The present disclosure generally relates to apparatuses, systems, and methods for removing solid particulates from a fluid stream upstream of a catalyst. More specifically, the present disclosure relates to, among other embodiments, apparatuses, systems and methods for removing heating element-derived fiber and dust particles from heated fluid streams to reduce risk or prevent the fouling of downstream catalysts and equipment such as by the solid particulates.
Many industrial processes involve the use of heaters and boilers to heat chemical components of fluid streams upstream of an environmental catalyst. Often, industrial equipment employed upstream of an environmental catalyst, including heating elements used in process heaters and boilers, shed fibers and dust particles that may disrupt downstream catalysts and equipment. This may be particularly true when heating elements having fiber refractories are used. In such instances, fibers and other solid particulates from the heating element may lay down on the catalyst face or otherwise foul downstream catalysts and other equipment causing unplanned unit shutdowns and lost profits. Accordingly, Applicant has recognized that apparatuses, methods, and systems for preventing the fouling of downstream catalysts without shutting down industrial process streams are desirable.
To address these shortcomings, Applicant has developed apparatuses, systems, and methods for mitigating catalyst fouling to allow the process plants or streams to continue to operate smoothly or without the need for shutting down industrial process plants or streams. In particular, embodiments of the presently disclosed apparatuses, systems, and methods are operable to reduce catalyst fouling by removing solid particulates from a heated fluid stream upstream of a catalyst by use of one or more removable flue gas strainers, for example, that may be cleaned or serviced without ceasing or disrupting the heating or catalytic operations. In certain embodiments, the presently disclosed apparatuses, systems, and methods may be used to protect catalysts used in fluid catalytic cracking (FCC) units. In particular, in certain embodiments, one or more of the presently disclosed flue gas strainer apparatuses may be installed in flue gas ducting upstream of one or more fluid catalytic cracking (FCC) units.
Embodiments of a flue gas strainer apparatus for removing solid particulates from a heated fluid stream upstream of a catalyst also are provided. In certain embodiments, the flue gas strainer apparatus may include a housing having a front end and a back end. The housing may also include a receiving portion, an outer edge, an inner edge, and an inner bore extending from the front end to the back end of the housing along the inner edge. The inner bore may be operable to allow a heated fluid stream to pass therethrough. The removable flue gas strainer may also include a moveable strainer portion having one or more removable mesh portions. Each of the one or more removable mesh portions may include a plurality of pores and may be configured to capture solid particulates suspended in the heated fluid stream while providing pores for allowing the heated fluid stream to pass therethrough. The one or more removable mesh portions may be operable to be removingly received in the receiving portion of the housing such that in a first received configuration, the one or more removable mesh portions are operable to capture solid particulates suspended in the heated fluid stream passing through the inner bore of the housing. In a second retracted configuration, the one or more removable mesh portions are operable to be retracted such that the mesh portion is outside the inner bore of the housing and operable to be cleaned of captured solid particulates while the heated fluid stream continues to flow through the inner bore of the housing.
In certain embodiments, the flue gas strainer apparatus is configured to be positioned in a heated fluid stream such that the outer edge of the housing sealingly engages a duct containing the heated fluid stream. In certain embodiments, the outer edge of the housing has one or more flanges operable to sealingly engage the duct containing the heated fluid stream.
In certain embodiments of the flue gas strainer apparatus, the receiving portion of the housing may be disposed between a front end and a back end of the housing. In some embodiments, for example, the receiving portion may comprise a slot in the housing disposed between the front end and the back end of the housing. In certain embodiments, the flue gas strainer apparatus may include a means for moving or retracting the moveable strainer portion. In such embodiments, the means for moving or retracting the moveable strainer portion may include a motor coupled to a tether that is coupled to the moveable strainer portion. In certain embodiments, the flue gas strainer apparatus may further include one or more sealing elements operable to form a seal around the moveable strainer portion and/or the one or more removable mesh portions once received in the receiving portion.
In certain embodiments of the flue gas strainer apparatus, the moveable strainer portion may be operable to retract or otherwise move such that the one or more removable mesh portions are remove from the heated fluid stream so that the one or more mesh portions may be cleaned of captured solid particulates without disrupting the heated fluid stream flowing through the inner bore or disrupting one or more industrial operations relying on the flow of the heated fluid stream. In certain embodiments, the flue gas strainer apparatus may further include a means for moving or advancing the moveable strainer portion such that the one or more mesh portions of the moveable strainer portion are inserted into the inner bore of the housing from a position outside the inner bore of the housing.
In certain embodiments, the moveable strainer portion of the flue gas strainer apparatus may include a support frame coupling the one or more mesh portions to the means for moving the moveable strainer portion. The support frame may be coupled to one or more edges of the one or more mesh portions.
In certain embodiments, the moveable strainer portion comprises a plurality of removable mesh portions. In some instances, the plurality of removable mesh portions may be coupled together by the support frame. In certain embodiments, the removable mesh portions may be spaced apart on the support frame and/or the moveable strainer portion such that when at least one mesh portion is inserted into the inner bore of the housing, at least one other mesh portion is positioned outside the inner bore of the housing. In certain embodiments, the means for moving the moveable strainer portion may further comprise a means for rotating the plurality of mesh portions into and out of the inner bore of the housing such that when a fouled mesh portion comprising captured particles is removed from the inner bore of the housing, a clean mesh portion is inserted into the inner bore of the same housing by the same motion of the moveable strainer portion.
A method of reacting a heated fluid stream with a catalytic reactor also is provided, according to certain embodiments of the present disclosure. In certain embodiments, the method may include providing one or more flue gas strainer apparatuses positioned in a flowpath of a heated fluid stream between one or more heating elements and one or more catalytic reactors. The one or more flue gas strainer apparatuses, for example, may include a housing having an inner bore operable to receive the heated fluid stream therethrough and a moveable strainer portion that includes one or more removable mesh portions. The one or more removable mesh portions may have a plurality of pores and be configured to capture solid particulates suspended in the heated fluid stream. The method also may include causing the capture of solid particulates suspended in the heated fluid stream on or about the one or more removable mesh portions of the one or more flue gas strainer apparatuses. The method may also include removing or retracting the one or more removable mesh portions from the flowpath of the heated fluid stream without disrupting the flow of the heated fluid stream through the inner bore. The method may further include cleaning the one or more removable mesh portions of the moveable strainer portion to substantially remove the captured solid particulates, and re-inserting the one or more removable mesh portions into the flowpath of the heated fluid stream.
In certain embodiments, the one or more flue gas strainer apparatuses employed in the method may include a first flue gas strainer apparatus and a second flue gas strainer apparatus. The first and second flue gas strainer apparatuses may be arranged in series and operable to be deployed in a first received configuration and a second retracted configuration. For example, in a first received configuration, at least one of the on or more removable mesh portions of the moveable strainer portion may be received in the housing and operable to capture solid particulates suspended in the heated fluid stream passing through the inner bore of the housing, and in a second retracted configuration, the at least one of the one or more removable strainer portions may be retracted from the inner bore of the housing and operable to have the mesh portion available to be substantially cleaned of captured solid particulates while the heated fluid stream continues to flow through the inner bore of the housing.
In such embodiments, the method may also include deploying the first flue gas strainer apparatus in the first received configuration so as to cause the capture of solid particulates suspended in the heated fluid stream on or about at least one of the one or more removable mesh portions of the first flue gas strainer apparatus. The method may further include deploying the first flue gas strainer apparatus in the second retracted configuration while the second flue gas strainer apparatus is deployed in the first received configuration. The method may also include cleaning the at least one of the one or more removable mesh portions of the first flue gas strainer apparatus so as to substantially remove the captured solid particulates, and capturing solid particulates on or about the at least one of the one or more removable mesh portions of the second flue gas strainer apparatus substantially contemporaneous with the cleaning of the at least one of the one or more removable mesh portions of the first flue gas strainer apparatus.
In certain embodiments, the method may also include deploying, after substantial removal of the captured solid particulates from the one or more removable mesh portions, the first flue gas strainer apparatus in the first received configuration so as to cause the capture of solid particulates suspended in the heated fluid stream. The method may also include deploying the second flue gas strainer apparatus in the second retracted configuration while the first flue gas strainer apparatus is deployed in the first received configuration. The method may further include cleaning the one or more removable mesh portions of the second flue gas strainer apparatus so as to substantially remove the captured solid particulates, and causing the capture of solid particulates on or about the one or more removable mesh portions of the first flue gas strainer apparatus substantially contemporaneous with the cleaning of the one or more removable mesh portions of the second flue gas strainer apparatus.
In certain embodiments, the method further may include heating a fluid, at the one or more heating elements, to generate a heated fluid stream and supplying the heated fluid stream to one or more flue gas strainer apparatuses to produce a strained heated fluid stream. In this embodiment of the method, the one or more flue gas strainer apparatuses may be operable to remove at least a portion of the solid particulates suspended in the heated fluid stream. The method may further include supplying the strained fluid stream to one or more catalytic reactors to produce a treated fluid gas stream.
In some embodiments, the catalytic reactor used in the method may include a catalyst having an average pore size that is larger than the average pore size of the one or more removable mesh portions of the first and second flue gas strainer apparatuses. The solid particulates removed by the method may, in certain embodiments, be derived from the one or more heating elements. In some instances, the one or more heating elements may include a refractory heating element or a fiber refractory heating element. In some embodiments, the one or more catalytic reactors employed in the method may be part of a fluid catalytic cracking (FCC) unit. In certain embodiments, the heated fluid stream may be a flue gas stream generated by one or more refinery operations.
A system for reacting a heated fluid stream with a catalytic reactor is also provided, according to certain embodiments of the present disclosure. In certain embodiments, the system may include one or more heating elements operable to heat a fluid stream to produce a heated fluid stream. The system may also include one or more catalytic reactors that include a catalyst operable to react with one or more components in the heated fluid stream to produce a treated fluid stream. The system may also include one or more flue gas strainer apparatuses positioned in a flowpath of the heated fluid stream between the one or more heating elements and the one or more catalytic reactors. The one or more flue gas strainer apparatuses are operable to receive the heated fluid stream and capture solid particulates suspended in the heated fluid stream on one or more removable mesh portions. The one or more removable mesh portions are operable to be removed from flowpath of the heated fluid stream in order to be cleaned while the heated fluid stream continues to flow to the or more catalytic reactors.
In certain embodiments, each of the flue gas strainer apparatuses employed in the system may include a housing having a front end and a back end. The housing may also include a receiving portion, an outer edge, an inner edge, and an inner bore extending from the front end to the back end of the housing along the inner edge. The inner edge also may define an inner bore operable to allow the heated fluid stream to pass therethrough. The flue gas strainer apparatus may also include a moveable strainer portion comprising one or more removable mesh portions having a plurality of pores and configured to capture solid particulates suspended in the heated fluid stream. The moveable strainer portion and/or the one or more removable mesh portions contained thereon may be operable to be removingly received in the receiving portion of the housing such that in a first received configuration, the one or more removable mesh portions of the moveable strainer portion is operable to capture solid particulates suspended in the heated fluid stream passing through the inner bore of the housing. In a second retracted configuration, the one or more removable mesh portions are operable to be cleaned of captured solid particulates while the heated fluid stream continues to flow through the inner bore of the housing.
In certain embodiments, the system also may include a first flue gas strainer apparatus and a second flue gas strainer apparatus. In such embodiments, the first and second flue gas strainer apparatuses may be arranged in series and operable to be deployed in a first received configuration and a second retracted configuration. In the first received configuration, the moveable strainer portion and/or the one or more removable mesh portions contained thereon is received in the housing and operable to capture solid particulates suspended in the heated fluid stream passing through the inner bore of the housing. In the second retracted configuration, the moveable strainer portion and/or the one or more removable mesh portions may be retracted from the inner bore of the housing and operable to have the mesh portion available to be substantially cleaned of captured solid particulates while the heated fluid stream continues to flow through the inner bore of the housing. In such embodiments, the first and second flue gas strainer apparatuses may be configured such that the one or more removable mesh portions of a respective one of the flue gas strainer apparatuses may be cleaned outside the flowpath of the heated fluid stream while the one or more removable mesh portions of the other flue gas strainer apparatus is operable to capture solid particulates suspended in the heated fluid stream. As a result, operation of an embodiment of the system may occur continuously without the need to cease operations to clean the one or more removable mesh portions and the one or more removable mesh portions of at least one of the removable flue gas strainer apparatuses may be positioned and operable to capture solid particulates from the heated fluid stream.
