Removable lung reduction devices, systems, and methods

Information

  • Patent Grant
  • 7757692
  • Patent Number
    7,757,692
  • Date Filed
    Wednesday, April 22, 2009
    15 years ago
  • Date Issued
    Tuesday, July 20, 2010
    14 years ago
Abstract
An air passageway obstruction device includes a frame structure and a flexible membrane overlying the frame structure. The frame structure is collapsible upon advancement of the device into the air passageway, expandable into a rigid structure upon deploying in the air passageway and recollapsible upon removal from the air passageway. The flexible membrane obstructs inhaled air flow into a lung portion communicating with the air passageway. The device may be removed after deployment in an air passageway by recollapsing the device and pulling the device proximally through a catheter.
Description
BACKGROUND OF THE INVENTION

The present invention is generally directed to a treatment of Chronic Obstructive Pulmonary Disease (COPD). The present invention is more particularly directed to removable air passageway obstruction devices, and systems and methods for removing the devices.


Chronic Obstructive Pulmonary Disease (COPD) has become a major cause of morbidity and mortality in the United States over the last three decades. COPD is characterized by the presence of airflow obstruction due to chronic bronchitis or emphysema. The airflow obstruction in COPD is due largely to structural abnormalities in the smaller airways. Important causes are inflammation, fibrosis, goblet cell metaplasia, and smooth muscle hypertrophy in terminal bronchioles.


The incidence, prevalence, and health-related costs of COPD are on the rise. Mortality due to COPD is also on the rise. In 1991 COPD was the fourth leading cause of death in the United States and had increased 33% since 1979.


COPD affects the patients whole life. It has three main symptoms: cough; breathlessness; and wheeze. At first, breathlessness may be noticed when running for a bus, digging in the garden, or walking up hill. Later, it may be noticed when simply walking in the kitchen. Over time, it may occur with less and less effort until it is present all of the time.


COPD is a progressive disease and currently has no cure. Current treatments for COPD include the prevention of further respiratory damage, pharmacotherapy, and surgery. Each is discussed below.


The prevention of further respiratory damage entails the adoption of a healthy lifestyle. Smoking cessation is believed to be the single most important therapeutic intervention. However, regular exercise and weight control are also important. Patients whose symptoms restrict their daily activities or who otherwise have an impaired quality of life may require a pulmonary rehabilitation program including ventilatory muscle training and breathing retraining. Long-term oxygen therapy may also become necessary.


Pharmacotherapy may include bronchodilator therapy to open up the airways as much as possible or inhaled .beta.-agonists. For those patients who respond poorly to the foregoing or who have persistent symptoms, Ipratropium bromide may be indicated. Further, courses of steroids, such as corticosteroids, may be required. Lastly, antibiotics may be required to prevent infections and influenza and pneumococcal vaccines may be routinely administered. Unfortunately, there is no evidence that early, regular use of pharmacotherapy will alter the progression of COPD.


About 40 years ago, it was first postulated that the tethering force that tends to keep the intrathoracic airways open was lost in emphysema and that by surgically removing the most affected parts of the lungs, the force could be partially restored. Although the surgery was deemed promising, the procedure was abandoned.


The lung volume reduction surgery (LVRS) was later revived. In the early 1990's, hundreds of patients underwent the procedure. However, the procedure has fallen out of favor due to the fact that Medicare stopping reimbursing for LVRS. Unfortunately, data is relatively scarce and many factors conspire to make what data exists difficult to interpret. The procedure is currently under review in a controlled clinical trial. What data does exist tends to indicate that patients benefited from the procedure in terms of an increase in forced expiratory volume, a decrease in total lung capacity, and a significant improvement in lung function, dyspnea, and quality of life. However, the surgery is not without potential complications. Lung tissue is very thin and fragile. Hence, it is difficult to suture after sectioning. This gives rise to potential infection and air leaks. In fact, nearly thirty percent (30%) of such surgeries result in air leaks.


Improvements in pulmonary function after LVRS have been attributed to at least four possible mechanisms. These include enhanced elastic recoil, correction of ventilation/perfusion mismatch, improved efficiency of respiratory musculature, and improved right ventricular filling.


Lastly, lung transplantation is also an option. Today, COPD is the most common diagnosis for which lung transplantation is considered. Unfortunately, this consideration is given for only those with advanced COPD. Given the limited availability of donor organs, lung transplant is far from being available to all patients.


In view of the need in the art for new and improved therapies for COPD which provide more permanent results than pharmacotherapy while being less invasive and traumatic than LVRS, at least two new therapies have recently been proposed.


Both of these new therapies provide lung size reduction by permanently collapsing at least a portion of a lung.


In accordance with a first one of these therapies, and as described in U.S. Pat. No. 6,258,100 assigned to the assignee of the present invention and incorporated herein by reference, a lung may be collapsed by obstructing an air passageway communicating with the lung portion to be collapsed. The air passageway may be obstructed by placing an obstructing member in the air passageway. The obstructing member may be a plug-like device which precludes air flow in both directions or a one-way valve which permits air to be exhaled from the lung portion to be collapsed while precluding air from being inhaled into the lung portion. Once the air passageway is sealed, the residual air within the lung will be absorbed over time to cause the lung portion to collapse.


