Removable fiber management sections for fiber optic housings, and related components and methods

Information

  • Patent Grant
  • 9519118
  • Patent Number
    9,519,118
  • Date Filed
    Tuesday, November 23, 2010
    14 years ago
  • Date Issued
    Tuesday, December 13, 2016
    8 years ago
Abstract
Removable fiber management sections for fiber optic housings, and related components and methods are disclosed. In one embodiment, a fiber optic system is provided. The fiber optic system comprises a fiber optic housing defining at least one interior chamber configured to support fiber optic equipment. The fiber optic system also comprises a removable front section connected to the fiber optic housing and defining at least one front section interior chamber coupled to the at least one interior chamber of the fiber optic housing. The removable front section is configured to support at least one fiber management device to manage one or more fibers connected to fiber optic equipment disposed in the enclosure. In another embodiment, a method of managing optical fiber in a fiber optic system is provided.
Description
BACKGROUND

Field of the Disclosure


The technology of the disclosure relates to fiber optic housings for supporting fiber optic equipment, including but not limited to fiber optic equipment that provides interconnect and/or cross-connect capabilities between optical components and opto-electrical components using fiber optic cables, and more particularly to removable front sections for fiber optic housings to assist in optical fiber management.


Technical Background


Benefits of optical fiber include extremely wide bandwidth and low noise operation. Because of these advantages, optical fiber is increasingly being used for a variety of applications, including but not limited to broadband voice, video, and data transmission. Fiber optic networks employing optical fiber are being developed and used to deliver voice, video, and data transmissions to subscribers over both private and public networks. These fiber optic networks often include separated connection points linking optical fibers to provide a contiguous fiber optic link from one connection point to another connection point. In this regard, fiber optic equipment is located in data distribution centers or central offices to support interconnections.


The fiber optic equipment is customized based on the application need. The fiber optic equipment is typically included in housings designed to support the fiber optic equipment, which are mounted in equipment racks to optimize use of space. One example of such fiber optic equipment is a fiber optic module/cassette. A fiber optic module/cassette is designed to provide cable-to-cable fiber optic connections and manage the polarity of fiber optic cable connections. A fiber optic module or cassette is mounted to a chassis or housing that is specifically designed to support fiber optic modules and cassettes. Another example of such fiber optic equipment is a fiber optic panel (also referred to as a “patch panel”). A fiber optic panel is designed to provide connection or termination points for optical fiber. A fiber optic panel typically includes fiber optic adapters that are configured to receive fiber optic connectors connected to the optical fiber to be connected or terminated. A fiber optic panel is typically mounted to a chassis or housing that is specifically designed to support fiber optic panels.


Due to the volume of optical fiber connections that may be made to these various types of fiber optic equipment that can be supported in a fiber optic housing, it may be important to provide fiber management. For example, fiber management can be provided to route optical fibers to and from a fiber optic housing in an orderly fashion. In this manner, optical fibers can be accessed and connections made and/or reconfigured to the fiber optic equipment supported in the fiber optic housing. Fiber management can also be provided to include slack storage for storing additional lengths of slack in optical fiber and fiber optic cable in case fiber optic connections made by the optical fiber and fiber optic cables are moved and/or reconfigured to require additional length. However, fiber management devices can consume internal volume of a fiber optic housing that can make access to fiber optic equipment supported therein more difficult. Fiber optic management devices can also consume valuable space in the fiber optic housing that can reduce the capacity of the housing to support fiber optic equipment, thus reducing the fiber optic connection capacity of the fiber optic housing.


SUMMARY OF THE DETAILED DESCRIPTION

Embodiments disclosed in the detailed description include removable fiber management sections for fiber optic housings, and related components and methods. In one embodiment, a fiber optic system is provided. The fiber optic system comprises a fiber optic housing defining at least one interior chamber configured to support fiber optic equipment. The fiber optic system also comprises a removable front section connected to the fiber optic housing and defining at least one front section interior chamber coupled to the at least one interior chamber of the fiber optic housing. The removable front section is configured to support at least one fiber management device to manage one or more optical fibers connected to fiber optic equipment disposed in the fiber optic housing.


In another embodiment, a method of managing optical fiber in a fiber optic system is provided. The method comprises providing a fiber optic housing defining at least one interior chamber configured to support fiber optic equipment. The method also comprises attaching a removable front section to the fiber optic housing defining at least one front section interior chamber coupled to the at least one interior chamber of the fiber optic housing, wherein the removable front section is configured to support at least one fiber management device to manage one or more optical fibers connected to fiber optic equipment disposed in the fiber optic housing.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description that follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A is a front perspective view of an exemplary fiber optic housing being mounted to an exemplary equipment rack from the front of the equipment rack;



FIG. 1B is a front perspective view of the fiber optic housing in FIG. 1A after being mounted to the equipment rack in FIG. 1A from the front of the equipment rack;



FIG. 1C is a front perspective view of the fiber optic housing of FIG. 1A being mounted to the equipment rack in FIG. 1A from the rear of the equipment rack;



FIG. 1D is a front perspective view of the fiber optic housing in FIG. 1A after being mounted to the equipment rack in FIG. 1A from the rear of the equipment rack;



FIG. 1E is a front perspective view of an alternate exemplary fiber optic housing being mounted to an exemplary equipment rack from the front of the equipment rack;



FIG. 1F is a front perspective view of the fiber optic housing in FIG. 1E after being mounted to the equipment rack in FIG. 1E;



FIG. 1G is a rear perspective view of the fiber optic housing in FIG. 1E being removed from the equipment rack in FIG. 1E;



FIG. 2 is a rear view of the fiber optic housing in FIG. 1E mounted in the equipment rack in FIG. 1E with a close-up view of exemplary snap features disposed on a side of the fiber optic housing;



FIG. 3A is a front perspective view of another exemplary fiber optic housing mounted in an exemplary equipment rack;



FIG. 3B is a rear perspective view of the fiber optic housing in FIG. 3A illustrating an exemplary release tab for removing the fiber optic housing from the equipment rack in FIG. 3A;



FIG. 3C is a rear perspective view of the fiber optic housing of FIG. 3A being removed from the equipment rack in FIG. 3A;



FIG. 4 is a detail view of an exemplary mounting bracket configured to be removably attached to a side of the fiber optic housing in FIGS. 3A-3C;



FIG. 5 is a front perspective view of the fiber optic housing in FIGS. 3A-3C being reinstalled into an equipment rack;



FIG. 6 is a front perspective view of the fiber optic housing in FIGS. 1A-1D including an exemplary mounting bracket snap attachment feature;



FIG. 7 is a front perspective view of an exemplary mounting bracket configured to be removably attached to a side of an exemplary fiber optic housing;



FIG. 8 is a cut section of the mounting bracket and side of the fiber optic housing illustrated in FIG. 7;



FIG. 9 is a rear perspective view of an exemplary fiber optic housing including an exemplary strain relief bracket;



FIG. 10 is a side perspective view of an exemplary fiber optic housing including an exemplary strain relief bracket;



FIGS. 11A and 11B are a side view of the strain relief bracket in FIG. 10 mounted to the fiber optic housing in FIG. 10 and a close-up view of the fiber optic housing and strain relief bracket illustrated in FIG. 10, respectively;



FIG. 12 is a cut section of the external strain relief bracket and a side of the fiber optic housing in FIGS. 10, 11A, and 11B;



FIG. 13 is a partial, rear perspective view of the fiber optic housing in FIG. 9 illustrating exemplary strain relief brackets with exemplary fiber optic cables tied to the strain relief brackets;



FIG. 14 is a front perspective view of an exemplary fiber optic housing with a front door closed;



FIG. 15 illustrates exploded and assembled front perspective views of exemplary components of an exemplary fiber optic housing;



FIG. 16 illustrates an exploded front perspective view of exemplary components of an exemplary fiber optic housing;



FIG. 17A is an assembled front perspective view of the fiber optic housing in FIG. 16;



FIG. 17B is an assembled front perspective view of the fiber optic housing in FIG. 17A with a cover plate;



FIG. 18 is a close-up front perspective view illustrating details of how an inside top panel of the fiber optic housing in FIGS. 17A and 17B is connected to a side panel of the fiber optic housing;



FIG. 19A is a rear perspective view of an exemplary fiber optic housing having an exemplary removable top;



FIG. 19B is a rear perspective view of the fiber optic housing of FIG. 19A after the removable top is removed;



FIG. 19C illustrates an exemplary release tab in the fiber optic housing in FIGS. 19A and 19B;



FIG. 20A illustrates an exploded front perspective view of an exemplary removable top;



FIG. 20B illustrates an assembled front perspective view of the fiber optic housing in FIG. 17B as the removable top in FIG. 20A is being installed into the fiber optic housing;



FIG. 21A is a side view section cut of an exemplary side panel of an exemplary fiber optic housing with the removable top in FIGS. 19A, 20A, and 20B installed;



FIG. 21B is a side view of an exemplary gap in the removable top in FIGS. 19A, 20A, and 20B configured to receive the side panel of the fiber optic housing;



FIG. 22 is a front perspective view of an exemplary fiber optic housing including exemplary openings disposed in the sides of the fiber optic housing and rubber entry grommets disposed in the fiber optic housing, both for fiber management;



FIG. 23 is a partial, front perspective view of an exemplary fiber optic housing in FIG. 22, illustrating exemplary molded in flexible edge protection disposed in the fiber optic housing;



FIG. 24 illustrates a front perspective view of an exemplary fiber optic housing and perspective views of exemplary removable front section versions attached to the fiber optic housing to provide additional capacity for fiber management devices;



FIG. 25 illustrates an exploded, front perspective view of an exemplary removable front section in FIG. 24 configured to be attached to the fiber optic housing in FIG. 24;



FIG. 26A illustrates a front perspective view of the removable front section in FIG. 25 with a door closed against the removable front section;



FIG. 26B illustrates a front perspective view of the removable front section in FIGS. 25 and 26A with the door in FIG. 26A opened;



FIG. 26C illustrates a top perspective view of the removable front section in FIGS. 25, 26A, and 26B with the door removed;



FIG. 26D illustrates a front perspective view of the removable front section in FIGS. 25 and 26A-C with the door removed;



FIG. 27 illustrates a front perspective view of an exemplary removable front section being attached to an exemplary fiber optic housing;



FIG. 28 illustrates a front perspective view of an exemplary removable front section in FIGS. 25 and 26A-C attached to an exemplary fiber optic housing with exemplary fiber optic jumpers being routed out of sides of the removable front section;



FIG. 29 is a front perspective view of an exemplary fiber optic housing illustrating an exemplary removable front section having a plurality of exemplary removable front jumper management devices with grommets;



FIG. 30 is a front perspective view of the fiber optic housing in FIG. 29 illustrating exemplary fiber management of exemplary optical fiber jumpers using the front jumper management device with pass-through grommets in FIG. 29;



FIG. 31 is a front perspective view of the front jumper management device with the pass-through grommets in FIGS. 29 and 30;



FIG. 32 illustrates how exemplary front jumper management devices with pass-through grommets may be mounted on their sides to create horizontal fiber management outside an exemplary fiber optic housing;



FIG. 33 illustrates how an exemplary front jumper management device with pass-through grommets may be mounted in an exemplary fiber optic housing in place of a fiber optic panel to allow for fiber management;



FIG. 34 is a perspective view of an exemplary fiber optic housing configured to support exemplary fiber optic modules;



FIG. 35A is a front perspective view illustrating where and how an exemplary removable panel clip is attached to a bottom panel of an exemplary fiber optic housing;



FIG. 35B is a close-up view of the removable panel clip in FIG. 35A being attached to the bottom panel of the fiber optic housing;



FIG. 35C is a cut section of the removable panel clip in FIGS. 35A and 35B being attached to the bottom panel of the fiber optic housing;



FIG. 36A is a front perspective view of exemplary fiber optic panels being mounted in the fiber optic housing in FIGS. 35A-C by being attached to the removable panel clips illustrated in FIGS. 35A-C;



FIG. 36B is a front perspective view of the fiber optic housing in FIG. 36A fully loaded with fiber optic panels attached to removable panel clips;



FIGS. 37A-37G are top perspective, bottom perspective, rotated perspective, right side, left side, top, and front views, respectively, of a removable panel clip to be used with the fiber optic housing in FIGS. 34, 35A, 36A, and 36B;



FIG. 38 is a perspective view of an alternate exemplary removable panel clip installed in an exemplary fiber optic housing to enable the fiber optic housing to interchangeably support exemplary fiber optic panels and fiber optic modules;



FIGS. 39A-39D are bottom, side, front, and back views, respectively, of the removable panel clip in FIG. 38;



FIGS. 40A-40D illustrate various views of exemplary rails to be used in mounting exemplary fiber optic splice cassettes in an exemplary fiber optic housing;



FIGS. 41A and 41B are front perspective and side views, respectively, of an exemplary fiber optic splice cassette that may be mounted on an exemplary rail in an exemplary fiber optic housing;



FIG. 42 is a rear view of an exemplary fiber optic housing with the rear door opened that is fully loaded with exemplary fiber optic splice cassettes attached to rails;



FIG. 43A is a rear perspective view of an exemplary fiber optic housing mounted in an exemplary equipment rack illustrating exemplary fiber slack storage and fiber management on a rear door of the fiber optic housing;



FIG. 43B is a rear perspective view of an exemplary fiber optic housing mounted in an exemplary equipment rack illustrating an alternate exemplary fiber slack storage and management scheme on a rear door of the fiber optic housing having exemplary fiber optic splice cassettes;



FIG. 43C is a rear perspective view of an exemplary fiber optic housing mounted in an exemplary equipment rack illustrating an alternate exemplary fiber slack storage and management scheme on a rear door of the fiber optic housing having exemplary fiber optic panels;



FIG. 44 is a rear perspective view of an exemplary fiber optic housing mounted in an exemplary equipment rack with an exemplary removable fiber management device mounted in the fiber optic housing;



FIG. 45 is a rear perspective view of the fiber optic housing mounted in the equipment rack in FIG. 44 with the removable fiber management device in FIG. 44 removed from the fiber optic housing;



FIG. 46A is a front perspective view of the removable fiber management device in FIG. 44 with exemplary routing clips;



FIG. 46B is a front perspective view of the removable fiber management device in FIG. 46A illustrating an exemplary fiber optic cable routing with an exemplary buffer tube and optical fiber;



FIG. 46C is a top front perspective view of the removable fiber management device in FIG. 44 with exemplary optical fiber splice trays;



FIG. 46D is a front perspective view of an alternate exemplary removable fiber management device;



FIG. 47 is a rear perspective view of an exemplary fiber optic housing illustrating optical fiber storage using the removable fiber management devices in FIGS. 44-46D;



FIG. 48 is a front perspective view of an exemplary fiber optic housing illustrating an expandable attachment housing separated from the fiber optic housing;



FIG. 49 is a front perspective view of the fiber optic housing in FIG. 48 illustrating the expandable attachment housing in FIG. 48 attached to the fiber optic housing;



FIG. 50A is a rear, perspective view of the expandable attachment housing in FIGS. 48 and 49 with exemplary jumper slack storage;



FIG. 50B is a rear, perspective view of the expandable attachment housing in FIGS. 48 and 49 with exemplary strain relief brackets;



FIG. 51 is a rear view of an exemplary fiber optic housing illustrating how an exemplary door can be easily attached or removed; and



FIG. 52 is a close-up view of how the door in FIG. 51 can be easily attached to or removed from the fiber optic housing;





DETAILED DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to certain embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all features are illustrated. Indeed, embodiments disclosed herein may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.


Embodiments disclosed in the detailed description include apparatuses, and related components and methods for attachment and release of fiber optic housings to and from equipment racks. The fiber optic housings may be attached to equipment racks such that the fiber optic housings may be easily and quickly removed from the equipment rack. In one embodiment, a fiber optic apparatus is disclosed that comprises a fiber optic housing and at least one mounting bracket. The fiber optic housing may have a top, a bottom, a right side, and a left side defining at least one interior chamber configured to support fiber optic equipment. The at least one mounting bracket is configured to removably attach to at least one of the right side or the left side of the fiber optic housing. The at least one mounting bracket is also configured to attach the fiber optic housing to an equipment rack. In one embodiment, the at least one mounting bracket is configured to removably attach to the at least one of the right side or the left side of the fiber optic housing tool-lessly, and by other than external fastening means. In an embodiment, the at least one mounting bracket is removably attached to the at least one of the right side or the left side of the fiber optic housing by a snap attachment integral to at least one of the right side or the left side.


In this regard, FIGS. 1A-1G illustrate a first embodiment of a fiber optic housing 10 that may be attached to and removed from an equipment rack 11 easily and quickly. The fiber optic housing 10 is configured to support fiber optic equipment for establishing fiber optic connections. As non-limiting examples, the fiber optic equipment may include fiber optic modules and/or fiber optic panels. As described in more detail below, the fiber optic housing 10 may be removably attached to the equipment rack 11 from the front or the rear of the equipment rack 11, as is illustrated in FIGS. 1A-1G.



FIG. 1A is a front perspective view of the fiber optic housing 10 being mounted to the equipment rack 11 from the front of the equipment rack 11. FIG. 1B is a front perspective view of the fiber optic housing 10 after it has been mounted to the equipment rack 11 from the front. Referring to FIG. 1A, the equipment rack 11 may comprise a pair of vertical supports 12A, 12B in one embodiment. Mounting brackets 14A, 14B may be attached to the vertical supports 12A, 12B to support the fiber optic housing 10 in the equipment rack 11. The mounting brackets 14A, 14B may be mounted on the equipment rack 11 before sliding the fiber optic housing 10 into the equipment rack 11. However, in other embodiments, the mounting brackets 14A, 14B may be snapped onto the side of the fiber optic housing 10 first. In one embodiment, each of the pair of vertical supports 12A, 12B of the equipment rack 11 includes a plurality of openings or holes 16 disposed along the length of the vertical supports 12A, 12B of the equipment rack 11 configured to receive a fastener to attach the mounting brackets 14A, 14B to the vertical supports 12A, 12B.


In one embodiment, the mounting brackets 14A, 14B are mounted to the vertical supports 12A, 12B before the fiber optic housing 10 is installed in the equipment rack 11. The fiber optic housing 10 is then slid into place in the equipment rack 11 and removably attached to the mounting brackets 14A, 14B using features disclosed herein. This process of supporting the fiber optic housing 10 in the equipment rack 11 may be easier for a technician than securing the mounting brackets 14A, 14B to the fiber optic housing 10 first before securing the mounting brackets 14A, 14B to the vertical supports 12A, 12B. The mounting brackets 14A, 14B are typically smaller, lighter, and easier for a technician to align to the holes 16 and evenly in the vertical supports 12A, 12B without having to support the additional weight of the fiber optic housing 10. Therefore, it may be safer for the technician to slide the fiber optic housing 10 into place in the mounting brackets 14A, 14B after the mounting brackets 14A,14B are mounted to the equipment rack 11 than to use screws or other fasteners to try to attach the fiber optic housing 10 to the equipment rack 11.


Once the mounting brackets 14A, 14B are mounted to the equipment rack 11, the fiber optic housing 10 may be placed and secured into the equipment rack 11 by snapping the fiber optic housing 10 into place in the mounting brackets 14A, 14B. In one embodiment, the mounting brackets 14A, 14B may include a plurality of receivers 18, 20, and 22. Although the receivers 18, 20, and 22 may be seen only on the mounting bracket 14B in FIG. 1A, the mounting bracket 14A may have similar receivers 18, 20, and 22. In one embodiment as illustrated in FIG. 1A, there may be a pair of receivers 18, one at or near the top rear part of the mounting bracket 14B, and a corresponding receiver 18 at or near the bottom rear part of the mounting bracket 14B. The mounting bracket 14B may also include a pair of receivers 20, one at or near the top middle part of the mounting bracket 14B, and a corresponding receiver 20 at or near the bottom middle part of the mounting bracket 14B. The mounting bracket 14B may also include a pair of receivers 22, one at or near the top front part of the mounting bracket 14B, and a corresponding receiver 22 at or near the bottom front part of the mounting bracket 14B. Although the embodiment of FIG. 1A illustrates three (3) pairs of receivers 18, 20, and 22, any number of receivers sufficient to attach the fiber optic housing 10 to the mounting brackets 14A, 14B may be used.


In one embodiment, the fiber optic housing 10 may include a plurality of snap features 24, 26, and 28 disposed on a side 30 of the fiber optic housing 10. The snap features 24, 26, and 28 may also be referred to as snap attachments or snap attachment features. Although the snap features 24, 26, and 28 may be seen only on one side 30 of the fiber optic housing 10 in FIG. 1A, the fiber optic housing 10 may have similar snap features 24, 26, and 28 on the other side as well. In one embodiment, as seen in FIG. 1A, there may be a pair of snap features 24, one at or near the top rear part of a rear portion 32 of the side 30 of the fiber optic housing 10, and a corresponding snap feature 24 at or near the bottom rear part of the rear portion 32 of the side 30. The side 30 may also include a pair of snap features 26, one at or near the top middle part of the rear portion 32 of the side 30, and a corresponding snap feature 26 at or near the bottom middle part of the rear portion 32 of the side 30. The side 30 may also include a pair of snap features 28, one at or near the top front part of the rear portion 32 of the side 30, and a corresponding snap feature 28 at or near the bottom front part of the rear portion 32 of the side 30. Although the embodiment of FIG. 1A illustrates three (3) pairs of snap features 24, 26, and 28, any number of snap features 24, 26, and 28 sufficient to attach the fiber optic housing 10 to the mounting brackets 14A, 14B may be used.


The receivers 18, 20, and 22 of the mounting brackets 14A, 14B are configured to receive the snap features 24, 26, and 28 disposed on the sides 30 of the fiber optic housing 10. As the fiber optic housing 10 is slid into the equipment rack 12, the snap features 24, 26, and 28 disposed on the sides 30 of the fiber optic housing 10 selectably engage with the receivers 18, 20, and 22 of the mounting brackets 14A, 14B and are locked into place, thereby allowing the fiber optic housing 10 to be quickly and easily snapped into place in the equipment rack 11.


The receivers 18, 20, and 22 of the mounting brackets 14A, 14B may take a variety of shapes and sizes, as may the snap features 24, 26, and 28 disposed on the sides 30 of the fiber optic housing 10. The receivers 18, 20, and 22 may be of any shape and size that correspond to the shape and size of the snap features 24, 26, and 28 such that the snap features 24, 26, and 28 selectably engage with the receivers 18, 20, and 22 of the mounting brackets 14A, 14B and are locked into place to hold the fiber optic housing 10 in the equipment rack 11.


The fiber optic housing 10 may also be loaded into the equipment rack 11 from the rear of the equipment rack 11. FIG. 1C is a front perspective view of the fiber optic housing 10 as it is being mounted to the equipment rack 11 from the rear. FIG. 1D is a front perspective view of a fiber optic housing 10 after it has been mounted to the equipment rack 11 from the rear. The fiber optic housing 10 is snapped into place in a similar fashion as described above with respect to FIGS. 1A and 1B. The snap features 24, 26, and 28 on the side 30 of the fiber optic housing 10 selectably engage the receivers 18, 20, and 22 of the mounting brackets 14A, 14B as the fiber optic housing 10 is slid into the equipment rack 11. In this manner, the fiber optic housing 10 may be quickly and easily attached to the mounting brackets 14A, 14B, thereby installing the fiber optic housing 10 into the equipment rack 11.


Any type of fiber optic housing having the above described snap features may be quickly and easily mounted in an equipment rack having mounting brackets with receivers of the type described above. FIG. 1E is a front perspective view of an alternate embodiment of a fiber optic housing 34 being mounted to the equipment rack 11 from the front. FIG. 1F is a front perspective view of the alternate embodiment of the fiber optic housing 34 illustrated in FIG. 1E after being mounted to the equipment rack 11. The fiber optic housing 34 in FIG. 1E has fiber optic modules 36 vertically mounted in the fiber optic housing 34. The fiber optic housings 10 and 34 illustrated in FIGS. 1A-1F are 4U in this embodiment, but any size fiber optic housing may be mounted in an equipment rack having mounting brackets with the receivers disclosed above to selectably engage snap features disposed on the side of the fiber optic housing as disclosed above.


The designation “U” refers to a standard equipment shelf size of a fiber optic equipment rack or a cabinet. This may also be referred to as “RU.” For example, an equipment rack may support 42 1U-sized shelves, with “U” equal to a standard 1.75 inches in height and nineteen (19) inches in width. In certain applications, the width of “U” may be twenty-three (23) inches. Other heights and widths may be designated as “U.” Typically, the more rack space (the more “U′s”) a fiber optic housing takes up, the higher the fiber capacity in the fiber optic housing.



FIG. 1G is a rear perspective view of the fiber optic housing 34 being removed from the equipment rack 11. When the fiber optic housing 34 is removed from the equipment rack 11, as will be discussed in more detail below with respect to FIGS. 3A-3C and 4, mounting brackets 38A, 38B remain attached to the equipment rack 11. In this manner, the fiber optic housing 34 can be easily re-mounted into the equipment rack 11 at a later time if desired. As mentioned above, the mounting brackets 38A, 38B may have any number of receivers configured to receive snap features on a side of the fiber optic housing 34. In the embodiment seen in FIG. 1G, the mounting brackets 38A, 38B each have a single circular receiver 40.



FIG. 2 is a rear view of the fiber optic housing 34 mounted in the equipment rack 11 with a close-up view of snap features disposed on the side 30 of the fiber optic housing 34. The fiber optic housing 34 in this embodiment has a plurality of snap features 42 disposed on the side 30 of the fiber optic housing 34. The snap features 42 in FIG. 2 are of a half-circle shape and are configured to selectably engage with corresponding receivers on the mounting brackets attached to the equipment rack 11.



FIGS. 3A-3C illustrate how a fiber optic housing can be easily removed from an equipment rack. In this regard, FIG. 3A is a front perspective view of the fiber optic housing 34 mounted in the equipment rack 11. Although the fiber optic housing 34 in FIG. 3A has the fiber optic modules 36 vertically mounted in the fiber optic housing 34, any type of fiber optic housing, including but not limited to the fiber optic housing 10 illustrated in FIGS. 1A-1D, or the fiber optic housing 10 illustrated in FIG. 2, may be mounted into the equipment rack 11 and then removed.



FIG. 3B is a rear perspective view of the fiber optic housing 34 of FIG. 3A illustrating a release tab 44 for removing the fiber optic housing 34 from the equipment rack 11. FIG. 3C is a rear perspective view of the fiber optic housing 34 of FIG. 3A being removed from the equipment rack 11. Referring to FIGS. 3B and 3C, the release tab 44 is selectably engaged with an opening 46 in a mounting bracket 48B attached to the equipment rack 11. Although only a single release tab 44 and a single opening 46 on the mounting bracket 48B are illustrated in FIG. 3C, in one embodiment, there may be a similar opening on a mounting bracket 48A to receive a release tab similar to the release tab 44 on the other side of the fiber optic housing 34. In another embodiment, there may be multiple release tabs 44 for each of the mounting brackets 48A, 48B.


To remove the fiber optic housing 34 from the equipment rack 11, the release tab 44 is pressed inward by a user in one embodiment, which causes the release tab 44 to disengage from the opening 46 on the mounting bracket 48B, allowing the fiber optic housing 34 to be removed from the equipment rack 11. In one embodiment, the release tab 44 is flexible and resilient, such that it is biased to move from a first position to a second position when a force is exerted on the release tab 44, and then returns to the first position by itself when the force is no longer exerted. In another embodiment, the release tab 44 may be spring loaded. In the embodiment having two (2) release tabs 44, one on each side of the fiber optic housing 34, both release tabs 44 may be pressed inward by the user at approximately the same time to remove the fiber optic housing 34 from the equipment rack 11. Although the release tab 44 is pressed inward in the above embodiments, in other embodiments, the release tab 44 may be lifted up, pulled outward, pressed downward, or manipulated in other ways and/or directions to cause the release tab 44 to disengage from the opening 46 on the mounting bracket 48B, allowing the fiber optic housing 34 to be removed from the equipment rack 11.



FIG. 4 is a detail view of a mounting bracket configured to be removably attached to a side of a fiber optic housing according to an exemplary embodiment. The mounting bracket 48B in the embodiment illustrated in FIG. 4 has the opening 46 and slot features 50, 52 on a top surface 53 of the mounting bracket 48B. The slot features 50, 52 on the mounting bracket 48B engage with tongue features 54, 55, and 56 on a top surface 58 of a side plate 60 of the fiber optic housing 34. The slot features 50, 52 on the mounting bracket 48B may be a slot 50 and a tab 52 in one embodiment, as seen in FIG. 4. The tongue features 54, 55, and 56 may be a protrusion 54 at one end of a raised guide member 55 and a tongue 56 at the opposite end of the raised guide member 55 in one embodiment, as seen in FIG. 4. As the fiber optic housing 34 is moved into contact with the mounting bracket 48B, the top surface 53 of the mounting bracket 48B slides along the side of the raised guide member 55 until the slot 50 mates with the tongue 56 and the tab 52 mates with the protrusion 54. As this occurs, the opening 46 of the mounting bracket 48B selectively engages with the release tab 44 on the side plate 60 of the fiber optic housing 34. The release tab 44 extends outwards from the side plate 60 of the fiber optic housing 34 a sufficient distance to extend out of the opening 46 when the opening 46 selectively engages with the release tab 44. If the fiber optic housing 34 is mounted to an equipment rack 11, and a user wishes to remove the fiber optic housing 34 from the equipment rack 11, the release tab 44 may be pressed inward by a user, which causes the release tab 44 to disengage from the opening 46 on the mounting bracket 48B, allowing the fiber optic housing 34 to be removed from the equipment rack 11.