In certain embodiments of the system, the one or more removable mesh portions of the one or more flue gas strainer apparatuses includes a plurality of pores having an average pore size smaller than the average pore size of the catalyst used in the catalytic reactor. In at least some embodiments of the system, at least one of the one or more heating elements may be a fiber refractory heating element and at least a portion of the solid particulates is derived from the one or more heating elements. In some embodiments of the system, the heated fluid stream may be a flue gas stream generated by one or more refinery operations.
Still other aspects and advantages of these exemplary embodiments and other embodiments, are discussed in detail herein. Moreover, it is to be understood that both the foregoing information and the following detailed description provide merely illustrative examples of various aspects and embodiments and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. Accordingly, these and other advantages and features of the present disclosure, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and may exist in various combinations and permutations.
The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure, and together with the detailed description, serve to explain principles of the embodiments discussed herein. No attempt is made to show structural details of this disclosure in more detail than may be necessary for a fundamental understanding of the embodiments discussed herein and the various ways in which they may be practiced. According to common practice, the various features of the drawings discussed below are not necessarily drawn to scale. Dimensions of various features and elements in the drawings may be expanded or reduced to more clearly illustrate embodiments of the disclosure.
The present disclosure describes various embodiments related to apparatuses, systems, and methods for mitigating catalyst fouling to allow the process plants or streams to continue to operate smoothly or without the need for shutting down industrial process plants or streams. Further embodiments may be described and disclosed.
In the following description, numerous details are set forth in order to provide a thorough understanding of the various embodiments. In other instances, well-known processes, devices, and systems may not have been described in particular detail in order not to unnecessarily obscure the various embodiments. Additionally, illustrations of the various embodiments may omit certain features or details in order to not obscure the various embodiments.
The description may use the phrases “in some embodiments,” “in various embodiments,” “in an embodiment,” or “in embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments of the present disclosure, are synonymous.
The term “about” or “approximately” are defined as being close to as understood by one of ordinary skill in the art. In one non-limiting embodiment, the terms are defined to be within 10%, preferably within 5%, more preferably within 1%, and most preferably within 0.5%.
The terms “reducing,” “reduced,” or any variation thereof, when used in the claims and/or the specification includes any measurable decrease or complete inhibition to achieve a desired result.
The use of the words “a” or “an” when used in conjunction with any of the terms “comprising,” “including,” “containing,” or “having,” in the claims or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The terms “wt. %”, “vol. %”, or “mol. %” refers to a weight, volume, or molar percentage of a component, respectively, based on the total weight, the total volume of material, or total moles, that includes the component. In a non-limiting example, 10 grams of component in 100 grams of the material is 10 wt. % of component.
The words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
Disclosed herein are apparatuses, systems, devices, and methods for removing solid particulates from a fluid stream upstream of a catalyst or other sensitive equipment, in order to reduce or prevent fouling of the catalyst and other downstream equipment. The presently disclosed apparatuses, systems, devices, and methods are particularly useful for removing heating element-derived fiber and dust particles from heated fluid streams, without necessitating the cessation of industrial operations for cleaning, rehabilitation, or replacement of the catalyst. The presently disclosed systems and methods employ one or more flue gas strainer apparatuses capable of reducing catalyst fouling by removing solid particulates from a heated fluid stream and operable to be cleaned or serviced without ceasing or disrupting heating or catalytic operations, thereby mitigating the need for costly process or system downtime.
Flue gas strainer apparatuses 130, 140 may be operable to receive the heated fluid stream 125 produced by heating element 120 and capture solid particulates suspended in the heated fluid stream 125 on one or more removable mesh portions of the flue gas strainer apparatus 130, 140. Once solid particulates are captured on the removable mesh portion of flue gas strainer apparatuses 130, 140, the removable mesh portion may be retracted out of the flowpath of the heated fluid stream in order to be cleaned or serviced so as to not foul the performance of the flue gas strainer. The one or more removable mesh portions of flue gas strainer apparatuses 130, 140 may be removed from the flowpath of the heated fluid stream any number of times without causing a stoppage of heating or catalytic operations in system 100.
Exemplary embodiments of flue gas strainer apparatuses 130, 140 are provided in
Flue gas strainer apparatus 400 depicted in
The flue gas strainer apparatus 400 is configured to be positioned in a heated fluid stream such that the outer edge 420 of housing 410 sealingly engages a duct containing the heated fluid stream. In at least some aspects, the flue gas strainer apparatus 400 may include one or more sealing elements 495 coupled with the outer edge 420 of the housing. The one or more sealing elements 495 may be operable to sealingly engage a conduit or duct containing the heated flue stream or heated flue gas stream. In at least some instances, the one or more sealing elements 495 may include one or more flanges 490 coupled to the outer edge 420 of the housing 410 and operable to sealingly engage the duct containing the heated fluid stream. In addition to flanges 490, other means or mechanisms for the outer edge 420 to sealingly engage the ducting containing the heated fluid stream are within the spirit and scope of the present disclosure.
The moveable strainer portion 450 of flue gas strainer apparatus 400 is operable to retract or otherwise be removed from the heated fluid stream such that the one or more removable mesh portions 455 may be cleaned to remove solid particulates captured on the mesh without disrupting the heated fluid stream flowing through the inner bore 430 of housing 410 or disrupting industrial operations that rely on the flow of the heated fluid stream. Accordingly, the moveable strainer portion 450 and/or the one or more removable mesh portions 455 are operable to be removingly received in the receiving portion 415 of the housing 410 such that, in a first received configuration 401 depicted in
Once the one or more removable mesh portions 455 of moveable strainer portion 450 has captured solid particulates from the heated fluid stream on the mesh portion 455, the moveable strainer portion 450 and/or the one or more removable mesh portions 455 may be retracted from the inner bore 430 of housing 410 by deploying the flue gas strainer apparatus 400 to the second retracted configuration 402 shown in
As shown in
Any number of flue gas strainer apparatuses may be employed in system 100 depicted in
In other embodiments, system 100 and method 105 may include flue gas strainer apparatuses 130, 140 having a plurality of removable mesh portions, such as flue gas strainer apparatus 700 shown in
In certain embodiments, system 100 and method 105 may further include one or more differential pressure sensors, such as differential pressure sensors 181, 182, 183, 184, operable to measure the pressure at a plurality of positions along the ducting of system 100. In particular, differential pressure sensors 181, 182, 183, 184 may be operable to measure pressure increases or decreases at positions along the ducting of system 100 that may be indicative of the reduced efficiency of one or more flue gas strainer apparatuses 130, 140 due to fouling of flue gas strainer apparatus 130, 140. Therefore, differential pressure sensors 181, 182, 183, 184 may be used by an operator of system 100 or a controller device to determine when one or more removable mesh portions of a flue gas strainer apparatus is fouled and in need of rotation or retraction from the flue gas ducting of system 100. Optionally, system 100 may include one or more optical sensor devices 191, 192 operable to optically inspect and monitor the fouling of the one or more removable mesh portions of a flue gas strainer apparatus 130, 140. As shown in
In certain embodiments, system 100 and method 105 may further include one or more cleaning devices 187, 188 coupled with flue gas strainer apparatus 130, 140. The one or more cleaning devices 187, 188 may be operable to clean the fouled one or more removable mesh portions by removing the solid particulates that have accumulated on the one or more removable mesh portions of flue gas strainer apparatus 130, 140. As shown in
Method 105 of reacting a heated fluid stream with a catalytic reactor may employ system 100 or portions thereof. In particular, method 105 may include capturing solid particulates suspended in a heated fluid stream on or about one or more flue gas strainer apparatuses, such as flue gas strainer apparatuses 130, 140. The method 105 may also include removing the moveable strainer portion and/or the one or more removable mesh portions from the flowpath of the heated fluid stream without disrupting the flow of the heated fluid stream through the inner bore, and cleaning the retracted one or more removable mesh portions of the moveable strainer portion to substantially remove the captured solid particulates. Method 105 may also include re-inserting the moveable strainer portion and/or the one or more removable strainer portions into the flowpath of the heated fluid stream.
In an alternative embodiment, method 105 may include providing one or more flue gas strainer apparatuses, such as flue gas strainer apparatuses 130, 140, positioned in a flowpath of a heated fluid stream between one or more heating elements 120 and one or more catalytic reactors 150. Method 105 may also include capturing solid particulates suspended in the heated fluid stream on or about the one or more removable mesh portions 455 of the one or more flue gas strainer apparatuses 130, 140. Method 105 may also include removing the moveable strainer portion 450 and/or the one or more removable mesh portions 455 from the flowpath of the heated fluid stream without disrupting the flow of the heated fluid stream through the inner bore 410 of the flue gas strainer apparatus 130, 140. In such instances, method 105 may also include cleaning the one or more removable mesh portions 455 of the moveable strainer portion 450 to substantially remove the captured solid particulates and re-inserting the moveable strainer portion 450 and/or the one or more removable mesh portions 455 into the flowpath of the heated fluid stream.
In cases in which system 100 includes a plurality of flue gas strainer apparatuses 130, 140, method 105 may include deploying the first flue gas strainer apparatus 130 in the first received configuration 401 so as to cause the capture of solid particulates suspended in the heated fluid stream on or about the one or more removable mesh portions 455 of the first flue gas strainer apparatus 130. Method 105 may further include deploying the first flue gas strainer apparatus 130 in the second retracted configuration 402 while the second flue gas strainer apparatus 140 is deployed in the first received configuration 401. Method 105 may further include cleaning the one or more removable mesh portions 455 of the first flue gas strainer apparatus 130 so as to substantially remove the captured solid particulates and capturing solid particulates on or about the one or more removable mesh portions 455 of the second flue gas strainer apparatus 140 substantially contemporaneous with the cleaning of the one or more removable mesh portions 455 of the first flue gas strainer apparatus 130.
Method 105 may also include deploying, after substantial removal of the captured solid particulates from the one or more removable mesh portions 455, the first flue gas strainer apparatus 130 in the first received configuration 401 so as to cause the capture of solid particulates suspended in the heated fluid stream. Method 105 may then include deploying the second flue gas strainer apparatus 140 in the second retracted configuration 402 while the first flue gas strainer apparatus 130 is deployed in the first received configuration 401. Method 105 may then include cleaning the one or more removable mesh portions 455 of the second flue gas strainer apparatus 140 so as to substantially remove the captured solid particulates and capturing solid particulates on or about the one or more removable mesh portions 455 of the first flue gas strainer apparatus 130 substantially contemporaneous with the cleaning of the one or more removable mesh portions 455 of the second flue gas strainer apparatus 140.
Method 105 may also include conducting one or more refinery operations 110 to generate a flue gas stream 115. The method 105 may then include heating the flue gas stream 115 at one or more heating elements 120 to produce a heated flue gas stream 125. Method 105 may further include supplying the heated flue gas stream 125 to a first flue gas strainer apparatus 130 to generate a first strained flue gas stream 135. The method 105 may further include supplying the first strained flue gas stream 135 to a second flue gas strainer apparatus 140 to produce a second strained flue gas stream 145. The second flue gas stream 145 may then be supplied to one or more catalytic reactors 150 containing a catalyst or catalyst bed operable to treat the heated flue gas stream to produce a treated flue gas stream 155.
System 200 and method 205 may include a means for moving 271, 272 the moveable strainer portions, and the one or more removable mesh portions thereon, of a respective one of flue gas strainer apparatuses 230, 240. The means for moving 271, 272 may be mechanically coupled with the moveable strainer portions of flue gas strainer apparatuses 230, 240 as well as communicatively coupled with controller 1102, as shown in
In certain embodiments, system 200 and method 205 may further include one or more cleaning devices 287, 288 coupled with flue gas strainer apparatus 230, 240. The one or more cleaning devices 287, 288 may be operable to clean the fouled one or more removable mesh portions by removing the solid particulates that have accumulated on the one or more removable mesh portions of flue gas strainer apparatus 230, 240. As shown in
System 300 and method 305, depicted in
System 300 and method 305 may include a means for moving 371, 372 the moveable strainer portions, and the one or more removable mesh portions thereon, of a respective one of flue gas strainer apparatuses 330, 340. The means for moving 371, 372 may be mechanically coupled with the moveable strainer portions of flue gas strainer apparatuses 330, 340 as well as communicatively coupled with controller 1102, as shown in
In certain embodiments, system 300 and method 305 may further include one or more cleaning devices 387, 388 coupled with flue gas strainer apparatus 330, 340. The one or more cleaning devices 387, 388 may be operable to clean the fouled one or more removable mesh portions by removing the solid particulates that have accumulated on the one or more removable mesh portions of flue gas strainer apparatus 330, 340. As shown in
The presently disclosed flue gas strainer apparatuses 400, 700, 900, as well as methods 105, 205, 305, and systems 100, 200, 300 employing the flue gas strainer apparatus 400, 700, 900, are operable to prevent or reduce fouling of downstream catalysts and equipment from solid particulates that may be derived from upstream heating elements. In at least some instances, the one or more heating elements may be a refractory heating element or a fiber refractory heating element. In order to provide optimum protection for downstream catalysts the one or more removable mesh portions 455 of the flue gas strainer apparatus 400 may be sized based on the catalyst that it is protecting. In general, removable mesh portions 455 having an average pore size that is smaller than the average pore size of the catalyst are desirable. In certain embodiments, the mesh size of the one or more removable mesh portions, such as mesh portion 455, may be from about 1 mm to about 7 mm, or from about 0.5 mm to about 10 mm, or from about 1 mm to about 5 mm, or from about 2.5 mm to about 5 mm, or from about 3 mm to about 5 mm, or from about 0.5 mm to about 5 mm.
