The present application relates generally to a flange for a furnace system. More specifically, the present application relates to a removable casing flange and insulation retainer.
The basic components of a furnace or HVAC system are: a burner, a heat exchanger, an air distribution system, and a vent pipe. In the burner, gas (natural or propane) or oil is delivered and combusted to generate heat. The heat exchanger transfers the heat from the combustion gas to the air distribution system. The air distribution system, which includes a blower and ductwork, delivers the heated air throughout the home and returns cooler air to the furnace to be heated. Finally, the vent pipe or flue exhausts byproducts of combustion (such as water vapor and carbon dioxide) outside of the home. In addition, the furnace system may also include a cooling element, such as an A-coil, that operates in conjunction with an air conditioning unit (typically located outside of the home) to provide cooled air to the home instead of heated air.
Typically, furnace systems in residential applications are located in the basement or a small closet in the user's home, which areas have limited space for an installed furnace system. Furthermore, efficiency standards have recently changed, thereby requiring the size of the A-coil to be increased to meet these new standards. Thus, when a newer furnace system is needed to replace an older system, often, the newer furnace can not fit into the space where the old furnace was installed because the size of the furnace unit and the newer, taller A-coil that is required is greater than the available installation space. Thus, a shorter, furnace is needed to accommodate the taller A-coil in order to be able to install a new furnace system in the same space as the old furnace system.
Most furnace systems are multi poised, meaning that they can operate in a variety of positions, including up flow, down flow, and horizontal (both left and right). In addition, furnace systems may also be a single configuration, at any height. Depending upon the position, the casing flanges within the furnace may need to be removed or modified during repositioning to facilitate the installation. Often the insulation within the casing is pulled loose and obstructs airflow. As shown in
Intended advantages of the disclosed systems and/or methods satisfy one or more of these needs or provides other advantageous features. Other features and advantages will be made apparent from the present specification. The teachings disclosed extend to those embodiments that fall within the scope of the claims, regardless of whether they accomplish one or more of the aforementioned needs.
A furnace system having a furnace housing with a plurality of sides to enclose the furnace system and insulation being disposed along the plurality of sides of the furnace housing is set forth herein. The system also has at least one flange disposed along an edge of the plurality of sides of the furnace housing. The at least one flange has at least one aperture for receiving at least one fastener and the at least one flange is repositionable between an externally projecting flange and an internally projecting flange. The at least one flange acts as a retainer for the insulation in the furnace housing.
Another embodiment of this furnace system is directed to a flange having at least one aperture for receiving at least one fastener. The flange is repositionable between an externally projecting flange and an internally projecting flange, and the at least one flange acts as a retainer for the insulation in the furnace housing.
One advantage of this arrangement is that the flange can be repositioned when desired. It can either protrude or be contained within the casing, if so desired. In both conditions, it would act as an insulation retainer.
Another advantage of this arrangement is that the flange can be repositioned so the flange is contained within the housing and not protruding.
Yet another advantage of this arrangement is that the flange serves as an insulation retainer, preventing the insulation from coming loose or obstructing airflow.
Other features and advantages will be apparent from the following more detailed description of the embodiments, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the application.
Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The flange 200 has one or more apertures 202 (shown in
The flange 200 is a single unitary piece used on one side of the furnace housing 214, with additional flanges 200 being used if needed for other sides of the furnace housing 86. Alternatively, multiple flanges 200 can be used for a single side of the furnace housing 86. The multiple flanges 200 may be connectable together to form a larger flange 200 or the multiple flanges 200 may be individually mounted on the furnace side at desired locations as shown in
Finally, regardless of whether the flange 200 is in a retracted position or an extended position as shown in
While the systems and/or methods of the application have been described with reference to several embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the application. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the application without departing from the essential scope thereof. Therefore, it is intended that the application not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out the systems and/or methods of the application, but that the application will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/884,261, filed Jan. 10, 2007.
Number | Date | Country | |
---|---|---|---|
60884261 | Jan 2007 | US |