When the fiber optic housing 34 is removed from the equipment rack 11 (as illustrated in FIG. 3C), the mounting brackets 48A, 48B remain attached to the equipment rack 11. Then, if the user wishes to re-install the fiber optic housing 34 in the equipment rack 11, such can be done quickly and easily. FIG. 5 is a front perspective view of the fiber optic housing 34 of FIGS. 3A-3C being re-installed into the equipment rack 11 from the rear of the equipment rack 11. As the fiber optic housing 34 is slid forward by the user toward the mounting brackets 48A, 48B attached to the equipment rack 11, the raised guide member 55 on each side of the top surface 58 of the side plate 60 slides along the side of the top surface 53 of the respective mounting brackets 48A, 48B until the protrusion 54 on each side plate 60 mates with the tab 52 on the respective mounting bracket 48A or 48B and the tongue 56 mates with the slot 50 of the respective mounting bracket 48A or 48B. As this occurs, the release tab 44 on each side plate 60 selectively engages with the opening 46 of the respective mounting bracket 48A or 48B, thereby locking the fiber optic housing 34 into place in the equipment rack 11. The mounting brackets 48A, 48B may be mounted on the equipment rack 11 before sliding the fiber optic housing 34 into the equipment rack 11, as seen in FIG. 5.


However, in other embodiments, the mounting brackets may be snapped onto the side of the fiber optic housing first. FIG. 6 is a front perspective view of a fiber optic housing 62 including a mounting bracket snap attachment feature 66. In this regard, the fiber optic housing 62 has a left side 64. In one embodiment, the left side 64 of the fiber optic housing 62 has a plurality of mounting bracket snap attachment features 66. Although only the left side 64 of the fiber optic housing 62 is illustrated in FIG. 6, the opposite side may also have similar mounting bracket snap attachment features 66. In addition, although the embodiment of FIG. 6 illustrates two (2) mounting bracket snap attachment features 66, any number of mounting bracket snap attachment features 66 may be used.


With continuing reference to FIG. 6, a mounting bracket 68 has a plurality of openings 70 which are configured to fit together with the mounting bracket snap attachment features 66 integral to the fiber optic housing 62 to attach the mounting bracket 68 to the fiber optic housing 62. The mounting bracket 68 can be removably attached to the fiber optic housing 62 such that the mounting bracket 68 can be removed from the fiber optic housing 62, or the fiber optic housing 62 can be removed from the mounting bracket 68, such as when the mounting bracket 68 is mounted to an equipment rack. The number of openings 70 may correspond to the number of mounting bracket snap attachment features 66. The openings 70 of the mounting bracket 68 are placed over the mounting bracket snap attachment features 66 and slid toward the back of the fiber optic housing 62 until the mounting bracket snap attachment features 66 lock, or snap, into place against an edge of the openings 70. In one embodiment, the mounting bracket snap attachment features 66 fit tightly enough in the openings 70 that there is sufficient friction between the mounting bracket snap attachment features 66 and the mounting bracket 68 to form a friction fit. The mounting bracket snap attachment features 66 in FIG. 6 are triangular in shape and the openings 70 are square in shape, but any shape of mounting bracket snap attachment features 66 and openings 70 can be used that will allow the mounting bracket snap attachment features 66 to lock, or snap, into the openings 70. The mounting bracket 68 can then be easily removed from the fiber optic housing 62 by sliding the mounting bracket 68 back toward the front of the fiber optic housing 62 until the mounting bracket snap attachment features 66 are within the openings 70, and the mounting bracket 68 can be lifted away from the left side 64 such that the mounting bracket snap attachment features 66 pass through the openings 70. In another embodiment, the fiber optic housing 62 can be removed from the mounting bracket 68 in a similar fashion, such as when the mounting bracket 68 is mounted to an equipment rack.


As also illustrated in FIG. 6, the mounting brackets 68 may be one or more snap-on, removable mounting brackets 68 that are removably attachable to the side of the fiber optic housing without the use of screws or other hardware. In one embodiment, the mounting brackets 68 are removably attached to the fiber optic housing 62 using the mounting bracket snap attachment features 66. These mounting bracket snap attachment features 66 can save time during installation. No tools may be needed for installation of the fiber optic housing 62 to an equipment rack for tool-less installation, and no additional hardware may be needed. Thus, a technician need not worry about tools or hardware that may be lost or missing. The mounting brackets may be easily changed out with different designs for different types of equipment racks and for different positions in the equipment racks.


In this manner, the mounting brackets may be removably attached to at least one of the right side and the left side of the fiber optic housing tool-lessly, and by other than external fastening means. As described above, “tool-lessly” as used here means that the set of components is assembled using fastening means, such as snap attachments, that are integral to one or more of the components in the set of components, rather than external fastening means. Once the set of components is assembled tool-lessly, then the assembled set of components may be attached to another component or device using external fasteners and tools, and even with this use of external fasteners and tools, the assembly of the original set of components is still considered to be “tool-less.” For example, the mounting brackets may be attached to an equipment rack using tools and external fastening means, but the mounting brackets may be tool-lessly attached to the fiber optic housing.



FIG. 6 also illustrates rubber entry grommets 72 on the top and bottom rear and front, and left and right sides rear and front of the fiber optic housing 62. Rubber provides better protection than solid materials, especially on the edges, and provides a better seal to keep dust, insects, and rodents out of the housings. The rubber entry grommets 72 provide entry and exit points for fiber optic cables or optical fibers to be routed in and out of the fiber optic housing 62 to the appropriate locations.



FIG. 7 is a front perspective view of a mounting bracket 74 configured to be removably attached to a side 78 of a fiber optic housing 80 according to another exemplary embodiment. FIG. 8 is a cut section of the mounting bracket 74 and side 78 of the fiber optic housing 80 illustrated in FIG. 7. The mounting bracket 74 in FIGS. 7 and 8 is of a different type than the mounting bracket 68 of FIG. 6. In the embodiment of FIGS. 7 and 8, the mounting bracket 74 has a single circular opening 76. The mounting bracket 74 may also have a plurality of recesses 75, which allow a space for other apparatuses to be attached to the fiber optic housing 80. The side 78 of the fiber optic housing 80 has a groove 82 configured to receive the mounting bracket 74. The groove 82 extends a distance down the side 78 that corresponds to a length of the mounting bracket 74. The side 78 has an interior wall with a release tab disposed thereon (similar to an interior wall 84 with a release tab 86 illustrated on the opposite side from the side 78). When the mounting bracket 74 is slid into the groove 82 toward the rear of the fiber optic housing 80, the opening 76 will selectively engage with the release tab 86 to lock the mounting bracket 74 into place. If it is desired to remove the mounting bracket 74, the release tab 86 can be pressed and the mounting bracket 74 can be pulled out of the groove 82.



FIG. 9 is a rear perspective view of a fiber optic housing 81 including one or more strain relief brackets 85. One or more snap-on removable strain relief brackets 85 may be attached to the fiber optic housing 81 as illustrated in FIG. 9. In one embodiment, the strain relief brackets 85 may be L-shaped, with a flange 83 at one end having a plurality of holes 87. The holes 87 are for ties such as tyrap or Velcro ties to help secure fiber optic cables or optical fibers to the strain relief brackets 85. The snap-on removable strain relief brackets 85 can be easily snapped on to a left side 92 of the fiber optic housing 81 using a plurality of strain relief bracket snap attachment features 88 disposed on the left side 92 of the fiber optic housing 81. In one embodiment, the plurality of strain relief bracket snap attachment features 88 are similar to the plurality of mounting bracket snap attachment features 66 used to removably attach the mounting bracket 68 to the fiber optic housing 62 in FIG. 6.


In one embodiment as illustrated in FIG. 9, the left side 92 of the fiber optic housing 81 has a plurality of strain relief bracket snap attachment features 88. Although only the left side 92 of the fiber optic housing 81 is illustrated in FIG. 9, the opposite side, the right side, may also have similar strain relief bracket snap attachment features 88. In addition, although the embodiment of FIG. 9 illustrates two (2) strain relief bracket snap attachment features 88, any number of strain relief mounting bracket snap attachment features 88 may be used.


With continuing reference to FIG. 9, each strain relief bracket 85 has at least one opening 90 which is configured to fit together with one of the strain relief bracket snap attachment features 88. The opening 90 of each strain relief bracket 85 is placed over one of the strain relief bracket snap attachment features 88 and slid toward the back of the fiber optic housing 81 until the strain relief bracket snap attachment feature 88 locks, or snaps, into place against an edge of the opening 90. In one embodiment, the strain relief bracket snap attachment features 88 fit tightly enough in the openings 90 that there is sufficient friction between the strain relief bracket snap attachment features 88 and the strain relief bracket 85 to form a friction fit. The strain relief bracket snap attachment features 88 in FIG. 9 are triangular in shape and the openings 90 are square in shape, but any shape of strain relief bracket snap attachment features 88 and openings 90 can be used that will allow the strain relief bracket snap attachment features 88 to lock, or snap, into the openings 90. The strain relief bracket 85 can then be easily removed by sliding the strain relief bracket 85 back toward the front of the fiber optic housing 81 until the strain relief bracket snap attachment feature 88 is within the opening 90, and the strain relief bracket 85 can be lifted away from the left side 92 such that the strain relief bracket snap attachment feature 88 passes through the opening 90.


As illustrated in FIG. 9, the snap-on cable strain relief brackets do not require the use of screws or other hardware to be attached to the fiber optic housing 81. The snap attachment feature saves time during installation. No tools or hardware may be needed. Thus, a technician need not worry about tools or hardware that may be lost or missing. In addition, the strain relief brackets may be easily changed out for different strain relief applications. In this manner, the strain relief brackets may be removably attached to at least one of the right side and the left side of the fiber optic housing tool-lessly, and by other than external fastening means. As described above, “tool-lessly” as used here means that the strain relief brackets are attached to the fiber optic housing using fastening means, such as snap attachments, that are integral to one or more of the components in the set of components, rather than by using external fastening means.



FIG. 10 is a side perspective view of a fiber optic housing 94 and a strain relief bracket 96. In FIG. 10, an alternate type of strain relief bracket and an alternate type of strain relief bracket snap attachment feature are illustrated. FIGS. 11A and 11B illustrate a close-up view of the fiber optic housing 94 and strain relief bracket 96 illustrated in FIG. 10. In one embodiment, the strain relief bracket 96 may be attached to the fiber optic housing 94 as illustrated in FIGS. 10, 11A, and 11B. In one embodiment, the strain relief bracket 96 may be L-shaped, with a flange 98 at one end having a plurality of holes 100. The holes 100 may be of any shape and are configured to receive ties such as tyrap or Velcro ties to help secure fiber optic cables or optical fibers to the strain relief bracket 96. The snap-on removable strain relief brackets 96 may also comprise a plurality of openings 102 and 104. In the embodiments seen in FIGS. 10, 11A, and 11B, there are a pair of keyhole-shaped openings 102 and a pair of U-shaped openings 104. However, there may be any number and any shape of openings in other embodiments.


The strain relief bracket 96 can be easily snapped onto a right side 95 of the fiber optic housing 94 using a plurality of strain relief bracket snap attachment features 106, 108, and 110 disposed on the right side 95 of the fiber optic housing 94. In one embodiment, as seen in FIG. 11B, the plurality of strain relief bracket snap attachment features 106, 108, and 110 comprise a pair of half-moon-shaped snap attachment features 106 with a lip 107, a U-shaped snap attachment feature 108 with raised edges 109, and a release button 110. The plurality of strain relief bracket snap attachment features 106, 108, and 110 may be used to removably attach the strain relief bracket 96 to the fiber optic housing 94 in FIGS. 10, 11A, and 11B.


In one embodiment as illustrated in FIG. 10, the right side 95 of the fiber optic housing 94 has the plurality of strain relief bracket snap attachment features 106, 108, and 110. Although only the right side 95 of the fiber optic housing 94 is illustrated in FIG. 10, the opposite side may also have similar strain relief bracket snap attachment features. In addition, any number of strain relief mounting bracket snap attachment features may be used. The strain relief bracket 96 in FIG. 10 may be easily snapped onto the right side 95 of the fiber optic housing 94 by placing the pair of keyhole-shaped openings 102 over the pair of half-moon-shaped snap attachment features 106 and the pair of U-shaped openings 104 over the U-shaped snap attachment feature 108 and the release button 110 and then sliding the strain relief bracket 96 toward the front of the fiber optic housing 94 (to the left in FIG. 10). The lip 107 on each of the half-moon-shaped snap attachment features 106 will help lock the half-moon-shaped snap attachment features 106 into the keyhole-shaped openings 102, as seen in FIG. 11B. The U-shaped snap attachment feature 108 with raised edges 109 will selectably engage with one of the U-shaped openings 104 and the release button 110 will selectably engage with the other one of the U-shaped openings 104.



FIG. 11A illustrates the strain relief bracket 96 snapped into place on the right side 95 of the fiber optic housing 94. Referring to FIG. 11B, in one embodiment, the strain relief bracket 96 can then be easily removed by pressing the release button 110. The release button 110 is coupled to the U-shaped snap attachment feature 108 with raised edges 109 such that when the release button 110 is pressed, the raised edges 109 of the U-shaped attachment feature 108 are disengaged with the U-shaped opening 104. A user may then slide the strain relief bracket 96 back toward the rear of the fiber optic housing 94 (to the right in FIG. 10 or FIG. 11A) to remove the strain relief bracket 96. FIG. 12 is a cut section of the strain relief bracket 96 and the back of a left side 97 of the fiber optic housing 94 in FIGS. 10, 11A, and 11B, illustrating how the strain relief bracket 96 is mounted to the fiber optic housing 94 using the snap attachment features disclosed above.



FIG. 13 is a partial, rear, perspective view of a fiber optic housing 112 illustrating a strain relief bracket 114 with fiber optic cables according to one embodiment. The fiber optic housing 112 may be any type of fiber optic housing. The strain relief brackets 114 having a plurality of openings 116 may be mounted to the fiber optic housing 112 using the snap attachment features disclosed above in FIGS. 9, 10, 11A, and 11B. FIG. 13 illustrates how the removable strain relief brackets 114 allow fiber optic cables to enter at any angle. In the embodiment of FIG. 13, buffer tubes 118A and 118B each containing one or more optical fibers 120A and 120B, respectively, may be tied to the strain relief brackets 114 by means of a fastener 122 that is routed through the openings 116 of the strain relief brackets 114 to tie the buffer tubes 118A and 118B to the strain relief brackets 114. Although buffer tubes 118A and 118B are illustrated in FIG. 13, any sort of fiber optic cable or optical fiber can be fastened to the strain relief brackets 114. The fastener 122 may be any suitable fastener, including but not limited to a tywrap, a Velcro tie, or a plastic fastener, that will tie the buffer tubes 118A and 118B, or other fiber optic cable or optical fiber, to the strain relief brackets 114. With traditional strain relief brackets, fiber optic cables can enter the fiber optic housing 112 at only a single angle, but with the snap-on removable strain relief brackets 114 disclosed above, the fiber optic cables may enter at any angle, and different fiber optic cables may enter at multiple angles, as illustrated in FIG. 13.


Embodiments disclosed below include fiber optic housings configured for tool-less assembly, and related components and methods. In one embodiment, a fiber optic housing is provided having a top, a bottom, a right side, and a left side which removably attach to each other tool-lessly, and by other than external fastening means, thereby defining at least one interior chamber configured to support fiber optic equipment. The top, bottom, right side, and left side of the fiber optic housing may be removably attached to each other by using a snap attachment integral to at least one of the bottom, the right side, and the left side. In an embodiment, the fiber optic housing further has one or more mounting brackets and/or strain relief brackets, which may be attached to the fiber optic housing by other than external fastening means. In another embodiment, the mounting brackets and/or strain relief brackets may be attached to a side of the fiber optic housing by using a quick snap attachment integral to at least one of the side of the fiber optic housing and the mounting brackets and/or strain relief brackets.


In this regard, FIG. 14 is a front perspective view of a fiber optic housing 124 with a front door 126 closed. The fiber optic housing 124 in FIG. 14 may be a seven inch fiber optic housing for the local area network (LAN) and data center environment. The fiber optic housing 124 in FIG. 14 may be mountable in 19- or 23-inch equipment racks or cabinets. The fiber optic housing 124 in FIG. 14 may provide interconnect or cross-connect capabilities between the outside plant, riser, or distribution cables and the opto-electronics.



FIG. 15 illustrates exploded and assembled front perspective views of an exemplary embodiment of the fiber optic housing 124. FIG. 15 illustrates a quick fit assembly of the components of the fiber optic housing 124, particularly, a top panel 128, a bottom panel 130, a left side panel 132, and a right side panel 134, which are configured to be quickly and easily assembled with little or no tools. The top panel 128, the bottom panel 130, the left side panel 132, and the right side panel 134 may also be referred to as the top, the bottom, the left side, and the right side, respectively. The top panel 128, the bottom panel 130, the left side panel 132, and the right side panel 134 together define at least one interior chamber 135 of the fiber optic housing 124 configured to support fiber optic equipment. In this embodiment, each of the top panel 128, the bottom panel 130, the left side panel 132, and the right side panel 134 of the fiber optic housing 124 further includes snap attachment features configured to snap the components together, as described more fully below.


In the embodiment of FIG. 15, the bottom panel 130 has side extensions 136, 138 that extend upward in a direction approximately perpendicular to the bottom panel 130. Likewise, the top panel 128 has side extensions 140, 142 that extend downward in a direction approximately perpendicular to the top panel 128. The side extensions 136, 138 of the bottom panel 130 and the side extensions 140, 142 of the top panel 128 each have a plurality of snap attachments 144 disposed thereon (though only the snap attachments 144 disposed on the side extension 136 of the bottom panel 130 and the snap attachments 144 disposed on the side extension 140 of the top panel 128 can be seen in FIG. 15). These snap attachments 144 may be raised from a surface of the side extensions 136, 138, 140, and 142. The left side panel 132 may have a plurality of snap attachment receivers 146 at a top edge 148 and a bottom edge 150 of the left side panel 132. Although not seen in FIG. 15, the right side panel 134 may have similar snap attachment receivers 146 at a top edge and at a bottom edge.


The snap attachment receivers 146 at the top edge 148 of the left side panel 132 are configured to receive the snap attachments 144 disposed on the side extension 140 of the top panel 128. The snap attachment receivers 146 at the bottom edge 150 of the left side panel 132 are configured to receive the snap attachments 144 disposed on the side extension 136 of the bottom panel 130. In this manner, the left side panel 132 may be tool-lessly attached to the top panel 128 and the bottom panel 130. The right side panel 134 may be similarly attached to the top panel 128 and the bottom panel 130 using snap attachment receivers on a top edge and a bottom edge to receive snap attachments on the side extension 142 of the top panel 128 and the side extension 138 of the bottom panel 130, respectively. In this manner, the top panel 128, the bottom panel 130, the left side panel 132, and the right side panel 134 may be assembled together into the fiber optic housing 124 quickly and easily with little or no tools.


The snap attachments 144 and the snap attachment receivers 146 may be any size and shape as long as the snap attachment receivers 146 are of a size and shape that allows the snap attachments 144 to fit and snap into the snap attachment receivers 146 in a manner that the components of the fiber optic housing 124 are assembled together in a sturdy fashion.


The assembled fiber optic housing 124 can be quickly and easily unassembled by detaching the top panel 128, the bottom panel 130, the left side panel 132 and the right side panel 134 from each other tool-lessly.


The quick fit assembly allows the components of the fiber optic housing 124 to be shipped in smaller packaging, saving shipping cost and storage space. In one embodiment, an end user can assemble the fiber optic housing 124 at the time of use, such as at the installation location. In one embodiment, an end user can assemble the fiber optic housing 124 with little or no tools. Additionally, the quick fit assembly makes field repairs a possibility with the purchase of repair kits, and allows the fiber optic housing 124 to be transformed in the field by replacing components with ones that provide a different function.



FIG. 16 illustrates an exploded front perspective view of an exemplary embodiment of a fiber optic housing 152. FIG. 16 illustrates an alternate embodiment of the fiber optic housing 152 that can be assembled easily and quickly with little or no tools. FIG. 16 illustrates a quick fit assembly of the components of the fiber optic housing 152, particularly, an inside top panel 154, a bottom panel 156, a left side panel 158, and a right side panel 160, which are configured to be quickly and easily assembled with little or no tools. The inside top panel 154, the bottom panel 156, the left side panel 132, and the right side panel 160 together define at least one interior chamber 161 of the fiber optic housing 152 configured to support fiber optic equipment. In this regard, each of the inside top panel 154, the bottom panel 156, the left side panel 158, and the right side panel 160 includes snap attachment features configured to snap the components together. In one embodiment, the fiber optic housing 152 may also include a cover plate 162 for the inside top panel 154.


In one embodiment, as seen in FIG. 16, the bottom panel 156 has side flanges 164, 166 on each side of the bottom panel 156 that extend upward in a direction approximately perpendicular to the bottom panel 156. The side flanges 164, 166 of the bottom panel 156 each have one or more receivers 168A, 168B disposed on the side flanges 164, 166. The inside top panel 154 has side flanges 170, 172 on each side of the inside top panel 154 that extend downward in a direction approximately perpendicular to the inside top panel 154. The side flanges 170, 172 of the inside top panel 154 each have one or more receivers 174 disposed on the side flanges 170, 172. Although FIG. 16 illustrates the side flanges 164, 166 of the bottom panel 156 each having two (2) receivers 168A, 168B, and the side flanges 170, 172 of the inside top panel 154 each having one receiver 174, any number of receivers like the receivers 168A, 168B may be disposed on the side flanges 164, 166 of the bottom panel 156 and any number of receivers 174 may be disposed on the side flanges 170, 172 of the inside top panel 154. The inside top panel 154 also has a plurality of standoffs 176 on its top surface. In the embodiment of FIG. 16, the inside top panel 154 has two (2) standoffs 176 on a left edge 178 of the inside top panel 154, one toward a front edge 180 of the inside top panel 154, and one toward a back edge 182 of the inside top panel 154. The inside top panel 154 of FIG. 16 also has two standoffs 176 on a right edge 184 of the inside top panel 154, one toward the front edge 180 of the inside top panel 154 and one toward the back edge 182 of the inside top panel 154. The standoffs 176 are also used together with the receivers 168A, 168B, 174 to attach the inside top panel 154 to the left side panel 158 and to the right side panel 160.


The left side panel 158 may include a plurality of snap attachments 186A, 186B, and 186C. In the embodiment of FIG. 16, the left side panel 158 has two (2) snap attachments 186A, 186B on a bottom portion 188 of an interior side 190 of the left side panel 158, one toward a front portion 192 of the left side panel 158 and one toward a rear portion 194 of the left side panel 158. The left side panel 158 also has at least one snap attachment 186C on a top portion 196 of the interior side 190 of the left side panel 158 toward the front portion 192 of the left side panel 158. The snap attachments 186A, 186B, and 186C in the embodiment of FIG. 16 are half-moon-shaped with a lip. In other embodiments, the number, location, and shape of the snap attachments 186A, 186B, and 186C may vary in order to correspond to the receivers 168A, 168B on the side flanges 164 and 166 of the bottom panel 156 and the receivers 174 on the side flanges 170, 172 of the inside top panel 154. The left side panel 158 also may include a top flange 198 and a bottom flange 200. The top flange 198 may have a plurality of grooves 202 disposed thereon. In the embodiment of FIG. 16, the top flange 198 has two (2) grooves 202 toward a front portion 204 of the top flange 198. In one embodiment, as illustrated in FIG. 16, the grooves 202 are L-shaped, but other shapes may also be used.


With continued reference to FIG. 16, the right side panel 160 is symmetrical to the left side panel 158 and may also include a plurality of snap attachments 186A and 186B, a top flange 205 having a plurality of grooves 206, and a bottom flange 208. The left side panel 158 and the right side panel 160 may be tool-lessly attached to the bottom panel 156 quickly and easily. The left side panel 158 may be attached to the side flange 164 of the bottom panel 156 by positioning the snap attachments 186A, 186B on the left side panel 158 within the receivers 168A, 168B on the side flange 164 of the bottom panel 156 and sliding the left side panel 158 toward the back of the bottom panel 156 until the snap attachments 186A, 186B snap, or lock, into place within the receivers 168A, 168B. The bottom flange 200 will be positioned under the bottom panel 156 as the left side panel 158 is attached to the bottom panel 156. In the embodiment seen in FIG. 16, the receivers 168A, 168B are keyhole-shaped and correspond to the half-moon shaped snap attachments 186A, 186B. However, the snap attachments 186A, 186B and the receivers 168A, 168B may be any shape as long as the receivers 168A, 168B correspond to the snap attachments 186A, 186B such that the snap attachments 186A, 186B snap, or lock, into place within the receivers 168A, 168B. In one embodiment, the receivers 168A, 168B are slightly larger at one end than the snap attachments 186A, 186B so that the snap attachments 186A, 186B may fit into the receivers 168A, 168B, respectively.


The right side panel 160 may be attached to the side flange 166 of the bottom panel 156 in a fashion similar to that disclosed above for attaching the left side panel 158 to the side flange 164 of the bottom panel 156.


Still referring to FIG. 16, as well as to FIG. 18, the inside top panel 154 may be tool-lessly attached to the left side panel 158 and the right side panel 160 quickly and easily. FIG. 18 is a close up front perspective view illustrating details of how the inside top panel 154 of the fiber optic housing 152 of FIGS. 16, 17A and 17B is connected to a side panel 158, 160 of the fiber optic housing 152. To do so, a user will slide the inside top panel 154 from the front of the left side panel 158 and the right side panel 160 toward the back of the left side panel 158 and the right side panel 160 such that the inside top panel 154 slides under the top flange 198 of the left side panel 158 and under the top flange 205 of the right side panel 160. The inside top panel 154 is positioned such that the receiver 174 on the side flange 170 of the inside top panel 154 is aligned with the snap attachment 186C located at the top portion 196 of the left side panel 158, which will also align the standoffs 176 on the left edge 178 of the inside top panel 154 with the grooves 202 on the top flange 198 of the left side panel 158. The inside top panel 154 should also be positioned such that the receiver 174 on the side flange 172 of the inside top panel 154 is aligned with the snap attachment 186C located at the top portion of the right side panel 160, which will also align the standoffs 176 on the right edge 184 of the inside top panel 154 with the grooves 206 on the top flange 205 of the right side panel 160. Once the inside top panel is aligned, the inside top panel 154 can be snapped onto the left side panel 158 and the right side panel 160 by snapping, or locking, the snap attachments 186C into the receivers 174 and the standoffs 176 into the grooves 202 and 206 (as seen in the close-up insets of FIG. 18).


In the embodiment as illustrated in FIGS. 16 and 18, the receivers 174 are keyhole-shaped in order to correspond to the half-moon shaped snap attachments 186C. However, the snap attachments 186C and the receivers 174 may be any shape as long as the receivers 174 correspond to the snap attachments 186C such that the snap attachments 186C snap, or lock, into place within the receivers 174. In one embodiment, the receivers 174 are slightly larger at one end than the snap attachments 186C so that the snap attachments 186C may fit into the receivers 174. Likewise, the standoffs 176 and the grooves 202 and 206 may be any size and shape as long as the standoffs 176 will lock into place in the grooves 202 and 206.


In the embodiment as illustrated in FIG. 18, the side flanges 170 and 172 of the inside top panel 154 may also include one or more cut out sections 209, sometimes known as crenels. The left side panel 158 may also include one or more protrusions 210, sometimes known as merlons, on the interior side 190 of the left side panel 158 toward the front portion 192 of the left side panel 158. In one embodiment, the merlons 210 are located directly beneath the snap attachment 186C. The right side panel 160 may have similar merlons 210 on its interior side. In the embodiment illustrated in FIG. 18, when the inside top panel 154 is positioned such that the receiver 174 on the side flange 170 of the inside top panel 154 is aligned with the snap attachment 186C located at the top portion 196 of the left side panel 158, the crenels 209 of the side flange 170 of the inside top panel 154 are also aligned with the merlons 210 of the left side panel 158. Then, when the inside top panel 154 is locked into place (such as by sliding the inside top panel 154 toward the front portion 192 of the left side panel 158, as indicated by the arrow in FIG. 18), the snap attachment 186C is locked into the receiver 174 and the merlons 210 interlock with the crenels 209 to provide additional stability for the attachment between the inside top panel 154 and the left side panel 158 and the right side panel 160.



FIG. 17A is an assembled front perspective view of the fiber optic housing 152 of FIG. 16. Once the left side panel 158 and the right side panel 160 have been tool-lessly attached to the bottom panel 156 and the inside top panel 154 has been tool-lessly attached to the left side panel 158 and the right side panel 160, the fiber optic housing 152 has been tool-lessly assembled, as illustrated in FIG. 17A.


The assembled fiber optic housing 152 can be quickly and easily unassembled by detaching the inside top panel 154, the bottom panel 156, the left side panel 158, and the right side panel 160 from each other tool-lessly.


In one embodiment, the fiber optic housing 152 may also include the cover plate 162 (as seen in FIG. 16) for the inside top panel 154. As seen in FIG. 16, the cover plate 162 may have a plurality of openings 212 configured such that when the cover plate 162 is positioned over the inside top panel 154, the openings 212 fit over the standoffs 176 on the inside top panel 154 in order to provide a gap between the inside top panel 154 and the cover plate 162. FIG. 17B is an assembled front perspective view of the fiber optic housing 152 of FIG. 17A with the cover plate 162 attached. In one embodiment, the cover plate 162 may be attached to the assembled fiber optic housing 152 by means of fasteners, with screws being one non-limiting example. In one embodiment, the fasteners extend through the grooves 202, 206 to attach the cover plate 162 to the right and left side panels 158, 160.