As depicted in
Instructions stored in the memory 1106 and executable by the processor 1104 may include instructions 1154 to remove or retract the movable strainer portion and/or the one or more removable mesh portions from the housing or flue gas ducting by moving or retracting the movable strainer portion. Controller 1102 may control the means 1164 for moving strainer portion and retracting one or more removable mesh portions based on instructions 1154 for removing or retracting one or more removable mesh portions from the housing or flue gas ducting. The means for removing or retracting 1164 may include, for example, a motor 406 coupled to one or more tethers 407 that are in turn coupled to the moveable strainer portion 450 in systems 400, 700 depicted in
Similarly, memory 1106 may include instructions 1155 for moving the moveable strainer portion of one or more flue gas strainer apparatuses such that one or more removable mesh portions are inserted into the housing of the apparatus or inserted into the flowpath of the flue gas ducting. Controller 1102 may control the means 1165 for moving the strainer portion and thereby causing the insertion of one or more removable mesh portions into the housing or flue gas ducting. The means for removing or retracting 1165 may include, for example, a motor 406 coupled to one or more tethers 407 that are in turn coupled to the moveable strainer portion 450 in systems 400, 700 depicted in
Memory 1106 of controller 1102 may also include differential pressure data 1151 obtained from differential pressure sensors 1161, such as differential pressure sensors 181, 182, 183, 184 in system 100 depicted in
At block 1210, controller 1102 may determine whether a change in the differential pressure in the system, such as systems 100, 200, 300 depicted in
At block 1214, controller 1102 may determine whether the retracted mesh portion or moveable strainer portion is clean. If the controller 1102 determines at block 1214 that the retracted mesh portion or moveable strainer portion is clean, controller 1102 may designated at block 1216 the retracted mesh portion or moveable strainer portion as an available reserve mesh portion or moveable strainer portion that may be re-inserted into the housing or into the flue gas ducting. If the controller 1102 determines at block 1214 that the retracted mesh portion or moveable strainer portion is not clean, then controller 1102 may at block 1215 instruct the cleaning devices to continue the cleaning protocol until the controller determines that the retracted moveable strainer portion or mesh portion is substantially clean of accumulated solid particulates.
If the controller 1102 determines at block 1210 that the measured pressure or change in pressure exceeds or falls below a predetermined level, the controller may also determine at block 1218 whether there is a clean reserve retracted mesh portion or moveable strainer portion. If the controller 1102 determines at block 1218 that there is clean retracted reserve mesh portion or moveable strainer portion, the controller 1102 may at block 1217 instruct the means of moving the moveable strainer portion to move such that a clean mesh portion is inserted into the housing or flue gas ducting. If the controller 1102 determines at block 1218 that there is not a clean retracted reserve mesh portion or moveable strainer portion available, the controller 1102 will at block 1219 standby for the designation of an available clean reserve strainer, such as by designation at block 1216. If at block 1210, the controller 1102 determines that the measured pressure or differential pressure does not exceed or fall below a predetermined level, the controller at block 1211 will maintain the removable mesh portion and/or the moveable strainer portion in the housing or flue gas ducting.
As used herein, the term “transmits a signal,” or reference to other signal communications, in all their forms, refers to electric communication such as hard wiring two components together or wireless communication, as understood by those skilled in the art. For example, wireless communication may be Wi-Fi®, Bluetooth®, ZigBee, forms of near field communications, or other wireless communication methods as will be understood by those skilled in the art. In addition, “transmits a signal” and other signal communications may involve or include one or more intermediate controllers, relays, or switches disposed between elements that are in signal communication with one another.
When ranges are disclosed herein, ranges from any lower limit may be combined with any upper limit to recite a range not explicitly recited, as well as, ranges from any lower limit may be combined with any other lower limit to recite a range not explicitly recited, in the same way, ranges from any upper limit may be combined with any other upper limit to recite a range not explicitly recited. Additionally, reference to values stated in ranges includes each and every value within that range, even though not explicitly recited. Thus, every point or individual value may serve as its own lower or upper limit combined with any other point or individual value or any other lower or upper limit, to recite a range not explicitly recited.
This application claims priority to, and the benefit of, U.S. Provisional Application No. 63/386,586, filed Dec. 8, 2022, titled “Removable Flue Gas Strainer and Associated Methods,” the disclosure of which is incorporated herein by reference in its entirety.
Other objects, features and advantages of the disclosure will become apparent from the foregoing figures, detailed description, and examples. It should be understood, however, that the figures, detailed description, and examples, while indicating specific embodiments of the disclosure, are given by way of illustration only and are not meant to be limiting. In further embodiments, features from specific embodiments may be combined with features from other embodiments. For example, features from one embodiment may be combined with features from any of the other embodiments. In further embodiments, additional features may be added to the specific embodiments described herein.
This application claims priority to, and the benefit of, U.S. Provisional Application No. 63/386,586, filed Dec. 8, 2022, titled “Removable Flue Gas Strainer and Associated Methods,” the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
981434 | Lander | Jan 1911 | A |
1526301 | Stevens | Feb 1925 | A |
1572922 | Govers et al. | Feb 1926 | A |
1867143 | Fohl | Jul 1932 | A |
2401570 | Koehler | Jun 1946 | A |
2498442 | Morey | Feb 1950 | A |
2516097 | Woodham et al. | Jul 1950 | A |
2686728 | Wallace | Aug 1954 | A |
2691621 | Gagle | Oct 1954 | A |
2691773 | Lichtenberger | Oct 1954 | A |
2731282 | Mcmanus et al. | Jan 1956 | A |
2740616 | Walden | Apr 1956 | A |
2792908 | Glanzer | May 1957 | A |
2804165 | Blomgren | Aug 1957 | A |
2867913 | Faucher | Jan 1959 | A |
2888239 | Slemmons | May 1959 | A |
2909482 | Williams et al. | Oct 1959 | A |
2925144 | Kroll | Feb 1960 | A |
2963423 | Birchfield | Dec 1960 | A |
3063681 | Duguid | Nov 1962 | A |
3070990 | Stanley | Jan 1963 | A |
3109481 | Yahnke | Nov 1963 | A |
3167305 | Backx et al. | Jan 1965 | A |
3188184 | Rice et al. | Jun 1965 | A |
3199876 | Magos et al. | Aug 1965 | A |
3203460 | Kuhne | Aug 1965 | A |
3279441 | Lippert et al. | Oct 1966 | A |
3307574 | Anderson | Mar 1967 | A |
3364134 | Hamblin | Jan 1968 | A |
3400049 | Wolfe | Sep 1968 | A |
3545411 | Vollradt | Dec 1970 | A |
3660057 | Ilnyckyj | May 1972 | A |
3719027 | Salka | Mar 1973 | A |
3720601 | Coonradt | Mar 1973 | A |
3771638 | Schneider et al. | Nov 1973 | A |
3775294 | Peterson | Nov 1973 | A |
3795607 | Adams | Mar 1974 | A |
3838036 | Stine et al. | Sep 1974 | A |
3839484 | Zimmerman, Jr. | Oct 1974 | A |
3840209 | James | Oct 1974 | A |
3841144 | Baldwin | Oct 1974 | A |
3854843 | Penny | Dec 1974 | A |
3874399 | Ishihara | Apr 1975 | A |
3901951 | Nishizaki | Aug 1975 | A |
3906780 | Baldwin | Sep 1975 | A |
3912307 | Totman | Oct 1975 | A |
3928172 | Davis et al. | Dec 1975 | A |
3937660 | Yates et al. | Feb 1976 | A |
4006075 | Luckenbach | Feb 1977 | A |
4017214 | Smith | Apr 1977 | A |
4066425 | Nett | Jan 1978 | A |
4085078 | McDonald | Apr 1978 | A |
4144759 | Slowik | Mar 1979 | A |
4149756 | Tackett | Apr 1979 | A |
4151003 | Smith et al. | Apr 1979 | A |
4167492 | Varady | Sep 1979 | A |
4176052 | Bruce et al. | Nov 1979 | A |
4217116 | Seever | Aug 1980 | A |
4260068 | McCarthy et al. | Apr 1981 | A |
4299687 | Myers et al. | Nov 1981 | A |
4302324 | Chen et al. | Nov 1981 | A |
4308968 | Thiltgen et al. | Jan 1982 | A |
4312645 | Mavros | Jan 1982 | A |
4328947 | Reimpell et al. | May 1982 | A |
4332671 | Boyer | Jun 1982 | A |
4340204 | Heard | Jul 1982 | A |
4353812 | Lomas et al. | Oct 1982 | A |
4357603 | Roach et al. | Nov 1982 | A |
4392870 | Chieffo et al. | Jul 1983 | A |
4404095 | Haddad et al. | Sep 1983 | A |
4422925 | Williams et al. | Dec 1983 | A |
4434044 | Busch et al. | Feb 1984 | A |
4439533 | Lomas et al. | Mar 1984 | A |
4468975 | Sayles et al. | Sep 1984 | A |
4482451 | Kemp | Nov 1984 | A |
4495063 | Walters et al. | Jan 1985 | A |
4539012 | Ohzeki et al. | Sep 1985 | A |
