The present invention relates to a damping mechanism having structural features that enable the damping mechanism to be removably coupled to a hinge cup of a cabinet hinge assembly. The damping mechanism can be added to or removed from cabinet hinge assemblies as desired, without requiring industrial force or equipment, and without damaging the damping mechanism or the associated hinge hardware.
In the context of cabinets and door hinge assemblies, damping mechanisms that are provided in conjunction with hinge assemblies that have hinge cups are known in the industry, and are widely used. These damping (or damper) mechanisms operate in conjunction with cabinet hardware to control the opening and or closing motion speed of the doors in order to prevent slamming or damage. Since damping mechanisms are so widely used, it is not uncommon for most hinge assemblies to be provided with a damper mechanism. Typically, these damping mechanisms are pre-installed in the hinge cups of the hinge hardware by the hardware manufacturer and/or the cabinet manufacturer. Examples of such damping mechanisms are shown in U.S. Pat. Nos. 8,505,165 and 9,611,682.
The '682 patent discloses a damper mechanism that corresponds to the damper mechanism 700 shown in
In order to assemble the damper mechanism 700 and the associated hinge hardware, the damper mechanism 700 is press-fit into the hinge cup 4 using a large, hydraulic ram to force forward a protrusion part (see, e.g., protrusion 41a in
While it may be more convenient for cabinet manufactures and installers to use hardware kits including damping mechanisms, or hardware that is pre-loaded with a damper mechanism by the hardware manufacturer before installation in a cabinet setting, the damping mechanism increases the cost of the respective hinge hardware assembly. This can also be an issue when it is not necessary for every hinge on every door be provided with a damping mechanism (to prevent over-damping, as noted above), particularly for larger doors that have a plurality of hinges thereon. Once the damper mechanism 700 is positioned in the hinge cup 4, damper mechanism 700 is essentially permanently positioned, and it is not possible to remove the damper mechanism 700 by hand without damaging the damper mechanism 700 or the hinge cup 4.
Indeed, hinges provided with these types of damper mechanisms 700 will always have the damper mechanism therein, and if less damping is desired because an over-damped door closes much too slowly, the entire hinge assembly must be removed and an entirely different hinge assembly (without a damping mechanism) must installed on the cabinet instead. Accordingly, the cabinet makers and installers would need to remove and re-install hinge assemblies, or buy a variety of different hinge assemblies depending on the various door sizes, number of hinges, etc. in order to accommodate provide doors that exhibit an appropriate amount of damping. This process is tedious and costly. To date, there has not been a damping mechanism that can be inserted into and removed from the hinge cup by hand without damaging the associated parts.
In addition, the increased popularity of do-it-yourself installation also calls for the provision of a stand-alone damper mechanism that can be sold as an after-market product and easily hand-installed, in situ, in existing cabinets whose hardware may lack damper mechanisms, and which can be readily hand-removed from selected hinge assemblies by any user if the level of damping is not required.
In view of the drawbacks associated with the current damping mechanisms, it is desired to provide a more cost effective and efficient damper mechanism for a hinge assembly that can be added to select hinge assemblies by any given user (hardware or cabinet manufacturer, installer or home-owner) to provide the desired level of damping action without requiring substantial insertion force and/or industrial tools, and which can be readily removed from a hinge assembly, as needed, without causing damage to the parts and without requiring substantial force/industrial tools. Such a product has not been known heretofore.
The present invention has been made in order to overcome the drawbacks of the prior art damping mechanisms and hinge assemblies discussed above.
According to one embodiment of the present invention, a damping mechanism is provided, including a damper housing, a damping assembly provided within the damper housing, and a damper cover assembly fitted to at least a portion of the damper housing. The damper cover assembly includes a damper cover and a connection member attached thereto. The damper cover has a recess provided on a rearward side thereof, and at least one receptacle defining an opening on a bottom surface of the damper cover assembly. The at least one receptacle of the damper cover is adapted to receive and retain therein at least a portion of the connection member of the damper cover assembly. The recess of the damper cover and the connection member of the damper cover assembly are cooperatively adapted to provide a mechanical connection between the damping mechanism and a hinge cup in a removable manner.