Embodiments disclosed below include fiber optic housings having a removable top, and related components and methods. In one embodiment, a fiber optic housing is provided having a removable top. In one embodiment, the fiber optic housing comprises a top, a bottom, a right side, and a left side defining at least one interior chamber configured to support fiber optic equipment. The top comprises a base and a cover in one embodiment. The top is configured to provide a gap between the base and the cover such that at least one of the right side and the left side of the fiber optic housing is configured to be slidably engaged into and out of the gap. In this manner, the top can be easily removed to provide access to the interior of the fiber optic housing.


In this regard, FIGS. 19A-21B disclose another embodiment, in which a removable top for a fiber optic housing is disclosed. The removable top allows easy access to internal features of the fiber optic housing at initial installation or afterwards. The removable top thus may provide an advantage over current fiber optic housing designs which are not removable since the removable top allows the technician or user easy access and a clear view of the working area inside the fiber optic housing. FIG. 19A illustrates the removable top as it slides out of the fiber optic housing. FIG. 19B illustrates the fiber optic housing after the removable top has been removed.


In one embodiment, the removable top on the fiber optic housing consists of a base and a cover plate capable of being fastened with pop-rivets or screws. In one embodiment, the removable top may be shaped in a way to provide a gap between the base and cover into which the side panel on the housing can slide. The side panel of the fiber optic housing has a release tab that engages and locks the removable top in place. In one embodiment, the removable top is made from any satisfactory metal. In other embodiments, the removable top can be one piece made out of plastic. In the embodiment illustrated in FIGS. 19A-21B, the release tab is round, but the release tab can be different shapes in other embodiments. In one embodiment, the release tab may be located on a top side of the removable top, or on an underside of the removable top.



FIG. 19A is a rear perspective view of a fiber optic housing 214 having a removable top 222 according to one embodiment. The fiber optic housing 214 has a bottom 216, a right side 218, and a left side 220. The bottom 216, the right side 218, and the left side 220 together define at least one interior chamber 221 of the fiber optic housing 214 configured to support fiber optic equipment. The fiber optic housing 214 also comprises the removable top 222 in this embodiment. In one embodiment, the fiber optic housing 214 may be assembled by attaching the bottom 216, the right side 218, the left side 220, and the removable top 222. In one embodiment, the fiber optic housing 214 may be assembled tool-lessly as disclosed above with respect to FIGS. 14-18. However, in other embodiments, the fiber optic housing 214 need not be assembled tool-lessly to have the removable top 222 as described herein.


The removable top 222 comprises a base 224 and a cover plate 226. The cover plate 226 is attached to the base 224 such that a gap 228 exists between the base 224 and the cover plate 226. The right side 218 may comprise a top flange 229. The left side 220 may comprise a top flange 230. The gap 228 between the base 224 and the cover plate 226 may be of a size that corresponds to the thickness of the top flanges 229 and 230. In this manner, the removable top 222 may slide on and off the right side 218 and the left side 220, where the gap 228 between the base 224 and the cover plate 226 allows the cover plate 226 of the removable top 222 to pass over the top flanges 229, 230 and the base 224 of the removable top 222 to pass under the top flanges 229, 230. One or both of the top flanges 229, 230 may have a release tab 232. The cover plate 226 may have one or more holes 234 configured to receive the release tab(s) 232 when the removable top 222 is slid onto the right side 218 and the left side 220. As the removable top 222 is slid onto the right side 218 and the left side 220, the release tab(s) 232 selectably engages with the hole(s) 234 to hold the removable top 222 in place in the fiber optic housing 214. If it is desired to remove the removable top 222, the user will press the release tab(s) 232 down, allowing the release tab(s) 232 to be disengaged from the hole(s) 234 and allowing the removable top 222 to be slid out from the fiber optic housing 214. In one embodiment, the release tab 232 is flexible and resilient, such that it is biased to move from a first position to a second position when a force is exerted on the release tab 232, and then returns to the first position by itself when the force is no longer exerted. In another embodiment, the release tab 232 may be spring loaded. In one embodiment, as seen in FIG. 19A, the release tab 232 is accessible from the top of the removable top 222. Although the release tab 232 is pressed downward in the above embodiments, in other embodiments, the release tab 232 may be lifted up, pulled outward, pressed inward, or manipulated in other ways and/or directions to cause the release tab 232 to disengage from the hole(s) 234 and allow the removable top 222 to be slid out from the fiber optic housing 214.



FIG. 19A illustrates the removable top 222 sliding out of the fiber optic housing 214. FIG. 19B is a rear perspective view of the fiber optic housing 214 of FIG. 19A after the removable top 222 is removed. This allows the user or technician access to the fiber optic cables, modules, cassettes, optical fibers, or other fiber optic apparatuses inside the fiber optic housing 214. FIG. 19C illustrates an alternate embodiment of the release tab 232. In this embodiment, the release tab 232 is accessible from an underside 235 of the removable top 222. In another embodiment, the release tab 232 may be located on a top side of the removable top 222.



FIG. 20A illustrates an exploded front perspective view of an exemplary embodiment of the removable top 222. FIG. 20A illustrates how the removable top 222 of FIG. 19A is assembled according to one embodiment. The removable top 222 is assembled using the base 224 and the cover plate 226. The base 224 may have a plurality of standoffs 236 disposed on its top surface. In the embodiment of FIG. 20A, the base 224 has a plurality of standoffs 236 arranged along a front edge 238 of the base 224, a plurality of standoffs 236 arranged in a middle portion 240 of the base 224, and a plurality of standoffs along a back edge 242 of the base 224. The cover plate 226 has a plurality of openings 244 that correspond to the plurality of standoffs 236 in one embodiment. In the embodiment of FIG. 20A, the cover plate 226 has a plurality of openings 244 arranged along a front edge 246 of the cover plate 226, a plurality of openings 244 arranged in a middle portion 248 of the cover plate 226, and a plurality of openings 244 along a back edge 374 of the cover plate 226. The number of standoffs 236 and openings 244 may vary.


The standoffs 236 may be a predetermined height in one embodiment. In one embodiment, the standoffs 236 may be between approximately one eighth (⅛) of an inch tall and approximately one half (½) of an inch tall. In one embodiment, the standoffs 236 may be approximately one quarter (¼) of an inch tall. The cover plate 226 is attached to the base 224 by placing the openings 244 over the corresponding standoffs 236 in order to form the removable top 222 of FIGS. 19A and 20B (discussed below). In one embodiment, the standoffs 236 are configured to receive screws or other fasteners that will affix the cover plate 226 to the base 224. In one embodiment, the base 224 may also have cutout sections 376 that are configured to receive rubber grommets 378. The rubber grommets 378 can be used for access for fiber optic cables or optical fibers to be routed into and out of the fiber optic housing 214.


When the cover plate 226 is attached to the base 224 to form the removable top 222, the standoffs 236 help form the gap 228 between the base 224 and the cover plate 226 as seen in FIGS. 19A and 20A. The gap 228 allows the removable top 222 to be slid on and off of the fiber optic housing 214.



FIG. 20B illustrates an assembled front perspective view of an exemplary embodiment of the fiber optic housing 214 of FIG. 19A as the removable top 222 is being reinstalled into the fiber optic housing 214. As seen in FIG. 20B, the removable top 222 can be slid back onto the fiber optic housing 214 such that the gap 228 allows the cover plate 226 of the removable top 222 to pass over the top flanges 229 and 230 of the right side 218 and left side 220 of the fiber optic housing 214 and the base 224 of the removable top 222 to pass under the top flanges 229, 230.



FIG. 21A is a side view section cut of a side panel (such as the right side 218 or the left side 220 of the fiber optic housing 214 of FIGS. 19A and 20A) of a fiber optic housing configured to receive the removable top 222 of FIGS. 19A, 20A, and 20B. FIG. 21B is a side view of the gap 228 in the removable top 222 of FIGS. 19A, 20A, and 20B configured to receive the side panel of the fiber optic housing. As discussed above, the right side 218 in FIG. 21A has a top flange 229 of a thickness that corresponds to the gap 228 between the base 224 and the cover plate 226 of the removable top 222. As illustrated in FIG. 21B, the gap 228 is configured to correspond to the thickness of the top flange 229 such that the removable top 222 can slide along the top flange 229, with the gap 228 receiving the top flange 229. In this manner, the removable top 222 can be reinstalled into the fiber optic housing 214.



FIG. 22 is a front perspective view of a fiber optic housing 256 illustrating rubber entry grommets 264, 266. The fiber optic housing 256 may be of any type and can be assembled in any manner. In one embodiment, the fiber optic housing 256 has a bottom (not illustrated in FIG. 22), a left side 258, a right side (not illustrated in FIG. 22), and a top 260. The fiber optic housing 256 also comprises a front door 262 in this embodiment. In one embodiment, the fiber optic housing 256 may be assembled by attaching the bottom, the left side 258, the right side, and the top 260. In one embodiment, the fiber optic housing 256 may be assembled tool-lessly as disclosed above with respect to FIGS. 14-18. However, in other embodiments, the fiber optic housing 256 need not be assembled tool-lessly. The top 260 may or may not comprise a removable top as disclosed above with respect to FIGS. 19A-21B. The fiber optic housing 256 has a plurality of rubber grommets 264 and 266. In one embodiment, the fiber optic housing 256 may have rubber grommets 264 or 266 on the top and bottom rear and front, and left and right sides rear and front of the fiber optic housing 256. The rubber grommets 264, 266 may be in the form of a single piece of rubber, like the rubber grommets 264, or they may be part of a jumper management device, like the rubber grommets 266, which are disclosed in more detail below with respect to FIGS. 29 and 31-34. The rubber grommets may be of any shape, including but not limited to rectangles, like the rubber grommets 264, or circles, like the rubber grommets 266. Rubber provides better protection than solid materials, especially on the edges, and provides a better seal to keep dust, insects, and rodents out of the housings. In one embodiment, the rubber grommets 264, 266 may be easily removed to provide entry and exit points for fiber optic cables or optical fibers to be routed in and out of the fiber optic housing 256 to the appropriate locations.



FIG. 23 is a partial, front perspective view of the fiber optic housing 256 of FIG. 22. The fiber optic housing 256 may include molded in flexible edge protection. A molded in flexible edge protection piece 268 is located around an opening 270 on one or more sides 272 of the fiber optic housing 256, as illustrated in FIG. 23. Fiber optic jumper cables or other fiber optic cables or optical fibers (not illustrated in FIG. 23) may be routed out of the fiber optic housing 256 through the opening 270, and the molded in flexible edge protection piece 268 offers protection for the fiber optic jumper cables. In addition, one or more side grommets 274 are molded onto the solid material of the side 272 for a strong bond with the lowest profile possible. The side grommets 274 also offer access points for fiber optic jumper cables or other fiber optic cables or optical fibers to be routed into or out of the fiber optic housing 256.


The rubber grommets disclosed above with respect to FIGS. 22 and 23 allow for the routing of various fiber optic cables and optical fibers in and out of fiber optic housings. The fiber optic housings may also include various features to help better route and manage the fiber optic cables and optical fibers in and around the fiber optic housings. In one embodiment, the fiber optic housing may have a removable front section. The removable front section allows the fiber optic housing to be used for different applications and/or designs, as examples, where no jumper management is needed, or where a sealed version may be required. Further, the removable front section may comprise a removable front jumper management device with pass-through grommets. Fiber optic cables may be allowed to pass through using the pass-through grommets while keeping the fiber management within the housing envelope. When removed, it allows for a greater volume of fiber jumpers to exit from the top and bottom, without sacrificing the space above the unit. Additionally, it allows pass-through of fiber optic cables or optical fibers on the top and bottom, instead of the top only like previous designs.


In this regard, embodiments disclosed below include removable fiber management sections for fiber optic housings, and related components and methods. In one embodiment, a fiber optic system is provided. The fiber optic system comprises a fiber optic housing defining at least one interior chamber configured to support fiber optic equipment. The fiber optic system also comprises a removable front section connected to the fiber optic housing and defining at least one front section interior chamber coupled to the at least one interior chamber of the fiber optic housing. The removable front section is configured to support at least one fiber management device to manage one or more optical fibers connected to fiber optic equipment disposed in the fiber optic housing.


In this regard, FIG. 24 illustrates a front perspective view of a fiber optic housing 276 with a removable front section 278 and perspective views of two (2) removable front section versions. The fiber optic housing 276 defines an interior chamber 279 configured to support fiber optic equipment. The removable front section 278 also defines a front section interior chamber 281 to support fiber management components for managing one or more optical fibers connected to the fiber optic equipment supported by the fiber optic housing 276, as will be discussed in more detail below. In this embodiment, the removable front section 278 is attached to the fiber optic housing 276. The removable front section 278 can also be removed from the fiber optic housing 276 when no longer needed or desired. Optical fibers can be managed in fiber management components disposed in the removable front section 278 before or after the removable front section 278 is attached to the fiber optic housing 276. Further, optical fibers routed in fiber management devices disposed in the removable front section 278 can be unrouted or removed before or after the removable front section 278 is detached from the fiber optic housing 276.


The removable front section 278 may come in different versions. In one embodiment, the removable front section 278 may include fiber management components in the form of a plurality of front jumper management devices 280 and an opening 270 disposed on both sides of the removable front section 278. The front jumper management devices 280 allow optical fibers that are connected to fiber optic equipment supported in the fiber optic housing 276 to be routed and maintained. The removable front section 278 can be employed to provide capacity for employing such a fiber management component when the fiber optic housing 276 is either not able or is not configured to provide sufficient additional room for fiber management components. The openings 270 are both configured to provide fiber management by being configured to route one or more optical fibers connected to fiber optic equipment in the fiber optic housing 276 outside of the fiber optic housing 276 and to the sides of the removable front section 278. When optical fibers are not routed through the openings 270, a rubber seal 286 can be disposed in the openings 270, as exemplified by the removable front section 278B. The rubber seal 286 can fit in the place of the openings 270 in the removable front section 278A to provide protection for the inside of the fiber optic housing 276 and to keep dust, insects, rodents, and other things out of the fiber optic housing 276.


In this embodiment, the opening 270 includes a molded in flexible edge protection piece 268, as exemplified by the removable front section 278A. The flexible edge protection piece 268 protects optical fibers routed or otherwise disposed through the openings 270 from being damaged by kinking or bending against the edges of the openings 270 which may be sharp, especially if the fiber optic housing 276 is constructed from sheet metal as an example. The flexible edge protection piece 268 may be made from any type of material desired, including any type of polymer, rubber, plastic, etc. The flexible edge protection piece 268 may also be removable.


Fiber optic jumper cables or other fiber optic cables or optical fibers (not illustrated in FIG. 24) may be routed out of the fiber optic housing 276 through the opening 270, and the molded in flexible edge protection piece 268 offers protection for the fiber optic jumper cables. The front jumper management devices 280 aid in fiber management and routing, as will be described in more detail below, with respect to FIGS. 29-34. The front jumper management devices 280 may be easily removable in one embodiment. The front jumper management devices 280 may be located on a top portion 282 and/or on a bottom portion 284 of the removable front section 278.


In another embodiment, the removable front section 278 may also include a fiber management component in the form of a plurality of front jumper management devices 280 to route optical fibers along and through the bottom and top panels 298, 290 of the removable front section 278. As will also be discussed in more detail below with regard to FIGS. 31-33, the front jumper management devices 280 may include a plurality of fiber routing guides in the form of routing clips 356 (see also FIG. 31) configured to route optical fibers connected to fiber optic equipment supported in the fiber optic housing 276. As will also be discussed in more detail below with regard to FIGS. 31-33, the front jumper management devices 280 may also include openings to allow optical fibers to be routed through bottom and top sections 290, 298 away from the removable front section 278. Although in the embodiment of FIG. 24, the removable front section 278A also has front jumper management devices 280, in other embodiments, the removable front section 278A or 278B may not have any front jumper management devices 280, or may have less front jumper management devices 280.



FIG. 25 illustrates an exploded, front perspective view of the removable front section 278 of a fiber optic housing. The removable front section 278 has a base 288 which is attached to a bottom panel 290. A plurality of clips 292 for routing optical fibers may be configured to be attached to the bottom panel 290 of the base 288. A left side panel 294 with an opening 270 having a molded in flexible edge protection piece 268 is configured to be attached to the bottom panel 290. A symmetrical right side panel 296 with an opening 270 having a molded in flexible edge protection piece 268 is also configured to be attached to the bottom panel 290. In one embodiment, the left side panel 294 and the right side panel 296 may be attached to the bottom panel 290 tool-lessly in a manner as described above with respect to FIGS. 14-18.


With continued reference to FIG. 25, a top panel 298 having a plurality of standoffs 300 disposed on its top surface is configured to be attached to the left side panel 294 and to the right side panel 296. In one embodiment, the top panel 298 may be attached to the left side panel 294 and to the right side panel 296 tool-lessly in a manner as described above with respect to FIGS. 14-18. Alternative fiber management components in the form of a plurality of clips 292 for routing optical fibers may be configured to be attached to the top panel 298 for routing optical fibers. A cover plate 302 having openings 304 disposed thereon is configured to be attached to the top panel 298. The openings 304 on the cover plate 302 are configured to fit over the standoffs 300 on the top panel 298. In one embodiment, a fastener (not illustrated), including but not limited to a screw or pop rivet, will pass through the openings 304 into the standoffs 300 in order to attach the cover plate 302 to the top panel 298. In one embodiment, the top panel 298 and the cover plate 302 have corresponding cutout sections 306. The cutout sections 306 are configured to receive rubber grommets 308, as illustrated in the embodiment of FIG. 25, or front jumper management devices 280 in another embodiment.


Still referring to FIG. 25, L-shaped brackets 310 are configured to be attached to each of the left side panel 294 and the right side panel 296. The L-shaped brackets 310 may be attached to the left and right side panels 294, 296 by any means, including by screws or pop rivets. The L-shaped brackets 310 may have openings 311A on one flange of the L-shaped brackets 310 to attach the L-shaped brackets 310 to the left and right side panels 294, 296. The L-shaped brackets 310 may also have openings 311B and 311C on another flange of the L-shaped brackets 310 to attach the removable front section 278 to a fiber optic housing, as described more fully below in connection with FIG. 27. In one embodiment, the L-shaped brackets 310 may take a form similar to the mounting brackets disclosed above (see, e.g., FIG. 6) and the left side panel 294 and the right side panel 296 may have snap attachment features as disclosed above (see, e.g., FIG. 6), and the L-shaped brackets 310 may be tool-lessly attached to the left side panel 294 and the right side panel 296. The removable front section 278 may also have a door 312. The door 312 is configured to attach to the base 288 and may be opened and closed.


Once the various components of the removable front section 278 of FIG. 25 are assembled, the removable front section 278 will look like the removable front section 278 of FIG. 26A. FIG. 26A illustrates a front perspective view of the removable front section 278 of a fiber optic housing with the door 312 closed. The door 312 may have one or more latches 314 for opening and closing the door 312.



FIG. 26B illustrates a front perspective view of the removable front section 278 with the door 312 open. With the door 312 open, the plurality of clips 292 are visible. The plurality of clips 292 are used for routing control and management of fiber optic cables and optical fibers, including but not limited to fiber optic jumper cables. The fiber optic jumper cables, or other fiber optic cables and optical fibers, may be routed through one or more of the plurality of clips 292 and in or out of the openings 270 on either side of the removable front section 278. In addition, the rubber grommets 308 may be removed to another access point for the fiber optic jumper cables, or other fiber optic cables and optical fibers, to be routed in and out of the removable front section 278. In one embodiment, the door 312 may also comprise one or more lips 315. The lips 315 are configured to allow flip cards (not illustrated) to be removably attached to the lips 315.



FIG. 26C illustrates a top front perspective view of the removable front section 278 with the door 312 removed. FIG. 26D illustrates another front perspective view of the removable front section 278 with the door 312 removed. Referring to FIG. 26C, the top panel 298 has a plurality of receivers 316 disposed thereon. The plurality of receivers 316 are configured to receive the plurality of clips 292. In one embodiment, each of the plurality of clips 292 has a hook 318 that is configured to selectively fit into one of the plurality of receivers 316, thereby attaching the clip 292 to the top panel 298. Each of the plurality of clips 292 is inserted from underneath the top panel 298 such that the hook 318 on each respective clip 292 fits into one of the plurality of receivers 316, locking the respective clip 292 into the respective receiver 316. The bottom panel 290 may also have a plurality of receivers like the receivers 316 that are configured to receive a plurality of clips 292 such that a plurality of clips 292 may also be attached to the bottom panel 290.



FIG. 27 illustrates a front perspective view of the removable front section 278 being attached to a fiber optic housing 320. The fiber optic housing 320 may be of any type and may be assembled in any manner. In one embodiment, the fiber optic housing 320 may be assembled tool-lessly as disclosed above with respect to FIGS. 14-18. The fiber optic housing 320 may have mounting brackets 322 attached to each side of the fiber optic housing 320. In one embodiment, the mounting brackets 322 may be like any of the mounting brackets disclosed above in FIGS. 4-8 and may be attached to the fiber optic housing 320 as disclosed therein. The mounting brackets 322 may have a plurality of keyhole-shaped openings 324. In one embodiment, there may be one keyhole-shaped opening 324 at a top 326 of each of the mounting brackets 322 and one keyhole-shaped opening 324 at a bottom 328 of each of the mounting brackets 322. In one embodiment, the mounting brackets 322 may also include a plurality of oval-shaped openings 330 and a plurality of circular holes 332. In one embodiment, the plurality of circular holes 332 may be located at or near a center 334 of the each of the mounting brackets 322. In other embodiments, the keyhole-shaped openings 324, the oval-shaped openings 330 and the circular holes 332 may be different shapes. The mounting brackets 322 may also have a plurality of recesses 336, which allow a space for other apparatuses, such as the removable front section 278, to be attached to the fiber optic housing 320, as described more fully below.


With continued reference to FIG. 27, including the inset view, the removable front section 278 has a plurality of tabs 338 at a top 340 and a bottom 342 of each of the left side panel 294 and the right side panel 296 (although only the tabs 338 on the right side panel 296 are visible in FIG. 27). In order to attach the removable front section 278 to the fiber optic housing 320, the removable front section 278 is positioned such that the tabs 338 fit into the recesses 336 of the mounting brackets 322. This will align the openings 311B of the L-shaped bracket 310 of the removable front section 278 with the circular holes 332 of the mounting bracket 322, and will align the openings 311C of the L-shaped bracket 310 with the oval-shaped openings 330 of the mounting bracket 322. A fastener, such as a screw or pop rivet, may then be placed through one or more of the openings 311B of the L-shaped bracket 310 of the removable front section 278 and through the circular holes 332 of the mounting bracket 322 to securely attach the removable front section 278 to the fiber optic housing 320.



FIG. 28 illustrates a front perspective view of the removable front section 278 attached to a fiber optic housing 344 with fiber optic jumpers being routed out of sides of the removable front section 278. The door 312 is open, allowing access to the inside of the removable front section 278. The fiber optic housing 344 in the embodiment of FIG. 28 has fiber optic panels 346 loaded in the removable front section 278, although any sort of fiber optic apparatuses, including but not limited to fiber optic modules and cassettes, may be loaded into the removable front section 278. Fiber optic jumpers 348 are connected to the fiber optic panels 346 and may be routed through the clips 292 and then out of the openings 270 on either side of the removable front section 278.



FIGS. 29-34 illustrate various embodiments of a front jumper management device for use with a fiber optic housing or a removable front section attached to a fiber optic housing.



FIG. 29 is a front perspective view of a fiber optic housing 350 illustrating a removable front section 278 having a plurality of removable front jumper management devices 280 with grommets 352, as previously mentioned in FIG. 24. The front jumper management devices 280 aid in fiber management and routing. The front jumper management devices 280 may be easily removable in one embodiment. The front jumper management devices 280 may be located on the top portion 282 and/or on the bottom portion 284 of the removable front section 278.


In one embodiment, the front jumper management devices 280 comprise a plurality of grommet/clip assemblies 354 for use with the fiber optic housing 350 or the removable front section 278. Each of the grommet/clip assemblies 354 may include a clip 356 and a grommet 352. The grommet 352 may be made of rubber in one embodiment. In one embodiment, the grommet/clip assembly 354 may be removably mounted in openings 355 on the front of the fiber optic housing 350 on both the top and the bottom. The grommet/clip assembly 354 may be removably mounted to the fiber optic housing 350 by sliding it into the opening 355 in the fiber optic housing 350.


The front jumper management devices 280 may be removably mounted on the inside of the fiber optic housing 350 to aid in fiber management, or on the outside of the fiber optic housing 350 to serve as an external fiber management device or component, as seen in FIG. 30.



FIG. 30 is a front perspective view of the fiber optic housing 350 of FIG. 29 illustrating fiber management of optical fiber jumpers 358 using the front jumper management devices 280. The door 312 is open, allowing access to the inside of the removable front section 278. The fiber optic housing 350 in the embodiment of FIG. 30 has fiber optic panels 346 loaded in the removable front section 278, although any sort of fiber optic apparatuses, including but not limited to fiber optic modules and cassettes, may be loaded into the removable front section 278. Although the embodiment of FIG. 30 illustrates a removable front section 278, in other embodiments, the fiber optic housing 350 may not have a removable front section 278, and the fiber optic panels 346 may be loaded into the fiber optic housing 350 itself.


The optical fiber jumpers 358 are connected to the fiber optic panels 346 and, in one embodiment, may be routed out of the fiber optic housing 350 through the openings 270 on either side of the removable front section 278. In one embodiment, certain of the optical fiber jumpers 358 may be routed out of the fiber optic housing 350 through the grommets 352 of the front jumper management devices 280. For example, in FIG. 30, some of the optical fiber jumpers 358 are routed from the fiber optic panels 346 directly through the grommets 352 of one of the front jumper management devices 280. In one embodiment, the optical fiber jumpers 358 may be first passed through the grommet/clip assemblies 354 of the front jumper management devices 280 and then through the openings 270 on either side of the removable front section 278. For example, some of the optical fiber jumpers 358 are routed through the clip 356B of one of the front jumper management devices 280 and through the openings 270 on the left side of the removable front section 278.


By locating front jumper management devices 280 on both the top portion 282 and/or on the bottom portion 284 of the removable front section 278, a variety of options for optical fiber routing and management are provided. For example, in FIG. 30, some of the optical fiber jumpers 358 are routed through the clip 356B and then through the clip 356C of one of the front jumper management devices 280 at the top portion 282 and then through the openings 270 on the right side of the removable front section 278. Some of the optical fiber jumpers 358 are routed through only one of the clips (clip 356C) of the one of the front jumper management devices 280 at the top portion 282 before being routed through the openings 270 on the right side of the removable front section 278. Finally, some of the optical fiber jumpers 358 are routed through one or more of the clips (clips 356D and 356E) of the one of the front jumper management devices 280 at the bottom portion 284 before being routed through the openings 270 on the right side of the removable front section 278. Although not illustrated in FIG. 30, certain of the optical fiber jumpers 358 could be routed through one or more of the grommets 352 on the front jumper management devices 280 at the bottom section 284 without being routed through the openings 270.



FIG. 31 is a front perspective view of the front jumper management device 280 to illustrate more detail for this particular embodiment of a fiber management component with the pass-through grommets of FIGS. 29 and 30. In one embodiment, as illustrated in FIG. 31, the front jumper management device 280 may comprise the grommet/clip assembly 354. The grommet/clip assembly 354 may include the routing clips or clips 356 and the grommets 352 mounted in openings or ports 360 to allow optical fibers to be routed through the grommet/clip assembly 354. The ports 360 are provided to allow optical fibers to be routed therethrough as previously discussed. If optical fibers are routed through the ports 360, the appropriate grommets 352 are removed. The grommets 352 are removable and close off the ports 360 to prevent dust or debris from entering into the fiber optic housing or removable front section, as examples, when the ports 360 are not used to route optical fibers. The grommets 352 may be made from any type of material, including a flexible material. The grommets 352 may be made from any type of polymer or rubber, as additional non-limiting examples. In one embodiment, the clips 356 may be routing clips/fiber holders.


In this embodiment, as illustrated in FIG. 31, a plurality of clips 356 may be disposed in a base 362, with one clip 356 disposed on a first end 365 of the base 362 and another clip 356 disposed on a second end 367 of the base 362. Also in this embodiment, the clip 356 is comprised of a first arcuate member 369 having a first end 371 attached to the base 362 and a second end 373 adjacent a second end 375 of a second member 377 having a first end 379 attached to the base 362. The first arcuate member 369 and the second member 377 may be flexible. In this embodiment, the second end 373 of the first arcuate member 369 abuts against the second end 375 of the second member 377 when a compression force F1 is not applied inward to the first arcuate member 369 towards the second member 377. The second end 373 of the first arcuate member 369 is configured to separate from the second end 375 of the second member 377 when the compression force F1 is applied inward to the first arcuate member 369 towards the second member 377.