4554313 | Hagenbach et al. | Nov 1985 | A |
4554799 | Pallanch | Nov 1985 | A |
4570942 | Diehl et al. | Feb 1986 | A |
4583859 | Hall | Apr 1986 | A |
4601303 | Jensen | Jul 1986 | A |
4615792 | Greenwood | Oct 1986 | A |
4621062 | Stewart et al. | Nov 1986 | A |
4622210 | Hirschberg et al. | Nov 1986 | A |
4624771 | Lane et al. | Nov 1986 | A |
4647313 | Clementoni | Mar 1987 | A |
4654748 | Rees | Mar 1987 | A |
4661241 | Dabkowski et al. | Apr 1987 | A |
4673490 | Subramanian et al. | Jun 1987 | A |
4674337 | Jonas | Jun 1987 | A |
4684759 | Lam | Aug 1987 | A |
4686027 | Bonilla et al. | Aug 1987 | A |
4728348 | Nelson et al. | Mar 1988 | A |
4733888 | Toelke | Mar 1988 | A |
4741819 | Robinson et al. | May 1988 | A |
4764347 | Milligan | Aug 1988 | A |
4765631 | Kohnen et al. | Aug 1988 | A |
4771176 | Scheifer et al. | Sep 1988 | A |
4816137 | Swint et al. | Mar 1989 | A |
4820404 | Owen | Apr 1989 | A |
4824016 | Cody et al. | Apr 1989 | A |
4844133 | von Meyerinck et al. | Jul 1989 | A |
4844927 | Morris et al. | Jul 1989 | A |
4849182 | Luetzelschwab | Jul 1989 | A |
4854855 | Rajewski | Aug 1989 | A |
4875994 | Haddad et al. | Oct 1989 | A |
4877513 | Haire et al. | Oct 1989 | A |
4798463 | Koshi | Nov 1989 | A |
4901751 | Story et al. | Feb 1990 | A |
4914249 | Benedict | Apr 1990 | A |
4916938 | Aikin et al. | Apr 1990 | A |
4917790 | Owen | Apr 1990 | A |
4923834 | Lomas | May 1990 | A |
4940900 | Lambert | Jul 1990 | A |
4957511 | Ljusberg-Wahren | Sep 1990 | A |
4960503 | Haun et al. | Oct 1990 | A |
4963745 | Maggard | Oct 1990 | A |
4972867 | Ruesch | Nov 1990 | A |
4980050 | Huh | Dec 1990 | A |
5000841 | Owen | Mar 1991 | A |
5002459 | Swearingen et al. | Mar 1991 | A |
5008653 | Kidd et al. | Apr 1991 | A |
5009768 | Galiasso et al. | Apr 1991 | A |
5013537 | Patarin et al. | May 1991 | A |
5022266 | Cody et al. | Jun 1991 | A |
5032154 | Wright | Jul 1991 | A |
5034115 | Avidan | Jul 1991 | A |
5045177 | Cooper et al. | Sep 1991 | A |
5050603 | Stokes et al. | Sep 1991 | A |
5053371 | Williamson | Oct 1991 | A |
5056758 | Bramblet | Oct 1991 | A |
5059305 | Sapre | Oct 1991 | A |
5061467 | Johnson et al. | Oct 1991 | A |
5066049 | Staples | Nov 1991 | A |
5076910 | Rush | Dec 1991 | A |
5082985 | Crouzet et al. | Jan 1992 | A |
5096566 | Dawson et al. | Mar 1992 | A |
5097677 | Holtzapple | Mar 1992 | A |
5111882 | Tang et al. | May 1992 | A |
5112357 | Bjerklund | May 1992 | A |
5114562 | Haun et al. | May 1992 | A |
5115686 | Walker et al. | May 1992 | A |
5120517 | Elshout | Jun 1992 | A |
5121337 | Brown | Jun 1992 | A |
5128109 | Owen | Jul 1992 | A |
5128292 | Lomas | Jul 1992 | A |
5129624 | Icenhower et al. | Jul 1992 | A |
5138891 | Johnson | Aug 1992 | A |
5139649 | Owen et al. | Aug 1992 | A |
5145785 | Maggard et al. | Sep 1992 | A |
5149261 | Suwa et al. | Sep 1992 | A |
5154558 | McCallion | Oct 1992 | A |
5160426 | Avidan | Nov 1992 | A |
5170911 | Della Riva | Dec 1992 | A |
5174250 | Lane | Dec 1992 | A |
5174345 | Kesterman et al. | Dec 1992 | A |
5178363 | Icenhower et al. | Jan 1993 | A |
5196110 | Swart et al. | Mar 1993 | A |
5201850 | Lenhardt et al. | Apr 1993 | A |
5203370 | Block et al. | Apr 1993 | A |
5211838 | Staubs et al. | May 1993 | A |
5212129 | Lomas | May 1993 | A |
5221463 | Kamienski et al. | Jun 1993 | A |
5223714 | Maggard | Jun 1993 | A |
5225679 | Clark et al. | Jul 1993 | A |
5230498 | Wood et al. | Jul 1993 | A |
5235999 | Lindquist et al. | Aug 1993 | A |
5236765 | Cordia et al. | Aug 1993 | A |
5243546 | Maggard | Sep 1993 | A |
5246860 | Hutchins et al. | Sep 1993 | A |
5246868 | Busch et al. | Sep 1993 | A |
5248408 | Owen | Sep 1993 | A |
5250807 | Sontvedt | Oct 1993 | A |
5257530 | Beattie et al. | Nov 1993 | A |
5258115 | Heck et al. | Nov 1993 | A |
5258117 | Kolstad et al. | Nov 1993 | A |
5262645 | Lambert et al. | Nov 1993 | A |
5263682 | Covert et al. | Nov 1993 | A |
5301560 | Anderson et al. | Apr 1994 | A |
5302294 | Schubert | Apr 1994 | A |
5316448 | Ziegler et al. | May 1994 | A |
5320671 | Schilling | Jun 1994 | A |
5326074 | Spock et al. | Jul 1994 | A |
5328505 | Schilling | Jul 1994 | A |
5328591 | Raterman | Jul 1994 | A |
5332492 | Maurer et al. | Jul 1994 | A |
5338439 | Owen et al. | Aug 1994 | A |
5348645 | Maggard et al. | Sep 1994 | A |
5349188 | Maggard | Sep 1994 | A |
5349189 | Maggard | Sep 1994 | A |
5354451 | Goldstein et al. | Oct 1994 | A |
5354453 | Bhatia | Oct 1994 | A |
5361643 | Boyd et al. | Nov 1994 | A |
5362965 | Maggard | Nov 1994 | A |
5370146 | King et al. | Dec 1994 | A |
5370790 | Maggard et al. | Dec 1994 | A |
5372270 | Rosenkrantz | Dec 1994 | A |
5372352 | Smith et al. | Dec 1994 | A |
5381002 | Morrow et al. | Jan 1995 | A |
5388805 | Bathrick et al. | Feb 1995 | A |
5389232 | Adewuyi et al. | Feb 1995 | A |
5404015 | Chimenti et al. | Apr 1995 | A |
5415025 | Bartman et al. | May 1995 | A |
5416323 | Hoots et al. | May 1995 | A |
5417843 | Swart et al. | May 1995 | A |
5417846 | Renard | May 1995 | A |
5423446 | Johnson | Jun 1995 | A |
5431067 | Anderson et al. | Jul 1995 | A |
5433120 | Boyd et al. | Jul 1995 | A |
5435436 | Manley et al. | Jul 1995 | A |
5443716 | Anderson et al. | Aug 1995 | A |
5446681 | Gethner et al. | Aug 1995 | A |
5452232 | Espinosa et al. | Sep 1995 | A |
RE35046 | Hettinger et al. | Oct 1995 | E |
5459677 | Kowalski et al. | Oct 1995 | A |
5472875 | Monticello | Dec 1995 | A |
5474607 | Holleran | Dec 1995 | A |
5475612 | Espinosa et al. | Dec 1995 | A |
5476117 | Pakula | Dec 1995 | A |
5490085 | Lambert et al. | Feb 1996 | A |
5492617 | Trimble et al. | Feb 1996 | A |
5494079 | Tiedemann | Feb 1996 | A |
5507326 | Cadman et al. | Apr 1996 | A |
5510265 | Monticello | Apr 1996 | A |
5516969 | Krasznai et al. | May 1996 | A |
5532487 | Brearley et al. | Jul 1996 | A |
5540893 | English | Jul 1996 | A |
5549814 | Zinke | Aug 1996 | A |
5556222 | Chen | Sep 1996 | A |
5559295 | Sheryll | Sep 1996 | A |
5560509 | Laverman et al. | Oct 1996 | A |
5569808 | Cansell et al. | Oct 1996 | A |
5573032 | Lenz et al. | Nov 1996 | A |
5584985 | Lomas | Dec 1996 | A |
5596196 | Cooper et al. | Jan 1997 | A |
5600134 | Ashe et al. | Feb 1997 | A |
5647961 | Lofland | Jul 1997 | A |
5652145 | Cody et al. | Jul 1997 | A |
5675071 | Cody et al. | Oct 1997 | A |
5681749 | Ramamoorthy | Oct 1997 | A |
5684580 | Cooper et al. | Nov 1997 | A |
5699269 | Ashe et al. | Dec 1997 | A |
5699270 | Ashe et al. | Dec 1997 | A |
5712481 | Welch et al. | Jan 1998 | A |
5712797 | Descales et al. | Jan 1998 | A |
5713401 | Weeks | Feb 1998 | A |
5716055 | Wilkinson et al. | Feb 1998 | A |
5717209 | Bigman et al. | Feb 1998 | A |
5740073 | Bages et al. | Apr 1998 | A |
5744024 | Sullivan, III et al. | Apr 1998 | A |
5744702 | Roussis et al. | Apr 1998 | A |
5746906 | McHenry et al. | May 1998 | A |
5751415 | Smith et al. | May 1998 | A |
5758514 | Genung et al. | Jun 1998 | A |
5763883 | Descales et al. | Jun 1998 | A |
5800697 | Lengemann | Sep 1998 | A |
5817517 | Perry et al. | Oct 1998 | A |
5822058 | Adler-Golden et al. | Oct 1998 | A |
5834539 | Krivohlavek | Nov 1998 | A |
5837130 | Crossland | Nov 1998 | A |
5853455 | Gibson | Dec 1998 | A |
5856869 | Cooper et al. | Jan 1999 | A |
5858207 | Lomas | Jan 1999 | A |
5858210 | Richardson | Jan 1999 | A |
5858212 | Darcy | Jan 1999 | A |
5861228 | Descales et al. | Jan 1999 | A |
5862060 | Murray, Jr. | Jan 1999 | A |
5865441 | Orlowski | Feb 1999 | A |
5883363 | Motoyoshi et al. | Mar 1999 | A |
5885439 | Glover | Mar 1999 | A |
5892228 | Cooper et al. | Apr 1999 | A |
5895506 | Cook et al. | Apr 1999 | A |
5916433 | Tejada et al. | Jun 1999 | A |
5919354 | Bartek | Jul 1999 | A |
5935415 | Haizmann et al. | Aug 1999 | A |
5940176 | Knapp | Aug 1999 | A |
5972171 | Ross et al. | Oct 1999 | A |
5979491 | Gonsior | Nov 1999 | A |
5997723 | Wiehe et al. | Dec 1999 | A |
6015440 | Noureddini | Jan 2000 | A |
6025305 | Aldrich et al. | Feb 2000 | A |
6026841 | Kozik | Feb 2000 | A |
6040186 | Lewis | Mar 2000 | A |
6047602 | Lynnworth | Apr 2000 | A |
6056005 | Piotrowski et al. | May 2000 | A |
6062274 | Pettesch | May 2000 | A |
6063263 | Palmas | May 2000 | A |
6063265 | Chiyoda et al. | May 2000 | A |
6070128 | Descales et al. | May 2000 | A |
6072576 | McDonald et al. | Jun 2000 | A |
6076864 | Levivier et al. | Jun 2000 | A |
6087662 | Wilt et al. | Jul 2000 | A |
6093867 | Ladwig et al. | Jul 2000 | A |
6099607 | Haslebacher | Aug 2000 | A |
6099616 | Jenne et al. | Aug 2000 | A |
6100975 | Smith et al. | Aug 2000 | A |
6102655 | Kreitmeier | Aug 2000 | A |
6105441 | Conner et al. | Aug 2000 | A |
6107631 | He | Aug 2000 | A |
6117812 | Gao et al. | Sep 2000 | A |
6130095 | Shearer | Oct 2000 | A |
6140647 | Welch et al. | Oct 2000 | A |
6153091 | Sechrist et al. | Nov 2000 | A |
6155294 | Cornford et al. | Dec 2000 | A |
6162644 | Choi et al. | Dec 2000 | A |
6165350 | Lokhandwala et al. | Dec 2000 | A |
6169218 | Hearn | Jan 2001 | B1 |
6171052 | Aschenbruck et al. | Jan 2001 | B1 |
6174501 | Noureddini | Jan 2001 | B1 |
6190535 | Kalnes et al. | Feb 2001 | B1 |
6203585 | Majerczak | Mar 2001 | B1 |
6235104 | Chattopadhyay et al. | May 2001 | B1 |
6258987 | Schmidt et al. | Jul 2001 | B1 |
6271518 | Boehm et al. | Aug 2001 | B1 |
6274785 | Gore | Aug 2001 | B1 |