As further described in U.S. Pat. No. 6,258,100, the lung portion may be collapsed by inserting a conduit into the air passageway communicating with the lung portion to be collapsed. An obstruction device, such as a one-way valve is then advanced down the conduit into the air passageway. The obstruction device is then deployed in the air passageway for sealing the air passageway and causing the lung portion to be collapsed.


The second therapy is fully described in copending U.S. application Ser. No. 09/534,244, filed Mar. 23, 2000, for LUNG CONSTRICTION APPARATUS AND METHOD and, is also assigned to the assignee of the present invention. As described therein, a lung constriction device including a sleeve of elastic material is configured to cover at least a portion of a lung. The sleeve has a pair of opened ends to permit the lung portion to be drawn into the sleeve. Once drawn therein, the lung portion is constricted by the sleeve to reduce the size of the lung portion.


Both therapies hold great promise for treating COPD. Neither therapy requires sectioning and suturing of lung tissue.


While either therapy alone would be effective in providing lung size reduction and treatment of COPD, it has recently been proposed that the therapies may be combined for more effective treatment. More specifically, it has been proposed that the therapies could be administered in series, with the first mentioned therapy first applied acutely for evaluation of the effectiveness of lung size reduction in a patient and which lung portions should be reduced in size to obtain the best results. The first therapy is ideal for this as it is noninvasive and could be administered in a physician's office. Once the effectiveness of lung size reduction is confirmed and the identity of the lung portions to be collapsed is determined, the more invasive second mentioned therapy may be administered.


In order to combine these therapies, or simply administer the first therapy for evaluation, it will be necessary for at least some of the deployed air passageway obstruction devices to be removable. Unfortunately, such devices as currently known in the art are not suited for removal. While such devices are expandable for permanent deployment, such devices are not configured or adapted for recollapse after having once been deployed in an air passageway to facilitate removal. Hence, there is a need in the art for air passageway obstruction devices which are removable after having been deployed and systems and methods for removing them.


SUMMARY OF THE INVENTION

The invention provides device for reducing the size of a lung comprising an obstructing structure dimensioned for insertion into an air passageway communicating with a portion of the lung to be reduced in size, the obstructing structure having an outer dimension which is so dimensioned when deployed in the air passageway to preclude air from flowing into the lung portion to collapse the portion of the lung for reducing the size of the lung, the obstructing structure being collapsible to permit removal of the obstruction device from the air passageway.


The invention further provides an assembly comprising a device for reducing the size of a lung, the device being dimensioned for insertion into an air passageway communicating with a portion of the lung to be reduced in size, the device having an outer dimension which is so dimensioned when deployed in the air passageway to preclude air from flowing into the lung portion to collapse the portion of the lung for reducing the size of the lung, a catheter having an internal lumen and being configured to be passed down a trachea, into the air passageway, and a retractor dimensioned to be passed down the internal lumen of the catheter, seizing the device, and pulling the obstruction device proximally into the internal lumen to remove the device from the air passageway. The device is collapsible after having been deployed to permit the device to be pulled proximally into the internal lumen of the catheter by the retractor.


The invention further provides a method of removing a deployed air passageway obstruction device from an air passageway in which the device is deployed. The method includes the steps of passing a catheter, having an internal lumen, down a trachea and into the air passageway, advancing a retractor down the internal lumen of the catheter to the device, seizing the device with the retractor, collapsing the device to free the device from deployment in the air passageway, and pulling the device with the retractor proximally into the internal lumen of the catheter.


The invention still further provides an air passageway obstruction device comprising a frame structure, and a flexible membrane overlying the frame structure. The frame structure is collapsible upon advancement of the device into the air passageway, expandable into a rigid structure upon deployment in the air passageway whereby the flexible membrane obstructs inhaled air flow into a lung portion communicating with the air passageway, and re-collapsible upon removal from the air passageway.


The invention still further provides an air passageway obstruction device comprising frame means for forming a support structure, and flexible membrane means overlying the support structure. The frame means is expandable to an expanded state within an air passageway to position the membrane means for obstructing air flow within the air passageway and is collapsible for removal of the device from the air passageway.