The grommet/clip assembly 354 may also comprise the base 362 with one or more mounting holes 364, as illustrated in FIG. 31, to allow the grommet/clip assembly 354 to be mounted to a fiber optic housing. In this embodiment, the clips 356 are attached to the base 362. The mounting holes 364 may be used for fasteners (not illustrated), such as a screw, pop rivet, or a plunger fastener, to removably attach the grommet/clip assembly 354 to a fiber optic housing. The grommet/clip assembly 354 retains optical fiber jumpers (like the optical fiber jumpers 358 in FIG. 30) while creating a pathway to routing fibers that are terminated in optical connectors. In one embodiment, the grommet/clip assembly 354 may be removably attached to a fiber optic management panel, and may be installed in the same location as a connector panel. In another embodiment, as illustrated in FIG. 29, the grommet/clip assembly 354 may be removably mounted in the openings 355 on the front of the fiber optic housing 350 on both the top and the bottom. The grommet/clip assembly 354 may be removably mounted to the housing by sliding it into the opening 355 in the fiber optic housing 350.


The grommet/clip assembly 354 may also have features that allow it to be installed in different orientations and in different locations. FIG. 32 illustrates how front jumper management devices with grommets can be mounted on their sides to create horizontal fiber management outside the fiber optic housing. In the embodiment of FIG. 32, the grommet/clip assembly 354 at the top of the fiber optic housing 350 is removably mounted on its side to create horizontal fiber management outside the fiber optic housing 350. This will use a 1U rack unit space of 1.75 inches. However, the grommet/clip assembly 354 may be removed to allow fiber optic housings to be stacked directly on top of each other and still maintain the pass-through feature.


Further, the grommet/clip assembly 354 may be mounted in the same location as a connector panel using the same mounting hardware as the connector panels. FIG. 33 illustrates how a front jumper management device with grommets may be mounted in a fiber optic housing in place of a fiber optic panel to allow for fiber management. In the embodiment of FIG. 33, a 1U fiber optic housing 366 has a plurality of openings 368. A fiber optic panel 370 may be placed in one of the plurality of openings 368. In the other opening 368, a front jumper management device 280 comprising one or more grommet/clip assemblies 354 is positioned horizontally. The grommet/clip assembly 354 may also comprise a base 362 with one or more mounting holes 364, as illustrated in FIG. 31, to allow the grommet/clip assembly 354 to be mounted to the fiber optic housing 366. A fastener, such as a plunger fastener 372 as illustrated in FIG. 33, may be used to removably attach the grommet/clip assembly 354 to the fiber optic housing 366. In other embodiments, different fasteners, such as a screw or pop rivet, may be used in place of the plunger fastener 372.


The front jumper management device 280 with the grommet/clip assembly 354 disclosed above may be removably attached to a fiber optic housing. The end user may configure the front jumper management device 280 in multiple ways or remove it when it is not needed. Various other ways of mounting the front jumper management device 280 are possible, including but not limited to sliding the front jumper management device 280 into a cutout in a wall of a fiber optic housing, installing the front jumper management device 280 on its side using snaps that latch into a cutout in a wall of a fiber optic housing, or installing the front jumper management device 280 using plungers in the same location as a fiber adapter panel or module. Additionally, the grommets 352 in the grommet/clip assembly 354 allow fiber to transition in any direction (including, but not limited to, the rear, up, or down) depending on the orientation of the grommet/clip assembly 354, as seen in FIG. 30 above.



FIG. 34 is a perspective view of an alternative fiber optic housing 374 configured to support fiber optic modules 376. In one embodiment, the fiber optic housing 374 may also support fiber optic panels (like fiber optic panels 378 illustrated in FIG. 36A) interchangeably by employing a removable panel clip (which is disclosed more fully in FIGS. 37A-37G). The fiber optic housing 374 is configured to support fiber optic equipment in a vertical orientation. FIG. 34 illustrates the fiber optic housing 374 supporting the fiber optic modules 376. If it desired to provide fiber optic panels 378 in the fiber optic housing 374, removable panel clips 380 (see FIGS. 37A-37G) can be installed in a base 382 and a top 384 of the fiber optic housing 374, as illustrated in FIGS. 35A-35C.



FIGS. 35A-35C are perspective, perspective close-up, and perspective close-up cut section views, respectively, of the removable panel clip 380 installed in the fiber optic housing 374 to enable the fiber optic housing 374 to support fiber optic panels 378 and fiber optic modules 376 interchangeably. The removable panel clips 380 may be installed in a front 374A of the fiber optic housing 374, or may be installed in a rear 374B of the fiber optic housing 374. The base 382 contains receivers 386 in the form of openings to receive and secure a flange 388 of the removable panel clip 380 (see FIGS. 37A-37G). The removable panel clip 380 is secured to the receiver 386 in the base 382, as described more fully below.



FIG. 36A is a perspective view of the fiber optic housing 374 in FIG. 35A with removable panel clips 380 installed in the base 382 and the top 384 to be able to support the fiber optic panels 378. FIG. 36B is a perspective view of the fiber optic housing 374 in FIG. 35A with removable panel clips 380 installed and inserts 390 provided in the form of push pins of the fiber optic panels 378 inserted into receptacles 392 of the removable panel clips 380 to support the fiber optic panels 378 in the fiber optic housing 374. In another embodiment, the inserts 390 may be provided in the form of plungers


As illustrated in FIGS. 37A-37G, the removable panel clip 380 includes the flange 388. The flange 388 is configured to be inserted into the receiver 386 of the base 382 (FIGS. 35A-35C) to attach the removable panel clip 380 to the base 382. The flange 388 in this embodiment is circular-shaped, but other shapes can be provided. The flange 388 is disposed in a first side 394 of the removable panel clip 380. A receptacle 392 disposed in a second side 396 of the removable panel clip 380 is configured to receive the insert 390 of a fiber optic panel 378, as illustrated in FIGS. 36A-36B. The first side 394 may be generally at a right angle to the second side 396 in this embodiment.


Referring to FIGS. 35B and 35C as well as FIGS. 37A-37G, the flange 388 of the removable panel clip 380 is configured to be inserted into a first area 398 of the receiver 386 of the base 382 and slid into a second area 400 of the receiver 386 to attach the removable panel clip 380 to the base 382. A standoff or extender 402 is disposed between the flange 388 and the first side 394 to extend the flange 388 a distance away from the first side 394 so the flange 388 can be inserted into the receiver 386 in the base 382. The flange 388 can then be slid behind the second area 400 of the receiver 386, which has an opening size less than the size of the flange 388.


The flange 388 cannot be removed from the receiver 386 unless and until the flange 388 is slid back to the first area 398 of the receiver 386, which has an opening size that will allow the flange 388 to be removed from the receiver 386. A protrusion 404 is also disposed in the first side 394 of the removable panel clip 380 to be disposed into the second area 400 of the receiver 386 to further secure the removable panel clip 380 to the base 382. In one embodiment, in order to remove the flange 388 from the receiver 386, the removable panel clip 380 is slightly lifted in a vertical direction until the protrusion 404 overcomes the base 382. In one embodiment, the removable panel clip 380 can also be installed in the base 382 in a position one hundred eighty (180) degrees from the orientation discussed above and shown in FIGS. 35B and 35C to allow the fiber optic panel or fiber optic module/cassette disposed therein to move independently.



FIG. 38 is a perspective view of another removable panel clip 406 installed in a fiber optic housing 408 to enable the fiber optic housing 408 to interchangeably support fiber optic panels and fiber optic modules. FIG. 39A-39D illustrate bottom, side, front, and back views, respectively, of the removable panel clip 406 in FIG. 38. The removable panel clips 406 are configured to be attached to a rail system 410 disposed in the fiber optic housing 408 to attach the removable panel clips 406 to the fiber optic housing 408 to support fiber optic panels. The rail system 410 is configured to support fiber optic modules in the fiber optic housing 408 when the removable panel clip 406 is not attached to the rail system 410. In this regard, the removable panel clips 406 each comprise a groove 409 configured to receive a rail 412 disposed in the fiber optic housing 408 to attach the removable panel clips 406 to the fiber optic housing 408. Like the removable panel clip 380, the removable panel clip 406 contains a receptacle 413 disposed therein that is configured to receive an insert in the form of a push pin or plunger from a fiber optic panel to secure the fiber optic panel to the removable panel clip 406 and thus the fiber optic housing 408. Protrusions 414 are disposed in the removable panel clip 406, as illustrated in FIG. 38, and are configured to engage with receivers 416 to further secure the removable panel clips 406 to the fiber optic housing 408. A support member 418 is disposed or provided as part of the removable panel clip 406 to provide structural support, as illustrated in FIGS. 39A and 39B.


The base of the fiber optic housing (such as the base 382 of the fiber optic housing 374 in FIGS. 35A and 36A, or the base of the fiber optic housing 408 in FIG. 38) may be configured to support either fiber optic panels or fiber optic modules/cassettes. To support fiber optic panels, a receiver (like the receiver 416 in FIG. 38) is disposed in the fiber optic housing 374 or 408 to receive the removable panel clips 406. If a fiber optic module(s) is desired to be supported, the removable panel clips 406 are not employed. Instead, the fiber optic module(s) includes a rail guide that is configured to receive a rail disposed in the fiber optic housing 374 of FIGS. 35A and 36A or the fiber optic housing 408 in FIG. 38.



FIGS. 40A-40D illustrate various views of exemplary rails 412 to be used in the fiber optic housing 408 of FIG. 38. In one embodiment, the rail 412 has three sections 412-1, 412-2, 412-3 formed by two notches 415-1, 415-2. The notches 415-1, 415-2 are used to lock fiber optic modules or cassettes onto the rail 412, as will be discussed in more detail below. The rail 412 may also have a pair of latches 419-1, which may extend from the section 412-2 in one embodiment, as illustrated in FIGS. 40A-40D. The rail 412 may have a groove 417 at one end of the section 412-1. The rail 412 may also have a latch 419-2 at one end of the rail 412, such as at the end of portion 412-3, as illustrated FIGS. 40A-40D. The latches 419-1, 419-2 may be used to attach the rail 412 to the fiber optic housing 374 of FIGS. 35A and 36B, or the fiber optic housing 408 of FIG. 38. In one embodiment, the latches 419-1, 419-2 may fit into receivers 383 disposed in the base 382 of the fiber optic housing 374 of FIGS. 35A and 36B and be used to attach the rail 412 to the fiber optic housing 374. The latches 419-1, 419-2 may be flexible and resilient such that they provide biasing to allow the latches 419-1, 419-2 to extend into the receivers 383 to secure the rail 412 to the base 382 of the fiber optic housing 374 of FIGS. 35A and 36B. FIGS. 41A and 41B are front perspective and side views, respectively, of an exemplary fiber optic module or cassette 422 that may be mounted on a rail in the fiber optic housing 408 of FIG. 38. As illustrated in the front perspective and top views of the fiber optic module/cassette 422 in FIGS. 41A and 41B, respectively, the fiber optic module/cassette 422 includes a housing 422H that includes a first end 422-1 and a second end 422-2. Rails guides 421A, 421B are disposed in the housing 422H on the first end 422-1 and the second end 422-2 of the housing 422H, respectively. Thus, when a rear portion 422R of the fiber optic module/cassette 422 is inserted onto a rail or rails 412 disposed on the fiber optic housing 408, the rail guides 421A, 421B of the fiber optic module/cassette 422 are aligned with the rails 412. The rail guides 421A, 421B receive the rails 412. The fiber optic module/cassette 422 can be slid back from a front 408F of the fiber optic housing 408 to a rear 408R of the fiber optic housing 408 (FIG. 38), until a front side 422F of the fiber optic module/cassette 422 locks into place in one of the notches 415-1 or 415-2 on the rail 412.


The fiber optic module/cassette 422 can be locked into place on the rails 412 by protrusions 401A, 401B provided in a latching system 403A, 403B disposed in the rail guides 421A, 421B, respectively. As illustrated in FIGS. 41A and 41B, the protrusions 401A, 401B are each configured to be secured into notches 415-2 disposed in the rails 412 to lock the fiber optic module/cassette 422 into place. When it is desired to release the fiber optic module/cassette 422 from the rail 412, latches 405A, 405B can be pushed inward toward the fiber optic module/cassette 422 to release the protrusions 401A, 401B from the notches 415-2 to allow the rail guides 421A, 421B of the fiber optic module/cassette 422 to be moved about the rails 412 of the fiber optic housing 408. In one embodiment, the fiber optic module/cassette 422 might be slid onto the rail 412 such that the protrusions 401A, 401B lock into place in the notch 415-1 instead of notches 415-2.


The fiber optic housing 408 illustrated in FIG. 38 thus provides integrated tracks or rails to house large splice modules, with removable panel clips to hold fiber optic panels or smaller fiber optic modules. The integrated tracks or rails allow the fiber optic housing to work with any panel designed for the housing, for example a 4U housing, simply by changing the adapter to match the desired panel. The rails allow larger fiber optic modules to slide in place for maximum use of the available space inside the fiber optic housing. The removable panel clips also allow for multiple mounting locations in the front to back orientation, allowing the user to move the fiber optic panel to a more recessed position when needed for the use of components which may require additional space, including, as one non-limiting example, in-line attenuators or other apparatuses.


Embodiments disclosed below also include door fiber management for fiber optic housings, and related components and methods. In one embodiment, a fiber optic housing is provided. The fiber optic housing comprises an enclosure defining at least one interior chamber configured to support fiber optic equipment. The fiber optic housing also comprises at least one door attached to the enclosure and configured to seal off at least a portion of the at least one interior chamber when the door is closed. The fiber optic housing also comprises at least one fiber management component disposed in the at least one door. The door can be a front door, a rear door, both a front and rear door, or any other door attached or provided as part of the fiber optic housing. The fiber management component can be any type of fiber management device or component, including but not limited to a slack storage device or component, a routing guide, and a fan-out body holder.


In this regard, FIG. 42 is a rear view of a fiber optic housing 420 with a rear door 424 opened that is fully loaded with fiber optic modules/cassettes 422 attached to rails. In one embodiment, the fiber optic modules/cassettes 422 may be fiber optic splice cassettes. The fiber optic housing 420 is fully loaded with fiber optic modules/cassettes 422. In other embodiments, the fiber optic housing 420 may be loaded with fiber optic panels, fiber optic connectors, or fiber optic modules. The fiber optic housing 420 has the rear door 424 that is opened to allow access to the fiber optic modules/cassettes 422. The fiber optic housing 420 in this embodiment defines an enclosure 423 defining an interior chamber 425 configured to support fiber optic equipment 427 disposed therein. The rear door 424 is attached to the enclosure 423 and configured to seal off at least a portion of the interior chamber 425 when the rear door 424 is closed against the enclosure 423.


In fiber optic housings, fiber cable management is commonly done inside the rear on the bottom of the fiber optic housing. Optical fiber slack storage is located on the bottom and top in the back section of the fiber optic housing 420. Sometimes that space becomes very limited, resulting in poor fiber management. In one embodiment as disclosed herein, the rear door 424 may be adapted to be used in fiber optic housings to store slack fiber optic cables and to provide locations for strain relief. In addition, the rear door 424 may also be used to hold fiber transition boxes. Having additional storage on the rear door 424 frees up space on the inside of the fiber optic housing for better access to the fiber optic modules. This is especially true when large splice modules are used, as there is less room for slack storage of optical fibers on the bottom or top, so storage on the rear door provides the storage space that otherwise would have been located in the bottom or the top of the fiber optic housing. When the rear door 424 is opened, the optical fiber bundle is rotated out of the way of the user providing safer access to the rear of the fiber optic modules.


With continuing reference to FIGS. 42 and 43B-43C, a fiber management component in the form of a slack storage component 429 is disposed in an inside surface 431 of the rear door 424. The slack storage component 429 is designed to store slack of optical fibers 442 connected to the fiber optic equipment 427 disposed in the fiber optic housing 420, as illustrated in FIGS. 43B and 43C. In this embodiment, the slack storage component 429 is comprised of two (2) retainers 444, each comprised of two (2) flanges 433A, 433B. The retainers 444 are disposed in a perimeter of the rear door 424 in this embodiment. The flanges 433A, 443B are each comprised of a first member 435A, 435B disposed in a first plane and attached to the interior surface 431 of the rear door 424, which serves as a base, and a second member 437A, 437B attached to the first member 435A, 435B, in a second plane intersecting with the first plane to form a slack storage area 439A, 439B within the flanges 433A, 433B. Other fiber management components, including routing guides, could also be disposed in or on the rear door 424, including the interior surface 431, or an external surface of the rear door 424. Further, the fiber management components could be disposed on any door of the fiber optic housing 420, including the rear door 424, or a front door, as examples.



FIG. 43A is a rear perspective view of a fiber optic housing 428 mounted in an equipment rack illustrating an exemplary embodiment of fiber management components in the form of fiber slack storage and fiber management on a rear door 426 of the fiber optic housing 428. FIG. 43A illustrates optical fiber slack storage and management on a rear door 426 of the fiber optic housing 428. The rear door 426 may pivot downward about a pivot point 430 between the rear door 426 and the fiber optic housing 428 when the rear door 426 is opened. In one embodiment, the pivot point 430 may be a hinge. The rear door 426 may have a plurality of routing clips 432 disposed thereon. The rear door 426 may also have a plurality of lips 434 disposed thereon in one embodiment. In one embodiment, one or more transition boxes 436 may be attached to the rear door 426 via a respective one of the lips 434. In another embodiment, a flip card (not illustrated) may be attached to the rear door 426 via the lips 434. The rear door 426 may also have one or more strain relief locations 438 located near the pivot point 430 in one embodiment.


An optical fiber or fiber optic cable may be routed to the rear of the fiber optic housing 428. In the embodiment of FIG. 43A, the fiber optic cable is a buffer tube with one or more optical fibers 442 connected to one or more of the fiber optic modules/cassettes 422. The optical fibers 442 may be strain-relieved at the strain relief location 438 near the pivot point 430 of the rear door 426 to minimize fiber movement as the rear door 426 is opened. The optical fibers 442 will be routed near the pivot point 430. The routing clips 432 may hold the optical fibers 442 in a loop greater than the minimum bend radius of the optical fibers 442. When ribbon fiber is used, the transition boxes 436 may be used to fan out the ribbon into individual fibers when connectorized. The rear door 426 also has provisions (the lips 434) to hold these fan-out or transition boxes 436.


The fiber optic housing 428 may be any size. Additionally, the fiber optic housing 428 does not need to be an equipment rack-mounted fiber optic housing. For example, the fiber optic housing 428 may be a wall mount fiber optic housing. The rear door 426 may be made out of metal or plastic.


With continuing reference to FIG. 43A, the fiber management components, including the routing clips 432 are disposed in a pedestal or base 445 attached to an interior surface 447 of the rear door 426. In this manner, the routing clips 432 are disposed above the rear door 426 in a raised manner. The base 445 may include one or more recesses 449 to allow the base 445 to be disposed around and not interfere with any other components in the rear door 426. The base 445 can be removed if additional fiber management components are not needed or desired to be disposed on the rear door 426. The base 445 may be of any shape desired, including but not limited to rectangular and circular or elliptical shaped. The base 445 may be attached using one or more fasteners to the rear door 426. Although not illustrated, the base 445 and the fiber management components disposed therein may also be disposed in the front door.



FIG. 43B is a rear perspective view of the fiber optic housing 428 mounted in an equipment rack illustrating an alternate embodiment of fiber slack storage and management on the rear door 426 of the fiber optic housing 428 having fiber optic splice cassettes. In the embodiment of FIG. 43B, the fiber optic cable being routed to the rear of the fiber optic housing 428 is a buffer tube 440 with one or more optical fibers 442 is connected to one or more of the fiber optic modules/cassettes 422. In the embodiment of FIG. 43B, the optical fibers 442 will be routed near the pivot point 430. The optical fibers 442 are held in a loop greater than the minimum bend radius of the optical fibers 442 in the retainers 444 located at the bottom of the rear door 426.



FIG. 43C is a rear perspective view of the fiber optic housing 428 mounted in an equipment rack illustrating an alternate embodiment of fiber slack storage and management on the rear door 426 of the fiber optic housing 428 having fiber optic panels. In the embodiment of FIG. 43C, the fiber optic cable being routed to the rear of the fiber optic housing 428 is the buffer tube 440 with one or more optical fibers 442. The optical fibers 442 transition to a 900 micron optical fiber 446 which is connected to one or more of the fiber optic modules/cassettes 422. In the embodiment of FIG. 43C, the optical fibers 442 will be routed near the pivot point 430. The optical fibers 442 are held in a loop greater than the minimum bend radius of the optical fibers 442 in the retainers 444 located at the bottom of the rear door 426. In the embodiment of FIG. 43C, the 900 micron optical fiber 446 may also be routed through one or more routing clips 448 in the rear of the fiber optic housing 428.


Embodiments disclosed below also include fiber management sections for fiber optic housings, and related components and methods. In one embodiment, a fiber management device is provided. The fiber management device comprises a base and at least one fiber management component attached to the base and configured to manage one or more optical fibers. At least one opening is disposed in the base and configured to route one or more optical fibers from the base. The fiber management component may be a routing guide configured to route the one or more optical fibers as a non-limiting example.


In this regard, FIG. 44 is a rear perspective view of a fiber optic housing 450 mounted in an equipment rack with a fiber management device 452 mounted in the fiber optic housing 450. The fiber optic housing 450 has the fiber management device 452 located in a rear portion of the fiber optic housing 450 that can be removed from the fiber optic housing 450. The fiber management device 452 can be used for fiber slack storage and fiber management in a fiber optic housing for the LAN and data center environment. The fiber management device 452 can store incoming buffer tube or fiber optic cable slack and can also manage 900 micron optical fiber separately from other fiber optic cables or optical fibers.


The fiber management device 452 has the ability to strain-relieve incoming fiber optic cable, store fiber optic cable slack on a base level of the fiber management device 452, and store 900 micron optical fiber on a raised level using routing clips. The fiber management device 452 may also be removable, allowing a technician to install, route, and configure fiber optic cable and slack outside the fiber optic housing 450. In particular, a technician can remove the fiber management device 452 and place it on a work bench or table to freely install, route, and configure the fiber optic cable, as well as provide strain-relief and route the optical fiber per standard practices. After routing, the technician can easily install the fiber management device 452 into the fiber optic housing 450 without the use of tools.


Looking at FIGS. 44 and 45, the fiber optic housing 450 is installed in a typical equipment rack 454 with the rear door 456 down. The fiber management device 452 can be mounted inside a rear door 456 on a bottom panel 457 of the fiber optic housing 450. In this embodiment, the fiber management device 452 includes a base 460 configured to support at least one fiber management component. The base 460 includes at least one attachment device in the form of a mounting clip or tab 466 disposed in the base 460 and configured to be received by at least one receiver 467 disposed in the fiber optic housing 450 to secure the base 460 in the fiber optic housing 450. The tabs 466 could be provided on each side or ends of the base 460, if desired. The base 460 is configured so that the tab 466 can be removed from the receiver 467 to remove the base 460 from the fiber optic housing 450. Alternatively, other fasteners could be used to secure the base 460 inside the fiber optic housing 450. For example, the fastener could be a thumb screw. One or more recesses 473 can also be disposed in the base 460 to provide for the base 460 to not interfere with other components disposed in the fiber optic housing



FIG. 45 is a rear perspective view of the fiber optic housing 450 mounted in the equipment rack with the fiber management device 452 of FIG. 44 removed from the fiber optic housing 450.



FIG. 46A is a front perspective view of the fiber management device 452 of FIG. 45. The fiber management device 452 has a plurality of routing clips 458 disposed on a base 460 of the fiber management device 452. The fiber management device 452 may be a rectangular shape in one embodiment. In one embodiment, the fiber management device 452 also comprises slack storage components in the form of retainers 459 around a perimeter 461 of the fiber management device 452. The retainers 459 are configured to store and/or retain slack storage of optical fibers. The retainers 459 may comprise a first member 481 extending upward from the base 460 and then angled inward to provide a second member 483 to retain the slack optical fiber inside the fiber management device 452. The plurality of routing clips 458 each has a pedestal 462 and a top portion 464 that allows the routing clips 458 to be raised to a level above the base 460 of the fiber management device 452. Pedestals 462 are disposed in the base 460 to support fiber management components above the base 460, in this example, the routing clips 458. The pedestals 462 may allow the routing clips 458 to be rotated about the base 460 if desired, as illustrated in FIGS. 46A and 46B. The fiber management device 452 may also have a plurality of tabs 466 for fastening the fiber management device 452 to the bottom panel 457 of the fiber optic housing 450. The base 460 may also have one or more thumb screws 468 for fastening the fiber management device 452 to the bottom panel 457 of the fiber optic housing 450.



FIG. 46B is a front perspective view of the fiber management device 452 of FIG. 46A illustrating an exemplary fiber optic cable routing with a buffer tube and 900 micron optical fiber. A buffer tube 470 may be routed along the base 460 of the fiber management device 452, while a 900 micron optical fiber 472 may be routed through one or more of the top portions 464 of the routing clips 458 such that the 900 micron optical fiber 472 is routed and stored on a raised level from the base level of the buffer tube 470. In this manner, slack storage, routing, and management is provided for both the buffer tube 470 and the 900 micron optical fiber 472 at the same time using a single device. In one embodiment, the fiber management device 452 may also comprise lances 474 near one or more corners 476 of the fiber management device 452 to provide strain relief for the incoming buffer tube 470.



FIG. 46C is a top front perspective view of the fiber management device 452 of FIG. 45 with exemplary optical fiber splice trays. The fiber management device 452 in this embodiment is similar to the embodiment of FIG. 46B, except the routing clips 458 have been removed and a optical fiber splice tray 478 has been provided on the base 460 of the fiber management device 452. FIG. 46D is a front perspective view of an alternate fiber management device 480. In this example, the fiber management device 480 also includes a base 493 configured to support one or more fiber management components. The fiber management device 480 can be disposed on any surface of a fiber optic housing, including interior surfaces in the enclosure of a fiber optic housing and/or a door of a fiber optic housing. The fiber management device 480 has a plurality of routing clips 482 for routing and storing a buffer tube as fiber management components for routing optical fibers disposed therethrough. The routing clips 482 may be like routing clips 356 in FIG. 31 and contain the same features, as previously described. Also in this embodiment, the routing clips 482 may be disposed on a common pedestal 495 disposed in the base 493 to raise the routing clips 482 above the base 493 and to provide flexibility in attaching other types of fiber management components that may or may not be compatible to be directly attached to the base 493.


The fiber management device 480 also has a fan-out holder 484 for routing and storing one or more 900 micron optical fibers. The fan-out holder 484 is configured to retain and support fan-out bodies for optical fibers as another example of fiber management. The fiber management device 480 may also have a plurality of lances 486 for providing strain relief. In one embodiment, the lances 486 are positioned on an edge 488 of the fiber management device 480. The fiber management device 480 may also have a plurality of attachment devices in the form of a plurality of integrated mounting clips 490 that are configured to attach the fiber management device 480 to a fiber optic housing or door of a fiber optic housing, as examples of surfaces in which the fiber management device 480 can be attached.


The fiber management devices described herein may be made out of metal or plastic. Instead of a single fiber management device, two or more smaller fiber management devices could be used such that fiber management devices are provided in different portions of a fiber optic housing, as illustrated in FIG. 47. FIG. 47 is a rear perspective view of the fiber optic housing illustrating optical fiber storage using two (2) fiber management devices similar to the fiber management devices 480 of FIG. 46D. FIG. 47 illustrates optical fiber management and storage in the rear of the housing on both the top and bottom. The optical fiber management and storage at the top is provided by routing clips and the optical fiber management and storage on the bottom is provided using the fiber management devices 480.


An attachment housing (also known as a caboose, or an expandable caboose) provides additional features and may be used to expand the depth of the fiber optic housing, as illustrated in FIGS. 48-50B. In one embodiment, the attachment housing is designed to be attached to a seven-inch fiber optic housing for use in the LAN and data center environment which may be mountable in the 19-inch or 23-inch equipment racks or cabinets. The attachment housing removably attaches to the side of the fiber optic housing in the strain relief bracket location, without the need for any extra hardware. The attachment housing allows the user to add splicing, more slack storage, and even more strain relief capability. In this way, the attachment housing allows an equipment rack-mounted fiber optic housing to be upgraded in the equipment rack from a connector housing to a splice housing, slack storage housing, or to increase the strain relief capacity of the housing to store plug and play cable assemblies. The attachment housing increases the depth of the fiber optic housing without using any more equipment rack space.


The attachment housing may involve simple tool-less installation to the fiber optic housing using the attachment features provided on the fiber optic housing. The attachment housing may use the existing rear door of the fiber optic housing, and may save rack space by only increasing the depth of the fiber optic housing but not the height. Additionally, the attachment housing gives the user more flexibility due to the fact that the attachment housing can be added at any time, even after the fiber optic housing is in service.


In this regard, embodiments disclosed herein also include apparatuses and related components and methods for expanding the capacity of fiber optic housings. In one embodiment, a fiber optic apparatus comprising an attachment housing comprising a side, a top, and a bottom defining an attachment interior chamber configured to support at least a portion of fiber optic equipment is provided. The attachment housing is tool-lessly, and by other than external fasteners, configured to removably attach to a fiber optic housing comprising a housing interior chamber configured to support fiber optic equipment to couple the attachment interior chamber and the housing interior chamber and expand the capacity of the fiber optic housing.


In an embodiment, the attachment housing is removably attached to the fiber optic housing by means of snap attachments integral to at least one of the attachment housing and the fiber optic housing. In another embodiment, one or more optical components mount within the attachment housing. In another embodiment, the optical components may include, without limitation, one or more splitter trays, fiber optic jumper slack storage, and one or more strain relief devices.


