The present disclosure relates to removable volume indicators for syringes, and particularly for syringes used to inflate balloon-expandable prosthetic heart valves.
Prosthetic cardiac valves have been used for many years to treat cardiac valvular disorders. The native heart valves (such as the aortic, pulmonary and mitral valves) serve critical functions in assuring the forward flow of an adequate supply of blood through the cardiovascular system. These heart valves can be rendered less effective by congenital, inflammatory or infectious conditions. Such damage to the valves can result in serious cardiovascular compromise or death. For many years the definitive treatment for such disorders was the surgical repair or replacement of the valve during open heart surgery, but such surgeries are prone to many complications. Because of the drawbacks associated with conventional open-heart surgery, percutaneous and minimally-invasive surgical approaches are garnering intense attention. In one technique, a prosthetic valve is configured to be implanted in a much less invasive procedure by way of catheterization.
In this technique, a prosthetic valve is mounted in a crimped state on the end portion of a flexible catheter and advanced through a blood vessel of the patient until the prosthetic valve reaches the implantation site. The prosthetic valve at the catheter tip is then expanded to its functional size at the site of the defective native valve such as by inflating a balloon on which the prosthetic valve is mounted. For instance, U.S. Pat. Nos. 5,411,522 and 6,730,118, which are incorporated herein by reference, describe collapsible transcatheter heart valves that can be percutaneously introduced in a compressed state on a catheter and expanded in the desired position by balloon inflation or by utilization of a self-expanding frame or stent.
A transcatheter prosthetic heart valve typically has only one functional expanded diameter at which the leaflets of the prosthetic valve can operate as intended. A typical delivery apparatus for a balloon-expandable prosthetic valve can be fluidly connected to a syringe that is used to inject an inflation fluid into a balloon in order to deploy the prosthetic valve at the implantation site. The balloon typically is designed or selected to be inflated with a predetermined amount of fluid that corresponds to a specific volume indicator on the syringe. This allows the user to fill the syringe with the precise amount of fluid required to expand the prosthetic valve to its functional size.
More recently, transcatheter prosthetic heart valves that can be expanded within a range of functional sizes have been developed, such as disclosed in U.S. Patent Application Publication No. 2018/0028310, which is incorporated herein by reference. For the implantation of such prosthetic valves, the physician must be able to select an appropriate volume of the inflation fluid corresponding to a selected prosthetic valve diameter from a range of fill volumes. Using a conventional inflation syringe, it can be difficult for the physician to draw the precise amount of inflation fluid into the syringe that is required to expand a prosthetic valve to a desired size if the required volume does not correspond with one of the volume indicators provided on the syringe.
Accordingly, a need exists for improved devices and methods for accurately measuring the amount of inflation fluid that is needed to expand a prosthetic valve to a selected functional size within a range of functional sizes using an inflation syringe.
Described herein are embodiments of removable volume indicators that are primarily intended to be used with a syringe for inflating a balloon to expand a prosthetic heart valve, as well as methods for using the same. The volume indicators can be used to draw a precise amount of fluid into the syringe in cases where the required volume does not correspond with any of the existing volume markings on the syringe.
A removable volume indicator can include an indicator body, a window portion extending through a thickness of the indicator body, the indicator body being configured to removably clip onto a syringe. The syringe can have a syringe body and a plunger received in the syringe body, and the window portion of the volume indicator can be configured such that a portion of the syringe plunger in the syringe body is visible through the window portion.
In some embodiments, the volume indicator can further comprise inflation indicia adjacent the window portion. In some embodiments, the inflation indicia can comprise protrusions extending at least partially across the window portion. In other embodiments, the inflation indicia can comprise bands extending across the window portion.
In some embodiments, the indicator body can at least partially opaque. For example, the indicator body can be fully opaque, translucent, or patterned.
In some embodiments, the window portion can be positioned between a first end of the indicator body and a second end of the indicator body and can extend less than the full length of the indicator body.
In a representative embodiment, an assembly comprises a syringe and a volume indicator. The syringe can comprise a syringe body and a plunger, the syringe body having a one or more first engagement elements. The volume indicator can comprise an indicator body and a window portion having inflation indicia along a length thereof; the indicator body comprising one or more second engagement elements configured to engage the first engagement elements.
In some embodiments, the window portion is configured such that a portion of the plunger within the syringe body is visible through the window portion. In some embodiments, the syringe body can comprise volume indicia. In some embodiments, the volume indicia on the indicator body are not aligned with volume indicia on the syringe body when the volume indicator is placed on the syringe. In other embodiments, the syringe body can be blank.
In some embodiments, the volume indicator is configured to removably clip onto the syringe body.
In some embodiments, the one or more first and second engagement elements are arranged on the syringe body and the indicator body such that the volume indicator can be clipped to the syringe in only one orientation.