BRIEF DESCRIPTION OF THE DRAWINGS

The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further objects and advantages thereof, may best be understood by making reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like referenced numerals identify identical elements, and wherein:



FIG. 1 is a simplified sectional view of a thorax illustrating a healthy respiratory system;



FIG. 2 is a sectional view similar to FIG. 1 but illustrating a respiratory system suffering from COPD and the execution of a first step in treating the COPD condition in accordance with the present invention;



FIG. 3 is a perspective view, illustrating the frame structure of a removable air passageway obstruction device embodying the present invention;



FIG. 4 is a perspective view of the complete air passageway obstruction device of FIG. 3;



FIG. 5 is an end view of the device of FIG. 3 illustrating its operation for obstructing inhaled air flow;



FIG. 6 is another end view of the device of FIG. 3 illustrating its operation for permitting exhaled air flow;



FIG. 7 is a perspective view of the device of FIG. 3, illustrating its operation for permitting partial exhaled air flow;



FIG. 8 is a side view illustrating a first step in removing the device of FIG. 3 in accordance with one embodiment of the present invention;



FIG. 9 is another side view illustrating the collapse of the device of FIG. 3 as it is removed from an air passageway;



FIG. 10 is a side view illustrating an initial step in the removal of the device of FIG. 3 in accordance with another embodiment of the present invention;



FIG. 11 is a side view illustrating engagement of the frame structure of the device with a catheter during removal of the device;



FIG. 12 is a side view illustrating the collapse of the device by the catheter during removal of the device;



FIG. 13 is a side view of another air passageway obstruction device embodying the present invention during an initial step in its removal from an air passageway;



FIG. 14 is another side view of the device of FIG. 13 illustrating its collapse during removal from the air passageway;



FIG. 15 is a perspective view of the frame structure of another removable air passageway obstruction device embodying the present invention;



FIG. 16 is a cross-sectional side view of the device of FIG. 15 shown in a deployed state;



FIG. 17 is a perspective side view of the device of FIG. 15 shown in a deployed state;



FIG. 18 is a side view illustrating an initial step in removing the device of FIG. 15 from an air passageway;



FIG. 19 is a side view illustrating an intermediate step in the removal of the device of FIG. 15; and



FIG. 20 is a side view illustrating the collapse of the device of FIG. 15 during its removal from an air passageway.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to FIG. 1, it is a sectional view of a healthy respiratory system. The respiratory system 20 resides within the thorax 22 which occupies a space defined by the chest wall 24 and the diaphragm 26.


The respiratory system 20 includes the trachea 28, the left mainstem bronchus 30, the right mainstem bronchus 32, the bronchial branches 34, 36, 38, 40, and 42 and sub-branches 44, 46, 48, and 50. The respiratory system 20 further includes left lung lobes 52 and 54 and right lung lobes 56, 58, and 60. Each bronchial branch and sub-branch communicates with a respective different portion of a lung lobe, either the entire lung lobe or a portion thereof. As used herein, the term “air passageway” is meant to denote either a bronchial branch or sub-branch which communicates with a corresponding individual lung lobe or lung lobe portion to provide inhaled air thereto or conduct exhaled air therefrom.


Characteristic of a healthy respiratory system is the arched or inwardly arcuate diaphragm 26. As the individual inhales, the diaphragm 26 straightens to increase the volume of the thorax 22. This causes a negative pressure within the thorax. The negative pressure within the thorax in turn causes the lung lobes to fill with air. When the individual exhales, the diaphragm returns to its original arched condition to decrease the volume of the thorax. The decreased volume of the thorax causes a positive pressure within the thorax which in turn causes exhalation of the lung lobes.


In contrast to the healthy respiratory system of FIG. 1, FIG. 2 illustrates a respiratory system suffering from COPD. Here it may be seen that the lung lobes 52, 54, 56, 58, and 60 are enlarged and that the diaphragm 26 is not arched but substantially straight. Hence, this individual is incapable of breathing normally by moving the diaphragm 28. Instead, in order to create the negative pressure in the thorax 22 required for breathing, this individual must move the chest wall outwardly to increase the volume of the thorax. This results in inefficient breathing causing these individuals to breathe rapidly with shallow breaths. It has been found that the apex portion 62 and 66 of the upper lung lobes 52 and 56, respectively, are most affected by COPD.


In accordance with this embodiment of the present invention, COPD treatment or evaluation is initiated by feeding a conduit or catheter 70 down the trachea 28, into a mainstream bronchus such as the right mainstem bronchus 32, and into an air passageway such as the bronchial branch 42 or the bronchial sub-branch 50. An air passageway obstruction device embodying the present invention is then advanced down an internal lumen 71 of the catheter 70 for deployment in the air passageway. Once deployed, the obstruction device precludes inhaled air from entering the lung portion to be collapsed. In accordance with the present invention, it is preferable that the obstruction device take the form of a one-way valve. In addition to precluding inhaled air from entering the lung portion, the device further allows air within the lung portion to be exhaled. This results in more rapid collapse of the lung portion. However, obstruction devices which preclude both inhaled and exhaled air flow are contemplated as falling within the scope of the invention.


The catheter 70 is preferably formed of flexible material such as polyethylene. Also, the catheter 70 is preferably preformed with a bend 72 to assist the feeding of the catheter from the right mainstem bronchus 32 into the bronchial branch 42.



FIGS. 3 and 4 show an air passageway obstruction device 80 embodying the present invention. The device 80 includes a proximal end 82 and a distal end 84. The device 80 further includes a frame structure 86 including frame supports 88, 90, and 92.