In this regard, the term “capacity” is used to refer to any or all of the following non-limiting examples: additional fiber optic housings in a data distribution center; increased internal volume of a fiber optic housing; increased space in an equipment rack for adding additional fiber optic housings; increased space for making additional connections of fiber optic cables or optical fibers to fiber optic equipment; and increased space for supporting additional fiber optic equipment such as fiber optic modules, fiber optic panels, splitter trays, fiber optic jumper storage, and/or strain relief devices. As one non-limiting example, a data distribution center may have space for a certain number of equipment racks, each of which can hold a certain number of fiber optic housings, each of which can hold a certain number of optical components. By adding the attachment housing to the fiber optic housing, additional fiber optic components may be added to the data distribution center without adding additional equipment racks or fiber optic housings. This would be one non-limiting example of expanding “capacity.”


In this regard, FIG. 48 is a front perspective view of the fiber optic housing illustrating an expandable attachment housing separated from the fiber optic housing. FIG. 48 illustrates a fiber optic housing 492, an attachment housing 494, and a rear door 496 separated from each other. The attachment housing 494 has a top 493, a bottom 495, and one or more sides 497 which define an attachment interior chamber 499 configured to support fiber optic equipment. The fiber optic housing 492 may be of any type, including but not limited to, any of the fiber optic housings disclosed herein. The fiber optic housing 492 has a housing interior chamber 501 (illustrated in FIGS. 51 and 52) configured to support fiber optic equipment. In one embodiment, the housing interior chamber 501 may be similar to any one or more of the interior chamber 135 in FIG. 15, the interior chamber 161 in FIGS. 16, 17A, and 17B, or the interior chamber 221 in FIGS. 19A, 19B, and 20B. The rear door 496 is removed from the fiber optic housing 492 and the attachment housing 494 is attached to the rear of the fiber optic housing 492. The rear door 496 is then reinstalled on the rear of the attachment housing 494. In FIG. 48, the attachment housing 494 is illustrated with splice trays 498.


In one embodiment, the attachment housing 494 is attached to the fiber optic housing 492 by means of snap attachment features like those disclosed herein. In one embodiment, the attachment housing 494 has a plurality of receivers 500, 502 located on sides 504, 506 of the attachment housing 494. In one embodiment, the receivers 500 may be square shaped and the receivers 502 may be arcuate-shaped, but in other embodiments, the receivers 500, 502 may be any shape, including but not limited to circular, semi-circular, oval, or keyhole-shaped. The fiber optic housing 492 may have a plurality of snap attachments 508, 510 located on a left side 512 of the fiber optic housing 492 (and on a right side as well, though not illustrated in FIG. 48). The snap attachments 508, 510 may be of any shape that corresponds to the shape of the receivers 500, 502. The receivers 500 are configured to receive the snap attachments 508 and the receivers 502 are configured to receive the snap attachments 510 in order to removably attach the attachment housing 494 to the fiber optic housing 492. In one embodiment, one or more of the snap attachments 510 may be in the form of release buttons configured to allow the attachment housing 494 to be easily and quickly removed, or detached, from the fiber optic housing 492.



FIG. 49 is a front perspective view of the fiber optic housing 492 illustrating the expandable attachment housing 494 assembled to the fiber optic housing 492. FIG. 49 illustrates the attachment housing 494 after it has been attached to the fiber optic housing 492. The attachment housing 494 is removably attached to the fiber optic housing 492 using the snap attachments 508, 510 on the sides of the fiber optic housing 492. Once the attachment housing 494 is removably attached to the fiber optic housing 492, additional capacity for adding fiber optic equipment is provided. In this manner, the fiber optic housing 492 is configured to support at least a portion of fiber optic equipment, and the attachment housing 494 is also configured to support at least a portion of fiber optic equipment.



FIGS. 50A and 50B show various versions of an attachment housing that can be used as the attachment housing 494 of FIGS. 48 and 49. FIG. 50A is a rear, perspective view of the expandable attachment housing 494 with jumper slack storage 514. FIG. 50B is a rear, perspective view of the expandable attachment housing 494 with internal strain relief brackets 516.


The attachment housings disclosed herein may be removably attached to any size housing. Additionally, the attachment housings may provide for other functions, including, but not limited to, cooling fans and panels to provide additional connection capacity.



FIG. 51 is a rear view of an exemplary fiber optic housing illustrating how a rear door can be easily attached or removed. In one embodiment, a rear door needs to be removed in order to attach an attachment housing to a fiber optic housing, as seen in FIG. 48. FIG. 51 illustrates a fiber optic housing 518 having a top 520, a left side 522, a right side 524, and a bottom 526. The top 520, the left side 522, the right side 524, and the bottom 526 together define the housing interior chamber 501 configured to support at least a portion of fiber optic equipment. The bottom 526 has an edge 528 with corners 530A, 530B. Male hinge portions 532A, 532B are located at or near the corners 530A, 530B, respectively. Rods 534A, 534B extend from the male hinge portions 532A, 532B. A rear door 536 has a pair of female hinge portions 538A, 538B with channels 540A, 540B configured to receive the rods 534A, 534B. A tab 542 is provided on the edge 528 of the bottom 526 of the fiber optic housing 518 near the male hinge portions 532A, 532B.



FIG. 52 is a close-up view of how the rear door 536 of FIG. 51 can be easily attached to or removed from the fiber optic housing 518.


Referring to FIGS. 51 and 52, the tab 542 on the edge 528 of the bottom 526 of the fiber optic housing 518 may be raised up to allow the channel 540B of the female hinge portion 538B to be positioned under the tab 542 so that the channel 540B can be slid onto the rod 534B to attach the rear door 536 to the fiber optic housing 518. If the rear door 536 is attached and it is desired to remove the rear door 536, the tab 542 may be raised in order to allow the rear door 536 to be slid such that the channel 540B is disengaged with the rod 534B, thereby allowing the rear door 536 to be removed.


Once the door is removed, an attachment housing may be attached to the fiber optic housing 518. The attachment housing may also have the tab 542 and the other features illustrated in FIGS. 51 and 52 so that the door is easily attached and removed, or detached, from the attachment housing as well. The features illustrated in FIGS. 51 and 52 also allow a door to be interchangeable for the front and rear of the fiber optic housing. The doors can be removed from the fiber optic housing and attachable to either the front or rear of the fiber optic housing.


As discussed above, the fiber optic housings disclosed herein can provide one or more features and options for fiber optic housings. Some non-limiting and non-exhaustive features disclosed herein include quick snap to rack capability for the fiber optic housing, snap-on mounting brackets, snap-on strain relief brackets, quick fit assembly housing, with no hardware or tools needed, removable top for fiber optic housings, removable front section for low profile rack installation, removable front jumper management device with pass-through grommets, integrated rails to house large splice modules, clips to hold fiber optic panels or smaller fiber optic modules, optical fiber slack storage and management on rear door, rubber entry grommets on all sides, molded in flexible edge protection for the fiber jumpers, and expandable housing using additional caboose housing.


As used in this disclosure, the terms “fiber optic module” and “fiber optic cassette” are used interchangeably to refer to either a fiber optic module or a fiber optic cassette, including but not limited to a splice cassette.


Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which the invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.


Further, as used herein, it is intended that terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be bare, upcoated, colored, buffered, tight-buffered, loose-tube, ribbonized and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets or the like. Likewise, other types of suitable optical fibers include bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve® Multimode fiber commercially available from Corning Incorporated. Suitable fibers of this type are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163.


Therefore, it is to be understood that the embodiments are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims
  • 1. A fiber optic system, comprising: a fiber optic housing defining at least one interior chamber configured to support fiber optic equipment; anda removable front section connected to the fiber optic housing and defining at least one front section interior chamber coupled to the at least one interior chamber of the fiber optic housing;wherein the removable front section is configured to support at least one fiber management device to manage one or more optical fibers connected to fiber optic equipment disposed in the fiber optic housing.
  • 2. The fiber optic system of claim 1, further comprising a door attached to the removable front section and configured to close off at least a portion of the at least one front section interior chamber.
  • 3. The fiber optic system of claim 1, wherein the at least one fiber management device is disposed in the removable front section.
  • 4. The fiber optic system of claim 3, wherein the at least one fiber management device is comprised of at least one opening disposed through the removable front section configured to route the one or more optical fibers outside of the at least one front section interior chamber.
  • 5. The fiber optic system of claim 4, further comprising a flexible edge protection piece molded into the at least one opening.
  • 6. The fiber optic system of claim 4, further comprising at least one grommet disposed in the at least one opening.
  • 7. The fiber optic system of claim 6, wherein the at least one grommet is removable from the at least one opening to expose the at least one opening to allow the one or more optical fibers to be routed through the at least one opening.
  • 8. The fiber optic system of claim 6, wherein the at least one grommet is made from a material comprised of a polymer.
  • 9. The fiber optic system of claim 3, wherein the at least one fiber management device is comprised of at least one routing guide configured to route the one or more optical fibers.
  • 10. The fiber optic system of claim 9, wherein the at least one routing guide is comprised of a first routing guide disposed on a first end of a base attached to the removable front section and a second routing guide disposed on a second end of the base.
  • 11. The fiber optic system of claim 9, wherein the at least one routing guide is comprised of at least one routing clip.
  • 12. The fiber optic system of claim 1, wherein the at least one fiber management device is comprised of at least one first fiber management device disposed on an interior surface of a top side of the removable front section and is comprised of at least one second fiber management device disposed on an interior surface of a bottom side of the removable front section.
  • 13. The fiber optic system of claim 1, wherein the at least one fiber management device is comprised of a base;at least one fiber management component attached to the base and configured to manage one or more optical fibers; andat least one opening disposed in the base and configured to route one or more optical fibers from the removable front section.
  • 14. The fiber optic system of claim 13, further comprising at least one grommet disposed in the at least one opening.
  • 15. The fiber optic system of claim 14, wherein the at least one grommet is removable from the at least one opening to expose the at least one opening to allow the one or more optical fibers to be routed through the at least one opening.
  • 16. The fiber optic system of claim 13, wherein the at least one fiber management component is comprised of at least one routing guide configured to route one or more optical fibers.
  • 17. The fiber optic system of claim 16, wherein the at least one routing guide is comprised of a first routing guide disposed on a first end of the base and a second routing guide disposed on a second end of the base.
  • 18. The fiber optic system of claim 16, wherein the at least one routing guide is comprised of at least one routing clip.
  • 19. The fiber optic system of claim 16, wherein the at least one routing guide is comprised of a first arcuate member having a first end attached to the base and a second end adjacent a second end of a second member having a first end attached to the base.
  • 20. The fiber optic system of claim 19, wherein the first arcuate member is flexible.
  • 21. The fiber optic system of claim 19, wherein the second end of the first arcuate member abuts the second end of the second member when a compression force is not applied to the first arcuate member.
  • 22. The fiber optic system of claim 21, wherein the second end of the first arcuate member is configured to separate from the second end of the second member when a compression force is applied to the first arcuate member.
  • 23. The fiber optic system of claim 1, wherein the removable front section includes a top panel connected to first and second side panels and a bottom panel connected to the first and second side panels, wherein the top panel, bottom panel and first and second side panels define the at least one front section interior chamber.
  • 24. The fiber optic system of claim 1, wherein the removable front section is tool-lessly connectable to and removable from the fiber optic housing.
  • 25. A method of managing optical fiber in a fiber optic system, comprising: providing a fiber optic housing defining at least one interior chamber configured to support fiber optic equipment; andattaching a removable front section to the fiber optic housing defining at least one front section interior chamber coupled to the at least one interior chamber of the fiber optic housing,wherein the removable front section is configured to support at least one fiber management device to manage one or more optical fibers connected to fiber optic equipment disposed in the fiber optic housing.
  • 26. The method of claim 25, further comprising routing one or more optical fibers from fiber optic equipment disposed in the fiber optic housing to the removable front section.
  • 27. The method of claim 26, further comprising managing the one or more optical fibers in the at least one fiber management device disposed in the removable front section.
  • 28. The method of claim 27, wherein managing the one or more optical fibers comprises routing the one or more optical fibers through at least one opening disposed through the removable front section configured to route the one or more optical fibers outside of the at least one front section interior chamber.
  • 29. The method of claim 28, further comprising routing the one or more optical fibers through a flexible edge protection piece molded into the at least one opening.
  • 30. The method of claim 28, further comprising routing the one or more optical fibers through at least one grommet disposed in the at least one opening.
  • 31. The method of claim 27, wherein managing the one or more optical fibers comprises routing the one or more optical fibers through at least one fiber management component comprised of at least one routing guide.
  • 32. The method of claim 27, wherein managing the one or more optical fibers in the fiber optic housing comprises routing one or more optical fibers to at least one fiber management component disposed in the fiber management device, the fiber management device comprises: a base;the at least one fiber management component attached to the base andconfigured to manage one or more optical fibers connected to the fiber optic equipment; andat least one opening disposed in the base and configured to route the one or more optical fibers from the fiber optic housing.
  • 33. The method of claim 32, further comprising routing the one or more optical fibers through the at least one opening disposed in the base of the fiber management device.
  • 34. The method of claim 32, further comprising removing the fiber management device from the removable front section.
  • 35. The method of claim 32, further comprising: unrouting the one or more optical fibers through the at least one opening; and inserting at least one grommet in the at least one opening disposed in the base.
  • 36. The method of claim 32, further comprising mounting the fiber management device in the removable front section.
  • 37. The method of claim 36, wherein mounting the fiber management device further comprises disposing at least one fastener through at least one opening disposed in a mounting platform in the base into at least one receiver disposed in the removable front section.
  • 38. The method of claim 32, wherein the at least one fiber management device is comprised of at least one routing guide, wherein routing the one or more optical fibers comprises: separating a first arcuate member of the at least one routing guide from a second member of the at least one routing guide;disposing the one or more optical fibers through an opening formed by the separating of the first arcuate member from the second member; andreleasing the separation of the first arcuate member from the second member to close the at least one routing guide while the one or more optical fibers are disposed inside the at least one routing guide.
  • 39. The method of claim 25, wherein the removable front section includes a top panel connected to first and second side panels and a bottom panel connected to the first and second side panels, wherein the top panel, bottom panel and first and second side panels define the at least one front section interior chamber.
  • 40. The method of claim 25, wherein attaching the removable front section to the fiber optic housing is performed tool-lessly.
  • 41. The method of claim 25, wherein the removable front section includes a door configured to close off at least a portion of the at least one front section interior chamber.
RELATED APPLICATIONS

