Electrical devices such as electrocardiograms, equipped with an array of wires, often need to be deployed in haste and in stressful environments. First aid personnel, for example, must deploy electrocardiogram machines in the field very quickly, sometimes in difficult conditions. Under these conditions, in which every second counts, wires tend to get tangled causing loss of precious time.
Some but not all electrocardiograms carry with their wire arrays their own harnesses. These harnesses are statically mounted on the wires and are made of rubbery material. Because of the softness of the material and its high coefficient of friction, these harnesses are not easy to slide up and down the wires for the purpose of untangling the wires. They are intended to reduce the length of wire which can get tangled. In addition the small size of these harnesses makes them difficult to handle. While they are suitable for a clinical environment in which electrocardiogram machines are more or less permanently deployed and the wires do not need to be quickly untangled, these harnesses are inadequate for field operation where the wires are usually stored in a coiled configuration.
U.S. Pat. No. 4,854,323 describes a tubular harness for holding the wires of an electrocardiogram machine. This harness however, restricts the user to applying the electrodes along a curvilinear locus. In addition, the harness, because of its tubular nature is voluminous and difficult to install or remove from the electrocardiogram machine.
There is a need, especially on the part of first aid workers, for a simple yet effective implement for quickly disentangling the wires of an electrocardiogram machine from a stored coiled configuration. This implement should be easily mounted and dismounted on the wire array, should be made of rigid, low friction material and should be large enough to be easily grasped by one hand and effortlessly slid up and down the wires.
Further features, aspects, and advantages of the present invention over the prior art will be more fully understood when considered with respect to the following detailed description claims and accompanying drawings.
This invention is a wire harness for quickly disentangling wires, made of rigid low friction material. It comprises a top bar equipped in its center with a first vertical cylindrical opening; a bottom bar equipped in its center with a second vertical cylindrical opening co-axial with the first vertical opening; an axle traversing the first opening and the second opening thereby rotatably connecting the top part to the bottom bar. In addition, the bottom bar is equipped on its top face with grooves large enough to accommodate wires of predetermined size. The top bar can be rotated at ninety degrees with respect to the bottom bar thereby allowing the insertion into the grooves of the wires. The top bar and the bottom bar comprise a snap-lock mechanism that allows them to be locked in place when they are rotated in a parallel configuration. The harness can be slid up and down the wires thereby disentangling the wires.
A variation of the basic design for a wire harness for quickly disentangling wires comprises of atop bar and a bottom bar connected by an axle, wherein the axle traverses the top bar and the bottom bar at one of their ends and the snap-lock mechanism is mounted on the other end.
Another variation comprises a top bar and a bottom bar hinged together at one of their ends such that the top bar can be lifted with respect to the bottom bar thereby allowing the insertion of wires into the grooves in the bottom bar. A snap lock mechanism is placed at the other ends of the bars to allowing the bars to be locked in place.
Yet another version of the invention comprises a bar made of rigid low friction material, which is equipped on its top face with grooves large enough to accommodate the wires. These grooves are U-shaped with their tops narrower than their bottoms. The tops are narrow enough to accommodate the wires snuggly and the bottoms are wide enough to accommodate the wires loosely. This configuration allows the wires to be inserted through the narrow top of the grooves and positioned inside the bottoms of groove, thereby allowing them to be held in place and to be disentangled by being slid up or down the wire harness.
As shown in
The bottom bar 1 is equipped with deep U-shaped grooves 4 on its top side which is in contact with the bottom side of the top bar 1. The openings formed by the grooves have a diameter of about ⅛″, and are large enough to accommodate wires of an electrocardiogram machine without undue friction or pressure applied to the wires thereby allowing the wires to slide freely through these openings.
A snapping mechanism allows the two bars to stay firmly closed in a parallel configuration. As shown in
As an alternative design, it is possible to place a protuberance 6 on the bottom face of the top bar 1 bar and an indentation 7 on the top face of the bottom bar 2. In addition, it is also possible to have a single set of protuberances and indentations located at one end of the bars. Clearly, any state of the art snapping mechanism or locking mechanism that could keep the two bars in place is included in this invention.
The number of grooves 4 in the top bar and in the bottom bar matches the maximum number of wires, typically 6, as used in EKG machines.
The axle 3 used as an axle around which the bars rotate can be a steel rivet or can be any other convenient mechanism. For example the axle 3 could be an extension of the top bar 1 that penetrates the bottom bar 2. If the device is molded in plastic, this approach implies that the axle 3 and the top bar 1 would form a single molded part; the bottom bar 2 would still retain its cylindrical opening. The fit may have to be tight in order for the snaps to engage properly.
Use of the device described in this invention is simple. Some electrocardiogram machines are not equipped with harnesses. And even in those so equipped, the harnesses are small and difficult to handle and are made of rubbery material difficult to slide up and down the wires. The first step, therefore, is to open the device described in this invention by rotating the top bar 1 ninety degrees with respect to the bottom bar 2. The wires are then inserted in the grooves 4. The device is then snapped closed by rotating the top bar 1 to be parallel with the bottom bar 2. The device is then slid up and down the length of the wire array thereby disentangling the wires. The device is slid two times during each use. First, after the wires are taken out of storage, it is slid down the wires keeping them in alignment. After use, the device is slid back up the wires to the starting position. The wires are now ready to be coiled up and stored.
To save time, the device is normally left mounted on the wires between uses. The ease of mounting and dismounting of the device makes it particularly useful in retrofitting existing electrocardiograms equipped with small rubbery harnesses inadequate for sliding, and for retrofitting existing electrocardiogram machines which do not carry any harness at all.
A variation of the basic design described above is shown in
As can be shown in
Yet another variation of the basic design is shown in
Yet still another variation is shown in
While the above description contains many specificities, the reader should not construe these as limitations on the scope of the invention, but merely as exemplifications of preferred embodiments thereof. Those skilled in the art will envision many other possible variations within its scope. Accordingly, the reader is requested to determine the scope of the invention by the appended claims and their legal equivalents, and not by the examples which have been given.
This invention claims the benefit of U.S. Provisional Application No. 60/829,124 with the title, “Removable Harness for Disentangling Wires” filed on Oct. 11, 2006 and which is hereby incorporated by reference. Applicant claims priority pursuant to 35 U.S.C. Par 119(e)(i). The present invention relates to electric wire harnesses, more particularly to harnesses designed specially for electrocardiograms.
Number | Name | Date | Kind |
---|---|---|---|
3786171 | Shira | Jan 1974 | A |
3890459 | Caveney | Jun 1975 | A |
3968322 | Taylor | Jul 1976 | A |
4082086 | Page et al. | Apr 1978 | A |
4233987 | Feingold | Nov 1980 | A |
4328814 | Arkans | May 1982 | A |
4350842 | Nolf | Sep 1982 | A |
4353372 | Ayer | Oct 1982 | A |
4573474 | Scibetta | Mar 1986 | A |
4629826 | Thomas | Dec 1986 | A |
4653155 | Hara | Mar 1987 | A |
4854323 | Rubin | Aug 1989 | A |
4954085 | Inoue et al. | Sep 1990 | A |
5037131 | Kuramoto et al. | Aug 1991 | A |
5184620 | Cudahy et al. | Feb 1993 | A |
5191886 | Paeth et al. | Mar 1993 | A |
5341806 | Gadsby et al. | Aug 1994 | A |
5490595 | Sakai et al. | Feb 1996 | A |
6184474 | Craft, Jr. | Feb 2001 | B1 |
6972367 | Federspiel et al. | Dec 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20080087465 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
60829124 | Oct 2006 | US |