Each of the frame supports has a shape to define a generally cylindrical center portion 94 and a pair of oppositely extending inwardly arcuate conical end portions 96 and 98. The frame structure further includes a plurality of fixation members 100, 102, and 104 which extend distally from the proximal end 82. The fixation members have the generally conical shape and terminate in fixation projections or anchors 106, 108, and 110 which extend radially outwardly.


Overlying and partially enclosing the frame structure 86 is a flexible membrane 112. The flexible membrane extends over the generally cylindrical and conical portions 94 and 98 defined by the frame structure. Hence, the flexible membrane is opened in the proximal direction.


The flexible membrane may be formed of silicone or polyurethane, for example. It may be secured to the frame structure in a manner known in the art such as by crimping, riveting, or adhesion.


The frame structure 86 and the device 80 are illustrated in FIGS. 3 and 4 as the device would appear when fully deployed in an air passageway. The frame structure supports and frame structure fixation members are preferably formed of stainless steel or Nitinol or other suitable material which has memory of an original shape. The frame structure permits the device to be collapsed for advancement down the internal lumen 71 of the catheter 70 into the air passageway where the device is to be deployed. Once the point of deployment is reached, the device is expelled from the catheter to assume its original shape in the air passageway. In doing so, the generally cylindrical portion 94 contacts the inner wall of the air passageway and the fixation projections 106, 108, and 110 pierce the wall of the air passageway for fixing or anchoring the device 80 within the air passageway.


When the device 80 is deployed, the frame structure 86 and flexible membrane 112 form an obstructing structure or one-way valve. FIGS. 5 and 6 show the valve action of the device 80 when deployed in an air passageway, such as the bronchial branch 42.


As shown in FIG. 5, during inhalation, the flexible membrane is filled with air and expands outwardly to obstruct the air passageway 42. This precludes air from entering the lung portion being collapsed. However, as shown in FIG. 6, during expiration, the flexible membrane 112 deflects inwardly to only partially obstruct the air passageway 42. This enables air, which may be in the lung portion being collapsed, to be exhaled for more rapid collapse of the lung portion. FIG. 7 is another view showing the device 80 during expiration with a portion 114 of the membrane 112 deflected inwardly.



FIGS. 8 and 9 illustrate a manner in which the device 80 may be removed from the air passageway 42 in accordance with one embodiment of the present invention. As previously mentioned, it may be desired to remove the device 80 if it is only used for evaluating the effectiveness of collapsing a lung portion or if it is found the more effective treatment may be had with the collapse of other lung portions.


The device 80 is shown in FIG. 8 in a fully deployed state. The catheter 70 having the internal lumen 71 is advanced to the proximal end of the device 80. In FIG. 8 it may be noted that the fixation members 102 and 104 define a larger conical radius than the frame supports 88 and 90. Hence, when the proximal end of the device is engaged by a retractor and the catheter 70 is moved distally as shown in FIG. 9, the internal lumen of the catheter engages the fixation members 102 and 104 before it engages the frame supports 88 and 90. This causes the fixation projections to first disengage the inner wall of the air passageway 42. With the device now free of the air passageway side wall, the retractor may be used to pull the device into the internal lumen 71 of the catheter 70 causing the support structure and thus the device to collapse. The collapsed device may now fully enter the internal lumen of the catheter for removal.



FIGS. 10-12 show another embodiment of the present invention for removing the device 80 from the air passageway 42. Here, the catheter 70 is fed down a bronchoscope 118 to the device 80. The retractor takes the form of a forceps 120.


In FIG. 10 it may be seen that the forceps has just engaged the proximal end 82 of the device 80. In FIG. 11 the forceps 120 is held stationary while the catheter 70 is advanced distally so that the internal lumen 71 of the catheter 70 engages the fixation members 102 and 104. Further advancement of the catheter 70 as seen in FIG. 12 deflects the fixation projections 110 and 108 inwardly away from the inner wall of the air passageway 42. Now, the forceps may be used to pull the device 80 into the internal lumen 71 of the catheter 70 for removal of the device 80 from the air passageway 42.



FIGS. 13 and 14 show another removable air passageway obstruction device 130 and a method of removing it from an air passageway in accordance with the present invention. The device 130 is shown in FIG. 13 deployed in the air passageway 42 and the catheter 70 is in ready position to remove the device 130 from the air passageway 42.


The device 130 is of similar configuration to the device 80 previously described. Here however, the fixation members 136 and 138 are extensions of the frame supports 132 and 134, respectively. To that end, it will be noted in FIG. 13 that the frame supports 132 and 134 cross at a pivot point 140 at the distal end 142 of the device 130. They extend distally and then are turned back at an acute angle to terminate at fixation or anchor ends 146 and 148. When the device is deployed as shown in FIG. 13, the cylindrical portions of the support frame engage the inner wall of the air passageway 42 and the fixation points 146 and 148 project into the inner wall of the air passageway 42 to maintain the device in a fixed position. The flexible membrane 150 extends from the dashed line 152 to the pivot or crossing point 140 of the frame supports 132 and 134 to form a one-way valve.