The present application is related to U.S. patent application Ser. No. 12/953,134, filed Nov. 23, 2010, entitled “Fiber Optic Housings Configured for Tool-less Assembly, and Related Components and Methods,” the disclosure of which is relied upon and incorporated herein by reference in its entirety. The present application is also related to U.S. patent application Ser. No. 12/953,101, filed Nov. 23, 2010, entitled “Apparatuses and Related Components and Methods for Expanding Capacity of Fiber Optic Housings,” the disclosure of which is relied upon and incorporated herein by reference in its entirety. The present application is also related to U.S. patent application Ser. No. 12/953,164, filed Nov. 23, 2010, entitled “Fiber Optic Housings Having a Removable Top, and Related Components and Methods,” the disclosure of which is relied upon and incorporated herein by reference in its entirety. The present application is also related to U.S. patent application Ser. No. 12/953,003, filed Nov. 23, 2010, entitled “Removable Fiber Management Devices for Fiber Optic Housings, and Related Components and Methods,” the disclosure of which is relied upon and incorporated herein by reference in its entirety. The present application is also related to U.S. patent application Ser. No. 12/953,039, filed Nov. 23, 2010, entitled “Door Fiber Management for Fiber Optic Housings, and Related Components and Methods,” the disclosure of which is relied upon and incorporated herein by reference in its entirety. The present application is also related to U.S. patent application Ser. No. 12/952,960, filed Nov. 23, 2010, entitled “Fiber Management Devices for Fiber Optic Housings, and Related Components and Methods,” the disclosure of which is relied upon and incorporated herein by reference in its entirety. The present application is also related to U.S. patent application Ser. No. 12/952,912, filed Nov. 23, 2010, entitled “Apparatuses and Related Components and Methods for Attachment and Release of Fiber Optic Housings To and From an Equipment Rack,” the disclosure of which is relied upon and incorporated herein by reference in its entirety. The present application is also related to U.S. Provisional Patent Application Ser. No. 61/329,898, filed Apr. 30, 2010, entitled “Rotatable Routing Guide Assembly” the contents of which are relied upon and incorporated herein by reference in their entirety. The present application is also related to U.S. Provisional Patent Application Ser. No. 61/332,572, filed May 7, 2010, entitled “Fiber Optic Housing” the contents of which are relied upon and incorporated herein by reference in their entirety. The present application is also related to U.S. Provisional Patent Application Ser. No. 61/332,548, filed May 7, 2010, entitled “Attachment Housing for a Fiber Optic Housing” the contents of which are relied upon and incorporated herein by reference in their entirety. The present application is also related to U.S. Provisional Patent Application Ser. No. 61/332,529, filed May 7, 2010, entitled “Fiber Optic Management Area in a Fiber Optic Housing” the contents of which are relied upon and incorporated herein by reference in their entirety. The present application is also related to U.S. Provisional Patent Application Ser. No. 61/332,508, filed May 7, 2010, entitled “Grommet and Routing Clip Assembly” the contents of which are relied upon and incorporated herein by reference in their entirety. The present application is also related to U.S. Provisional Patent Application Ser. No. 61/329,925, filed Apr. 30, 2010, entitled “Fiber Optic Housing Adapted to Accommodate Both Modules and Panels,” the disclosure of which is relied upon and incorporated herein by reference in its entirety. The present application is also related to U.S. patent application Ser. No. 12/940,585, filed Nov. 5, 2010, entitled “Fiber Optic Housings Configured to Accommodate Fiber Optic Modules/Cassettes and Fiber Optic Panels, and Related Components and Methods,” the disclosure of which is relied upon and incorporated herein by reference in its entirety. The present application is related to U.S. Provisional Patent Application Ser. No. 61/329,948, filed Apr. 30, 2010, entitled “Stackable Shelf for a Fiber Optic Housing,” the disclosure of which is relied upon and incorporated herein by reference in its entirety. The present application is also related to U.S. patent application Ser. No. 12/940,699, filed Nov. 5, 2010, entitled “Stackable Shelves for a Fiber Optic Housing, and Related Components and Methods,” the disclosure of which is relied upon and incorporated herein by reference in its entirety. The present application is also related to U.S. Patent Application Ser. No. 61/180,331, filed May 21, 2009, entitled “Fiber Optic Equipment Guides and Rails Configured With Stopping Position(s), and Related Equipment,” the disclosure of which is relied upon and incorporated herein by reference in its entirety. The present application is also related to U.S. patent application Ser. No. 12/576,806, filed Oct. 9, 2009, entitled “Fiber Optic Equipment Guides and Rails Configured With Stopping Position(s), and Related Equipment and Methods,” the disclosure of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (1132)
Number Name Date Kind
620013 Barnes Feb 1899 A
864761 Erickson Aug 1907 A
2528910 Poe Nov 1950 A
2614685 Miller Oct 1952 A
3057525 Malachick Oct 1962 A
3081717 Yurevich Mar 1963 A
3175873 Blomquist et al. Mar 1965 A
3212192 Bachmann et al. Oct 1965 A
3433886 Myers Mar 1969 A
3494306 Aguilar Feb 1970 A
3545712 Ellis Dec 1970 A
3568263 Meehan Mar 1971 A
3646244 Cole Feb 1972 A
3664514 Drake May 1972 A
3683238 Olds et al. Aug 1972 A
3701835 Eisele et al. Oct 1972 A
3880396 Freiberger et al. Apr 1975 A
3906592 Sakasegawa et al. Sep 1975 A
3991960 Tanaka Nov 1976 A
4047797 Arnold et al. Sep 1977 A
4059872 Delesandri Nov 1977 A
4119285 Bisping et al. Oct 1978 A
4148454 Carlson et al. Apr 1979 A
4239316 Spaulding Dec 1980 A
4244638 Little et al. Jan 1981 A
4266853 Hutchins et al. May 1981 A
4285486 Von Osten et al. Aug 1981 A
4303296 Spaulding Dec 1981 A
4354731 Mouissie Oct 1982 A
4457482 Kitagawa Jul 1984 A
4525012 Dunner Jun 1985 A
4540222 Burrell Sep 1985 A
4561615 Medlin, Jr. Dec 1985 A
4564163 Barnett Jan 1986 A
4597173 Chino et al. Jul 1986 A
4611875 Clarke et al. Sep 1986 A
4634214 Cannon, Jr. et al. Jan 1987 A
4635886 Santucci et al. Jan 1987 A
4645292 Sammueller Feb 1987 A
4657340 Tanaka et al. Apr 1987 A
4681288 Nakamura Jul 1987 A
4702551 Coulombe Oct 1987 A
4711518 Shank et al. Dec 1987 A
4736100 Vastagh Apr 1988 A
4744629 Bertoglio et al. May 1988 A
4747020 Brickley et al. May 1988 A
4752110 Blanchet et al. Jun 1988 A
4753510 Sezerman Jun 1988 A
4787706 Cannon, Jr. et al. Nov 1988 A
4792203 Nelson et al. Dec 1988 A
4798432 Becker et al. Jan 1989 A
4805979 Bossard et al. Feb 1989 A
4808774 Crane Feb 1989 A
4824193 Maeda et al. Apr 1989 A
4824196 Bylander Apr 1989 A
4826277 Weber et al. May 1989 A
4838643 Hodges et al. Jun 1989 A
4840449 Ghandeharizadeh Jun 1989 A
4865280 Wollar Sep 1989 A
4898448 Cooper Feb 1990 A
4900123 Barlow Feb 1990 A
4911662 Debortoli et al. Mar 1990 A
4913514 Then Apr 1990 A
4948220 Violo et al. Aug 1990 A
4949376 Nieves et al. Aug 1990 A
4971421 Ori Nov 1990 A
4986625 Yamada et al. Jan 1991 A
4988831 Wilson et al. Jan 1991 A
4991928 Zimmer Feb 1991 A
4995688 Anton et al. Feb 1991 A
5001602 Suffi et al. Mar 1991 A
5005941 Barlow et al. Apr 1991 A
5017211 Wenger et al. May 1991 A
5023646 Ishida et al. Jun 1991 A
5024498 Becker et al. Jun 1991 A
5028114 Krausse et al. Jul 1991 A
5037175 Weber Aug 1991 A
5048918 Daems et al. Sep 1991 A
5060897 Thalenfeld Oct 1991 A
5066149 Wheeler et al. Nov 1991 A
5067784 Debortoli et al. Nov 1991 A
5071211 Debortoli et al. Dec 1991 A
5071220 Ruello et al. Dec 1991 A
5073042 Mulholland et al. Dec 1991 A
5074635 Justice et al. Dec 1991 A
5076688 Bowen et al. Dec 1991 A
5080459 Wettengel et al. Jan 1992 A
5100221 Carney et al. Mar 1992 A
5104336 Hatanaka et al. Apr 1992 A
5125060 Edmundson Jun 1992 A
5127082 Below et al. Jun 1992 A
5127851 Hilbert et al. Jul 1992 A
5129030 Petrunia Jul 1992 A
5129607 Satoh Jul 1992 A
5133039 Dixit Jul 1992 A
5138678 Briggs et al. Aug 1992 A
5138688 Debortoli Aug 1992 A
5142598 Tabone Aug 1992 A
5142607 Petrotta et al. Aug 1992 A
5150277 Bainbridge et al. Sep 1992 A
D330368 Bourgeois et al. Oct 1992 S
5152760 Latina Oct 1992 A
5153910 Mickelson et al. Oct 1992 A
5157749 Briggs et al. Oct 1992 A
5167001 Debortoli et al. Nov 1992 A
5170452 Ott Dec 1992 A
5189723 Johnson et al. Feb 1993 A
5199099 Dalgoutte Mar 1993 A
5204929 Machall et al. Apr 1993 A
5209572 Jordan May 1993 A
5214735 Henneberger et al. May 1993 A
5224186 Kishimoto et al. Jun 1993 A
5230492 Zwart et al. Jul 1993 A
5231687 Handley Jul 1993 A
5231688 Zimmer Jul 1993 A
5233674 Vladic Aug 1993 A
5239609 Auteri Aug 1993 A
5243679 Sharrow et al. Sep 1993 A
5253320 Takahashi et al. Oct 1993 A
5260957 Hakimi et al. Nov 1993 A
5261633 Mastro Nov 1993 A
5265187 Morin et al. Nov 1993 A
5274729 King et al. Dec 1993 A
5274731 White Dec 1993 A
5278933 Hunsinger et al. Jan 1994 A
5280138 Preston et al. Jan 1994 A
5285515 Milanowski et al. Feb 1994 A
5291570 Filgas et al. Mar 1994 A
5315679 Baldwin et al. May 1994 A
5317663 Beard et al. May 1994 A
5323478 Milanowski et al. Jun 1994 A
5323480 Mullaney et al. Jun 1994 A
5329520 Richardson Jul 1994 A
5333193 Cote et al. Jul 1994 A
5333221 Briggs et al. Jul 1994 A
5333222 Belenkiy et al. Jul 1994 A
5337400 Morin et al. Aug 1994 A
5339379 Kutsch et al. Aug 1994 A
5347603 Belenkiy et al. Sep 1994 A
5353367 Czosnowski et al. Oct 1994 A
5359688 Underwood Oct 1994 A
5363466 Milanowski et al. Nov 1994 A
5363467 Keith Nov 1994 A
5366388 Freeman et al. Nov 1994 A
5367598 Devenish, III et al. Nov 1994 A
5373421 Detsikas et al. Dec 1994 A
5383051 Delrosso et al. Jan 1995 A
5390272 Repta et al. Feb 1995 A
5398295 Chang et al. Mar 1995 A
5398820 Kiss Mar 1995 A
5399814 Staber et al. Mar 1995 A
5401193 Lo Cicero et al. Mar 1995 A
5402515 Vidacovich et al. Mar 1995 A
5408557 Hsu Apr 1995 A
5408570 Cook et al. Apr 1995 A
RE34955 Anton et al. May 1995 E
5412751 Siemon et al. May 1995 A
5416837 Cote et al. May 1995 A
5418874 Carlisle et al. May 1995 A
5420956 Grugel et al. May 1995 A
5420958 Henson et al. May 1995 A
5421532 Richter Jun 1995 A
5438641 Malacarne Aug 1995 A
5442725 Peng Aug 1995 A
5442726 Howard et al. Aug 1995 A
5443232 Kesinger et al. Aug 1995 A
5444804 Yui et al. Aug 1995 A
5448015 Jamet et al. Sep 1995 A
5450518 Burek et al. Sep 1995 A
5458019 Trevino Oct 1995 A
5471555 Braga et al. Nov 1995 A
5479505 Butler et al. Dec 1995 A
5481634 Anderson et al. Jan 1996 A
5481939 Bernardini Jan 1996 A
5490229 Ghandeharizadeh et al. Feb 1996 A
5495549 Schneider et al. Feb 1996 A
5497416 Butler, III et al. Mar 1996 A
5497444 Wheeler Mar 1996 A
5511144 Hawkins et al. Apr 1996 A
5511798 Kawamoto et al. Apr 1996 A
5519804 Burek et al. May 1996 A
5530786 Radliff et al. Jun 1996 A
5535970 Gobbi Jul 1996 A
5538213 Brown Jul 1996 A
5542015 Hultermans Jul 1996 A
5546495 Bruckner et al. Aug 1996 A
5548641 Butler et al. Aug 1996 A
5553183 Bechamps Sep 1996 A
5553186 Allen Sep 1996 A
5563971 Abendschein Oct 1996 A
5572617 Bernhardt et al. Nov 1996 A
5575680 Suffi Nov 1996 A
5577151 Hoffer Nov 1996 A
5590234 Pulido Dec 1996 A
5595507 Braun et al. Jan 1997 A
5596670 Debortoli et al. Jan 1997 A
5600020 Wehle et al. Feb 1997 A
5602954 Nolf et al. Feb 1997 A
5608606 Blaney Mar 1997 A
5613030 Hoffer et al. Mar 1997 A
5617501 Miller et al. Apr 1997 A
5638474 Lampert et al. Jun 1997 A
5640476 Womack et al. Jun 1997 A
5640482 Barry et al. Jun 1997 A
5647043 Anderson et al. Jul 1997 A
5647045 Robinson et al. Jul 1997 A
5650334 Zuk et al. Jul 1997 A
5668910 Arnett Sep 1997 A
5668911 Debortoli Sep 1997 A
5671273 Lanquist Sep 1997 A
5689605 Cobb et al. Nov 1997 A
5689607 Vincent et al. Nov 1997 A
5692079 Iso Nov 1997 A
5694511 Pimpinella et al. Dec 1997 A
5701380 Larson et al. Dec 1997 A
5704573 de Beers et al. Jan 1998 A
5708742 Beun et al. Jan 1998 A
5708751 Mattei Jan 1998 A
5710851 Walter et al. Jan 1998 A
5717810 Wheeler Feb 1998 A
5734776 Puetz Mar 1998 A
5740300 Hodge Apr 1998 A
5742982 Dodd et al. Apr 1998 A
5751874 Chudoba et al. May 1998 A
5751882 Daems et al. May 1998 A
5754724 Peterson et al. May 1998 A
5758003 Wheeler et al. May 1998 A
5758004 Alarcon et al. May 1998 A
5761026 Robinson et al. Jun 1998 A
5765698 Bullivant Jun 1998 A
5769908 Koppelman Jun 1998 A
5774612 Belenkiy et al. Jun 1998 A
5778122 Giebel et al. Jul 1998 A
5778130 Walters et al. Jul 1998 A
5781686 Robinson et al. Jul 1998 A
5788087 Orlando Aug 1998 A
5790741 Vincent et al. Aug 1998 A
5793920 Wilkins et al. Aug 1998 A
5793921 Wilkins et al. Aug 1998 A
5796908 Vicory Aug 1998 A
5806687 Ballesteros et al. Sep 1998 A
5823646 Arizpe et al. Oct 1998 A
5825955 Ernst et al. Oct 1998 A
5825961 Wilkins et al. Oct 1998 A
5828807 Tucker et al. Oct 1998 A
5832162 Sarbell Nov 1998 A
5835657 Suarez et al. Nov 1998 A
5835658 Smith Nov 1998 A
5862290 Burek et al. Jan 1999 A
5870519 Jenkins et al. Feb 1999 A
5874733 Silver et al. Feb 1999 A
5877565 Hollenbach et al. Mar 1999 A
5880864 Williams et al. Mar 1999 A
5881200 Burt Mar 1999 A
5883995 Lu et al Mar 1999 A
5884003 Cloud et al. Mar 1999 A
5887095 Nagase et al. Mar 1999 A
5887106 Cheeseman et al. Mar 1999 A
5892877 Meyerhoefer Apr 1999 A
5894540 Drewing Apr 1999 A
5901220 Garver et al. May 1999 A
5903693 Brown May 1999 A
5906342 Kraus May 1999 A
5909298 Shimada et al. Jun 1999 A
5913006 Summach Jun 1999 A
5914976 Jayaraman et al. Jun 1999 A
5915055 Bennett et al. Jun 1999 A
5923804 Rosson Jul 1999 A
5930425 Abel et al. Jul 1999 A
5933557 Ott Aug 1999 A
5940563 Kobayashi et al. Aug 1999 A
5943460 Mead et al. Aug 1999 A
5945633 Ott et al. Aug 1999 A
5946440 Puetz Aug 1999 A
5949946 Debortoli et al. Sep 1999 A
5953962 Hewson Sep 1999 A
5956439 Pimpinella Sep 1999 A
5956444 Duda et al. Sep 1999 A
5956449 Otani et al. Sep 1999 A
5966492 Bechamps et al. Oct 1999 A
5969294 Eberle et al. Oct 1999 A
5975769 Larson et al. Nov 1999 A
5978540 Bechamps et al. Nov 1999 A
5980303 Lee et al. Nov 1999 A
5987203 Abel et al. Nov 1999 A
5993071 Hultermans Nov 1999 A
5995700 Burek et al. Nov 1999 A
5999393 Brower Dec 1999 A
6001831 Papenfuhs et al. Dec 1999 A
6009224 Allen Dec 1999 A
6009225 Ray et al. Dec 1999 A
6011831 Nieves et al. Jan 2000 A
6027252 Erdman et al. Feb 2000 A
6027352 Byrne Feb 2000 A
6041042 Bussiere Mar 2000 A
6044193 Szentesi et al. Mar 2000 A
6044194 Meyerhoefer Mar 2000 A
6049963 Boe Apr 2000 A
6058235 Hiramatsu et al. May 2000 A
6061492 Strause et al. May 2000 A
6078661 Arnett et al. Jun 2000 A
6079881 Roth Jun 2000 A
6088497 Phillips et al. Jul 2000 A
6118075 Baker et al. Sep 2000 A
6118868 Daoud Sep 2000 A
6127627 Daoud Oct 2000 A
6130983 Cheng Oct 2000 A
6134370 Childers et al. Oct 2000 A
6141222 Toor et al. Oct 2000 A
6149313 Giebel et al. Nov 2000 A
6149315 Stephenson Nov 2000 A
6151432 Nakajima et al. Nov 2000 A
6160946 Thompson et al. Dec 2000 A
6170784 MacDonald et al. Jan 2001 B1
6172782 Kobayashi Jan 2001 B1
6175079 Johnston et al. Jan 2001 B1
6181861 Wenski et al. Jan 2001 B1
6188687 Mussman et al. Feb 2001 B1
6188825 Bandy et al. Feb 2001 B1
6192180 Kim et al. Feb 2001 B1
6200170 Amberg et al. Mar 2001 B1
6201919 Puetz et al. Mar 2001 B1
6201920 Noble et al. Mar 2001 B1
6208796 Williams Vigliaturo Mar 2001 B1
6212324 Lin et al. Apr 2001 B1
6215938 Reitmeier et al. Apr 2001 B1
6216987 Fukuo Apr 2001 B1
6227717 Ott et al. May 2001 B1
6229948 Blee et al. May 2001 B1
6234683 Waldron et al. May 2001 B1
6234685 Carlisle et al. May 2001 B1
6236795 Rodgers May 2001 B1
6240229 Roth May 2001 B1
6243522 Allan et al. Jun 2001 B1
6245998 Curry et al. Jun 2001 B1
6247851 Ichihara Jun 2001 B1
6250816 Johnston et al. Jun 2001 B1
6259850 Crosby, Jr. et al. Jul 2001 B1
6263141 Smith Jul 2001 B1
6265680 Robertson Jul 2001 B1
6269212 Schiattone Jul 2001 B1
6273532 Chen et al. Aug 2001 B1
6275641 Daoud Aug 2001 B1
6278829 BuAbbud et al. Aug 2001 B1
6278831 Henderson et al. Aug 2001 B1
D448005 Klein, Jr. et al. Sep 2001 S
6289618 Kump et al. Sep 2001 B1
6292614 Smith et al. Sep 2001 B1
6301424 Hwang Oct 2001 B1
6305848 Gregory Oct 2001 B1
6307997 Walters et al. Oct 2001 B1
6318824 LaGrotta et al. Nov 2001 B1
6321017 Janus et al. Nov 2001 B1
6322279 Yamamoto et al. Nov 2001 B1
6324575 Jain et al. Nov 2001 B1
6325549 Shevchuk Dec 2001 B1
6327059 Bhalla et al. Dec 2001 B1
RE37489 Anton et al. Jan 2002 E
6343313 Salesky et al. Jan 2002 B1
6344615 Nolf et al. Feb 2002 B1
6347888 Puetz Feb 2002 B1
6353696 Gordon et al. Mar 2002 B1
6353697 Daoud Mar 2002 B1
6357712 Lu Mar 2002 B1
6359228 Strause et al. Mar 2002 B1
6362422 Vavrik et al. Mar 2002 B1
6363198 Braga et al. Mar 2002 B1
6363200 Thompson et al. Mar 2002 B1
6370309 Daoud Apr 2002 B1
6371419 Ohnuki Apr 2002 B1
6375129 Koziol Apr 2002 B2
6377218 Nelson et al. Apr 2002 B1
6379052 De Jong et al. Apr 2002 B1
6381642 O'Donnell et al. Apr 2002 B1
6385374 Kropp May 2002 B2
6385381 Janus et al. May 2002 B1
6389214 Smith et al. May 2002 B1
6392140 Yee et al. May 2002 B1
6397166 Leung et al. May 2002 B1
6398149 Hines et al. Jun 2002 B1
6406314 Byrne Jun 2002 B1
6410850 Abel et al. Jun 2002 B1
6411767 Burrous et al. Jun 2002 B1
6412986 Ngo et al. Jul 2002 B1
6418262 Puetz et al. Jul 2002 B1
6419519 Young Jul 2002 B1
6424781 Puetz et al. Jul 2002 B1
6425694 Szilagyi et al. Jul 2002 B1
6427045 Matthes et al. Jul 2002 B1
6431762 Taira et al. Aug 2002 B1
6434313 Clapp, Jr. et al. Aug 2002 B1
6438310 Lance et al. Aug 2002 B1
6452925 Sistanizadeh et al. Sep 2002 B1
6456773 Keys Sep 2002 B1
6464402 Andrews et al. Oct 2002 B1
6466724 Glover et al. Oct 2002 B1
6469905 Hwang Oct 2002 B1
D466087 Cuny et al. Nov 2002 S
6478472 Anderson et al. Nov 2002 B1
6480487 Wegleitner et al. Nov 2002 B1
6480660 Reitmeier et al. Nov 2002 B1
6483977 Battey et al. Nov 2002 B2
6484958 Xue et al. Nov 2002 B1
6494550 Chen et al. Dec 2002 B1
6496640 Harvey et al. Dec 2002 B1
6504988 Trebesch et al. Jan 2003 B1
6507980 Bremicker Jan 2003 B2
6510274 Wu et al. Jan 2003 B1
6532332 Solheid et al. Mar 2003 B2
6533472 Dinh et al. Mar 2003 B1
6535397 Clark et al. Mar 2003 B2
6535682 Puetz et al. Mar 2003 B1
6539147 Mahony Mar 2003 B1
6539160 Battey et al. Mar 2003 B2
6542688 Battey et al. Apr 2003 B1
6544075 Liao Apr 2003 B1
6550977 Hizuka Apr 2003 B2
6554485 Beatty et al. Apr 2003 B1
6560334 Mullaney et al. May 2003 B1
6567601 Daoud et al. May 2003 B2
6568542 Chen May 2003 B1
6571048 Bechamps et al. May 2003 B1
6577595 Counterman Jun 2003 B1
6577801 Broderick et al. Jun 2003 B2
6579014 Melton et al. Jun 2003 B2
6584267 Caveney et al. Jun 2003 B1
6585423 Vergeest Jul 2003 B1
6587630 Spence et al. Jul 2003 B2
6588938 Lampert et al. Jul 2003 B1
6591051 Solheid et al. Jul 2003 B2
6591053 Fritz Jul 2003 B2
6592266 Hankins et al. Jul 2003 B1
6597670 Tweedy et al. Jul 2003 B1
6600106 Standish et al. Jul 2003 B2
6600866 Gatica et al. Jul 2003 B2
6601997 Ngo Aug 2003 B2
6612515 Tinucci et al. Sep 2003 B1
6612874 Stout et al. Sep 2003 B1
6614978 Caveney Sep 2003 B1
6614980 Mahony Sep 2003 B1
6621975 Laporte et al. Sep 2003 B2
6622873 Hegrenes et al. Sep 2003 B2
6624389 Cox Sep 2003 B1
6625374 Holman et al. Sep 2003 B2
6625375 Mahony Sep 2003 B1
6631237 Knudsen et al. Oct 2003 B2
6640042 Araki et al. Oct 2003 B2
RE38311 Wheeler Nov 2003 E
6644863 Azami et al. Nov 2003 B1
6647197 Marrs et al. Nov 2003 B1
6648520 McDonald et al. Nov 2003 B2
6654536 Battey et al. Nov 2003 B2
6668127 Mahony Dec 2003 B1
6669149 Akizuki Dec 2003 B2
6677520 Kim et al. Jan 2004 B1
6679604 Bove et al. Jan 2004 B1
6684005 Egnell et al. Jan 2004 B1
6687450 Kempeneers et al. Feb 2004 B1
6693552 Herzig et al. Feb 2004 B1
6695620 Huang Feb 2004 B1
6701056 Burek et al. Mar 2004 B2
6710366 Lee et al. Mar 2004 B1
6715619 Kim et al. Apr 2004 B2
6719149 Tomino Apr 2004 B2
6721482 Glynn Apr 2004 B1
6728462 Wu et al. Apr 2004 B2
6741784 Guan May 2004 B1
6741785 Barthel et al. May 2004 B2
6746037 Kaplenski et al. Jun 2004 B1
6748154 O'Leary et al. Jun 2004 B2
6748155 Kim et al. Jun 2004 B2
6758600 Del Grosso et al. Jul 2004 B2
6768860 Liberty Jul 2004 B2
6771861 Wagner et al. Aug 2004 B2
6773297 Komiya Aug 2004 B2
6778525 Baum et al. Aug 2004 B1
6778752 Laporte et al. Aug 2004 B2
6786647 Hinds et al. Sep 2004 B1
6786743 Huang Sep 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788871 Taylor Sep 2004 B2
6792190 Xin et al. Sep 2004 B2
6792191 Clapp, Jr. et al. Sep 2004 B1
6798751 Voit et al. Sep 2004 B1
6804447 Smith et al. Oct 2004 B2
6810194 Griffiths et al. Oct 2004 B2
6813412 Lin Nov 2004 B2
6816660 Nashimoto Nov 2004 B2
6818834 Lin Nov 2004 B1
6819856 Dagley et al. Nov 2004 B2
6819857 Douglas et al. Nov 2004 B2
6822874 Marler Nov 2004 B1
6826174 Erekson et al. Nov 2004 B1
6826346 Sloan et al. Nov 2004 B2
6826631 Webb Nov 2004 B2
6830489 Aoyama Dec 2004 B2
6839428 Brower et al. Jan 2005 B2
6839438 Riegelsberger et al. Jan 2005 B1
6840815 Musolf et al. Jan 2005 B2
6845207 Schray Jan 2005 B2
6847614 Banker et al. Jan 2005 B2
6848862 Schlig Feb 2005 B1
6850685 Tinucci et al. Feb 2005 B2
6853637 Norrell et al. Feb 2005 B1
6854894 Yunker et al. Feb 2005 B1
6856334 Fukui Feb 2005 B1
6856505 Venegas et al. Feb 2005 B1
6863444 Anderson et al. Mar 2005 B2
6865331 Mertesdorf Mar 2005 B2
6865334 Cooke et al. Mar 2005 B2
6866541 Barker et al. Mar 2005 B2
6868216 Gehrke Mar 2005 B1
6869227 Del Grosso et al. Mar 2005 B2
6870734 Mertesdorf et al. Mar 2005 B2
6870997 Cooke et al. Mar 2005 B2
6879545 Cooke et al. Apr 2005 B2
6915058 Pons Jul 2005 B2
6920273 Knudsen Jul 2005 B2
6920274 Rapp et al. Jul 2005 B2
6923406 Akizuki Aug 2005 B2
6925241 Bohle et al. Aug 2005 B2
6934451 Cooke Aug 2005 B2
6934456 Ferris et al. Aug 2005 B2
6935598 Sono et al. Aug 2005 B2
6937807 Franklin et al. Aug 2005 B2
6944383 Herzog et al. Sep 2005 B1
6944389 Giraud et al. Sep 2005 B2
6945701 Trezza et al. Sep 2005 B2
6952530 Helvajian et al. Oct 2005 B2
6963690 Kassal et al. Nov 2005 B1
6968107 Belardi et al. Nov 2005 B2
6968111 Trebesch et al. Nov 2005 B2
6985665 Baechtle Jan 2006 B2
6993237 Cooke et al. Jan 2006 B2
7000784 Canty et al. Feb 2006 B2
7005582 Muller et al. Feb 2006 B2
7006748 Dagley et al. Feb 2006 B2
7007296 Rakib Feb 2006 B2
7025275 Huang et al. Apr 2006 B2
7027695 Cooke et al. Apr 2006 B2
7027706 Diaz et al. Apr 2006 B2
7031588 Cowley et al. Apr 2006 B2
7035510 Zimmel et al. Apr 2006 B2
7038137 Grubish et al. May 2006 B2
7048447 Patel et al. May 2006 B1
7054513 Herz et al. May 2006 B2
7066748 Bricaud et al. Jun 2006 B2
7068907 Schray Jun 2006 B2
7070459 Denovich et al. Jul 2006 B2
7077710 Haggay et al. Jul 2006 B2
7079744 Douglas et al. Jul 2006 B2
7090406 Melton et al. Aug 2006 B2
7090407 Melton et al. Aug 2006 B2
7094095 Caveney Aug 2006 B1
7097047 Lee et al. Aug 2006 B2
7101093 Hsiao et al. Sep 2006 B2
7102884 Mertesdorf et al. Sep 2006 B2
7103255 Reagan et al. Sep 2006 B2
7110654 Dillat Sep 2006 B2
7111990 Melton et al. Sep 2006 B2
7113679 Melton et al. Sep 2006 B2
7113686 Bellekens et al. Sep 2006 B2
7113687 Womack et al. Sep 2006 B2
7116491 Willey et al. Oct 2006 B1
7116883 Kline et al. Oct 2006 B2
7118281 Chiu et al. Oct 2006 B2
7118405 Peng Oct 2006 B2
7120347 Blackwell, Jr. et al. Oct 2006 B2
7120348 Trebesch et al. Oct 2006 B2
7120349 Elliott Oct 2006 B2
7127143 Elkins, II et al. Oct 2006 B2
7128471 Wilson Oct 2006 B2
7136555 Theuerkorn et al. Nov 2006 B2
7139462 Richtman Nov 2006 B1
7140903 Pulizzi et al. Nov 2006 B2
7147383 Sullivan Dec 2006 B2
7170466 Janoschka Jan 2007 B2
7171099 Barnes et al. Jan 2007 B2
7171121 Skarica et al. Jan 2007 B1
7181142 Xu et al. Feb 2007 B1
7186134 Togami et al. Mar 2007 B2
7193783 Willey et al. Mar 2007 B2
7194181 Holmberg et al. Mar 2007 B2
7195521 Musolf et al. Mar 2007 B2
7200314 Womack et al. Apr 2007 B2
7200316 Giraud et al. Apr 2007 B2
7201595 Morello Apr 2007 B1
7217040 Crews et al. May 2007 B2
7218526 Mayer May 2007 B2
7220065 Han et al. May 2007 B2
7221832 Tinucci May 2007 B2
7228036 Elkins, II et al. Jun 2007 B2
7228047 Szilagyi et al. Jun 2007 B1
7231125 Douglas et al. Jun 2007 B2
7234878 Yamauchi et al. Jun 2007 B2
7236677 Escoto et al. Jun 2007 B2
7239789 Grubish et al. Jul 2007 B2
7245809 Gniadek et al. Jul 2007 B1
7259325 Pincu et al. Aug 2007 B2
7266283 Kline et al. Sep 2007 B2
7270485 Robinson et al. Sep 2007 B1
7272291 Bayazit et al. Sep 2007 B2
7274852 Smrha et al. Sep 2007 B1
7284785 Gotou et al. Oct 2007 B2
7287913 Keenum et al. Oct 2007 B2
7289731 Thinguldstad Oct 2007 B2
7292769 Watanabe et al. Nov 2007 B2
7298950 Frohlich Nov 2007 B2
7300216 Morse et al. Nov 2007 B2
7300308 Laursen et al. Nov 2007 B2
7302149 Swam et al. Nov 2007 B2
7302153 Thom Nov 2007 B2
7302154 Trebesch et al. Nov 2007 B2
7308184 Barnes et al. Dec 2007 B2
7310471 Bayazit et al. Dec 2007 B2
7310472 Haberman Dec 2007 B2
7315681 Kewitsch Jan 2008 B2
7325975 Yamada et al. Feb 2008 B2
7330624 Isenhour et al. Feb 2008 B2
7330625 Barth Feb 2008 B2
7330626 Kowalczyk et al. Feb 2008 B2
7330629 Cooke et al. Feb 2008 B2
7331718 Yazaki et al. Feb 2008 B2
7340145 Allen Mar 2008 B2
7349615 Frazier et al. Mar 2008 B2
7352946 Heller et al. Apr 2008 B2
7352947 Phung et al. Apr 2008 B2
7373071 Douglas et al. May 2008 B2
7376321 Bolster et al. May 2008 B2
7376323 Zimmel May 2008 B2
7376325 Cloud et al. May 2008 B1
7391952 Ugolini et al. Jun 2008 B1
7397996 Herzog et al. Jul 2008 B2
7400813 Zimmel Jul 2008 B2
7404736 Herbst et al. Jul 2008 B2
7409137 Barnes Aug 2008 B2
7414198 Stansbie et al. Aug 2008 B2
7417188 McNutt et al. Aug 2008 B2
7418182 Krampotich Aug 2008 B2
7418184 Gonzales et al. Aug 2008 B1
7421182 Bayazit et al. Sep 2008 B2
7428363 Leon et al. Sep 2008 B2
7435090 Schriefer et al. Oct 2008 B1
7437049 Krampotich Oct 2008 B2
7439453 Murano et al. Oct 2008 B2
7454113 Barnes Nov 2008 B2
7460757 Hoehne et al. Dec 2008 B2
7460758 Xin Dec 2008 B2
7461981 Yow, Jr. et al. Dec 2008 B2
7462779 Caveney et al. Dec 2008 B2
7463810 Bayazit et al. Dec 2008 B2
7463811 Trebesch et al. Dec 2008 B2
7469090 Ferris et al. Dec 2008 B2
7471867 Vogel et al. Dec 2008 B2
7474828 Leon et al. Jan 2009 B2
7477824 Reagan et al. Jan 2009 B2
7477826 Mullaney et al. Jan 2009 B2
7480438 Douglas et al. Jan 2009 B2
7488205 Spisany et al. Feb 2009 B2
7493002 Coburn et al. Feb 2009 B2
7496269 Lee Feb 2009 B1
7499622 Castonguay et al. Mar 2009 B2
7499623 Barnes et al. Mar 2009 B2
7507111 Togami et al. Mar 2009 B2
7509015 Murano Mar 2009 B2
7509016 Smith et al. Mar 2009 B2
