of the inner 26i and outer 26o filter center tubes may be accomplished at the proximal tip of the filter 20 where the ends of both tubes 26o and 26i are exposed.
The filter device is heat treated as necessary following forming steps. The filter strut assembly 23 and clot deflector assembly 25 may be separately heat treated prior to being welded together as it is believed that the subsequent welding will not adversely affect the previous heat treatment. A preferred nitinol heat treatment results in an Af of 37° C.
It is also noted that all surfaces or selected surfaces of blood filter 20 may be beneficially provided with coatings of various types, including bioabsorbable coatings. Coatings, for example, may allow for the delivery of various drugs to the adjacent tissues. This could aid in minimizing the tissue response and resulting tissue overgrowth of the struts. Examples of useful coatings are described in WO 02/026281 and WO 2004/012783.
Coaxial catheters may be used to effect retrieval of devices of various types including blood filters of the present invention, as shown by the perspective view of the catheter delivery and retrieval system illustrated by
Snare 91 may be made of a variety of filamentary materials; superelastic nitinol wire is preferred for the self-expanding characteristic desired for best performance of snare 91. The snare 91 may be of woven or braided construction, but may also be made using a filament winding method. The filament used to make the snare may optionally be provided with a coating or covering material over the surface of the filament (e.g., ePTFE tape helically wrapped over the filament surface). Likewise, snare 91 may also be provided with a covering (e.g., ePTFE film) in the fashion of a covering over a stent to achieve a stent-graft.
Snare devices 91 of this type may be desirably used as temporary venous filters.
While particular embodiments of the present invention have been illustrated and described herein, the present invention should not be limited to such illustrations and descriptions. It should be apparent that changes and modifications may be incorporated and embodied as part of the present invention within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
751918 | Jagger | Feb 1904 | A |
1332606 | Chuck | Mar 1920 | A |
2281448 | Mathey | Apr 1942 | A |
2491796 | Baume | Dec 1949 | A |
2767703 | Nieburgs | Oct 1956 | A |
2893563 | Bottum | Jul 1959 | A |
3137298 | Glassman | Jun 1964 | A |
3334629 | Cohn | Aug 1967 | A |
3540431 | Mobin-Uddin | Nov 1970 | A |
3800781 | Zalucki | Apr 1974 | A |
3868956 | Alfidi et al. | Mar 1975 | A |
3952747 | Kimmell, Jr. | Apr 1976 | A |
4403612 | Fogarty | Sep 1983 | A |
4425908 | Simon | Jan 1984 | A |
4494531 | Gianturco | Jan 1985 | A |
4612931 | Dormia | Sep 1986 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4665906 | Jervis | May 1987 | A |
4680029 | Ranford et al. | Jul 1987 | A |
4688553 | Metals | Aug 1987 | A |
4727873 | Mobin-Uddin | Mar 1988 | A |
4781173 | Ven et al. | Nov 1988 | A |
4781177 | Lebigot | Nov 1988 | A |
4793348 | Palmaz | Dec 1988 | A |
4794928 | Kletschka | Jan 1989 | A |
4817600 | Herms et al. | Apr 1989 | A |
4832055 | Palestrant | May 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4957501 | Lahille et al. | Sep 1990 | A |
4969891 | Gewertz | Nov 1990 | A |
4990156 | Lefebvre | Feb 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
5059205 | El-Nounou et al. | Oct 1991 | A |
5067957 | Jervis | Nov 1991 | A |
5102415 | Guenther et al. | Apr 1992 | A |
5108418 | Lefebvre | Apr 1992 | A |
5108419 | Reger et al. | Apr 1992 | A |
5133733 | Rasmussen et al. | Jul 1992 | A |
5147379 | Sabbaghian et al. | Sep 1992 | A |
5152777 | Goldberg et al. | Oct 1992 | A |
5160342 | Reger et al. | Nov 1992 | A |
5190546 | Jervis | Mar 1993 | A |
5234458 | Metais | Aug 1993 | A |
5242462 | El-Nounou et al. | Sep 1993 | A |
5344427 | Cottenceau et al. | Sep 1994 | A |
5350398 | Pavcnik et al. | Sep 1994 | A |
5370657 | Irie | Dec 1994 | A |
5383887 | Nadal | Jan 1995 | A |
5415630 | Gory et al. | May 1995 | A |