When the device is to be removed, the frame structure of the device 130 is held stationary by a retractor within the catheter 70 and the catheter is advanced distally. When the catheter 70 engages the frame supports 132 and 134, the frame supports are deflected inwardly from their dashed line positions to their solid line positions. This also causes the fixation members 136 and 138 to be deflected inwardly from their dashed line positions to their solid line positions in the direction of arrows 154. These actions disengage the device 130 from the inner wall of the air passageway 42. Now, the retractor may pull the device into the internal lumen 71 of the catheter 70 for removal of the device 130 from the air passageway 42.



FIGS. 15-17 show a still further removable air passageway obstruction device 160 embodying the present invention. As shown in the initial collapsed state in FIG. 15, the device 160 includes a plurality of frame supports 162, 164, 166, and 168. The frame supports extend between a proximal ring 170 and a distal ring 172. The device 160 is preferably laser cut from a sheet of Nitinol.


Since each of the frame supports are identical, only frame support 164 will be described herein. As will be noted, the support 164 includes a bend point 174 with a relatively long section 176 extending distally from the bend point 174 and a relatively short section 178 extending proximally from the bend point 174. The short section 178 includes a fixation projection or anchor 180 extending slightly distally from the bend point 174.



FIGS. 16 and 17 show the device 160 in its deployed configuration. When the device is deployed, it is advanced down a catheter to its deployment site in its collapsed state as shown in FIG. 15. When the deployment site is reached, the device 160 is held outside of the catheter and the rings 170 and 172 are pulled toward each other. This causes the device to bend at the bend points of the frame supports. This forms fixation projections 180, 182, and 184 extending into the inner wall of the air passageway to fix the device in position.


The relatively long sections of the frame supports are covered with a flexible membrane 186 as shown in FIGS. 16 and 17 to form a one-way valve. The valve functions as previously described to obstruct inhaled air flow but to permit exhaled air flow.



FIGS. 18-20 illustrate a manner of removing the device 160 from an air passageway. Once again a catheter 70 is advanced down a bronchoscope 118 to the device 160. Next, a retractor including a forceps 120 and pin 190 are advanced to the device. The pin 190, carrying a larger diameter disk 192, extends into the device as the forceps 120 grasps the proximal ring 170 of the device 160. The pin 190 continues to advance until the disk 192 engages the distal ring 172 of the device 160 as shown in FIG. 19. Then, while the forceps 120 holds the proximal ring 170, the pin 190 and disk 192 are advanced distally carrying the distal ring 172 distally. This causes the device 160 to straighten and collapse as shown in FIG. 20. Now, the forceps 120, pin 190, and the device 160 may be pulled into the internal lumen 71 of the catheter 70 for removal of the device. As will be appreciated by those skilled in the art, the foregoing steps may be reversed for deploying the device 160.


While particular embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.