7510421 Fransen et al. Mar 2009 B2
7522804 Araki et al. Apr 2009 B2
7523898 Barry et al. Apr 2009 B1
7526171 Caveney et al. Apr 2009 B2
7526172 Gniadek et al. Apr 2009 B2
7526174 Leon et al. Apr 2009 B2
7529458 Spisany et al. May 2009 B2
7534958 McNutt et al. May 2009 B2
7536075 Zimmel May 2009 B2
7540666 Luther et al. Jun 2009 B2
7542645 Hua et al. Jun 2009 B1
7544085 Baldwin et al. Jun 2009 B2
7552899 Chen et al. Jun 2009 B2
7555193 Rapp et al. Jun 2009 B2
7558458 Gronvall et al. Jul 2009 B2
7565051 Vongseng Jul 2009 B2
7567744 Krampotich et al. Jul 2009 B2
7570860 Smrha et al. Aug 2009 B2
7570861 Smrha et al. Aug 2009 B2
7577331 Laurisch et al. Aug 2009 B2
7596293 Isenhour et al. Sep 2009 B2
7603020 Wakileh et al. Oct 2009 B1
7607938 Clark et al. Oct 2009 B2
7609967 Hochbaum et al. Oct 2009 B2
7613377 Gonzales et al. Nov 2009 B2
7614903 Huang Nov 2009 B1
7620272 Hino et al. Nov 2009 B2
7620287 Appenzeller et al. Nov 2009 B2
7641398 O'Riorden et al. Jan 2010 B2
7668430 McClellan et al. Feb 2010 B2
7668433 Bayazit et al. Feb 2010 B2
7672561 Keith et al. Mar 2010 B1
7676135 Chen Mar 2010 B2
7689079 Burnham et al. Mar 2010 B2
7694926 Allen et al. Apr 2010 B2
7697811 Murano et al. Apr 2010 B2
7706294 Natarajan et al. Apr 2010 B2
7715125 Willey May 2010 B2
7715683 Kowalczyk et al. May 2010 B2
7734138 Bloodworth et al. Jun 2010 B2
7740409 Bolton et al. Jun 2010 B2
7743495 Mori et al. Jun 2010 B2
7748911 Keenum et al. Jul 2010 B2
7756371 Burnham et al. Jul 2010 B1
7756382 Saravanos et al. Jul 2010 B2
7760984 Solheid et al. Jul 2010 B2
7764858 Bayazit et al. Jul 2010 B2
7764859 Krampotich et al. Jul 2010 B2
7769266 Morris Aug 2010 B2
7809232 Reagan et al. Oct 2010 B2
7809235 Reagan et al. Oct 2010 B2
7811136 Hsieh et al. Oct 2010 B1
7822310 Castonguay et al. Oct 2010 B2
7837495 Baldwin et al. Nov 2010 B2
7850372 Nishimura et al. Dec 2010 B2
7853112 Zimmel et al. Dec 2010 B2
7856166 Biribuze et al. Dec 2010 B2
7862369 Gimenes et al. Jan 2011 B2
7869685 Hendrickson et al. Jan 2011 B2
7876580 Mayer Jan 2011 B2
7899298 Cox et al. Mar 2011 B2
7914332 Song et al. Mar 2011 B2
7942589 Yazaki et al. May 2011 B2
7945135 Cooke et al. May 2011 B2
7945136 Cooke et al. May 2011 B2
7970250 Morris Jun 2011 B2
7991252 Cheng et al. Aug 2011 B2
8009959 Barnes et al. Aug 2011 B2
8014171 Kelly et al. Sep 2011 B2
8014646 Keith et al. Sep 2011 B2
8020813 Clark et al. Sep 2011 B1
8059932 Hill et al. Nov 2011 B2
8093499 Hoffer et al. Jan 2012 B2
8107785 Berglund et al. Jan 2012 B2
8131126 Kowalczyk et al. Mar 2012 B2
8184938 Cooke et al. May 2012 B2
8206043 Thirugnanam et al. Jun 2012 B2
8206058 Vrondran et al. Jun 2012 B2
8220881 Keith Jul 2012 B2
8226305 Thirugnanam et al. Jul 2012 B2
8249410 Andrus et al. Aug 2012 B2
8251591 Barnes et al. Aug 2012 B2
8270798 Dagley et al. Sep 2012 B2
8280216 Cooke et al. Oct 2012 B2
8285104 Davis et al. Oct 2012 B2
8301004 Cooke et al. Oct 2012 B2
8331752 Biribuze et al. Dec 2012 B2
8353494 Peng et al. Jan 2013 B2
8369679 Wakileh et al. Feb 2013 B2
8391666 Hetzer et al. Mar 2013 B2
8472773 de Jong Jun 2013 B2
8491331 Follingstad Jul 2013 B2
8528872 Mattlin et al. Sep 2013 B2
8537477 Shioda Sep 2013 B2
8538226 Makrides-Saravanos et al. Sep 2013 B2
8559783 Campos et al. Oct 2013 B2
8824850 Garcia et al. Sep 2014 B2
8879991 Kim Nov 2014 B2
8965168 Cowen et al. Feb 2015 B2
9020320 Cooke et al. Apr 2015 B2
9075216 Cote et al. Jul 2015 B2
9075217 Giraud et al. Jul 2015 B2
20010010741 Hizuka Aug 2001 A1
20010029125 Morita et al. Oct 2001 A1
20020010818 Wei et al. Jan 2002 A1
20020012353 Gerszberg et al. Jan 2002 A1
20020014571 Thompson Feb 2002 A1
20020034290 Pershan Mar 2002 A1
20020037139 Asao et al. Mar 2002 A1
20020064364 Battey et al. May 2002 A1
20020131730 Keeble et al. Sep 2002 A1
20020136519 Tinucci et al. Sep 2002 A1
20020141724 Ogawa et al. Oct 2002 A1
20020150370 Battey et al. Oct 2002 A1
20020150372 Schray Oct 2002 A1
20020172467 Anderson et al. Nov 2002 A1
20020180163 Muller et al. Dec 2002 A1
20020181918 Spence et al. Dec 2002 A1
20020181922 Xin et al. Dec 2002 A1
20020191939 Daoud et al. Dec 2002 A1
20020194596 Srivastava Dec 2002 A1
20030002802 Trezza et al. Jan 2003 A1
20030007743 Asada Jan 2003 A1
20030007767 Douglas et al. Jan 2003 A1
20030011855 Fujiwara Jan 2003 A1
20030021539 Kwon et al. Jan 2003 A1
20030036748 Cooper et al. Feb 2003 A1
20030047524 Sato et al. Mar 2003 A1
20030051026 Carter et al. Mar 2003 A1
20030066998 Lee Apr 2003 A1
20030086675 Wu et al. May 2003 A1
20030095753 Wada et al. May 2003 A1
20030123834 Burek et al. Jul 2003 A1
20030147604 Tapia et al. Aug 2003 A1
20030156552 Banker et al. Aug 2003 A1
20030174996 Henschel et al. Sep 2003 A1
20030180004 Cox et al. Sep 2003 A1
20030180012 Deane et al. Sep 2003 A1
20030183413 Kato Oct 2003 A1
20030199201 Mullaney et al. Oct 2003 A1
20030210882 Barthel et al. Nov 2003 A1
20030223723 Massey et al. Dec 2003 A1
20030223725 Laporte et al. Dec 2003 A1
20030235387 Dufour Dec 2003 A1
20040001717 Bennett et al. Jan 2004 A1
20040013389 Taylor Jan 2004 A1
20040013390 Kim et al. Jan 2004 A1
20040022494 Liddle et al. Feb 2004 A1
20040024934 Webb Feb 2004 A1
20040067036 Clark et al. Apr 2004 A1
20040074852 Knudsen et al. Apr 2004 A1
20040086238 Finona et al. May 2004 A1
20040086252 Smith et al. May 2004 A1
20040120679 Vincent et al. Jun 2004 A1
20040147159 Urban et al. Jul 2004 A1
20040151465 Krampotich et al. Aug 2004 A1
20040175090 Vastmans et al. Sep 2004 A1
20040192115 Bugg Sep 2004 A1
20040196841 Tudor et al. Oct 2004 A1
20040208459 Mizue et al. Oct 2004 A1
20040228598 Allen et al. Nov 2004 A1
20040240827 Daoud et al. Dec 2004 A1
20040240882 Lipski et al. Dec 2004 A1
20040256138 Grubish et al. Dec 2004 A1
20040264873 Smith et al. Dec 2004 A1
20050002633 Solheid et al. Jan 2005 A1
20050008131 Cook Jan 2005 A1
20050025444 Barnes et al. Feb 2005 A1
20050026497 Holliday Feb 2005 A1
20050036749 Vogel et al. Feb 2005 A1
20050067358 Lee et al. Mar 2005 A1
20050069248 Jasti et al. Mar 2005 A1
20050074990 Shearman et al. Apr 2005 A1
20050076149 McKown et al. Apr 2005 A1
20050083959 Binder Apr 2005 A1
20050103515 Fuller et al. May 2005 A1
20050107086 Tell et al. May 2005 A1
20050111809 Giraud et al. May 2005 A1
20050111810 Giraud et al. May 2005 A1
20050123261 Bellekens et al. Jun 2005 A1
20050129379 Reagan et al. Jun 2005 A1
20050175293 Byers et al. Aug 2005 A1
20050178573 James Aug 2005 A1
20050201073 Pincu et al. Sep 2005 A1
20050232566 Rapp et al. Oct 2005 A1
20050233647 Denovich et al. Oct 2005 A1
20050237721 Cowley et al. Oct 2005 A1
20050254757 Ferretti, III et al. Nov 2005 A1
20050281526 Vongseng et al. Dec 2005 A1
20050281527 Wilson et al. Dec 2005 A1
20050285493 Hu et al. Dec 2005 A1
20060007562 Willey et al. Jan 2006 A1
20060018448 Stevens et al. Jan 2006 A1
20060018622 Caveney Jan 2006 A1
20060034048 Xu Feb 2006 A1
20060039290 Roden et al. Feb 2006 A1
20060044774 Vasavda et al. Mar 2006 A1
20060045458 Sasaki et al. Mar 2006 A1
20060062538 Araki et al. Mar 2006 A1
20060072606 Posthuma Apr 2006 A1
20060077968 Pitsoulakis et al. Apr 2006 A1
20060093303 Reagan et al. May 2006 A1
20060103270 Bergesch et al. May 2006 A1
20060110118 Escoto et al. May 2006 A1
20060127026 Beck Jun 2006 A1
20060133736 Sullivan Jun 2006 A1
20060133759 Mullaney et al. Jun 2006 A1
20060147171 Dofher Jul 2006 A1
20060147172 Luther et al. Jul 2006 A1
20060153517 Reagan et al. Jul 2006 A1
20060160377 Huang Jul 2006 A1
20060165365 Feustel et al. Jul 2006 A1
20060165366 Feustel et al. Jul 2006 A1
20060191700 Herzog et al. Aug 2006 A1
20060193590 Puetz et al. Aug 2006 A1
20060193591 Rapp et al. Aug 2006 A1
20060198098 Clark et al. Sep 2006 A1
20060204179 Patel et al. Sep 2006 A1
20060215980 Bayazit et al. Sep 2006 A1
20060225912 Clark et al. Oct 2006 A1
20060228087 Bayazit et al. Oct 2006 A1
20060269194 Luther et al. Nov 2006 A1
20060269205 Zimmel Nov 2006 A1
20060269206 Zimmel Nov 2006 A1
20060269208 Allen et al. Nov 2006 A1
20060275008 Xin Dec 2006 A1
20060275009 Ellison et al. Dec 2006 A1
20060285812 Ferris et al. Dec 2006 A1
20070003204 Makrides-Saravanos et al. Jan 2007 A1
20070025070 Jiang et al. Feb 2007 A1
20070031099 Herzog et al. Feb 2007 A1
20070033629 McGranahan et al. Feb 2007 A1
20070047891 Bayazit et al. Mar 2007 A1
20070047894 Holmberg et al. Mar 2007 A1
20070047896 Kowalczyk et al. Mar 2007 A1
20070058641 Cicchetti et al. Mar 2007 A1
20070086723 Sasaki et al. Apr 2007 A1
20070104447 Allen May 2007 A1
20070110373 Dudek et al. May 2007 A1
20070127201 Mertesdorf et al. Jun 2007 A1
20070131628 Mimlitch, III et al. Jun 2007 A1
20070183732 Wittmeier et al. Aug 2007 A1
20070189692 Zimmel et al. Aug 2007 A1
20070196071 Laursen et al. Aug 2007 A1
20070221793 Kusuda et al. Sep 2007 A1
20070237484 Reagan et al. Oct 2007 A1
20070257159 Nelson et al. Nov 2007 A1
20070266192 Campini et al. Nov 2007 A1
20070274718 Bridges et al. Nov 2007 A1
20080011514 Zheng et al. Jan 2008 A1
20080025683 Murano Jan 2008 A1
20080031585 Solheid et al. Feb 2008 A1
20080063350 Trebesch et al. Mar 2008 A1
20080068788 Ozawa et al. Mar 2008 A1
20080069511 Blackwell, Jr. et al. Mar 2008 A1
20080069512 Barnes et al. Mar 2008 A1
20080078899 Chen et al. Apr 2008 A1
20080080826 Leon et al. Apr 2008 A1
20080080827 Leon et al. Apr 2008 A1
20080080828 Leon et al. Apr 2008 A1
20080085092 Barnes Apr 2008 A1
20080085094 Krampotich Apr 2008 A1
20080089656 Wagner et al. Apr 2008 A1
20080095502 McColloch Apr 2008 A1
20080095541 Dallesasse Apr 2008 A1
20080100440 Downie et al. May 2008 A1
20080106871 James May 2008 A1
20080112681 Battey et al. May 2008 A1
20080118207 Yamamoto et al. May 2008 A1
20080121423 Vogel et al. May 2008 A1
20080124039 Gniadek et al. May 2008 A1
20080131068 Mertesdorf et al. Jun 2008 A1
20080145013 Escoto et al. Jun 2008 A1
20080152294 Hirano et al. Jun 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080166131 Hudgins et al. Jul 2008 A1
20080175541 Lu et al. Jul 2008 A1
20080175550 Coburn et al. Jul 2008 A1
20080175551 Smrha et al. Jul 2008 A1
20080175552 Smrha et al. Jul 2008 A1
20080193091 Herbst Aug 2008 A1
20080205823 Luther et al. Aug 2008 A1
20080205843 Castonguay et al. Aug 2008 A1
20080205844 Castonguay et al. Aug 2008 A1
20080212928 Kowalczyk et al. Sep 2008 A1
20080219632 Smith et al. Sep 2008 A1
20080219634 Rapp et al. Sep 2008 A1
20080236858 Quijano Oct 2008 A1
20080247723 Herzog et al. Oct 2008 A1
20080267573 Douglas et al. Oct 2008 A1
20080285934 Standish et al. Nov 2008 A1
20080292261 Kowalczyk et al. Nov 2008 A1
20080296060 Hawley et al. Dec 2008 A1
20080298763 Appenzeller et al. Dec 2008 A1
20080304803 Krampotich et al. Dec 2008 A1
20080310810 Gallagher Dec 2008 A1
20090010607 Elisson et al. Jan 2009 A1
20090016685 Hudgins et al. Jan 2009 A1
20090022470 Krampotich Jan 2009 A1
20090038845 Fransen et al. Feb 2009 A1
20090060439 Cox et al. Mar 2009 A1
20090060440 Wright et al. Mar 2009 A1
20090067800 Vazquez et al. Mar 2009 A1
20090080849 Hankins et al. Mar 2009 A1
20090097813 Hill Apr 2009 A1
20090110347 Jacobsson Apr 2009 A1
20090121092 Keith May 2009 A1
20090136194 Barnes May 2009 A1
20090136195 Smrha et al. May 2009 A1
20090136196 Trebesch et al. May 2009 A1
20090146342 Haney et al. Jun 2009 A1
20090148117 Laurisch Jun 2009 A1
20090166404 German et al. Jul 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175588 Brandt et al. Jul 2009 A1
20090180737 Burnham et al. Jul 2009 A1
20090180749 Douglas et al. Jul 2009 A1
20090184221 Sculler Jul 2009 A1
20090185782 Parikh et al. Jul 2009 A1
20090191891 Ma et al. Jul 2009 A1
20090194647 Keith Aug 2009 A1
20090196563 Mullsteff et al. Aug 2009 A1
20090202214 Holmberg et al. Aug 2009 A1
20090207577 Fransen et al. Aug 2009 A1
20090208178 Kowalczyk et al. Aug 2009 A1
20090208210 Trojer et al. Aug 2009 A1
20090212679 Frousiakis et al. Aug 2009 A1
20090214171 Coburn et al. Aug 2009 A1
20090220200 Sheau Tung Wong et al. Sep 2009 A1
20090220204 Ruiz Sep 2009 A1
20090226142 Barnes et al. Sep 2009 A1
20090238531 Holmberg et al. Sep 2009 A1
20090245743 Cote et al. Oct 2009 A1
20090252472 Solheid et al. Oct 2009 A1
20090257726 Redmann et al. Oct 2009 A1
20090257727 Laurisch et al. Oct 2009 A1
20090257754 Theodoras, II et al. Oct 2009 A1
20090263096 Solheid et al. Oct 2009 A1
20090263122 Helkey et al. Oct 2009 A1
20090267865 Miller et al. Oct 2009 A1
20090269016 Korampally et al. Oct 2009 A1
20090269018 Frohlich et al. Oct 2009 A1
20090269019 Andrus et al. Oct 2009 A1
20090274429 Krampotich et al. Nov 2009 A1
20090274430 Krampotich et al. Nov 2009 A1
20090274432 Iwaya Nov 2009 A1
20090290842 Bran de Leon et al. Nov 2009 A1
20090290843 Reagan et al. Nov 2009 A1
20090297111 Reagan et al. Dec 2009 A1
20090304342 Adomeit et al. Dec 2009 A1
20090324189 Hill et al. Dec 2009 A1
20100003000 Rapp et al. Jan 2010 A1
20100012671 Vrondran et al. Jan 2010 A1
20100027953 Russell Feb 2010 A1
20100054681 Biribuze et al. Mar 2010 A1
20100054682 Cooke et al. Mar 2010 A1
20100054683 Cooke et al. Mar 2010 A1
20100054684 Cooke et al. Mar 2010 A1
20100054685 Cooke et al. Mar 2010 A1
20100054686 Cooke et al. Mar 2010 A1
20100054687 Ye et al. Mar 2010 A1
20100061691 Murano et al. Mar 2010 A1
20100061693 Bran de Leon et al. Mar 2010 A1
20100074587 Loeffelholz et al. Mar 2010 A1
20100080517 Cline et al. Apr 2010 A1
20100086267 Cooke et al. Apr 2010 A1
20100086274 Keith Apr 2010 A1
20100111483 Reinhardt et al. May 2010 A1
20100119201 Smrha et al. May 2010 A1
20100129035 Teo May 2010 A1
20100142544 Chapel et al. Jun 2010 A1
20100142910 Hill et al. Jun 2010 A1
20100150518 Leon et al. Jun 2010 A1
20100158467 Hou et al. Jun 2010 A1
20100166377 Nair et al. Jul 2010 A1
20100178022 Schroeder et al. Jul 2010 A1
20100183270 Davis et al. Jul 2010 A1
20100202740 Barlowe et al. Aug 2010 A1
20100202745 Sokolowski et al. Aug 2010 A1
20100202748 Pierce et al. Aug 2010 A1
20100215330 Sokolowski et al. Aug 2010 A1
20100220967 Cooke et al. Sep 2010 A1
20100220968 Dagley et al. Sep 2010 A1
20100266245 Sabo Oct 2010 A1
20100278499 Mures et al. Nov 2010 A1
20100296790 Cooke et al. Nov 2010 A1
20100296791 Makrides-Saravanos et al. Nov 2010 A1
20100310225 Anderson et al. Dec 2010 A1
20100310226 Wakileh et al. Dec 2010 A1
20100316334 Kewitsch Dec 2010 A1
20100322554 Barnes et al. Dec 2010 A1
20100322579 Cooke et al. Dec 2010 A1
20100322580 Beamon et al. Dec 2010 A1
20100322581 Cooke et al. Dec 2010 A1
20100322582 Cooke et al. Dec 2010 A1
20100322583 Cooke et al. Dec 2010 A1
20100329624 Zhou et al. Dec 2010 A1
20110008004 Liao et al. Jan 2011 A1
20110058786 Zimmel Mar 2011 A1
20110069931 Cote et al. Mar 2011 A1
20110073730 Kitchen Mar 2011 A1
20110085774 Murphy et al. Apr 2011 A1
20110085776 Biribuze et al. Apr 2011 A1
20110097053 Smith et al. Apr 2011 A1
20110097977 Bubnick et al. Apr 2011 A1
20110129185 Lewallen et al. Jun 2011 A1
20110129186 Lewallen et al. Jun 2011 A1
20110186532 Wu Aug 2011 A1
20110192631 Burek et al. Aug 2011 A1
20110211799 Conner et al. Sep 2011 A1
20110217014 Dominique Sep 2011 A1
20110217016 Mullsteff Sep 2011 A1
20110222821 Pitwon et al. Sep 2011 A1
20110235985 Cote et al. Sep 2011 A1
20110249950 Chapa Ramirez et al. Oct 2011 A1
20110262096 Fabrykowski et al. Oct 2011 A1
20110268404 Cote et al. Nov 2011 A1
20110268405 Cote et al. Nov 2011 A1
20110268406 Giraud et al. Nov 2011 A1
20110268407 Cowen et al. Nov 2011 A1
20110268408 Giraud et al. Nov 2011 A1
20110268409 Giraud et al. Nov 2011 A1
20110268411 Giraud et al. Nov 2011 A1
20110268412 Giraud et al. Nov 2011 A1
20110268413 Cote et al. Nov 2011 A1
20110268414 Giraud et al. Nov 2011 A1
20110274402 Giraud et al. Nov 2011 A1
20110280535 Womack Nov 2011 A1
20110280537 Cowen et al. Nov 2011 A1
20120020629 Shiratori et al. Jan 2012 A1
20120025683 Mattlin et al. Feb 2012 A1
20120051707 Barnes et al. Mar 2012 A1
20120057836 Andrzejewski et al. Mar 2012 A1
20120106897 Cline et al. May 2012 A1
20120106899 Choi May 2012 A1
20120106911 Cooke et al. May 2012 A1
20120134639 Giraud et al. May 2012 A1
20120183263 Wu Jul 2012 A1
20120183289 Lou et al. Jul 2012 A1
20120219263 Beamon et al. Aug 2012 A1
20120288244 Wu et al. Nov 2012 A1
20120288248 Chapa Ramirez et al. Nov 2012 A1
20120301083 Carter et al. Nov 2012 A1
20130004136 Brower et al. Jan 2013 A1
20130056599 Baker et al. Mar 2013 A1
20130058616 Cote et al. Mar 2013 A1
20130072053 Fabrykowski et al. Mar 2013 A1
20130077927 O'Connor Mar 2013 A1
20130134115 Hernandez-Ariguznaga May 2013 A1
20130214108 Irudayaraj et al. Aug 2013 A1
20130243386 Pimentel et al. Sep 2013 A1
20130251326 Cooke et al. Sep 2013 A1
20130266282 Cote et al. Oct 2013 A1
20130308908 Isenhour et al. Nov 2013 A1
20130308915 Buff et al. Nov 2013 A1
20130308916 Buff et al. Nov 2013 A1
20130328258 Mutsuno et al. Dec 2013 A1
20140003782 Blackwell, Jr. et al. Jan 2014 A1
20140010510 Blackard Jan 2014 A1
20140029907 Isenhour et al. Jan 2014 A1
20140037251 Isenhour et al. Feb 2014 A1
20140079366 Rodriguez et al. Mar 2014 A1
20140112628 Keenum et al. Apr 2014 A1
20140226946 Cooke et al. Aug 2014 A1
20150027967 Vazquez et al. Jan 2015 A1
20150185429 Cooke et al. Jul 2015 A1
Foreign Referenced Citations (202)
Number Date Country
2029592 May 1992 CA
2186314 Apr 1997 CA
2765835 Jan 2011 CA
688705 Jan 1998 CH
1471649 Jan 2004 CN
1690745 Nov 2005 CN
102460258 May 2012 CN
8711970 Oct 1987 DE
3726718 Feb 1989 DE
3726719 Feb 1989 DE
4030301 Mar 1992 DE
4112871 Oct 1992 DE
4231181 Aug 1993 DE
1321815 Jan 1995 DE
20115940 Jan 2002 DE
10338848 Mar 2005 DE
202005009932 Nov 2005 DE
202007000556 Oct 2007 DE
102007024476 Nov 2008 DE
202010009385 Sep 2010 DE
29512 Jun 1981 EP
0105597 Apr 1984 EP
0250900 Jan 1988 EP
0408266 Jan 1991 EP
0474091 Aug 1991 EP
0468671 Jan 1992 EP
0490698 Jun 1992 EP
0529830 Mar 1993 EP
0544004 Jun 1993 EP
0547778 Jun 1993 EP
0581527 Feb 1994 EP
0620462 Oct 1994 EP
0693699 Jan 1996 EP
0720322 Jul 1996 EP
0776557 Jun 1997 EP
0940700 Sep 1999 EP
0949522 Oct 1999 EP
1041417 Oct 2000 EP
1056177 Nov 2000 EP
1065542 Jan 2001 EP
1162485 Dec 2001 EP
1203974 May 2002 EP
1289319 Mar 2003 EP
1310816 May 2003 EP
1316829 Jun 2003 EP
1367308 Dec 2003 EP
1621907 Feb 2006 EP
1777563 Apr 2007 EP
2060942 May 2009 EP
2159613 Mar 2010 EP
1586331 Feb 1970 FR
2123728 Sep 1972 FR
2378378 Aug 1978 FR
2241591 Sep 1991 GB
2277812 Nov 1994 GB
2367379 Apr 2002 GB
2377839 Jan 2003 GB
3060994 Mar 1991 JP
3172806 Jul 1991 JP
3281378 Dec 1991 JP
5045541 Feb 1993 JP
06018749 Jan 1994 JP
7308011 Nov 1995 JP
7318761 Dec 1995 JP
8007308 Jan 1996 JP
8248235 Sep 1996 JP
8248237 Sep 1996 JP
3487946 Oct 1996 JP
8254620 Oct 1996 JP
3279474 Oct 1997 JP
9258033 Oct 1997 JP
9258055 Oct 1997 JP
2771870 Jul 1998 JP
3448448 Aug 1998 JP
10227919 Aug 1998 JP
3478944 Dec 1998 JP
10332945 Dec 1998 JP
10339817 Dec 1998 JP
11023858 Jan 1999 JP
2000098138 Apr 2000 JP
2000098139 Apr 2000 JP
2000241631 Sep 2000 JP
2001004849 Jan 2001 JP
3160322 Apr 2001 JP
2001119177 Apr 2001 JP
2001133636 May 2001 JP
3173962 Jun 2001 JP
3176906 Jun 2001 JP
2001154030 Jun 2001 JP
2001159714 Jun 2001 JP
2002022974 Jan 2002 JP
2002032153 Jan 2002 JP
2002077236 Mar 2002 JP
2002116337 Apr 2002 JP
2002169035 Jun 2002 JP
3312893 Aug 2002 JP
2002305389 Oct 2002 JP
3344701 Nov 2002 JP
2003029054 Jan 2003 JP
3403573 May 2003 JP
2003149458 May 2003 JP
2003169026 Jun 2003 JP
2003215353 Jul 2003 JP
2003344701 Dec 2003 JP
2004086060 Mar 2004 JP
3516765 Apr 2004 JP
2004144808 May 2004 JP
2004514931 May 2004 JP
3542939 Jul 2004 JP
2004246147 Sep 2004 JP
2004361652 Dec 2004 JP
2004361890 Dec 2004 JP
2004361893 Dec 2004 JP
3107704 Feb 2005 JP
2005055748 Mar 2005 JP
2005062569 Mar 2005 JP
2005084241 Mar 2005 JP
2005148327 Jun 2005 JP
2005257937 Sep 2005 JP
2005338618 Dec 2005 JP
2006507606 Mar 2006 JP
3763645 Apr 2006 JP
3778021 May 2006 JP
2006126513 May 2006 JP
2006126516 May 2006 JP
3794540 Jul 2006 JP
2006227041 Aug 2006 JP
3833638 Oct 2006 JP
2006276782 Oct 2006 JP
2006292924 Oct 2006 JP
3841344 Nov 2006 JP
3847533 Nov 2006 JP
200747336 Feb 2007 JP
3896035 Mar 2007 JP
2007067458 Mar 2007 JP
2007093760 Apr 2007 JP
2007511959 May 2007 JP
3934052 Jun 2007 JP
2007179046 Jul 2007 JP
3964191 Aug 2007 JP
3989853 Oct 2007 JP
4026244 Dec 2007 JP
4029494 Jan 2008 JP
4065223 Mar 2008 JP
4093475 Jun 2008 JP
4105696 Jun 2008 JP
4112437 Jul 2008 JP
4118862 Jul 2008 JP
2008176118 Jul 2008 JP
2008180817 Aug 2008 JP
M 08533583 Aug 2008 JP
4184329 Nov 2008 JP
2008271017 Nov 2008 JP
2008542822 Nov 2008 JP
2009503582 Jan 2009 JP
2009515242 Apr 2009 JP
M 09115962 May 2009 JP
2009229506 Oct 2009 JP
2012065019 Mar 2012 JP
20110037404 Apr 2011 KR
9105281 Apr 1991 WO
9326070 Dec 1993 WO
9520175 Jul 1995 WO
9636896 Nov 1996 WO
9638752 Dec 1996 WO
9712268 Apr 1997 WO
9722025 Jun 1997 WO
9736197 Oct 1997 WO
9744605 Nov 1997 WO
9825416 Jun 1998 WO
9927404 Jun 1999 WO
9959295 Nov 1999 WO
0005611 Feb 2000 WO
0127660 Apr 2001 WO
0130007 Apr 2001 WO
0180596 Oct 2001 WO
0242818 May 2002 WO
03009527 Jan 2003 WO
03014943 Feb 2003 WO
2004052066 Jun 2004 WO
2005020400 Mar 2005 WO
2006076062 Jul 2006 WO
2006108024 Oct 2006 WO
2007050515 May 2007 WO
2007079074 Jul 2007 WO
2007089682 Aug 2007 WO
2007149215 Dec 2007 WO
2008027201 Mar 2008 WO
2008063054 May 2008 WO
2008113054 Sep 2008 WO
2008157248 Dec 2008 WO
2009026688 Mar 2009 WO
2009029485 Mar 2009 WO
2009030360 Mar 2009 WO
2009091465 Jul 2009 WO
2009120280 Oct 2009 WO
2010024842 Mar 2010 WO
2010024847 Mar 2010 WO
2010036549 Apr 2010 WO
2010080745 Jul 2010 WO
2011005461 Jan 2011 WO
2011011510 Jan 2011 WO
Non-Patent Literature Citations (357)
Entry
Annex to Form PCT/ISA/2006, Communication Relating to the Results of the Partial International Search, for PCT/US2009/004549 mailed Feb. 10, 2010, 2 pages.
Annex to Form PCT/ISA/206, Communication Relating to the Results of the Partial International Search, for PCT/US2009/004548 mailed Jan. 19, 2010, 2 pages.
Corning Cable Systems, “Corning Cable Systems Products for BellSouth High Density Shelves,” Jun. 2000, 2 pages.
Corning Cable Systems, “Corning Cable Systems Quick Reference Guide for Verizon FTTP FDH Products,” Jun. 2005, 4 pages.
Conner, M. “Passive Optical Design for RFOG and Beyond,” Braodband Properties, Apr. 2009, pp. 78-81.
Corning Evolant, “Eclipse Hardware Family,” Nov. 2009, 1 page.
Corning Evolant, “Enhanced Management Frame,” Dec. 2009, 1 page.
Corning Evolant, “Enhanced Management Frame (EMF),” Specification Sheet, Nov. 2009, 24 pages.
Corning Cable Systems, “Evolant Solutions for Evolving Networks: Fiber Optic Hardware,” Oct. 2002, 2 pages.
Corning Cable Systems, “Fiber Optic Hardware with Factory-Installed Pigtails: Features and Benefits,” Nov. 2010, 12 pages.
Corning Cable Systems, “FiberManager System 1- and 3-Position Compact Shelves,” Jan. 2003, 4 pages.
Corning Cable Systems, “FiberManager System Frame and Components,” Jan. 2003, 12 pages.
Corning Cable Systems, “High Density Frame,” Jul. 2001, 2 pages.
Corning Cable Systems, “High Density Frame (HDF) Connector-Splice Shelves and Housings,” May 2003, 4 pages.
International Search Report for PCT/US10/35529 mailed Jul. 23, 2010, 2 pages.
International Search Report for PCT/US10/35563 mailed Jul. 23, 2012, 1 page.
International Search Report for PCT/US2008/002514 mailed Aug. 8, 2008, 2 pages.
International Search Report for PCT/US2008/010317 mailed Mar. 4, 2008, 2 pages.
International Search Report for PCT/US2009/001692 mailed Nov. 24, 2009, 5 pages.
International Search Report for PCT/US2010/024888 mailed Jun. 23, 2010, 5 pages.
International Search Report for PCT/US2010/027402 mailed Jun. 16, 2010, 2 pages.
Corning Cable Systems, “MTX Frames and Accessories,” Feb. 2006, 4 pages.
PANDUIT, “Lock-in LC Duplex Clip,” Accessed Mar. 22, 2012, 1 page.
International Search Report for PCT/US06/49351 mailed Apr. 25, 2008, 1 page.
International Search Report for PCT/US09/57069 mailed Mar. 24, 2010, 2 pages.
International Search Report for PCT/US2009/057244 mailed Nov. 9, 2009 3 pages.
International Search Report for PCTUS2009004548 mailed Mar. 19, 2010, 5 pages.
International Search Report for PCTUS2009004549 mailed Apr. 20, 2010, 6 pages.
SIECOR, “Single Shelf HDF with Slack Storage and Heat Shield (HH1-CSH-1238-1V-BS),” Jan. 1998, 12 pages.
Corning Cable Systems, “Mass Termination Xchange (MTX) Frame System Equipment Office Planning and Application Guide,” SRP003-664, Issue 1, Mar. 2005, 57 pages.
Corning Cable Systems, “Mass Termination Xchange (MTX) Equipment Patch Cord Interbay Vertical Channel,” SRP003-684, Issue 1, Mar. 2005, 8 pages.
Corning Cable Systems, “High Density Frame (HDF) Installation,” SRP003-355, Issue 4, Sep. 2002, 18 pages.
Written Opinion for PCT/US2010/023901 mailed Aug. 25, 2011, 8 pages.
Advisory Action for U.S. Appl. No. 12/221,117 mailed Aug. 24, 2011, 3 pages.
Examiner's Answer to Appeal Brief for U.S. Appl. No. 12/221,117 mailed Mar. 29, 2012, 16 pages.
Final Office Action for U.S. Appl. No. 12/221,117 mailed Feb. 19, 2010, 7 pages.
Final Office Action for U.S. Appl. No. 12/221,117 mailed Jun. 10, 2011, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/221,117 mailed Jul. 14, 2010, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/221,117 mailed Jun. 9, 2009, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/221,117 mailed Dec. 21, 2010, 7 pages.
Advisory Action for U.S. Appl. No. 12/394,483 mailed Feb. 16, 2012, 3 pages.
Final Office Action for U.S. Appl. No. 12/394,483 mailed Dec. 6, 2011, 14 pages.
Non-final Office Action for U.S. Appl. No. 12/394,483 mailed Jun. 17, 2011, 11 pages.
Advisory Action for U.S. Appl. No. 12/950,234 mailed Dec. 21, 2011, 3 pages.
Non-final Office Action for U.S. Appl. No. 12/950,234 mailed Jun. 17, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/950,234 mailed Mar. 12, 2012, 10 pages.
Final Office Action for U.S. Appl. No. 12/950,234 mailed Oct. 14, 2011, 10 pages.
Advisory Action mailed May 12, 2011, for U.S. Appl. No. 12/323,423, 3 pages.
Final Rejection mailed Mar. 3, 2011, for U.S. Appl. No. 12/323,423, 17 pages.
Non-Final Rejection mailed Aug. 5, 2011, for U.S. Appl. No. 12/323,423, 13 pages.
Unknown, Author, “QuickNet SFQ Series MTP Fiber Optic Cassettes,” Panduit Specification Sheet, Jan. 2009, 2 pages.
Unknown Author, “Cellular Specialties introduces the first simulated in-building location-based tracking solution,” smart-grid.tmenet.com/news, Sep. 14, 2009, 2 pages.
Unknown Author, “CDMA Co-Pilot Transmitter,” Cellular Specialties, Inc., Aug. 2009, 2 pages.
International Search Report for PCT/US2010/038986 mailed Aug. 18, 2010, 1 page.
Non-Final Rejection mailed Sep. 7, 2010, for U.S. Appl. No. 12/323,423, 18 pages.
Notice of Allowance for U.S. Appl. No. 12/323,423 mailed Jan. 24, 2012, 8 pages.
