A stand-alone fusion cage is a fusion cage that has at least one angled hole in its anterior face for receiving a bone screw that passes through the cage an into an adjacent vertebral body. There are numerous conventional embodiments of these cages that capture the angled bone-engaging screw so as to ensure that the screw does not back out of the cage. Some of the known anti-backout mechanisms include: assembled rotating cover plates, cams, bushings, expanding screws, set screws and secondary cover plates that either snap onto the cage itself or are docked to the cage and secured to the cage faceplate using additional hardware such as a screw. These secondary cover plates can fully or partially cover the most proximal (anterior) portion of the screw head and would in theory prevent any screw backouts.
The following references are pertinent to the field of stand-alone cages: US 2008-0027550 (Link); US2010-0057206; U.S. Pat. No. 6,730,127; US2009-0088849; US2010-0145459; U.S. Pat. Nos. 7,662,182; 6,972,019; US2008-0249569; US2009-0105831; U.S. Pat. Nos. 7,306,605; 7,288,094; US2010-0312345; US2010-0286777; U.S. Pat. No. 6,945,973; US2010-0106249; U.S. Pat. Nos. 6,849,093; 6,984,234; US2009-0105830; US2009-0210062; U.S. Pat. Nos. 7,452,370; 6,558,423; 6,890,335; and 6,629,998.
The present invention relates to a secondary cover plate that engages a stand-alone intervertebral fusion cage without rigidly connecting to the cage. Rather, the cover plate of the present invention only docks against or passes through the cage and is secured into the adjacent bone.
The secondary cover plate of the present invention is typically the last component of the intervertebral fusion assembly that is inserted into the disc space. Typically, its primary function is to at least partially cover the head of one or more angled screws.
In some embodiments, the secondary cover plate of the present invention slidably engages the fixation cage without permanently snapping into any features of the cage component. In other embodiments, the secondary cover plate threadably engages the cage without permanently snapping into any features of the cage.
After this removable engagement, the secondary cover plate is then secured into its final position by advancing into one or more adjacent vertebral bodies. This advancing step may be achieved by tapping its bone-securement features into the adjacent bones or rotating these bone securement features into the adjacent bone, so that the cover plate is finally secured into the bone.
Therefore, in accordance with the present invention, there is provided an assembly comprising:
Now referring to
In some embodiments, as in
In some embodiments, as in
In some embodiments, as in
Typically, the cover plate further comprises a recess 19 opening upon the anterior face of the base portion. Preferably, this opening has a hexagonal transverse cross-section.
In some embodiments, as in
In some embodiments, as in
In some embodiments, as in
The base portion of the cover plate acts as a hub for the other features of the cover plate.
The recess that opens upon the anterior face of the base portion of the cover plate functions as a receptacle for a tool that is able to rotate the cover plate. In some preferred embodiments, this recess has a hexagonal transverse cross-section, so as to be useful with standard hexagonal scewdrivers.
The purpose of the post to to provide a removable engagement of the cover plate to the cage. Accordingly, the post does not preferably possess any features that would provide a permanent engagement between the cover plate and the cage, such as a snap feature.
In some embodiments the post has a smooth outer surface, as in
In some embodiments the post has a threaded outer surface, as in
In some embodiments the post has a circular transverse cross-section, as in
In some embodiments the post has a rectangular transverse cross-section, as in
The purpose of the flange is to provide a physical stop against the anterior movement of a screw expulsing from the cage. Because the flanges do not enter the bone, they need not have sharp features. In fact, because the implanted flanges are likely located near the aorta or vena cava of the patient's vascular system, it is preferred that the flanges consist of only smooth edges and surfaces. For example,
Any feature that effectively penetrates the bone and locks the cover plate into an adjacent vertebral body can be considered a bone-securing feature. In some embodiments (as in
In some embodiments using cover plate rotation for bone securement, the tooth extends transversely from the longitudinal axis of the base portion of the cover plate and in the same plane as the base portion, as in
In some preferred embodiments, the bone-securing feature enters the bone by first placing the post of the cover plate into the corresponding cage receptacle so that the bone securement feature is against the anterior face of a vertebral body and simply tapping the base portion of the cover plate in a posterior direction until the cover plate contacts the anterior wall of the cage. In other embodiments, the cover plate need not contact the anterior wall of the cage. This method may be used for the securement of the assembly of
In other embodiments, the bone-securing feature enters the bone by first placing the post of the cover plate into the corresponding cage receptacle so that each bone securement feature is between the endplates of opposed vertebral bodies, and then rotating the cover plate until the cover plate contacts the anterior wall of the cage. This method may be used for securement of the assembly of
Now referring to
In some embodiments, the cover plate further comprises:
Now referring to
Now referring to
In some embodiments, the secondary cover plate may include features that promote ease of insertion, but would also strongly resist expulsion forces. For example,
In addition to the anti-backout features that could be designed into the secondary cover plate, a combination of one or more of the following features could also be introduced to enhance performance: bone growth coatings (i.e., titanium calcium, phosphate, or hydroxyapatite; porous features in the bone-securing portions; anti-infection coatings; and tissue anti-adhesion coatings.