Claims
  • 1. A device for limiting air flow in an air passageway in a lung, the device comprising: an elongated frame assembly for implantation in the lung, the elongated frame assembly comprising a proximal end and a distal end;the elongated frame assembly further comprising a plurality of support members extending in a proximal direction from the distal end, each of the plurality of support members comprising a bent portion, the bent portion being positioned along a distal portion of each of the plurality of support members;a flexible membrane overlying at least an outer surface of at least the distal portion of each of the plurality of support members including the bent portion;a proximally positioned concave recess being defined at least in part by the plurality of support members and the flexible membrane, the proximally positioned concave recess comprising a proximally facing substantially circular opening, wherein the flexible membrane forms a smooth outer surface and the plurality of support members is positioned between the concave recess and the smooth outer surface;at least one anchor being distally positioned relative to the flexible membrane;the device defining an obstructing structure configured to be implanted into the air passageway upstream from a target region such that the device precludes air from flowing into the target region past the device while allowing air to flow out of the target region along a path between a portion of the flexible membrane and a wall of the air passageway.
  • 2. The device of claim 1, wherein the flexible membrane overlies a generally conical portion defined by a portion of the plurality of support members.
  • 3. The device of claim 2, wherein the distal ends of the plurality of support members are connected to a generally cylindrical member and the flexible membrane is connected to the proximal ends of each of the plurality of support members.
  • 4. The device of claim 1, wherein each of the plurality of support members is an elongate strut extending radially from an attachment.
  • 5. The device of claim 4, wherein the flexible membrane has an at-rest shape configured to seal against the air passageway wall.
  • 6. The device of claim 1, wherein the at least one anchor extends radially outward from a generally cylindrical member.
  • 7. The device of claim 1, wherein at least one of the plurality of support members has a relatively long section extending distally from the bent portion and a relatively short section extending proximally from the bent portion, and the flexible membrane is disposed along at least the relatively long section of the frame.
  • 8. The device of claim 1, wherein a proximal portion of the device is adapted to be grasped for removal through proximal movement of the device.
  • 9. The device of claim 1, wherein the device is collapsible.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/847,554, filed May 17, 2004, which is a divisional of U.S. application Ser. No. 09/951,105, filed Sep. 11, 2001, each of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (249)
Number Name Date Kind
2832078 Williams Apr 1958 A
2981254 Vanderbilt Apr 1961 A
3320972 High et al. May 1967 A
3445916 Schulte May 1969 A
3472230 Forgarty Oct 1969 A
3540431 Modin-Uddin Nov 1970 A
3617060 Iezzi Nov 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3874388 King et al. Feb 1973 A
3757783 Alley Sep 1973 A
3760808 Bleuer Sep 1973 A
3788327 Donowitz et al. Jan 1974 A
4014318 Dockum et al. Mar 1977 A
4056854 Boretos et al. Nov 1977 A
4084268 Ionescu et al. Apr 1978 A
4086665 Poirlier May 1978 A
4212463 Repinski et al. Jul 1980 A
4218782 Rygg Aug 1980 A
4222126 Boretos et al. Sep 1980 A
4250873 Bonnet Feb 1981 A
4302854 Runge Dec 1981 A
4339831 Johnson Jul 1982 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4681110 Wiktor Jul 1987 A
4710192 Liotta et al. Dec 1987 A
4727873 Mobin-Uddin Mar 1988 A
4732152 Wallsten et al. Mar 1988 A
4759758 Gabbay Jul 1988 A
4795449 Schneider et al. Jan 1989 A
4808183 Panje Feb 1989 A
4819664 Nazari Apr 1989 A
4830003 Wolff et al. May 1989 A
4832680 Haber et al. May 1989 A
4846836 Reich Jul 1989 A
4850999 Planck Jul 1989 A
4852568 Kensey Aug 1989 A
4877025 Hanson Oct 1989 A
4934999 Bader Jun 1990 A
4968294 Salama Nov 1990 A
4979505 Cox Dec 1990 A
5061274 Kensey Oct 1991 A
5116360 Pinchuk et al. May 1992 A
5116564 Jansen et al. May 1992 A
5123919 Sauter et al. Jun 1992 A
5151105 Kwan-Gett Sep 1992 A
5158548 Lau et al. Oct 1992 A