6284128 | Glover et al. | Sep 2001 | B1 |
6296812 | Gauthier et al. | Oct 2001 | B1 |
6312586 | Kalnes et al. | Nov 2001 | B1 |
6315815 | Spadaccini | Nov 2001 | B1 |
6324895 | Chitnis et al. | Dec 2001 | B1 |
6328348 | Cornford et al. | Dec 2001 | B1 |
6331436 | Richardson et al. | Dec 2001 | B1 |
6348074 | Wenzel | Feb 2002 | B2 |
6350371 | Lokhandwala et al. | Feb 2002 | B1 |
6368495 | Kocal et al. | Apr 2002 | B1 |
6382633 | Hashiguchi et al. | May 2002 | B1 |
6390673 | Camburn | May 2002 | B1 |
6395228 | Maggard et al. | May 2002 | B1 |
6398518 | Ingistov | Jun 2002 | B1 |
6399800 | Haas et al. | Jun 2002 | B1 |
6420181 | Novak | Jul 2002 | B1 |
6422035 | Phillippe | Jul 2002 | B1 |
6435279 | Howe et al. | Aug 2002 | B1 |
6446446 | Cowans | Sep 2002 | B1 |
6446729 | Bixenman et al. | Sep 2002 | B1 |
6451197 | Kalnes | Sep 2002 | B1 |
6454935 | Lesieur et al. | Sep 2002 | B1 |
6467303 | Ross | Oct 2002 | B2 |
6482762 | Ruffin et al. | Nov 2002 | B1 |
6503460 | Miller et al. | Jan 2003 | B1 |
6528047 | Arif et al. | Mar 2003 | B2 |
6540797 | Scott et al. | Apr 2003 | B1 |
6558531 | Steffens et al. | May 2003 | B2 |
6589323 | Korin | Jul 2003 | B1 |
6592448 | Williams | Jul 2003 | B1 |
6609888 | Ingistov | Aug 2003 | B1 |
6622490 | Ingistov | Sep 2003 | B2 |
6644935 | Ingistov | Nov 2003 | B2 |
6660895 | Brunet et al. | Dec 2003 | B1 |
6672858 | Benson et al. | Jan 2004 | B1 |
6733232 | Ingistov | May 2004 | B2 |
6733237 | Ingistov | May 2004 | B2 |
6736961 | Plummer et al. | May 2004 | B2 |
6740226 | Mehra et al. | May 2004 | B2 |
6772581 | Ojiro et al. | Aug 2004 | B2 |
6772741 | Pittel et al. | Aug 2004 | B1 |
6814941 | Naunheimer et al. | Nov 2004 | B1 |
6824673 | Ellis et al. | Nov 2004 | B1 |
6827841 | Kiser et al. | Dec 2004 | B2 |
6835223 | Walker et al. | Dec 2004 | B2 |
6841133 | Niewiedzial et al. | Jan 2005 | B2 |
6842702 | Haaland et al. | Jan 2005 | B2 |
6854346 | Nimberger | Feb 2005 | B2 |
6858128 | Hoehn et al. | Feb 2005 | B1 |
6866771 | Lomas et al. | Mar 2005 | B2 |
6869521 | Lomas | Mar 2005 | B2 |
6897071 | Sonbul | May 2005 | B2 |
6962484 | Brandl et al. | Nov 2005 | B2 |
7013718 | Ingistov et al. | Mar 2006 | B2 |
7035767 | Archer et al. | Apr 2006 | B2 |
7048254 | Laurent et al. | May 2006 | B2 |
7074321 | Kalnes | Jul 2006 | B1 |
7078005 | Smith et al. | Jul 2006 | B2 |
7087153 | Kalnes | Aug 2006 | B1 |
7156123 | Welker et al. | Jan 2007 | B2 |
7172686 | Ji et al. | Feb 2007 | B1 |
7174715 | Armitage et al. | Feb 2007 | B2 |
7194369 | Lundstedt et al. | Mar 2007 | B2 |
7213413 | Battiste et al. | May 2007 | B2 |
7225840 | Craig et al. | Jun 2007 | B1 |
7228250 | Naiman et al. | Jun 2007 | B2 |
7244350 | Kar et al. | Jul 2007 | B2 |
7252755 | Kiser et al. | Aug 2007 | B2 |
7255531 | Ingistov | Aug 2007 | B2 |
7260499 | Watzke et al. | Aug 2007 | B2 |
7291257 | Ackerson et al. | Nov 2007 | B2 |
7332132 | Hedrick et al. | Feb 2008 | B2 |
7404411 | Welch et al. | Jul 2008 | B2 |
7419583 | Nieskens et al. | Sep 2008 | B2 |
7445936 | O'Connor et al. | Nov 2008 | B2 |
7459081 | Koenig | Dec 2008 | B2 |
7485801 | Pulter et al. | Feb 2009 | B1 |
7487955 | Buercklin | Feb 2009 | B1 |
7501285 | Triche et al. | Mar 2009 | B1 |
7551420 | Cerqueira et al. | Jun 2009 | B2 |
7571765 | Themig | Aug 2009 | B2 |
7637970 | Fox et al. | Dec 2009 | B1 |
7669653 | Craster et al. | Mar 2010 | B2 |
7682501 | Soni et al. | Mar 2010 | B2 |
7686280 | Lowery | Mar 2010 | B2 |
7857964 | Mashiko et al. | Dec 2010 | B2 |
7866346 | Walters | Jan 2011 | B1 |
7895011 | Youssefi et al. | Feb 2011 | B2 |
7914601 | Farr et al. | Mar 2011 | B2 |
7931803 | Buchanan | Apr 2011 | B2 |
7932424 | Fujimoto et al. | Apr 2011 | B2 |
7939335 | Triche et al. | May 2011 | B1 |
7981361 | Bacik | Jul 2011 | B2 |
7988753 | Fox et al. | Aug 2011 | B1 |
7993514 | Schlueter | Aug 2011 | B2 |
8007662 | Lomas et al. | Aug 2011 | B2 |
8017910 | Sharpe | Sep 2011 | B2 |
8029662 | Varma et al. | Oct 2011 | B2 |
8037938 | Jardim De Azevedo et al. | Oct 2011 | B2 |
8038774 | Peng | Oct 2011 | B2 |
8064052 | Feitisch et al. | Nov 2011 | B2 |
8066867 | Dziabala | Nov 2011 | B2 |
8080426 | Moore et al. | Dec 2011 | B1 |
8127845 | Assal | Mar 2012 | B2 |
8193401 | McGehee et al. | Jun 2012 | B2 |
8236566 | Carpenter et al. | Aug 2012 | B2 |
8286673 | Recker et al. | Oct 2012 | B1 |
8354065 | Sexton | Jan 2013 | B1 |
8360118 | Fleischer et al. | Jan 2013 | B2 |
8370082 | De Peinder et al. | Feb 2013 | B2 |
8388830 | Sohn et al. | Mar 2013 | B2 |
8389285 | Carpenter et al. | Mar 2013 | B2 |
8397803 | Crabb et al. | Mar 2013 | B2 |
8397820 | Fehr et al. | Mar 2013 | B2 |
8404103 | Dziabala | Mar 2013 | B2 |
8434800 | LeBlanc | May 2013 | B1 |
8481942 | Mertens | Jul 2013 | B2 |
8506656 | Turocy | Aug 2013 | B1 |
8518131 | Mattingly et al. | Aug 2013 | B2 |
8524180 | Canari et al. | Sep 2013 | B2 |
8569068 | Carpenter et al. | Oct 2013 | B2 |
8579139 | Sablak | Nov 2013 | B1 |
8591814 | Hodges | Nov 2013 | B2 |
8609048 | Beadle | Dec 2013 | B1 |
8647415 | De Haan et al. | Feb 2014 | B1 |
8670945 | van Schie | Mar 2014 | B2 |
8685232 | Mandal et al. | Apr 2014 | B2 |
8735820 | Mertens | May 2014 | B2 |
8753502 | Sexton et al. | Jun 2014 | B1 |
8764970 | Moore et al. | Jul 2014 | B1 |
8778823 | Oyekan et al. | Jul 2014 | B1 |
8781757 | Farquharson et al. | Jul 2014 | B2 |
8784645 | Iguchi et al. | Jul 2014 | B2 |
8829258 | Gong et al. | Sep 2014 | B2 |
8916041 | Van Den Berg et al. | Dec 2014 | B2 |
8932458 | Gianzon et al. | Jan 2015 | B1 |
8986402 | Kelly | Mar 2015 | B2 |
8987537 | Droubi et al. | Mar 2015 | B1 |
8999011 | Stern et al. | Apr 2015 | B2 |
8999012 | Kelly et al. | Apr 2015 | B2 |
9011674 | Milam et al. | Apr 2015 | B2 |
9057035 | Kraus et al. | Jun 2015 | B1 |
9097423 | Kraus et al. | Aug 2015 | B2 |
9109176 | Stern et al. | Aug 2015 | B2 |
9109177 | Freel et al. | Aug 2015 | B2 |
9138738 | Glover et al. | Sep 2015 | B1 |
9216376 | Liu et al. | Dec 2015 | B2 |
9272241 | Königsson | Mar 2016 | B2 |
9273867 | Buzinski et al. | Mar 2016 | B2 |
9279748 | Hughes et al. | Mar 2016 | B1 |
9289715 | Høy-Petersen et al. | Mar 2016 | B2 |
9315403 | Laur et al. | Apr 2016 | B1 |
9371493 | Oyekan | Jun 2016 | B1 |
9371494 | Oyekan et al. | Jun 2016 | B2 |
9377340 | Hägg | Jun 2016 | B2 |
9393520 | Gomez | Jul 2016 | B2 |
9410102 | Eaton et al. | Aug 2016 | B2 |
9428695 | Narayanaswamy et al. | Aug 2016 | B2 |
9453169 | Stippich, Jr. et al. | Sep 2016 | B2 |
9458396 | Weiss et al. | Oct 2016 | B2 |
9487718 | Kraus et al. | Nov 2016 | B2 |
9499758 | Droubi et al. | Nov 2016 | B2 |
9500300 | Daigle | Nov 2016 | B2 |
9506649 | Rennie et al. | Nov 2016 | B2 |
9580662 | Moore | Feb 2017 | B1 |
9624448 | Joo et al. | Apr 2017 | B2 |
9650580 | Merdrignac et al. | May 2017 | B2 |
9657241 | Craig et al. | May 2017 | B2 |
9662597 | Formoso | May 2017 | B1 |
9663729 | Baird et al. | May 2017 | B2 |
9665693 | Saeger et al. | May 2017 | B2 |
9709545 | Mertens | Jul 2017 | B2 |
9757686 | Peng | Sep 2017 | B2 |
9789290 | Forsell | Oct 2017 | B2 |
9803152 | Kar et al. | Oct 2017 | B2 |
9834731 | Weiss et al. | Dec 2017 | B2 |
9840674 | Weiss et al. | Dec 2017 | B2 |
9873080 | Richardson | Jan 2018 | B2 |
9878300 | Norling | Jan 2018 | B2 |
9890907 | Highfield et al. | Feb 2018 | B1 |
9891198 | Sutan | Feb 2018 | B2 |
9895649 | Brown et al. | Feb 2018 | B2 |
9896630 | Weiss et al. | Feb 2018 | B2 |
9914094 | Jenkins et al. | Mar 2018 | B2 |
9920270 | Robinson et al. | Mar 2018 | B2 |
9925486 | Botti | Mar 2018 | B1 |
9982788 | Maron | May 2018 | B1 |
9988585 | Hayasaka et al. | Jun 2018 | B2 |
10047299 | Rubin-Pitel et al. | Aug 2018 | B2 |
10048100 | Workman, Jr. | Aug 2018 | B1 |
10087397 | Phillips et al. | Oct 2018 | B2 |
10099175 | Takashashi et al. | Oct 2018 | B2 |
10150078 | Komatsu et al. | Dec 2018 | B2 |
10228708 | Lambert et al. | Mar 2019 | B2 |
10239034 | Sexton | Mar 2019 | B1 |
10253269 | Cantley et al. | Apr 2019 | B2 |
10266779 | Weiss et al. | Apr 2019 | B2 |
10295521 | Mertens | May 2019 | B2 |
10308884 | Klussman | Jun 2019 | B2 |
10316263 | Rubin-Pitel et al. | Jun 2019 | B2 |
10384157 | Balcik | Aug 2019 | B2 |
10435339 | Larsen et al. | Oct 2019 | B2 |
10435636 | Johnson et al. | Oct 2019 | B2 |
10443000 | Lomas | Oct 2019 | B2 |
10443006 | Fruchey et al. | Oct 2019 | B1 |
10457881 | Droubi et al. | Oct 2019 | B2 |
10479943 | Liu et al. | Nov 2019 | B1 |
10494579 | Wrigley et al. | Dec 2019 | B2 |
10495570 | Owen et al. | Dec 2019 | B2 |
10501699 | Robinson et al. | Dec 2019 | B2 |
10526547 | Larsen et al. | Jan 2020 | B2 |
10533141 | Moore et al. | Jan 2020 | B2 |
10563130 | Narayanaswamy et al. | Feb 2020 | B2 |
10563132 | Moore et al. | Feb 2020 | B2 |
10563133 | Moore et al. | Feb 2020 | B2 |
10570078 | Larsen et al. | Feb 2020 | B2 |
10577551 | Kraus et al. | Mar 2020 | B2 |
10584287 | Klussman et al. | Mar 2020 | B2 |
10604709 | Moore et al. | Mar 2020 | B2 |
10640719 | Freel et al. | May 2020 | B2 |
10655074 | Moore et al. | May 2020 | B2 |
10696906 | Cantley et al. | Jun 2020 | B2 |
10808184 | Moore | Oct 2020 | B1 |
10836966 | Moore et al. | Nov 2020 | B2 |
10876053 | Klussman et al. | Dec 2020 | B2 |
10954456 | Moore et al. | Mar 2021 | B2 |
10961468 | Moore et al. | Mar 2021 | B2 |
10962259 | Shah et al. | Mar 2021 | B2 |
10968403 | Moore | Apr 2021 | B2 |