In the embodiments shown (as in
In general, the cage of the present invention is a stand-alone cage adapted for use in intervertebral fusions. These cages typically have screw holes through the anterior face for receiving bone screws. In some embodiments, and now referring to
Typically, the anterior, posterior and sidewalls of the cage define a central, vertical through-hole 407 that is adapted for promoting fusion between opposed vertebral bodies. Typically the sidewalls of such cages further comprise at least one throughhole to promote bone in-growth. Typically, the upper and lower surfaces of the cage have teeth or ridges 409 for rigidly gripping the opposed vertebral bodies. The posterior wall may have a tapered posterior surface adapted to ease insertion of the cage into the disc space. Generally, the cage may be used in either the lumbar, thoracic or cervical portions of the spine.
The bone anchors of the present invention are generally bone screws.
In one method of using the present invention, the cover plate is intended to be inserted/driven perpendicular to the proximal face of the cage in-line with the inserter. It is either delivered through a separate device or through a multi-purpose inserter that delivers the cage and then selectively allows the user to engage the cover plate. After the cage is placed and positioned per surgeon preference, a cover plate could be inserted up against a proximal face of the cage and deployed. As taught, the plate or portions of the plate penetrates the adjacent vertebral bodies either through the anterior face or from within or partially within the disc space.
In general, the cover plate, cage and bone anchors are made from metallic materials, ceramic or polymeric materials.
If a metal is chosen as the material of construction, then the metal is preferably selected from the group consisting of nitinol, titanium, titanium alloys (such as Ti-6A1-4V), chrome alloys (such as CrCo or Cr—Co—Mo) and stainless steel.
If a polymer is chosen as a material of construction, then the polymer is preferably selected from the group consisting of polycarbonates, polyesters, (particularly aromatic esters such as polyalkylene terephthalates, polyamides; polyalkenes; poly(vinyl fluoride); PTFE; polyarylethyl ketone PAEK; and mixtures thereof.
In some embodiments, the bone screws are made of a stainless steel alloy, preferably BioDur® CCM Plus® Alloy available from Carpenter Specialty Alloys, Carpenter Technology Corporation of Wyomissing, Pa. In some embodiments, the cage is made from a composite comprising carbon fiber. Composites comprising carbon fiber are advantageous in that they typically have a strength and stiffness that is superior to neat polymer materials such as a polyarylethyl ketone PAEK. In some embodiments, the cage is made from a polymer composite such as a PEKK-carbon fiber composite.
Preferably, the composite comprising carbon fiber further comprises a polymer. Preferably, the polymer is a polyarylethyl ketone (PAEK). More preferably, the PAEK is selected from the group consisting of polyetherether ketone (PEEK), polyether ketone ketone (PEKK) and polyether ketone (PEK). In preferred embodiments, the PAEK is PEEK.
In some embodiments, the cage is made from a neat polymer without any carbon fiber additive. Preferably, the polymer is a polyarylethyl ketone (PAEK), more preferably PEEK.
In some embodiments, the carbon fiber comprises between 1 vol % and 60 vol % (more preferably, between 10 vol % and 50 vol %) of the composite. In some embodiments, the polymer and carbon fibers are homogeneously mixed. In others, the material is a laminate. In some embodiments, the carbon fiber is present in a chopped state. Preferably, the chopped carbon fibers have a median length of between 1 mm and 12 mm, more preferably between 4.5 mm and 7.5 mm. In some embodiments, the carbon fiber is present as continuous strands.
In especially preferred embodiments, the composite comprises:
In some embodiments, the composite consists essentially of PAEK and carbon fiber. More preferably, the composite comprises 60-80 wt % PAEK and 20-40 wt % carbon fiber. Still more preferably the composite comprises 65-75 wt % PAEK and 25-35 wt % carbon fiber.
This application is a continuation application claiming priority from patent application U.S. Ser. No. 14/980,839, filed Dec. 28, 2015, entitled “Removable, Bone-Securing Cover Plate for Intervertebral Fusion Cage” (Gamache), Docket Number DEP6426USDIV1, and U.S. Ser. No. 13/235,106, filed Sep. 16, 2011, entitled “Removable, Bone-Securing Cover Plate for Intervertebral Fusion Cage” (Gamache), Docket Number DEP6426USNP (now U.S. Pat. No. 9,248,028), the specifications of which are incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | 13235106 | Sep 2011 | US |
Child | 14980839 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14980839 | Dec 2015 | US |
Child | 16193219 | US |