Preferably, the damper cover has an arcuate rearward side connecting two laterally opposed ends of a linear frontward side, an upper surface defining a plane extending in a first direction and an opposed lower surface extending in the first direction that is spaced apart from the first surface in a second direction that is substantially perpendicular with respect to the first direction. The upper surface of the damper cover includes the recess, which is situated in a substantially central portion of the arcuate rearward side and which defines a step portion between the plane of the upper surface and a plane of a rearward surface the damper cover. The at least one receptacle extends in a second direction, which is substantially perpendicular with respect to the first direction, from an opening formed in the bottom surface toward a terminal end situated in an interior portion of the damper cover. The at least one receptacle is situated proximate at least one of the laterally opposed ends of the frontward side of the damper cover, wherein the at least one receptacle is adapted to receive and retain at least a portion of the at least one connection member of the damper cover assembly.
According to one aspect of the present invention, the at least one connection member of the damper cover assembly comprises at least one magnet. The magnet(s) are press-fit so as to be situated within the receptacle(s) of the damper cover assembly. When the damping mechanism is press-fit into the hinge cup, the magnets of the damper cover assembly provide a magnetic connection between the damping mechanism and the metal hinge cup. In addition, a physical connection between the damping mechanism and the hinge cup is further made between the recess/step in the damper cover that engages a corresponding protrusion on the inner surface of the hinge cup when the damping mechanism is press-fit therein. This configuration enables the damping mechanism to be readily inserted into the hinge cup without the need to the use of tools, which significantly improves the ease of installation and enables end-users of various sophistication to add a damping mechanism to an existing hinge cup (pre-installation), or to a hinge cup in an installed hinge assembly, as desired.
Conversely, if desired, a damping mechanism including magnetic connection member(s) as part of the damper cover assembly can be readily removed from the hinge cup using minimal tools (i.e., a simple nail needle, flat head screwdriver or other prying object) and minimal force (i.e., simple hand force), without causing the destruction of the hinge cup or the damping mechanism, and without causing damage to the magnets of the damper cover assembly themselves. If re-use of the damping mechanism is desired, the same damping mechanism can be used again, or if necessary, new magnets can be inserted into the receptacles of the damper cover and used to again help provide secure coupling between the hinge cup and the damping mechanism in conjunction with the recess/step in the damper cover.
According to another aspect, the at least one connection member of the damper cover assembly comprises a flex-tab (clip). Preferably, the flex-tab comprises a first portion adapted to be received and retained in the receptacle, a second portion, spaced apart from the first portion, that abuts a front surface of the damper cover, and a third portion connecting the first and second portions in a direction that is parallel with respect to the first direction. The second portion of the flex-tab comprises a protrusion extending a distance away from the front surface of the damper cover in the first direction.
Preferably, the flex-tab is made from a resilient material, such as a plastic. Suitable examples of such a plastic material for the flex-tab include, but are not limited to, nylon, polypropylene and ABS. The flex-tab(s) are press-fit into the receptacles of the damper cover. When damping mechanism is press-fit into the hinge cup, a physical connection between the damping mechanism and the hinge cup is made between the recess/step in the damper cover that engages a corresponding protrusion on the inner surface of the hinge cup, and the protrusions of the flex-clips of the damper cover assembly engage a corresponding recess(es) on the hinge cup in a press-fit manner. In this way, the flex tab(s) aid in providing a secure connection between the damping mechanism and the hinge cup, but retain sufficient flexibility so that the damping mechanism can be readily inserted into the hinge cup by hand, without the need for tools. This significantly improves the ease of installation and enables end-users of various sophistication to install a damping mechanism to an existing hinge cup (pre-installation), or to a hinge cup in an installed hinge assembly, as desired.