11021662 | Moore et al. | Jun 2021 | B2 |
11098255 | Larsen et al. | Aug 2021 | B2 |
11124714 | Eller et al. | Sep 2021 | B2 |
11136513 | Moore et al. | Oct 2021 | B2 |
11164406 | Meroux et al. | Nov 2021 | B2 |
11168270 | Moore | Nov 2021 | B1 |
11175039 | Lochschmied et al. | Nov 2021 | B2 |
11203719 | Cantley et al. | Dec 2021 | B2 |
11203722 | Moore et al. | Dec 2021 | B2 |
11214741 | Davdov et al. | Jan 2022 | B2 |
11306253 | Timken et al. | Apr 2022 | B2 |
11319262 | Wu et al. | May 2022 | B2 |
11352577 | Woodchick et al. | Jun 2022 | B2 |
11352578 | Eller et al. | Jun 2022 | B2 |
11384301 | Eller et al. | Jul 2022 | B2 |
11421162 | Pradeep et al. | Aug 2022 | B2 |
11460478 | Sugiyama et al. | Oct 2022 | B2 |
11467172 | Mitzel et al. | Oct 2022 | B1 |
11542441 | Larsen et al. | Jan 2023 | B2 |
11578638 | Thobe | Feb 2023 | B2 |
11634647 | Cantley et al. | Apr 2023 | B2 |
11667858 | Eller et al. | Jun 2023 | B2 |
11692141 | Larsen et al. | Jul 2023 | B2 |
11702600 | Sexton et al. | Jul 2023 | B2 |
11715950 | Miller et al. | Aug 2023 | B2 |
11720526 | Miller et al. | Aug 2023 | B2 |
11802257 | Short et al. | Oct 2023 | B2 |
11835450 | Bledsoe, Jr. et al. | Dec 2023 | B2 |
11860069 | Bledsoe, Jr. | Jan 2024 | B2 |
11891581 | Cantley et al. | Feb 2024 | B2 |
11898109 | Sexton et al. | Feb 2024 | B2 |
11905468 | Sexton et al. | Feb 2024 | B2 |
11905479 | Eller et al. | Feb 2024 | B2 |
11906423 | Bledsoe, Jr. | Feb 2024 | B2 |
11920096 | Woodchick et al. | Mar 2024 | B2 |
11921035 | Bledsoe, Jr. et al. | Mar 2024 | B2 |
11970664 | Larsen | Apr 2024 | B2 |
11975316 | Zalewski | May 2024 | B2 |
12000720 | Langlois, III | Jun 2024 | B2 |
12018216 | Larsen et al. | Jun 2024 | B2 |
12031094 | Sexton et al. | Jul 2024 | B2 |
12031676 | Craig et al. | Jul 2024 | B2 |
12037548 | Larsen et al. | Jul 2024 | B2 |
12163878 | Bledsoe, Jr. | Dec 2024 | B2 |
20020014068 | Mittricker et al. | Feb 2002 | A1 |
20020061633 | Marsh | May 2002 | A1 |
20020170431 | Chang et al. | Nov 2002 | A1 |
20030041518 | Wallace et al. | Mar 2003 | A1 |
20030113598 | Chow et al. | Jun 2003 | A1 |
20030188536 | Mittricker | Oct 2003 | A1 |
20030194322 | Brandl et al. | Oct 2003 | A1 |
20040010170 | Vickers | Jan 2004 | A1 |
20040033617 | Sonbul | Feb 2004 | A1 |
20040040201 | Roos et al. | Mar 2004 | A1 |
20040079431 | Kissell | Apr 2004 | A1 |
20040121472 | Nemana et al. | Jun 2004 | A1 |
20040129605 | Goldstein et al. | Jul 2004 | A1 |
20040139858 | Entezarian | Jul 2004 | A1 |
20040154610 | Hopp et al. | Aug 2004 | A1 |
20040232050 | Martin et al. | Nov 2004 | A1 |
20040251170 | Chiyoda et al. | Dec 2004 | A1 |
20050042151 | Alward et al. | Feb 2005 | A1 |
20050088653 | Coates et al. | Apr 2005 | A1 |
20050123466 | Sullivan | Jun 2005 | A1 |
20050139516 | Nieskens et al. | Jun 2005 | A1 |
20050143609 | Wolf et al. | Jun 2005 | A1 |
20050150820 | Guo | Jul 2005 | A1 |
20050216214 | Gorin | Sep 2005 | A1 |
20050229777 | Brown | Oct 2005 | A1 |
20060037237 | Copeland et al. | Feb 2006 | A1 |
20060042701 | Jansen | Mar 2006 | A1 |
20060049082 | Niccum et al. | Mar 2006 | A1 |
20060091059 | Barbaro | May 2006 | A1 |
20060162243 | Wolf | Jul 2006 | A1 |
20060169305 | Jansen et al. | Aug 2006 | A1 |
20060210456 | Bruggendick | Sep 2006 | A1 |
20060169064 | Anschutz et al. | Oct 2006 | A1 |
20060220383 | Erickson | Oct 2006 | A1 |
20070003450 | Burdett et al. | Jan 2007 | A1 |
20070082407 | Little, III | Apr 2007 | A1 |
20070112258 | Soyemi et al. | May 2007 | A1 |
20070202027 | Walker et al. | Aug 2007 | A1 |
20070212271 | Kennedy et al. | Sep 2007 | A1 |
20070212790 | Welch et al. | Sep 2007 | A1 |
20070215521 | Havlik et al. | Sep 2007 | A1 |
20070243556 | Wachs | Oct 2007 | A1 |
20070283812 | Liu et al. | Dec 2007 | A1 |
20080078693 | Sexton et al. | Apr 2008 | A1 |
20080078694 | Sexton et al. | Apr 2008 | A1 |
20080078695 | Sexton et al. | Apr 2008 | A1 |
20080081844 | Shires et al. | Apr 2008 | A1 |
20080087592 | Buchanan | Apr 2008 | A1 |
20080092436 | Seames et al. | Apr 2008 | A1 |
20080109107 | Stefani et al. | May 2008 | A1 |
20080149486 | Greaney et al. | Jun 2008 | A1 |
20080156696 | Niccum et al. | Jul 2008 | A1 |
20080207974 | McCoy et al. | Aug 2008 | A1 |
20080211505 | Trygstad et al. | Sep 2008 | A1 |
20080247942 | Kandziora et al. | Oct 2008 | A1 |
20080253936 | Abhari | Oct 2008 | A1 |
20090151250 | Agrawal | Jun 2009 | A1 |
20090152454 | Nelson et al. | Jun 2009 | A1 |
20090158824 | Brown et al. | Jun 2009 | A1 |
20100127217 | Lightowlers et al. | May 2010 | A1 |
20100131247 | Carpenter et al. | May 2010 | A1 |
20100166602 | Bacik | Jul 2010 | A1 |
20100243235 | Caldwell et al. | Sep 2010 | A1 |
20100301044 | Sprecher | Dec 2010 | A1 |
20100318118 | Forsell | Dec 2010 | A1 |
20110147267 | Kaul et al. | Jun 2011 | A1 |
20110155646 | Karas et al. | Jun 2011 | A1 |
20110175032 | Günther | Jul 2011 | A1 |
20110186307 | Derby | Aug 2011 | A1 |
20110220586 | Levitt | Sep 2011 | A1 |
20110237856 | Mak | Sep 2011 | A1 |
20110247835 | Crabb | Oct 2011 | A1 |
20110277377 | Novak et al. | Nov 2011 | A1 |
20110299076 | Feitisch et al. | Dec 2011 | A1 |
20110319698 | Sohn et al. | Dec 2011 | A1 |
20120012342 | Wilkin et al. | Jan 2012 | A1 |
20120125813 | Bridges et al. | May 2012 | A1 |
20120125814 | Sanchez et al. | May 2012 | A1 |
20120131853 | Thacker et al. | May 2012 | A1 |
20120222550 | Ellis | Sep 2012 | A1 |
20120272715 | Kriel et al. | Nov 2012 | A1 |
20130014431 | Jin et al. | Jan 2013 | A1 |
20130034477 | Heidenreich | Feb 2013 | A1 |
20130109895 | Novak et al. | May 2013 | A1 |
20130112313 | Donnelly et al. | May 2013 | A1 |
20130125619 | Wang | May 2013 | A1 |
20130152525 | Brandner | Jun 2013 | A1 |
20130186739 | Trompiz | Jul 2013 | A1 |
20130192339 | Kriel et al. | Aug 2013 | A1 |
20130225897 | Candelon et al. | Aug 2013 | A1 |
20130288355 | DeWitte et al. | Oct 2013 | A1 |
20130302738 | Rennie | Nov 2013 | A1 |
20130334027 | Winter et al. | Dec 2013 | A1 |
20130342203 | Trygstad et al. | Dec 2013 | A1 |
20140019052 | Zaeper et al. | Jan 2014 | A1 |
20140024873 | De Haan et al. | Jan 2014 | A1 |
20140030174 | Leininger | Jan 2014 | A1 |
20140041150 | Sjoberg | Feb 2014 | A1 |
20140121428 | Wang et al. | May 2014 | A1 |
20140229010 | Farquharson et al. | Aug 2014 | A1 |
20140251129 | Upadhyay | Sep 2014 | A1 |
20140296057 | Ho et al. | Oct 2014 | A1 |
20140299515 | Weiss et al. | Oct 2014 | A1 |
20140311953 | Chimenti et al. | Oct 2014 | A1 |
20140316176 | Fjare et al. | Oct 2014 | A1 |
20140332444 | Weiss et al. | Nov 2014 | A1 |
20140353138 | Amale et al. | Dec 2014 | A1 |
20140374322 | Venkatesh | Dec 2014 | A1 |
20150005547 | Freel et al. | Jan 2015 | A1 |
20150005548 | Freel et al. | Jan 2015 | A1 |
20150007720 | Vu | Jan 2015 | A1 |
20150034570 | Andreussi | Feb 2015 | A1 |
20150034599 | Hunger et al. | Feb 2015 | A1 |
20150057477 | Ellig et al. | Feb 2015 | A1 |
20150071028 | Glanville | Mar 2015 | A1 |
20150122704 | Kumar et al. | May 2015 | A1 |
20150166426 | Wegerer et al. | Jun 2015 | A1 |
20150240167 | Kulprathipanja et al. | Aug 2015 | A1 |
20150240174 | Bru et al. | Aug 2015 | A1 |
20150337207 | Chen et al. | Nov 2015 | A1 |
20150337225 | Droubi et al. | Nov 2015 | A1 |
20150337226 | Tardif et al. | Nov 2015 | A1 |
20150353851 | Buchanan | Dec 2015 | A1 |
20160045918 | Lapham | Feb 2016 | A1 |
20160090539 | Frey et al. | Mar 2016 | A1 |
20160122662 | Weiss et al. | May 2016 | A1 |
20160122666 | Weiss et al. | May 2016 | A1 |
20160160139 | Dawe et al. | Jun 2016 | A1 |
20160168481 | Ray et al. | Jun 2016 | A1 |
20160175749 | Suda | Jun 2016 | A1 |
20160244677 | Froehle | Aug 2016 | A1 |
20160298851 | Brickwood et al. | Oct 2016 | A1 |
20160312127 | Frey et al. | Oct 2016 | A1 |
20160312130 | Majcher et al. | Oct 2016 | A1 |
20170009163 | Kraus et al. | Jan 2017 | A1 |
20170115190 | Hall et al. | Apr 2017 | A1 |
20170128859 | Levitt | May 2017 | A1 |
20170131728 | Lambert et al. | May 2017 | A1 |
20170151526 | Cole | Jun 2017 | A1 |
20170183575 | Rubin-Pitel et al. | Jun 2017 | A1 |
20170198910 | Garg | Jul 2017 | A1 |
20170226434 | Zimmerman | Aug 2017 | A1 |
20170233670 | Feustel et al. | Aug 2017 | A1 |
20170234335 | LeBlanc et al. | Aug 2017 | A1 |
20170269559 | Trygstad | Sep 2017 | A1 |
20180017469 | English et al. | Jan 2018 | A1 |
20180037308 | Lee et al. | Feb 2018 | A1 |
20180080958 | Marchese et al. | Mar 2018 | A1 |
20180094809 | Lochschmied | Apr 2018 | A1 |
20180119039 | Tanaka et al. | May 2018 | A1 |
20180134974 | Weiss et al. | May 2018 | A1 |
20180163144 | Weiss et al. | Jun 2018 | A1 |
20180179457 | Mukherjee et al. | Jun 2018 | A1 |
20180202607 | McBride | Jul 2018 | A1 |
20180230389 | Moore et al. | Aug 2018 | A1 |
20180246142 | Glover | Aug 2018 | A1 |
20180355263 | Moore et al. | Dec 2018 | A1 |
20180361312 | Dutra e Mello et al. | Dec 2018 | A1 |
20180371325 | Streiff et al. | Dec 2018 | A1 |
20190002772 | Moore et al. | Jan 2019 | A1 |
20190010405 | Moore et al. | Jan 2019 | A1 |
20190010408 | Moore et al. | Jan 2019 | A1 |
20190016980 | Kar et al. | Jan 2019 | A1 |
20190093026 | Wohaibi et al. | Mar 2019 | A1 |
20190099706 | Sampath | Apr 2019 | A1 |
20190100702 | Cantley et al. | Apr 2019 | A1 |
20190127651 | Kar et al. | May 2019 | A1 |
20190128160 | Peng | May 2019 | A1 |