5161524 Evans Nov 1992 A
5283063 Freeman Feb 1994 A
5304199 Myers Apr 1994 A
5306234 Johnson Apr 1994 A
5314473 Godin May 1994 A
5352240 Ross Oct 1994 A
5358518 Camilli Oct 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5382261 Palmaz Jan 1995 A
5392775 Adkins, Jr. et al. Feb 1995 A
5398844 Zaslavsky Mar 1995 A
5409019 Wilk Apr 1995 A
5411507 Heckele May 1995 A
5411552 Andersen et al. May 1995 A
5413599 Imachi et al. May 1995 A
5417226 Juma May 1995 A
5445626 Gigante Aug 1995 A
5453090 Martenez et al. Sep 1995 A
5484444 Braunschweiler et al. Jan 1996 A
5486154 Kelleher Jan 1996 A
5499995 Teirstein Mar 1996 A
5500014 Quijano et al. Mar 1996 A
5507754 Green et al. Apr 1996 A
5507797 Suzuki Apr 1996 A
5509900 Kirkman Apr 1996 A
5549626 Miller et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5562608 Sekins et al. Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5603698 Roberts et al. Feb 1997 A
5645565 Rudd et al. Jul 1997 A
5660175 Dayal Aug 1997 A
5662713 Andersen et al. Sep 1997 A
5669933 Simon et al. Sep 1997 A
5683451 Lenker et al. Nov 1997 A
5693089 Inoue Dec 1997 A
5697968 Rogers et al. Dec 1997 A
5702343 Alferness Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5725519 Penner et al. Mar 1998 A
5752965 Francis et al. May 1998 A
5755770 Ravenscroft May 1998 A
5797960 Stevens et al. Aug 1998 A
5800339 Salama Sep 1998 A
5803078 Brauner Sep 1998 A
5833694 Poncet Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5851232 Lois Dec 1998 A
5855587 Hyon Jan 1999 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5876445 Andersen et al. Mar 1999 A
5925063 Khosravi Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5947997 Pavcnik et al. Sep 1999 A
5954636 Schwartz et al. Sep 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5972009 Fortier et al. Oct 1999 A
5976158 Adams et al. Nov 1999 A
5976174 Ruiz Nov 1999 A
5984965 Knapp et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6007575 Samuels Dec 1999 A
6009614 Morales Jan 2000 A
6010525 Bonutti et al. Jan 2000 A
6020380 Killian Feb 2000 A
6027525 Suh et al. Feb 2000 A
6045560 McKean et al. Apr 2000 A
6051022 Cai et al. Apr 2000 A
6068635 Gianotti May 2000 A
6068638 Makower May 2000 A
6077291 Das Jun 2000 A
6083255 Laufer et al. Jul 2000 A
6096027 Layne Aug 2000 A
6099551 Gabbay Aug 2000 A
6123663 Rebuffat Sep 2000 A
6132458 Staehle et al. Oct 2000 A
6135729 Aber Oct 2000 A
6135991 Muni et al. Oct 2000 A
6141855 Morales Nov 2000 A
6149664 Kurz Nov 2000 A
6162245 Jayaraman Dec 2000 A
6165179 Cathcart et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6174323 Biggs et al. Jan 2001 B1
6183520 Pintauro et al. Feb 2001 B1
6200333 Laufer Mar 2001 B1
6203551 Wu Mar 2001 B1
6206918 Campbell et al. Mar 2001 B1
6231589 Wessman et al. May 2001 B1
6234996 Bagaoisan et al. May 2001 B1
6238334 Easterbrook, III et al. May 2001 B1
6240615 Kimes et al. Jun 2001 B1
6241654 Alferness Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6258100 Alferness et al. Jul 2001 B1
6267775 Clerc et al. Jul 2001 B1
6270527 Campbell et al. Aug 2001 B1
6287290 Perkins et al. Sep 2001 B1
6287334 Moll et al. Sep 2001 B1
6293951 Alferness et al. Sep 2001 B1
6302893 Limon et al. Oct 2001 B1
6312407 Zadno-Azizi et al. Nov 2001 B1
6325777 Zadno-Azizi et al. Dec 2001 B1
6325778 Zadno-Azizi et al. Dec 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
6328689 Gonzalez et al. Dec 2001 B1
6355014 Zadno-Azizi et al. Mar 2002 B1
6398775 Perkins et al. Jun 2002 B1
6402754 Gonzalez Jun 2002 B1
6416554 Alferness et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6428561 Johansson-Ruden et al. Aug 2002 B1
6439233 Geertsema Aug 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6447530 Ostrovsky et al. Sep 2002 B1
6458076 Pruitt Oct 2002 B1
6458153 Bailey et al. Oct 2002 B1
6471718 Staehle et al. Oct 2002 B1
6485407 Alferness et al. Nov 2002 B2
6488673 Laufer Dec 2002 B1
6491706 Alferness et al. Dec 2002 B1
6493589 Medhkour et al. Dec 2002 B1
6503272 Duerig et al. Jan 2003 B2
6510846 O'Rourke Jan 2003 B1
6514290 Loomas Feb 2003 B1
6527761 Soltesz et al. Mar 2003 B1
6540782 Snyders Apr 2003 B1
6544291 Taylor Apr 2003 B2
6558429 Taylor May 2003 B2
6568387 Davenport et al. May 2003 B2
6569166 Gonzalez May 2003 B2
6585639 Kotmel et al. Jul 2003 B1
6592594 Rimbaugh et al. Jul 2003 B2
6599311 Biggs et al. Jul 2003 B1
6610043 Ingenito Aug 2003 B1
6629951 Laufer et al. Oct 2003 B2
6634363 Danek et al. Oct 2003 B1
6638285 Gabbay Oct 2003 B2
6669724 Park et al. Dec 2003 B2
6679264 Deem et al. Jan 2004 B1