Examiner's Answer mailed Mar. 4, 2011, for U.S. Appl. No. 12/323,415, 11 pages.
Final Rejection mailed Jun. 25, 2010, for U.S. Appl. No. 12/323,415, 10 pages.
Non-Final Rejection mailed Aug. 5, 2011, for U.S. Appl. No. 12/323,415, 41 pages.
Non-final Office Action for U.S. Appl. No. 12/323,415 mailed Apr. 23, 2012, 11 pages.
Non-Final Rejection mailed Dec. 10, 2009, for U.S. Appl. No. 12/323,415, 7 pages.
Examiner's Answer to Appeal Brief for U.S. Appl. No. 11/320,062 mailed Dec. 8, 2011, 8 pages.
Final Office Action for U.S. Appl. No. 11/320,062 mailed Mar. 8, 2011, 8 pages.
Non-final Office Action for U.S. Appl. No. 11/320,062 mailed Jan. 15, 2010, 11 pages.
Non-final Office Action for U.S. Appl. No. 12/320,062 mailed Sep. 30, 2010, 7 pages.
Final Office Action for U.S. Appl. No. 11/439,086 mailed Feb. 4, 2010, 14 pages.
Non-final Office Action for U.S. Appl. No. 11/439,086 mailed May 3, 2010, 11 pages.
Non-final Office Action for U.S. Appl. No. 11/439,086 mailed Sep. 21, 2009, 10 pages.
Final Office Action for U.S. Appl. No. 12/079,481 mailed Mar. 18, 2010, 10 pages.
Non-final Office Action for U.S. Appl. No. 12/079,481 mailed Dec. 26, 2008, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/079,481 mailed Sep. 16, 2009, 10 pages.
Notice of Allowance for U.S. Appl. No. 12/079,481 mailed Jun. 3, 2010, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/079,481 mailed Oct. 4, 2010, 4 pages.
Final Office Action for U.S. Appl. No. 12/394,114 mailed Dec. 22, 2011, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/394,114 mailed Mar. 16, 2012, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/394,114 mailed Sep. 1, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/323,373 mailed May 3, 2012, 7 pages.
Non-final Office Action for U.S. Appl. No. 11/809,474 mailed Apr. 8, 2008, 13 pages.
Non-final Office Action for U.S. Appl. No. 11/809,474 mailed Nov. 13, 2008, 10 pages.
Notice of Allowance for U.S. Appl. No. 11/809,474 mailed Jul. 6, 2009, 6 pages.
Final Office Action for U.S. Appl. No. 11/320,031 mailed Mar. 8, 2011, 8 pages.
Non-final Office Action for U.S. Appl. No. 11/320,031 mailed Jan. 5, 2010, 16 pages.
Non-final Office Action for U.S. Appl. No. 11/320,031 mailed Sep. 30, 2010, 7 pages.
Notice of Allowance for U.S. Appl. No. 11/320,031 mailed Nov. 15, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/157,622 mailed Mar. 31, 2009, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/157,622 mailed Oct. 15, 2009, 9 pages.
Notice of Allowance for U.S. Appl. No. 12/157,622 mailed Apr. 22, 2010, 4 pages.
Non-final Office Action for U.S. Appl. No. 12/323,395 mailed Dec. 8, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/415,454 mailed Mar. 2, 2012, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/415,454 mailed Sep. 6, 2011, 7 pages.
Notice of Allowance for U.S. Appl. No. 12/415,454 mailed Jan. 13, 2012, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/576,769 mailed Feb. 2, 2012, 23 pages.
Notice of Allowance for U.S. Appl. No. 12/415,454 mailed Jun. 19, 2012, 5 pages.
Non-Final Office Action for U.S. Appl. No. 12/707,889 mailed Jan. 2, 2013, 7 pages.
Non-Final Office Action for U.S. Appl. No. 12/953,536 mailed Jan. 2, 2013, 20 pages.
International Search Report for PCT/US2009/066779 mailed Aug. 27, 2010, 3 pages.
“MPO Fiber Optic Rack Panels now available from L-com Connectivity Products,” article dated Jun. 4, 2007, 16 pages, http://www.I-com.com/content/Article.aspx?Type=P&ID=438.
“19″ Rack Panel with 16 MPO Fiber Optic Couplers—1U high,” product page, accessed Oct. 23, 2012, 2 pages, http://www.I-com.com/item.aspx?id=9767#.UlbgG8XXay5.
“Drawing for L-com 1U Panel with 16 MTP couplers,” May 15, 2007, 1 page, http://www.I-com.com/multimedia/eng—drawings/PR17516MTP.pdf.
“RapidNet Fibre MTP VHD Cassette,” Brochure, Date Unknown, 1 page, http://www.hellermanntyton.se/documents/5000/576—fiber—1U.pdf.
“MPO for Gigabit Ethernet/FAS-NET MTP Solution,” Brochure, Date Unknown, 11 pages, http://www.infinique.com/upload/13182286190.pdf.
“Hubbell OptiChannel High Density 144 Port 1U Fiber Enclosure,” Brochure, Date Unknown, 2 pages, http://www.hubbell-premise.com/literature/PLDF010.pdf.
Non-final Office Action for U.S. Appl. No. 12/771,473 mailed Oct. 4, 2012, 6 pages.
Non-final Office Action for U.S. Appl. No. 12/819,081 mailed Aug. 21, 2012, 12 pages.
Notice of Allowance for U.S. Appl. No. 12/417,325 mailed Aug. 22, 2012, 7 pages.
Notice of Panel Decision for Pre-Appeal Brief for U.S. Appl. No. 12/417,325 mailed Aug. 8, 2012, 2 pages.
Advisory Action for U.S. Appl. No. 12/417,325 mailed Jun. 29, 2012, 3 pages.
Advisory Action for U.S. Appl. No. 12/417,325 mailed Jun. 12, 2012, 3 pages.
Final Office Action for U.S. Appl. No. 12/417,325 mailed Apr. 16, 2012, 6 pages.
Final Office Action for U.S. Appl. No. 12/417,325 mailed Feb. 7, 2012, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/417,325 mailed Jun. 15, 2011, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/487,929 mailed Sep. 12, 2012, 4 pages.
Notice of Allowance for U.S. Appl. No. 12/487,929 mailed Jun. 13, 2012, 8 pages.
Advisory Action for U.S. Appl. No. 12/487,929 mailed Apr. 17, 2012, 3 pages.
Final Office Action for U.S. Appl. No. 12/487,929 mailed Feb. 14, 2012, 6 pages.
Final Office Action for U.S. Appl. No. 12/487,929 mailed Dec. 5, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/487,929 mailed May 23, 2011, 7 pages.
Notice of Allowance for U.S. Appl. No. 12/415,253 mailed Mar. 11, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/415,253 mailed Jul. 12, 2010, 11 pages.
Final Office Action for U.S. Appl. No. 12/415,253 mailed Apr. 16, 2010, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/415,253 mailed Sep. 30, 2009, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/641,617 mailed Oct. 5, 2012, 21 pages.
Final Office Action for U.S. Appl. No. 12/630,938 mailed Jun. 1, 2012, 18 pages.
Non-final Office Action for U.S. Appl. No. 12/630,938 mailed Dec. 19, 2011, 15 pages.
Non-final Office Action for U.S. Appl. No. 12/751,884 mailed Jul. 2, 2012, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/871,052 mailed Aug. 13, 2012, 8 pages.
Final Office Action for U.S. Appl. No. 12/394,114 mailed Oct. 25, 2012, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/732,487 mailed Sep. 19, 2012, 22 pages.
Non-final Office Action for U.S. Appl. No. 12/818,986 mailed Feb. 3, 2012, 12 pages.
Final Office Action for U.S. Appl. No. 12/818,986 mailed Oct. 18, 2012, 13 pages.
Non-final Office Action for U.S. Appl. No. 12/952,960 mailed Oct. 4, 2012, 11 pages.
Non-final Office Action for U.S. Appl. No. 12/953,134 mailed Sep. 25, 2012, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/915,682 mailed Oct. 24, 2012, 8 pages.
International Search Report for PCT/US2010/023901 mailed Jun. 11, 2010, 3 pages.
Notice of Allowance for U.S. Appl. No. 12/576,769 mailed May 31, 2012, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/576,806 mailed Dec. 13, 2011, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/576,806 mailed Apr. 18, 2012, 5 pages.
Non-Final Office Action for U.S. Appl. No. 12/953,039 mailed Jan. 11, 2013, 6 pages.
Non-Final Office Action for U.S. Appl. No. 12/952,912 mailed Dec. 28, 2012, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/090,621 mailed Apr. 22, 2013, 8 pages.
Final Office Action for U.S. Appl. No. 12/953,039 mailed May 1, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/090,621 mailed Jun. 25, 2013, 8 pages.
Final Office Action for U.S. Appl. No. 12/915,682 mailed Apr. 18, 2013, 9 pages.
Advisory Action for U.S. Appl. No. 12/952,960 mailed May 15, 2013, 2 pages.
Non-final Office Action for U.S. Appl. No. 12/952,960 mailed Jun. 20, 2013, 13 pages.
Non-final Office Action for U.S. Appl. No. 12/953,536 mailed Jun. 6, 2013, 21 pages.
Non-final Office Action for U.S. Appl. No. 11/820,300 mailed Apr. 25, 2012, 10 pages.
Final Office Action for U.S. Appl. No. 12/871,052 mailed Jul. 1, 2013, 12 pages.
Non-final Office Action for U.S. Appl. No. 12/940,699 mailed Jun. 26, 2013, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/940,699 mailed Oct. 28, 2014, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/953,039 mailed Nov. 12, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 12/952,960 mailed Nov. 10, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/081,856 mailed Oct. 29, 2014, 10 pages.
Notice of Allowance for U.S. Appl. No. 13/833,876 mailed Nov. 7, 2014, 7 pages.
Advisory Action for U.S. Appl. No. 13/901,074 mailed Nov. 24, 2014, 3 pages.
Notice of Allowance for U.S. Appl. No. 12/751,895 mailed Nov. 19, 2014, 8 pages.
Advisory Action for U.S. Appl. No. 12/394,114 mailed Jan. 16, 2015, 3 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 12/947,883 mailed Jan. 13, 2015, 11 pages.
Non-final Office Action for U.S. Appl. No. 12/818,986 mailed Jan. 5, 2015, 21 pages.
Notice of Allowance for U.S. Appl. No. 13/649,417 mailed Jan. 8, 2015, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/946,217 mailed Dec. 29, 2014, 50 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 12/940,585 mailed Feb. 27, 2015, 16 pages.
Final Office Action for U.S. Appl. No. 12/953,003 mailed Feb. 12, 2015, 14 pages.
Final Office Action for U.S. Appl. No. 12/953,039 mailed Feb. 23, 2015, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/688,675 mailed Jan. 26, 2015, 7 pages.
Final Office Action for U.S. Appl. No. 12/819,065 mailed Mar. 12, 2015, 13 pages.
Examiner's Answer to the Appeal Brief for U.S. Appl. No. 12/946,139 mailed Feb. 5, 2015, 12 pages.
Notice of Allowance for U.S. Appl. No. 12/707,889 mailed Feb. 17, 2015, 7 pages.
Non-final Office Action for U.S. Appl. No. 13/902,012 mailed Feb. 17, 2015, 9 pages.
Non-final Office Action for U.S. Appl. No. 13/081,856 mailed Feb. 9, 2015, 8 pages.
Non-final Office Action for U.S. Appl. No. 13/901,074 mailed May 22, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 12/947,883 mailed May 21, 2015, 11 pages.
Final Office Action for U.S. Appl. No. 12/940,699 mailed Jun. 1, 2015, 10 pages.
Non-final Office Action for U.S. Appl. No. 13/663,949 mailed May 5, 2015, 19 pages.
Non-final Office Action for U.S. Appl. No. 13/952,014 mailed Jul. 30, 2015, 9 pages.
Final Office Action for U.S. Appl. No. 12/818,986 mailed Jul. 23, 2015, 24 pages.
Non-final Office Action for U.S. Appl. No. 12/956,446 mailed Jul. 31, 2015, 14 pages.
Notice of Allowance for U.S. Appl. No. 13/902,012 mailed Aug. 5, 2015, 8 pages.
Final Office Action for U.S. Appl. No. 12/946,217, mailed Jul. 16, 2015, 50 pages.
Non-final Office Action for U.S. Appl. No. 12/394,114 mailed Aug. 12, 2015, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/953,039 mailed Sep. 3, 2015, 8 pages.
Final Office Action for U.S. Appl. No. 13/081,856 mailed Sep. 8, 2015, 10 pages.
Examiner's Answer to the Appeal Brief for U.S. Appl. No. 13/663,975 mailed Oct. 5, 2015, 14 pages.
Non-final Office Action for U.S. Appl. No. 12/819,065 mailed Aug. 26, 2015, 13 pages.
Final Office Action for U.S. Appl. No. 13/567,288 mailed May 8, 2015, 13 pages.
Non-final Office Action for U.S. Appl. No. 14/263,751 mailed Oct. 30, 2015, 6 pages.
Final Office Action for U.S. Appl. No. 13/663,949 mailed Dec. 23, 2015, 24 pages.
Notice of Allowance for U.S. Appl. No. 12/953,101 mailed Feb. 20, 2015, 9 pages.
Author Unknown, “Living Hinge—From Wikipedia, the free encyclopedia,” Retrieved from the internet on Mar. 19, 2015, http://en.eikipedia.org/wiki/Living—Hinge, 3 pages.
Ramdas, “Modern File Systems and Storage,” Proceedings of the 2nd International SANE Conference, May 22-25, 2000, MECC, Maastricht, The Netherlands, Copyright Rodney R. Ramdas, 10 pages.
Author Unknown, “144 Fiber Patch Panel 1U,” Technical Data, ADTEK Group Limited, 2009, 2 pages.
First Office Action for Chinese patent application 201080031621.6 mailed Sep. 26, 2013, 9 pages.
Chinese Search Report for Chinese patent application 201080031621.6 mailed Sep. 13, 2013, 2 pages.
First Office Action for Chinese patent application 201080032453.2 issued Mar. 26, 2013, 6 pages.
Chinese Search Report for Chinese patent application 201080032453.2 mailed May 15, 2013, 2 pages.
English Translation of Second Office Action for Chinese Patent Application No. 201080018761.X, issued Apr. 3, 2015, 5 pages.
English Translation of Second Office Action for Chinese Patent Application No. 201180022996.0, issued Jul. 28, 2015, 10 pages.
English Translation of Search Report for Chinese Patent Application No. 201280009252.X, issued Jun. 25, 2015, 2 pages.
English Translation of Search Report for Chinese Patent Application No. 201280010672.X, issued Dec. 15, 2014, 2 pages.
English Translation of Notification of Reason for Rejection for Japanese Patent Application No. 2012-516298, issued Jul. 6, 2015, 6 pages.
Examination Report for European Patent Application No. 10707153.2, mailed Mar. 25, 2015, 6 pages.
Examination Report for European patent application 09789090.9-2216 mailed Aug. 29, 2011, 4 pages.
Examination Report for European patent application 09789090.9-2217 mailed Mar. 30, 2012, 6 pages.
European Search Report for European patent application 09789090.9-2217 mailed Jan. 24, 2013, 5 pages.
Partial European Search Report for European Patent Application 15184772.0, mailed Jan. 22, 2016, 7 pages.
International Search Report for PCT/US2011/057582 mailed Jan. 27, 2012, 3 pages.
Written Opinion of the International Searching Authority for International patent application PCT/US2009/004548, mailed Apr. 5, 2011, 6 pages.
International Search Report and Written Opinion for PCT/US2010/039218 mailed Oct. 27, 2010, 13 pages.
International Search Report for PCT/US2011/030446 mailed Jul. 14, 2011, 2 pages.
International Search Report for PCT/US2011/030448 mailed Jul. 20, 2011, 2 pages.
International Search Report for PCT/US2011/030466 mailed Aug. 5, 2011, 2 pages.
International Search Report and Written Opinion for PCT/US2011/035683 mailed Sep. 8, 2011, 15 pages.
International Search Report and Written Opinion for PCT/US2011/035684 mailed Jul. 1, 2011, 11 pages.
International Search Report and Written Opinion for PCT/US11/61754 mailed Mar. 26, 2012, 9 pages.
International Search Report and Written Opinion for PCT/US2011/062353 mailed Apr. 10, 2012, 15 pages.
International Search Report for PCT/US2012/023622 mailed Sep. 3, 2012, 4 pages.
International Search Report for PCT/US2012/023626 mailed May 22, 2012, 4 pages.
International Search Report for PCT/US2012/023635 mailed Sep. 14, 2012, 3 pages.
International Search Report for PCT/US2012/052958 mailed Mar. 1, 2013, 7 pages.
International Preliminary Report on Patentability for PCT/US2012/052958 mailed Mar. 13, 2014, 12 pages.
International Search Report for PCT/US2013/041266 mailed Aug. 20, 2013, 4 pages.
International Search Report for PCT/US2013/041268 mailed Aug. 20, 2013, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/946,139 mailed Jul. 26, 2012, 12 pages.
European Search Report for patent application 10790017.7 mailed Nov. 8, 2012, 7 pages.
Final Office Action for U.S. Appl. No. 12/946,139 mailed Feb. 15, 2013, 17 pages.
Non-final Office Action for U.S. Appl. No. 12/751,884 mailed Feb. 15, 2013, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/394,114 mailed Feb. 27, 2013, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/819,065 mailed Mar. 4, 2013, 7 pages.
Final Office Action for U.S. Appl. No. 12/952,960 mailed Mar. 7, 2013, 13 pages.
Notice of Allowance for U.S. Appl. No. 12/732,487 mailed Mar. 19, 2013, 11 pages.
Non-final Office Action for U.S. Appl. No. 12/953,134 mailed Mar. 21, 2013, 9 pages.
Final Office Action for U.S. Appl. No. 12/641,617 mailed May 10, 2013, 21 pages.
Non-final Office Action for U.S. Appl. No. 12/956,475 mailed Oct. 4, 2012, 8 pages.
Non-final Office Action for U.S. Appl. No. 13/302,067 mailed Jun. 7, 2013, 13 pages.
Final Office Action for U.S. Appl. No. 12/771,473 mailed Jul. 19, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 12/751,884 mailed Jul. 17, 2013, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/940,585 mailed Aug. 16, 2013, 14 pages.
Final Office Action for U.S. Appl. No. 12/953,134 mailed Aug. 23, 2013, 11 pages.
Non-final Office Action for U.S. Appl. No. 12/953,039 mailed Apr. 15, 2014, 8 pages.
Final Office Action for U.S. Appl. No. 12/946,139 mailed Apr. 22, 2014, 18 pages.
Final Office Action for U.S. Appl. No. 13/597,549 mailed Apr. 24, 2014, 10 pages.
Final Office Action for U.S. Appl. No. 13/901,074 mailed May 9, 2014, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/946,217 mailed Jul. 26, 2012, 25 pages.
Final Office Action for U.S. Appl. No. 12/946,217 mailed Mar. 18, 2013, 48 pages.
Non-final Office Action for U.S. Appl. No. 12/946,217 mailed Oct. 3, 2013, 47 pages.
Final Office Action for U.S. Appl. No. 12/946,217 mailed Apr. 25, 2014, 40 pages.
Non-final Office Action for U.S. Appl. No. 13/833,876 mailed Apr. 24, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 12/953,536 mailed May 20, 2014, 9 pages.
Advisory Action for U.S. Appl. No. 12/707,889 mailed Jun. 11, 2014, 4 pages.
Advisory Action for U.S. Appl. No. 12/940,585 mailed Jun. 17, 2014, 3 pages.
Advisory Action for U.S. Appl. No. 12/947,883 mailed Jun. 19, 2014, 3 pages.
Non-final Office Action for U.S. Appl. No. 12/732,487 mailed Jun. 20, 2014, 24 pages.
Non-final Office Action for U.S. Appl. No. 13/621,958 mailed Jun. 20, 2014, 13 pages.
Final Office Action for U.S. Appl. No. 13/649,417 mailed Jun. 25, 2014, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/952,960 mailed Jun. 26, 2014, 13 pages.
Non-final Office Action for U.S. Appl. No. 13/746,938 mailed Jul. 11, 2014, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/751,895 mailed May 20, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/533,093 mailed Jul. 8, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/597,549 mailed Jul. 8, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/455,646 mailed Jun. 2, 2014, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/819,065 mailed Jul. 18, 2014, 10 pages.
Final Office Action for U.S. Appl. No. 12/818,986 mailed Jul. 18, 2014, 27 pages.
Final Office Action for U.S. Appl. No. 13/081,856 mailed Jul. 2, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 12/221,117 mailed Jul. 16, 2014, 7 pages.
Decision on Appeal for U.S. Appl. No. 12/221,117 mailed Jul. 1, 2014, 7 pages.
Final Office Action for U.S. Appl. No. 12/953,039 mailed Jul. 25, 2014, 10 pages.
Notice of Allowance for U.S. Appl. No. 12/953,536 mailed Aug. 28, 2014, 9 pages.
Final Office Action for U.S. Appl. No. 13/901,074 mailed Sep. 5, 2014, 7 pages.
Final Office Action for U.S. Appl. No. 13/663,975 mailed Aug. 14, 2014, 42 pages.
Corrected Notice of Allowance for U.S. Appl. No. 13/533,093 mailed Sep. 2, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/649,417 mailed Sep. 8, 2014, 7 pages.
Examiner's Answer to the Appeal for U.S. Appl. No. 12/952,912 mailed Sep. 11, 2014, 15 pages.
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 13/081,856 mailed Sep. 16, 2014, 4 pages.
Notice of Allowance for U.S. Appl. No. 13/455,646 mailed Sep. 26, 2014, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/663,949 mailed Sep. 25, 2014, 21 pages.
Non-Final Office Action for U.S. Appl. No. 13/688,675 mailed Sep. 30, 2014, 9 pages.
Advisory Action for U.S. Appl. No. 12/953,039 mailed Oct. 3, 2014, 3 pages.
Notice of Allowance for U.S. Appl. No. 13/597,549 mailed Oct. 3, 2014, 8 pages.
Decision on Appeal for U.S. Appl. No. 11/320,062 mailed Aug. 14, 2014, 8 pages.
Final Office Action for U.S. Appl. No. 12/953,101 mailed Oct. 20, 2014, 14 pages.
Notice of Allowance for U.S. Appl. No. 13/533,093 mailed Oct. 17, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 12/732,487 mailed Oct. 7, 2014, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/567,288 mailed Oct. 8, 2014, 7 pages.
Advisory Action for U.S. Appl. No. 12/818,986 mailed Oct. 15, 2014, 5 pages.
Examiner's Answer to the Appeal Brief for U.S. Appl. No. 12/953,134 mailed Aug. 1, 2014, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/956,446 mailed Dec. 5, 2014, 12 pages.
Advisory Action for U.S. Appl. No. 13/663,975 mailed Dec. 24, 2014, 7 pages.
Final Office Action for U.S. Appl. No. 12/394,114 mailed Oct. 31, 2014, 10 pages.
Examination Report for European patent application 09789090.9-1562 mailed Aug. 2, 2013, 4 pages.
Examination Report for European patent application 09789090.9-1562 mailed Feb. 25, 2014, 5 pages.
Examination Report for European patent application 09789090.9-1562 mailed Oct. 2, 2014, 6 pages.
Examination Report for European patent application 09789090.9-1562 mailed May 5, 2015, 5 pages.
Examination Report for European patent application 09789090.9-1562 mailed Dec. 18, 2015, 4 pages.
Patent Examination Report No. 1 for Australian patent application 2011245168 mailed Sep. 9, 2014, 3 pages.
English Translation of Notice on the First Office Action for Chinese patent application 201180021566.7 mailed Jul. 3, 2014, 7 pages.
English Translation of Notice on the Second Office Action for Chinese patent application 201180021566.7 mailed May 26, 2015, 7 pages.
International Search Report and Written Opinion for PCT/US2011/034581 mailed Jul. 13, 2011, 13 pages.
Final Office Action for U.S. Appl. No. 14/263,751 mailed Jun. 8, 2016, 6 pages.
Decision on Appeal for U.S. Appl. No. 12/953,134 mailed Jun. 24, 2016, 6 pages.
Decision on Appeal for U.S. Appl. No. 12/952,912 mailed Jun. 28, 2016, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/940,699 mailed Jul. 1, 2016, 10 pages.
Non-final Office Action for U.S. Appl. No. 13/901,074 mailed Jun. 22, 2016, 8 pages.
Ex parte Quayle Action for U.S. Appl. No. 12/953,164 mailed Aug. 16, 2013, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/732,487 mailed Jul. 17, 2013, 22 pages.
Non-final Office Action and Interview Summary for U.S. Appl. No. 12/707,889 mailed Aug. 8, 2013, 15 pages.
Advisory Action for U.S. Appl. No. 12/953,039 mailed Jul. 12, 2013, 3 pages.
Advisory Action for U.S. Appl. No. 12/641,617 mailed Jul. 29, 2013, 3 pages.
Final Office Action for U.S. Appl. No. 12/952,912 mailed Aug. 30, 2013, 15 pages.
Advisory Action for U.S. Appl. No. 12/771,473 mailed Oct. 2, 2013, 3 pages.
Notice of Allowance for U.S. Appl. No. 12/641,617 mailed Sep. 4, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 12/871,052 mailed Sep. 18, 2013, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/953,039 mailed Sep. 12, 2013, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/946,139 mailed Oct. 2, 2013, 18 pages.
Final Office Action for U.S. Appl. No. 12/394,114 mailed Oct. 4, 2013, 10 pages.
Non-final Office Action for U.S. Appl. No. 12/818,986 mailed Oct. 4, 2013, 19 pages.
Non-final Office Action for U.S. Appl. No. 13/901,074 mailed Oct. 9, 2013, 6 pages.
Advisory Action for U.S. Appl. No. 12/953,134 mailed Nov. 4, 2013, 3 pages.
Final Office Action for U.S. Appl. No. 12/952,960 mailed Oct. 29, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/292,130 mailed Oct. 18, 2013, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/956,446 mailed Sep. 6, 2013, 10 pages.
Non-final Office Action for U.S. Appl. No. 13/603,894 mailed Oct. 3, 2013, 9 pages.
Advisory Action for U.S. Appl. No. 12/394,114 mailed Jan. 2, 2014, 3 pages.
Notice of Allowance for U.S. Appl. No. 12/871,052 mailed Dec. 24, 2013, 9 pages.
Final Office Action for U.S. Appl. No. 12/953,039 mailed Dec. 27, 2013, 10 pages.
Advisory Action for U.S. Appl. No. 12/952,960 mailed Jan. 8, 2014, 3 pages.
Advisory Action for U.S. Appl. No. 12/952,912 mailed Nov. 26, 2013, 3 pages.
Non-final Office Action for U.S. Appl. No. 13/597,549 mailed Jan. 14, 2014, 9 pages.
Final Office Action for U.S. Appl. No. 12/732,487 mailed Dec. 6, 2013, 24 pages.
Final Office Action for U.S. Appl. No. 12/956,446 mailed Dec. 23, 2013, 12 pages.
Non-final Office Action for U.S. Appl. No. 12/953,536 mailed Dec. 17, 2013, 21 pages.
Non-final Office Action for U.S. Appl. No. 12/819,065 mailed Dec. 3, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/292,130 mailed Feb. 14, 2014, 7 pages.
Final Office Action for U.S. Appl. No. 12/707,889 mailed Feb. 11, 2014, 17 pages.
Non-final Office Action for U.S. Appl. No. 12/940,699 mailed Feb. 3, 2014, 10 pages.
Notice of Allowance for U.S. Appl. No. 12/952,960 mailed Feb. 13, 2014, 7 pages.
Notice of Allowance and Applicant-Initiated Interview Summary for U.S. Appl. No. 12/771,473 mailed Feb. 27, 2014, 8 pages.
Non-final Office Action for U.S. Appl. No. 13/081,856 mailed Nov. 26, 2013, 11 pages.
Non-final Office Action for U.S. Appl. No. 13/688,675 mailed Jan. 31, 2014, 13 pages.
Non-final Office Action for U.S. Appl. No. 13/663,975 mailed Jan. 31, 2014, 18 pages.
Non-final Office Action for U.S. Appl. No. 12/394,114 mailed Mar. 21, 2014, 9 pages.
Final Office Action for U.S. Appl. No. 12/940,585 mailed Mar. 18, 2014, 15 pages.
Non-final Office Action for U.S. Appl. No. 12/953,101 mailed Apr. 3, 2014, 9 pages.
Advisory Action for U.S. Appl. No. 12/953,039 mailed Mar. 6, 2014, 3 pages.
Advisory Action for U.S. Appl. No. 12/956,446 mailed Mar. 20, 2014, 3 pages.
Final Office Action for U.S. Appl. No. 13/603,894 mailed Mar. 20, 2014, 15 pages.
Notice of Allowance for U.S. Appl. No. 13/951,916 mailed Dec. 16, 2013, 12 pages.
Non-final Office Action for U.S. Appl. No. 12/947,883 mailed Sep. 6, 2013, 9 pages.
Final Office Action for U.S. Appl. No. 12/947,883 mailed Mar. 31, 2014, 13 pages.
Non-final Office Action for U.S. Appl. No. 13/621,958 mailed Feb. 13, 2014, 10 pages.
Non-final Office Action for U.S. Appl. No. 13/649,417 mailed Feb. 13, 2014, 10 pages.
Non-final Office Action for U.S. Appl. No. 13/663,949 mailed Feb. 3, 2014, 19 pages.
Non-final Office Action for U.S. Appl. No. 12/953,003 mailed Apr. 14, 2014, 13 pages.
Patent Examination Report No. 1 for Australian Patent Application No. 2015242945, mailed Sep. 1, 2016, 5 pages.
McEachern, “Gigabit Networking on the Public Transmission Network,” IEEE Communications Magazine, Apr. 1992, IEEE, pp. 70-78.
Decision on Appeal for U.S. Appl. No. 12/946,139, mailed Oct. 13, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 14/660,074, mailed Sep. 15, 2016, 13 pages.
Non-Final Office Action for U.S. Appl. No. 14/512,899, mailed Aug. 16, 2016, 8 pages.
Related Publications (1)
Number Date Country
20110268410 A1 Nov 2011 US
Provisional Applications (7)
Number Date Country
61329898 Apr 2010 US
61332572 May 2010 US
61332548 May 2010 US
61332529 May 2010 US
61332508 May 2010 US
61329925 Apr 2010 US
61329948 Apr 2010 US