20190136144 | Wohaibi et al. | May 2019 | A1 |
20190153340 | Weiss et al. | May 2019 | A1 |
20190153942 | Wohaibi et al. | May 2019 | A1 |
20190169509 | Cantley et al. | Jun 2019 | A1 |
20190185772 | Berkhous et al. | Jun 2019 | A1 |
20190201841 | McClelland | Jul 2019 | A1 |
20190203130 | Mukherjee | Jul 2019 | A1 |
20190218466 | Slade et al. | Jul 2019 | A1 |
20190233741 | Moore et al. | Aug 2019 | A1 |
20190292465 | McBride | Sep 2019 | A1 |
20190338205 | Ackerson et al. | Nov 2019 | A1 |
20190382668 | Klussman et al. | Dec 2019 | A1 |
20190382672 | Sorensen | Dec 2019 | A1 |
20200041481 | Burgess | Feb 2020 | A1 |
20200049675 | Ramirez | Feb 2020 | A1 |
20200080881 | Langlois et al. | Mar 2020 | A1 |
20200095509 | Moore et al. | Mar 2020 | A1 |
20200123458 | Moore et al. | Apr 2020 | A1 |
20200181502 | Paasikallio et al. | Jun 2020 | A1 |
20200191385 | Carroll | Jun 2020 | A1 |
20200199462 | Klussman et al. | Jun 2020 | A1 |
20200208068 | Hossain et al. | Jul 2020 | A1 |
20200246743 | Sorensen | Aug 2020 | A1 |
20200291316 | Robbins et al. | Sep 2020 | A1 |
20200312470 | Craig et al. | Oct 2020 | A1 |
20200316513 | Zhao | Oct 2020 | A1 |
20200332198 | Yang et al. | Oct 2020 | A1 |
20200353456 | Zalewski et al. | Nov 2020 | A1 |
20200378600 | Craig et al. | Dec 2020 | A1 |
20200385644 | Rogel | Dec 2020 | A1 |
20210002559 | Larsen et al. | Jan 2021 | A1 |
20210003502 | Kirchmann et al. | Jan 2021 | A1 |
20210033631 | Field et al. | Feb 2021 | A1 |
20210103304 | Fogarty et al. | Apr 2021 | A1 |
20210115344 | Perkins et al. | Apr 2021 | A1 |
20210181164 | Shirkhan et al. | Jun 2021 | A1 |
20210213382 | Cole | Jul 2021 | A1 |
20210238487 | Moore et al. | Aug 2021 | A1 |
20210253964 | Eller et al. | Aug 2021 | A1 |
20210253965 | Woodchick et al. | Aug 2021 | A1 |
20210261874 | Eller et al. | Aug 2021 | A1 |
20210284919 | Moore et al. | Sep 2021 | A1 |
20210292661 | Klussman et al. | Sep 2021 | A1 |
20210301210 | Timken et al. | Sep 2021 | A1 |
20210318280 | Ludlum | Oct 2021 | A1 |
20210396660 | Zarrabian | Dec 2021 | A1 |
20210403819 | Moore et al. | Dec 2021 | A1 |
20220040629 | Edmoundson et al. | Feb 2022 | A1 |
20220041939 | Tiitta et al. | Feb 2022 | A1 |
20220041940 | Pradeep et al. | Feb 2022 | A1 |
20220048019 | Zalewski et al. | Feb 2022 | A1 |
20220268694 | Bledsoe et al. | Aug 2022 | A1 |
20220298440 | Woodchick et al. | Sep 2022 | A1 |
20220299170 | Raynor et al. | Sep 2022 | A1 |
20220343229 | Gruber et al. | Oct 2022 | A1 |
20220357303 | Zhu et al. | Nov 2022 | A1 |
20230015077 | Kim | Jan 2023 | A1 |
20230078852 | Campbell et al. | Mar 2023 | A1 |
20230080192 | Bledsoe et al. | Mar 2023 | A1 |
20230082189 | Bledsoe et al. | Mar 2023 | A1 |
20230084329 | Bledsoe et al. | Mar 2023 | A1 |
20230087063 | Mitzel et al. | Mar 2023 | A1 |
20230089935 | Bledsoe et al. | Mar 2023 | A1 |
20230093452 | Sexton et al. | Mar 2023 | A1 |
20230111609 | Sexton et al. | Apr 2023 | A1 |
20230113140 | Larsen et al. | Apr 2023 | A1 |
20230118319 | Sexton et al. | Apr 2023 | A1 |
20230220286 | Cantley et al. | Jul 2023 | A1 |
20230241548 | Holland et al. | Aug 2023 | A1 |
20230242837 | Short et al. | Aug 2023 | A1 |
20230259080 | Whikehart et al. | Aug 2023 | A1 |
20230259088 | Borup et al. | Aug 2023 | A1 |
20230272290 | Larsen et al. | Aug 2023 | A1 |
20230295528 | Eller et al. | Sep 2023 | A1 |
20230332056 | Larsen et al. | Oct 2023 | A1 |
20230332058 | Larsen et al. | Oct 2023 | A1 |
20230357649 | Sexton et al. | Nov 2023 | A1 |
20230400184 | Craig | Dec 2023 | A1 |
20230416615 | Larsen | Dec 2023 | A1 |
20230416638 | Short | Dec 2023 | A1 |
20240011898 | Bledsoe, Jr. et al. | Jan 2024 | A1 |
20240115996 | Rudd | Apr 2024 | A1 |
20240117262 | Eller | Apr 2024 | A1 |
20240118194 | Bledsoe, Jr. | Apr 2024 | A1 |
20240124790 | Sexton | Apr 2024 | A1 |
20240132786 | Sexton | Apr 2024 | A1 |
20240182803 | Woodchick | Jun 2024 | A1 |
20240294837 | Larsen | Sep 2024 | A1 |
20240327723 | Larsen | Oct 2024 | A1 |
20240337352 | Craig | Oct 2024 | A1 |
20240377287 | Markins | Nov 2024 | A1 |
20240399279 | Duong | Dec 2024 | A1 |
Number | Date | Country |
---|---|---|
11772 | Feb 2011 | AT |
PI0701518 | Nov 2008 | BR |
2949201 | Nov 2015 | CA |
2822742 | Dec 2016 | CA |
3009808 | Jul 2017 | CA |
2904903 | Aug 2020 | CA |
3077045 | Sep 2020 | CA |
2947431 | Mar 2021 | CA |
3004712 | Jun 2021 | CA |
2980055 | Dec 2021 | CA |
2879783 | Jan 2022 | CA |
2991614 | Jan 2022 | CA |
2980069 | Nov 2022 | CA |
3109606 | Dec 2022 | CA |
432129 | Mar 1967 | CH |
2128346 | Mar 1993 | CN |
201264907 | Jul 2009 | CN |
201306736 | Sep 2009 | CN |
201940168 | Aug 2011 | CN |
102120138 | Dec 2012 | CN |
203453713 | Feb 2014 | CN |
103627433 | Mar 2014 | CN |
203629938 | Jun 2014 | CN |
203816490 | Sep 2014 | CN |
104353357 | Feb 2015 | CN |
204170623 | Feb 2015 | CN |
103331093 | Apr 2015 | CN |
204253221 | Apr 2015 | CN |
204265565 | Apr 2015 | CN |
105148728 | Dec 2015 | CN |
204824775 | Dec 2015 | CN |
103933845 | Jan 2016 | CN |
105289241 | Feb 2016 | CN |
105536486 | May 2016 | CN |
105804900 | Jul 2016 | CN |
103573430 | Aug 2016 | CN |
205655095 | Oct 2016 | CN |
104326604 | Nov 2016 | CN |
104358627 | Nov 2016 | CN |
106237802 | Dec 2016 | CN |
205779365 | Dec 2016 | CN |
106407648 | Feb 2017 | CN |
105778987 | Aug 2017 | CN |
207179722 | Apr 2018 | CN |
207395575 | May 2018 | CN |
108179022 | Jun 2018 | CN |
108704478 | Oct 2018 | CN |
109126458 | Jan 2019 | CN |
109423345 | Mar 2019 | CN |
109499365 | Mar 2019 | CN |
109705939 | May 2019 | CN |
109722303 | May 2019 | CN |
110129103 | Aug 2019 | CN |
110229686 | Sep 2019 | CN |
209451617 | Oct 2019 | CN |
110987862 | Apr 2020 | CN |
111336612 | Jun 2020 | CN |
213762571 | Jul 2021 | CN |
213824075 | Jul 2021 | CN |
214619622 | Nov 2021 | CN |
215263512 | Dec 2021 | CN |
215288592 | Dec 2021 | CN |
113963818 | Jan 2022 | CN |
114001278 | Feb 2022 | CN |
217431673 | Sep 2022 | CN |
218565442 | Mar 2023 | CN |
10179 | Jun 1912 | DE |
3721725 | Jan 1989 | DE |
19619722 | Nov 1997 | DE |
102010017563 | Dec 2011 | DE |
102014009231 | Dec 2015 | DE |
0142352 | May 1985 | EP |
0527000 | Feb 1993 | EP |
0783910 | Jul 1997 | EP |
0949318 | Oct 1999 | EP |
0783910 | Dec 2000 | EP |
0801299 | Mar 2004 | EP |
1413712 | Apr 2004 | EP |
1600491 | Nov 2005 | EP |
1870153 | Dec 2007 | EP |
2047905 | Apr 2009 | EP |
2955345 | Dec 2015 | EP |
3130773 | Feb 2017 | EP |
3139009 | Mar 2017 | EP |
3239483 | Nov 2017 | EP |
3085910 | Aug 2018 | EP |
3355056 | Aug 2018 | EP |
2998529 | Feb 2019 | EP |
3441442 | Feb 2019 | EP |
3569988 | Nov 2019 | EP |
3878926 | Sep 2021 | EP |
2357630 | Feb 1978 | FR |
3004722 | Mar 2016 | FR |
3027909 | May 2016 | FR |
3067036 | Dec 2018 | FR |
3067037 | Dec 2018 | FR |
3072684 | Apr 2019 | FR |
3075808 | Jun 2019 | FR |
775273 | May 1957 | GB |
933618 | Aug 1963 | GB |
1207719 | Oct 1970 | GB |
2144526 | Mar 1985 | GB |
2516441 | Jan 2015 | GB |
202111016535 | Jul 2021 | IN |
59220609 | Dec 1984 | JP |
2003129067 | May 2003 | JP |
2005147478 | Jun 2005 | JP |
3160405 | Jun 2010 | JP |
2015059220 | Mar 2015 | JP |
2019014275 | Jan 2019 | JP |
101751923 | Jul 2017 | KR |
101823897 | Mar 2018 | KR |
20180095303 | Aug 2018 | KR |
20190004474 | Jan 2019 | KR |
20190004475 | Jan 2019 | KR |
2673558 | Nov 2018 | RU |
2700705 | Sep 2019 | RU |
2760879 | Dec 2021 | RU |
320682 | Nov 1997 | TW |
9408225 | Apr 1994 | WO |
199640436 | Dec 1996 | WO |
1997033678 | Sep 1997 | WO |
199803249 | Jan 1998 | WO |
1999041591 | Aug 1999 | WO |
2001051588 | Jul 2001 | WO |
2002038295 | May 2002 | WO |
2006126978 | Nov 2006 | WO |
2008088294 | Jul 2008 | WO |
2010144191 | Dec 2010 | WO |
2012026302 | Mar 2012 | WO |
2012062924 | May 2012 | WO |
2012089776 | Jul 2012 | WO |
2012108584 | Aug 2012 | WO |
2014053431 | Apr 2014 | WO |
2014096703 | Jun 2014 | WO |
2014096704 | Jun 2014 | WO |
2014191004 | Jul 2014 | WO |
2014177424 | Nov 2014 | WO |
2014202815 | Dec 2014 | WO |
2016167708 | Oct 2016 | WO |
2017067088 | Apr 2017 | WO |
2017207976 | Dec 2017 | WO |
2018017664 | Jan 2018 | WO |
2018073018 | Apr 2018 | WO |
2018122274 | Jul 2018 | WO |
2018148675 | Aug 2018 | WO |
2018148681 | Aug 2018 | WO |
2018231105 | Dec 2018 | WO |
2019053323 | Mar 2019 | WO |
2019104243 | May 2019 | WO |
2019155183 | Aug 2019 | WO |
2019178701 | Sep 2019 | WO |
2020035797 | Feb 2020 | WO |
2020160004 | Aug 2020 | WO |
2021058289 | Apr 2021 | WO |
2022133359 | Jun 2022 | WO |
2022144495 | Jul 2022 | WO |
2022149501 | Jul 2022 | WO |
2022219234 | Oct 2022 | WO |
2022220991 | Oct 2022 | WO |
2023020797 | Feb 2023 | WO |
2023038579 | Mar 2023 | WO |
2023137304 | Jul 2023 | WO |
2023164683 | Aug 2023 | WO |
2023242308 | Dec 2023 | WO |
Entry |
---|
Zhou, Gang et al., Study on the Integration of Flue Gas Waste Heat Desulfurization and Dust Removal in Civilian Coalfired Heating Furnace, 2020 IOP Conf. Ser.: Earth Environ. Sci. 603 Jan. 2018. |
Platvoet et al., Process Burners 101, American Institute of Chemical Engineers, Aug. 2013. |
Luyben, W. L., Process Modeling, Simulation, and Control for Chemical Engineers, Feedforward Control, pp. 431-433. |
Cooper et al., Calibration transfer of near-IR partial least squares property models of fuels using standards, Wiley Online Library, Jul. 19, 2011. |
ABB Measurement & Analytics, Using FT-NIR as a Multi-Stream Method for CDU Optimization, Nov. 8, 2018. |