Conversely, if desired, a damping mechanism including a damper cover assembly having flex-clip connection member(s) can also be readily removed by gently prying the damping mechanism away from the hinge cup using minimal tools (i.e., a simple prying tool like a nail needle or flat head screwdriver) and minimal force (i.e., simple hand force) without causing the destruction of the hinge cup or the damping mechanism. It may be possible to remove the damping mechanism without damaging the flex-clip(s) of the damper cover assembly, as well. In that case, when re-use of the damping mechanism is desired, it can be re-inserted and connected to the same or a different hinge cup, as desired. Since the flex-clip connection member inserts are small, plastic members that are easily manufactured at a low cost, and whose replacement does not pose a significant cost or efficiency factor, the flex-slip(s) of the damper cover assembly can be readily replaced if they are damaged upon removal. If re-use of the damping mechanism is desired, new flex-clip(s) can be inserted into the receptacles of the damper cover to again provide secure coupling between the hinge cup and the damping mechanism in conjunction with the recess/step in the damper cover.
It is further preferred that the at least one receptacle of the damper cover comprises two receptacles, each positioned proximate a respective one of the laterally opposed ends of the frontward side of the damper cover. In accordance with this aspect, the at least one connection member of the damper cover assembly preferably comprises two connection members, such as two magnets or two flex-tabs (clips).
According to another embodiment of the present invention, a hinge assembly for mounting a furniture door to a furniture housing is provided. The hinge assembly includes a fixation section installed on the furniture housing, a hinge cup affixed to the furniture door and pivotally connected to the fixation section, and a damping mechanism provided in the hinge cup and adapted to contact the fixation section to dampen the relative movement between the fixation section and the hinge cup as the furniture door closes on the furniture housing. The damping mechanism comprises an engagement mechanism adapted to mechanically couple the damping mechanism to the hinge cup in a removable manner.
Preferably, the damping mechanism comprises a damper housing, a damping assembly provided within the damper housing, and a damper cover assembly fitted to at least a portion of the damper housing. The damper cover assembly includes a damper cover and at least one connection member attached to the damper cover. The upper surface of the damper cover includes a recess that is situated in a substantially central portion of the arcuate rearward side and which defines a step portion between the plane of the upper surface and a plane of a rearward surface the damper cover. The damper cover includes at least one receptacle, extending in a second direction, which is substantially perpendicular with respect to the first direction, from an opening formed in the bottom surface toward a terminal end situated in an interior portion of the damper cover. The at least one receptacle of the damper cover is situated proximate at least one of the laterally opposed ends of the frontward side of the damper cover assembly, wherein the at least one receptacle is adapted to receive and retain therein at least a portion of the at least one connection member of the damper cover assembly.
The recess of the damper cover engages a corresponding protrusion provided on an inner surface of the hinge cup, and the at least one connection member of the damper cover assembly engages at least another portion of the hinge cup to cooperatively couple the damping mechanism to the hinge cup of the hinge assembly in a removable manner.
According to one aspect of the present invention, the at least one connection member of the damper cover assembly comprises a magnet, and according to another aspect, the at least one connection member of the damper cover assembly comprises a flex-tab. It is further preferred that the at least one receptacle of the damper cover comprises two receptacles, each positioned proximate a respective one of the laterally opposed ends of the frontward side of the damper cover. In accordance with this aspect, the at least one connection member of the damper cover assembly preferably comprises two connection members, such as two magnets or two flex-tabs.
Like reference numbers have been used to designate like parts among the various drawings. As shown in
The damper cover 1 has an arcuate rearward side 102 connecting two laterally opposed ends 101c, 101b of a linear frontward side 101a, an upper surface 103 defining a surface plane extending in a first direction (i.e., horizontal). The damper cover 1 also has an opposed lower surface 104 defining a surface plane extending in the first direction, and which is spaced a distance apart from the upper surface 103 in a second direction (thickness/vertical direction) that is substantially perpendicular with respect to the first direction.