6682250 Banks Jan 2004 B2
6694979 Deem et al. Feb 2004 B2
6709401 Perkins et al. Mar 2004 B2
6712812 Roschak et al. Mar 2004 B2
6722360 Doshi Apr 2004 B2
6743259 Ginn Jun 2004 B2
6749606 Keast et al. Jun 2004 B2
6860847 Alferness et al. Mar 2005 B2
6904909 Andreas et al. Jun 2005 B2
6941950 Wilson et al. Sep 2005 B2
6951571 Srivastava Oct 2005 B1
6958076 Acosta et al. Oct 2005 B2
6989027 Allen et al. Jan 2006 B2
7011094 Rapacki et al. Mar 2006 B2
20010010017 Letac et al. Jul 2001 A1
20010012949 Forber Aug 2001 A1
20010025132 Alferness et al. Sep 2001 A1
20010037808 Deem et al. Nov 2001 A1
20010041906 Gonzalez Nov 2001 A1
20010051799 Ingenito Dec 2001 A1
20010052344 Doshi Dec 2001 A1
20010056274 Perkins et al. Dec 2001 A1
20020007831 Davenport et al. Jan 2002 A1
20020052626 Gilson May 2002 A1
20020062120 Perkins et al. May 2002 A1
20020077593 Perkins et al. Jun 2002 A1
20020077696 Zadno-Azizi et al. Jun 2002 A1
20020087153 Roschak et al. Jul 2002 A1
20020095209 Zadno-Azizi et al. Jul 2002 A1
20020111619 Keast et al. Aug 2002 A1
20020111620 Cooper et al. Aug 2002 A1
20020112729 DeVore et al. Aug 2002 A1
20020138135 Duerig et al. Sep 2002 A1
20020147462 Mair et al. Oct 2002 A1
20030018327 Truckai et al. Jan 2003 A1
20030018344 Kaji et al. Jan 2003 A1
20030024527 Ginn Feb 2003 A1
20030050648 Alferness et al. Mar 2003 A1
20030051733 Kotmel et al. Mar 2003 A1
20030055331 Kotmel et al. Mar 2003 A1
20030070682 Wilson et al. Apr 2003 A1
20030083671 Rimbaugh et al. May 2003 A1
20030127090 Gifford et al. Jul 2003 A1
20030154988 DeVore et al. Aug 2003 A1
20030158515 Gonzalez et al. Aug 2003 A1
20030167065 Kumar Sep 2003 A1
20030180922 Eaton et al. Sep 2003 A1
20030181922 Alferness Sep 2003 A1
20030183235 Rimbaugh et al. Oct 2003 A1
20030195385 De Vore Oct 2003 A1
20030212412 Dillard et al. Nov 2003 A1
20030216769 Dillard et al. Nov 2003 A1
20030228344 Fields et al. Dec 2003 A1
20040039250 Tholfsen et al. Feb 2004 A1
20040167636 Dillard et al. Aug 2004 A1
20040210248 Gordon et al. Oct 2004 A1
20040243140 Alferness et al. Dec 2004 A1
20050033310 Alferness et al. Feb 2005 A1
20050033344 Dillard et al. Feb 2005 A1
20050137611 Escudero et al. Jun 2005 A1
Foreign Referenced Citations (88)
Number Date Country
2365752 Jan 2001 CA
2408923 Nov 2001 CA
100 04 979 Aug 2000 DE
1 151 729 Nov 2001 EP
1 157 663 Nov 2001 EP
1 206 276 May 2002 EP
2 324 729 Nov 1998 GB
2 348 138 Sep 2000 GB
2001-583641 Nov 2001 JP
2140211 Oct 1999 RU
852321 Jul 1981 SU
1371700 Feb 1988 SU
1593651 Sep 1990 SU
WO 8809683 Dec 1988 WO
WO 9426175 Nov 1994 WO
WO 9532018 Nov 1995 WO
WO 9634582 Nov 1996 WO
WO 9727893 Aug 1997 WO
WO 9744085 Nov 1997 WO
WO 9800840 Jan 1998 WO
WO 9801084 Jan 1998 WO
WO 9819633 May 1998 WO
PCTUS9818366 Sep 1998 WO
WO 9839047 Sep 1998 WO
WO 9844854 Oct 1998 WO
PCTGB9800652 Nov 1998 WO
WO 9848706 Nov 1998 WO
WO 9901076 Jan 1999 WO
WO 9913801 Mar 1999 WO
WO 9926692 Jun 1999 WO
WO 9932040 Jul 1999 WO
WO 9942059 Aug 1999 WO
WO 9942161 Aug 1999 WO
WO 9959503 Nov 1999 WO
WO 9964109 Dec 1999 WO
WO 0027292 May 2000 WO
WO 0042950 Jul 2000 WO
WO 0051500 Sep 2000 WO
WO 0051510 Sep 2000 WO
WO 0062699 Oct 2000 WO
WO 0078386 Dec 2000 WO
WO 0078407 Dec 2000 WO
PCTUS0018286 Jan 2001 WO
WO 0102042 Jan 2001 WO
WO 0103641 Jan 2001 WO
WO 0103642 Jan 2001 WO
WO 0105334 Jan 2001 WO
WO 0110313 Feb 2001 WO
WO 0110314 Feb 2001 WO
WO 0112104 Feb 2001 WO
PCTUS0128360 Mar 2001 WO
WO 0113839 Mar 2001 WO
WO 0113908 Mar 2001 WO
WO 0128433 Apr 2001 WO
WO 0130266 May 2001 WO
WO 0145590 Jun 2001 WO
WO 0149213 Jul 2001 WO
WO 0152775 Jul 2001 WO
WO 0154585 Aug 2001 WO
WO 0154625 Aug 2001 WO
WO 0154685 Aug 2001 WO
PCTUS0106958 Sep 2001 WO
WO 0166190 Sep 2001 WO
WO 0174271 Oct 2001 WO
PCTNZ0100092 Nov 2001 WO
WO 0189366 Nov 2001 WO
WO 0195786 Dec 2001 WO
WO 0205884 Jan 2002 WO
WO 0222072 Mar 2002 WO
WO 0232333 Apr 2002 WO
WO 0234322 May 2002 WO
WO 0238038 May 2002 WO
WO 0247575 Jun 2002 WO
WO 02056794 Jul 2002 WO
WO 02064045 Aug 2002 WO
WO 02064190 Aug 2002 WO
WO 02069823 Sep 2002 WO
WO 02094087 Nov 2002 WO
WO 03022124 Mar 2003 WO
WO 03030975 Apr 2003 WO
WO 03003946 May 2003 WO
WO 03034927 May 2003 WO
WO 03041779 May 2003 WO
WO 03047468 Jun 2003 WO
WO 03078579 Sep 2003 WO
WO 03088820 Oct 2003 WO
WO 03099164 Dec 2003 WO
WO 2004010845 May 2004 WO
Related Publications (1)
Number Date Country
20090205667 A1 Aug 2009 US
Divisions (1)
Number Date Country
Parent 09951105 Sep 2001 US
Child 10847554 US
Continuations (1)
Number Date Country
Parent 10847554 May 2004 US
Child 12428287 US