5421832 | Lefebvre | Jun 1995 | A |
5549626 | Miller et al. | Aug 1996 | A |
5601595 | Smith | Feb 1997 | A |
5626605 | Irie et al. | May 1997 | A |
5634942 | Chevillon et al. | Jun 1997 | A |
5649906 | Gory et al. | Jul 1997 | A |
5649953 | Lefebvre | Jul 1997 | A |
5669933 | Simon et al. | Sep 1997 | A |
5681347 | Cathcart et al. | Oct 1997 | A |
5683411 | Kavteladze et al. | Nov 1997 | A |
5695518 | Laerum | Dec 1997 | A |
5709704 | Nott et al. | Jan 1998 | A |
5720764 | Naderlinger | Feb 1998 | A |
5725546 | Samson | Mar 1998 | A |
5725550 | Nadal | Mar 1998 | A |
5746767 | Smith | May 1998 | A |
5776162 | Kleshinski | Jul 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5836968 | Simon et al. | Nov 1998 | A |
5836969 | Kim et al. | Nov 1998 | A |
5853420 | Chevillon et al. | Dec 1998 | A |
5893869 | Barnhart et al. | Apr 1999 | A |
5928261 | Ruiz | Jul 1999 | A |
5976172 | Homsma et al. | Nov 1999 | A |
5984947 | Smith | Nov 1999 | A |
6007558 | Ravenscroft et al. | Dec 1999 | A |
6030406 | Davis et al. | Feb 2000 | A |
6059825 | Hobbs et al. | May 2000 | A |
6126673 | Kim et al. | Oct 2000 | A |
6156055 | Ravenscroft | Dec 2000 | A |
6187017 | Gregory, Jr. | Feb 2001 | B1 |
6193739 | Chevillon et al. | Feb 2001 | B1 |
6214025 | Thistle et al. | Apr 2001 | B1 |
6245087 | Addis | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6258026 | Ravenscroft et al. | Jul 2001 | B1 |
6267776 | O'Connell | Jul 2001 | B1 |
6267777 | Bosma et al. | Jul 2001 | B1 |
6273900 | Nott et al. | Aug 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6306163 | Fitz | Oct 2001 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6368338 | Konya et al. | Apr 2002 | B1 |
6391044 | Yadav et al. | May 2002 | B1 |
6391045 | Kim et al. | May 2002 | B1 |
6468290 | Weldon et al. | Oct 2002 | B1 |
6511496 | Huter et al. | Jan 2003 | B1 |
6511503 | Burkett et al. | Jan 2003 | B1 |
6517559 | O'Connell | Feb 2003 | B1 |
6635070 | Leeflang et al. | Oct 2003 | B2 |
6660021 | Palmer et al. | Dec 2003 | B1 |
6706054 | Wessman et al. | Mar 2004 | B2 |
6783538 | McGuckin, Jr. et al. | Aug 2004 | B2 |
6881218 | Beyer et al. | Apr 2005 | B2 |
6949103 | Mazzocchi et al. | Sep 2005 | B2 |
6958074 | Russell | Oct 2005 | B2 |
7128073 | van der Burg et al. | Oct 2006 | B1 |
7147649 | Thomas | Dec 2006 | B2 |
7396358 | Appling et al. | Jul 2008 | B2 |
7410490 | VanDusseldorp | Aug 2008 | B2 |
7722635 | Beyer et al. | May 2010 | B2 |
7799049 | Ostrovsky et al. | Sep 2010 | B2 |
8025668 | McCartney | Sep 2011 | B2 |
8267954 | Decant et al. | Sep 2012 | B2 |
8409241 | Beyer et al. | Apr 2013 | B2 |
20010041899 | Foster | Nov 2001 | A1 |
20020090388 | Humes et al. | Jul 2002 | A1 |
20020161390 | Mouw | Oct 2002 | A1 |
20020193828 | Griffin et al. | Dec 2002 | A1 |
20030171774 | Freudenthal et al. | Sep 2003 | A1 |
20030181942 | Sutton et al. | Sep 2003 | A1 |
20030208253 | Beyer et al. | Nov 2003 | A1 |
20040015224 | Armstrong et al. | Jan 2004 | A1 |
20040088001 | Bosma et al. | May 2004 | A1 |
20040138677 | Little et al. | Jul 2004 | A1 |
20040199201 | Kellett et al. | Oct 2004 | A1 |
20050043759 | Chanduszko | Feb 2005 | A1 |
20050090858 | Pavlovic | Apr 2005 | A1 |
20050209632 | Wallace | Sep 2005 | A1 |
20050288703 | Beyer et al. | Dec 2005 | A1 |
20050288704 | Cartier et al. | Dec 2005 | A1 |
20060004402 | Voeller et al. | Jan 2006 | A1 |
20060025852 | Armstrong et al. | Feb 2006 | A1 |
20060041271 | Bosma et al. | Feb 2006 | A1 |
20060079928 | Cartier et al. | Apr 2006 | A1 |
20060241680 | Johnson et al. | Oct 2006 | A1 |
20060247572 | McCartney | Nov 2006 | A1 |
20060282113 | Sater | Dec 2006 | A1 |
20070112372 | Sosnowski et al. | May 2007 | A1 |
20070167974 | Cully et al. | Jul 2007 | A1 |
20080188887 | Batiste | Aug 2008 | A1 |
20090216263 | Tekulve | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
0430848 | Jun 1991 | EP |
1338250 | Aug 2003 | EP |
2580504 | Oct 1986 | FR |
2020557 | May 1978 | GB |
9823322 | Jun 1998 | WO |
9833443 | Aug 1998 | WO |
0145591 | Jun 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070167974 A1 | Jul 2007 | US |