The upper surface 103 of the damper cover 1 includes a recess 103a, which is situated in a substantially central portion of the arcuate rearward side 102, and which defines a step portion 102b between the plane of the upper surface 103 and a plane of a rearward side surface 102a of the damper cover 1 (which extends in the second/thickness direction). When the damping mechanism 110A, 100B is press-fit into the hinge cup 4, the recess 103a/step 102b receives a corresponding protrusion 41a from the inner surface 41 of the hinge cup 40 (see, e.g.,
The damper cover 1 includes least one receptacle 105 that extends in the second direction from an opening 105a formed in the bottom surface 104 toward a terminal end 105b situated in an interior portion of the damper cover assembly 1. Preferably, and as shown in the accompanying drawings, the at least one receptacle 105 of the damper cover 1 comprises two receptacles 105, each positioned proximate a respective one of the laterally opposed ends 101c, 101b of the frontward side 101 of the damper cover 1. The at least one receptacle 105 is adapted to receive and retain (press-fit) at least a portion of the connection member 10 or 11 of the damper cover assembly 1A, 1B to help secure the removable connection between the damping mechanism 100A, 100B and the hinge cup 4.
The at least one connection member of the damper cover assembly 1A comprises a magnet 10, and the at least one connection member of the damper cover assembly 1B comprises a flex-tab (clip) 11. Preferably, the at least one connection member of the damper cover assembly 1A, 1B preferably comprises two connection members, such as two magnets 10 or two flex-tabs 11. The recess/step 103a/102b of the damper cover 1 and the respective connection members (10 or 11) of the damper cover assembly 1A, 1B together define an engagement mechanism that is cooperatively adapted to provide a mechanical connection between the respective damping mechanisms 100A, 100B and a hinge cup 4 (see, e.g.,
As shown in
When the damping mechanism 100A is press-fit into the hinge cup 4 (see, e.g.,
As shown in
The flex-tab 11 of the damper cover assembly 1B is preferably a unitary body made of a plastic material, such as nylon, by an injection molding process. The flex-tab 11 of the damper cover assembly 1B thereby exhibits a spring-like resiliency, which enables the insertion and removal of the damping mechanism 100B from the hinge cup 4.
The damping mechanism 100A or 100B of the assembly 600 comprises an engagement mechanism adapted to mechanically couple the damping mechanism 100A or 100B to the hinge cup 4 in a removable manner. The engagement mechanism includes the recess/step 103a/102b of the damper cover 1 that engages the corresponding protrusion 41a provided on an inner surface 41 of the hinge cup 4, and the at least one connection member (10 or 11) of the damper cover assembly 1A, 1B that engages at least another portion (i.e., recesses/openings 41b) of the hinge cup 4 (see, e.g.,
In that manner, the damping mechanism 100A or 100B can be easily snap-fit into place in the hinge cup 4 using only hand-force and a simple tool or in connection with an automated assembly process. The damping mechanism 100A or 100B can also be readily removed from the hinge cup 4 by gently prying the rearward side 102 proximate the step 102b/recess 103a aera with a simple prying tool, using only hand-force and without damaging the damping mechanism 100A, 100B or the hinge cup 4.
Number | Name | Date | Kind |
---|---|---|---|
8505165 | Domenig et al. | Aug 2013 | B2 |
8561262 | Liang | Oct 2013 | B1 |
8650711 | Chen | Feb 2014 | B1 |
8661620 | Brunnmayr | Mar 2014 | B2 |
8667647 | Brunnmayr | Mar 2014 | B2 |
9163447 | Liang | Oct 2015 | B1 |
9611682 | Forster et al. | Apr 2017 | B2 |
10428896 | Zimmer | Oct 2019 | B2 |
20080092333 | Migli | Apr 2008 | A1 |
20110291538 | Brunnmayr | Dec 2011 | A1 |
20120126677 | Ahlfeld | May 2012 | A1 |
20130000075 | Forster | Jan 2013 | A1 |
20130145580 | Brunnmayr | Jun 2013 | A1 |
20130160242 | Brunnmayr | Jun 2013 | A1 |
20140345081 | Salice | Nov 2014 | A1 |
20140352111 | Ng | Dec 2014 | A1 |
20160138319 | Wu | May 2016 | A1 |
20180100339 | Kirenci | Apr 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20210032919 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62880205 | Jul 2019 | US |