Modcon Systems LTD., On-Line NIR Analysis of Crude Distillation Unit, Jun. 2008. |
ABB Measurement & Analytics, Crude distillation unit (CDU) optimization, 2017. |
Guided Wave Inc., The Role of NIR Process Analyzers in Refineries to Process Crude Oil into Useable Petrochemical Products, 2021. |
ABB Measurement & Analytics, Optimizing Refinery Catalytic Reforming Units with the use of Simple Robust On-Line Analyzer Technology, Nov. 27, 2017, https://www.azom.com/article.aspx?ArticleID=14840. |
Bueno, Alexis et al., Characterization of Catalytic Reforming Streams by NIR Spectroscopy, Energy & Fuels 2009, 23, 3172-3177, Apr. 29, 2009. |
Caricato, Enrico et al, Catalytic Naphtha Reforming—a Novel Control System for the Bench-Scale Evaluation of Commerical Continuous Catalytic Regeneration Catalysts, Industrial of Engineering Chemistry Research, ACS Publications, May 18, 2017. |
Alves, J. C. L., et al., Diesel Oil Quality Parameter Determinations Using Support Vector Regression and Near Infrared Spectroscopy for Hydrotreationg Feedstock Monitoring, Journal of Near Infrared Spectroscopy, 20, 419-425 (2012), Jul. 23, 2012. |
Rodriguez, Elena et al., Coke deposition and product distribution in the co-cracking of waste polyolefin derived streams and vacuum gas oil under FCC unit conditions, Fuel Processing Technology 192 (2019), 130-139. |
Passamonti, Francisco J. et al., Recycling of waste plastics into fuels, PDPE conversion in FCC, Applied Catalysis B: Environmental 125 (2012), 499-506. |
De Rezende Pinho, Andrea et al., Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production, Fuel 188 (2017), 462-473. |
Niaei et al., Computational Study of Pyrolysis Reactions and Coke Deposition in Industrial Naphtha Cracking, P.M.A. Sloot et al., Eds.: ICCS 2002, LNCS 2329, pp. 723-732, 2002. |
Hanson et al., An atmospheric crude tower revamp, Digital Refining, Article, Jul. 2005. |
Lopiccolo, Philip, Coke trap reduces FCC slurry exchanger fouling for Texas refiner, Oil & Gas Journal, Sep. 8, 2003. |
Martino, Germain, Catalytic Reforming, Petroleum Refining Conversion Processes, vol. 3, Chapter 4, pp. 101-168, 2001. |
Baukal et al., Natural-Draft Burners, Industrial Burners Handbook, CRC Press 2003. |
Spekuljak et al., Fluid Distributors for Structured Packing Colums, AICHE, Nov. 1998. |
Hemler et al., UOP Fluid Catalytic Cracking Process, Handbook of Petroleum Refining Processes, 3rd ed., McGraw Hill, 2004. |
United States Department of Agriculture, NIR helps Turn Vegetable Oil into High-Quality Biofuel, Agricultural Research Service, Jun. 15, 1999. |
NPRA, 2006 Cat Cracker Seminar Transcript, National Petrochemical & Refiners Association, Aug. 1-2, 2006. |
Niccum, Phillip K. et al. KBR, CatCracking.com, More Production—Less Risk!, Twenty Questions: Identify Probably Cuase of High FCC Catalyst Loss, May 3-6, 2011. |
NPRA, Cat-10-105 Troubleshooting FCC Catalyst Losses, National Petrochemical & Refiners Association, Aug. 24-25, 2010. |
Fraser, Stuart, Distillation in Refining, Distillation Operation and Applications (2014), pp. 155-190 (Year: 2014). |
Yasin et al., Quality and chemistry of crude oils, Journal of Petroleum Technology and Alternative Fuels, vol. 4(3), pp. 53-63, Mar. 2013. |
Penn State, Cut Points, https://www.e-education.psu.edu/fsc432/content/cut-points, 2018. |
The American Petroleum Institute, Petroleum HPV Testing Group, Heavy Fuel Oils Category Analysis and Hazard Characterization, Dec. 7, 2012. |
Increase Gasoline Octane and Light Olefin Yeilds with ZSM-5, vol. 5, Issue 5, http://www.refiningonline.com/engelhardkb/crep/TCR4_35.htm. |
Fluid Catalytic Cracking and Light Olefins Production, Hydrocarbon Publishing Company, 2011, http://www.hydrocarbonpublishing.com/store10/product.php?productid+b21104. |
Zhang et al., Multifunctional two-stage riser fluid catalytic cracking process, Springer Applied Petrocchemical Research, Sep. 3, 2014. |
Reid, William, Recent trends in fluid catalytic cracking patents, part V: reactor section, Dilworth IP, Sep. 3, 2014. |
Akah et al., Maximizing propylene production via FCC technology, SpringerLink, Mar. 22, 2015. |
Vogt et al., Fluid Catalytic Cracking: Recent Developments on the Grand Old Lady of Zeolite Catalysis, Royal Society of Chemistry, Sep. 18, 2015. |
Zulkefi et al., Overview of H2S Removal Technologies from Biogas Production, International Journal of Applied Engineering Research ISSN 0973-4562, vol. 11, No. 20, pp. 10060-10066, © Research India Publications, 2016. |
Vivek et al., Assessment of crude oil blends, refiner's assessment of the compatibility of opportunity crudes in blends aims to avoid the processing problems introduced by lower-quality feedstocks, www.digitalrefining.com/article/10000381, 2011. |
International Standard, ISO 8217, Petroleum products—Fuels (class F)—Specifications of marine fuels, Sixth Edition, 2017. |
International Standard, ISO 10307-1, Petroleum products—Total sediment in residual fuel oils—, Part 1: Determination by hot filtration, Second Edition, 2009. |
International Standard, ISO 10307-2, Petroleum products—Total sediment in residual fuel oils—, Part 2: Determination using standard procedures for aging, Second Edition, 2009. |
Ebner et al., Deactivatin and durability of the catalyst for Hotspot™ natural gas processing, OSTI, 2000, https://www.osti/gov/etdeweb/servlets/purl/20064378, (Year: 2000). |
Morozov et al., Best Practices When Operating a Unit for Removing Hydrogen Sulfide from Residual Fuel Oil, Chemistry and Technology of Fuels and Oils, vol. 57, No. 4, Sep. 2001. |
Calbry-Muzyka et al., Deep removal of sulfur and trace organic compounds from biogas to protect a catalytic methananation reactor, Chemical Engineering Joural 360, pp. 577-590, 2019. |
Cheah et al., Review of Mid- to High-Tempearture Sulfur Sorbents for Desulfurization of Biomass- and Coal-derived Syngas, Energy Fuels 2009, 23, pp. 5291-5307, Oct. 16, 2019. |
Mandal et al., Simultaneous absorption of carbon dioxide of hydrogen sulfide into aqueous blends of 2-amino-2-methyl-1 propanol and diethanolamine, Chemical Engineering Science 60, pp. 6438-6451, 2005. |
Meng et al., In bed and downstream hot gas desulphurization during solid fuel gasification: A review, Fuel Processing Technology 91, pp. 964-981, 2010. |
Okonkwo et al., Role of Amine Structure on Hydrogen Sulfide Capture from Dilute Gas Streams Using Solid Adsorbents, Energy Fuels, 32, pp. 6926-6933, 2018. |
Okonkwo et al., Selective removal of hydrogen sulfide from simulated biogas streams using sterically hindered amine adsorbents, Chemical Engineering Journal 379, pp. 122-349, 2020. |
Seo et al., Methanol absorption characteristics for the removal of H2S (hydrogen sulfide), COS (carbonyl sulfide) and CO2 (carbon dioxide) in a pilot-scale biomass-to-liquid process, Energy 66, pp. 56-62, 2014. |
Bollas et al., “Modeling Small-Diameter FCC Riser Reactors. A Hydrodynamic and Kinetic Approach”, Industrial and Engineering Chemistry Research, 41(22), 5410-5419, 2002. |
Voutetakis et al., “Computer Application and Software Development for the Automation of a Fluid Catalytic Cracking Pilot Plant—Experimental Results”, Computers & Chemical Engineering, vol. 20 Suppl., S1601-S1606, 1996. |
“Development of Model Equations for Predicting Gasoline Blending Properties”, Odula et al., American Journal of Chemical Engineering, vol. 3, No. 2-1, 2015, pp. 9-17. |
Lloyd's Register, Using technology to trace the carbon intensity of sustainable marine fuels, Feb. 15, 2023. |
Pashikanti et al., “Predictive modeling of large-scale integrated refinery reaction and fractionation systems from plant data. Part 3: Continuous Catalyst Regeneration (CCR) Reforming Process,” Energy & Fuels 2011, 25, 5320-5344 (Year: 2011). |
Swagelok, Grab Sampling Systems Application Guide, 53 pages. |
Frank et al., “Fuel Tank and Charcoal Canister Fire Hazards during EVAP System Leak Testing”, SAE International, 2007 World Congress, Detroit, Michigan, Apr. 16-19, 2007, 11 pages. |
Doolin et al., “Catalyst Regeneration and Continuous Reforming Issues”, Catalytic Naptha Reforming, 2004. |
Lerh et al., Feature: IMO 2020 draws more participants into Singapore's bunkering pool., S&P Global Platts, www.spglobal.com, Sep. 3, 2019. |
Cremer et al., Model Based Assessment of the Novel Use of Sour Water Stripper Vapor for NOx Control in CO Boilers, Industrial Combustion Symposium, American Flame Research Committee 2021, Nov. 19, 2021. |
Frederick et al., Alternative Technology for Sour Water Stripping, University of Pennsylvania, Penn Libraries, Scholarly Commons, Apr. 20, 2018. |
Da Vinci Laboratory Solutions B. V., DVLS Liquefied Gas Injector, Sampling and analysis of liquefied gases, https://www.davinci-ls.com/en/products/dvls-products/dvls-liquefied-gas-injector. |
Wasson ECE Instrumentation, LPG Pressurization Station, https://wasson-ece.com/products/small-devices/lpg-pressurization-station. |
Mechatest B. V., Gas & Liquefied Gas Sampling Systems, https://www.mechatest.com/products/gas-sampling-system/. |
La Rivista dei Combustibili, The Fuel Magazine, vol. 66, File 2, 2012. |
Number | Date | Country | |
---|---|---|---|
20240189753 A1 | Jun 2024 | US |
Number | Date | Country | |
---|---|---|---|
63386586 | Dec 2022 | US |