In some embodiments, the volume indicator can further comprise a gripping portion, (e.g., one or more ridges) configured to allow a user to grip the volume indicator during use. In some embodiments, the syringe can comprise an annular lip at a proximal end portion thereof. The body of the volume indicator can abut the lip such that during use of the syringe to inflate a prosthetic valve, a user can grip the ridges and depress the plunger of the syringe. Depressing the plunger applies a distally directed force to the syringe/volume indicator assembly and requires the user to apply a corresponding proximally directed force to prevent movement of the assembly. The abutment of the volume indicator against the lip during the application of the forces helps restrain the volume indicator against disengaging from the syringe.
In some embodiments, the syringe can further comprise one or more third engagement elements and the volume indicator can further comprise one or more fourth engagement elements configured to engage with the one or more third engagement elements such that the volume indicator is restrained from rotational movement relative to the syringe.
In another representative embodiment, an assembly comprises a syringe and a volume indicator. The syringe can comprise a syringe body and a plunger, the syringe body having a first engagement element. The volume indicator can comprise an indicator body and a window portion having inflation indicia along a length thereof; the indicator body comprising a second engagement element configured to engage the first engagement element. In some embodiments, the first engagement element can be a protrusion extending from an external surface of the syringe. In some embodiments, the second engagement element can be an opening configured to engage the protrusion. The syringe body can further comprise a third engagement element and the volume indicator can further comprise a fourth engagement element configured to engage the third retaining element to restrain the volume indicator from rotational motion relative to the syringe body.
In another representative embodiment, a method for using a volume indicator with a syringe can comprise placing a volume indicator on a syringe, the syringe comprising a syringe body and a plunger received in the syringe body and the volume indicator comprising an indicator body and volume indicia on the indicator body; filling the syringe body with an amount of fluid corresponding to one of the volume indicia on the indicator body; and fluidly connecting the syringe to a delivery apparatus for a prosthetic valve.
In some embodiments, the act of placing the volume indicator on the syringe can comprise engaging one or more first engagement elements on the syringe body with one or more second engagement elements on the indicator body.
In some embodiments, the method can further comprise inserting into a body of a patient a distal end portion of the delivery apparatus and a prosthetic heart valve mounted in a radially compressed configuration on a balloon mounted on a distal end portion of the delivery apparatus.
In some embodiments, the method can further comprise advancing the distal end portion of the delivery apparatus and the radially compressed prosthetic valve through the patient's vasculature to position the prosthetic valve at a selected implantation area and actuating the plunger of the syringe to inject the fluid into the balloon, thereby inflating the balloon and radially expanding the prosthetic heart valve.
In some embodiments, the prosthetic heart valve can be expanded to an expanded functional diameter within a range of expanded diameters, and the act of filling the syringe body comprises selecting a fill volume needed to expand the prosthetic heart valve to a selected expanded diameter within the range of expanded diameters.
In some embodiments, the volume indicia on the indicator body are not aligned with volume indicia on the syringe body when the volume indicator is placed on the syringe.
In some embodiments, the volume indicator is selected from a kit of volume indicators. In some embodiments, each volume indicator in the kit corresponds to a different nominal valve size. In some embodiments, the kit comprises a first volume indicator corresponding to a prosthetic heart valve having a nominal size of 20 mm, a second volume indicator corresponding to a prosthetic heart valve having a nominal size of 23 mm, a third volume indicator corresponding to a prosthetic heart valve having a nominal size of 26 mm, and a fourth volume indicator corresponding to a prosthetic heart valve having a nominal size of 29 mm.
In another representative embodiment, an assembly comprises a removable volume indicator for mounting on a syringe, the volume indicator comprising an indicator body and inflation indicia spaced along a length thereof and a delivery apparatus for implanting a prosthetic heart valve, the apparatus comprising a balloon mounted on a distal portion thereof.
In some embodiments, the assembly can further comprise a prosthetic heart valve that is expandable to an expanded functional diameter within a range of expanded diameters, wherein the inflation indicia correspond to expanded diameters of the range.
In another representative embodiment, a kit can comprise at least first and second removable volume indicators for mounting on the same syringe, each volume indicator comprising an indicator body and inflation indicia spaced along a length thereof, the inflation indicia of the first volume indicator corresponding to a range of expanded diameters of a first prosthetic valve and the inflation indicia of the second volume indicator corresponding to a range of expanded diameters of a second prosthetic valve that is larger than the first prosthetic valve. In some embodiments, the kit can further comprise a third volume indicator, and a fourth volume indicator.
In some embodiments, the kit can further comprise a delivery apparatus that can be used to implant the first prosthetic heart valve and the second prosthetic heart valve, the apparatus comprising a balloon mounted on a distal portion thereof. In some embodiments, the kit can further comprise a first prosthetic heart valve and/or a second prosthetic heart valve.
The various innovations of this disclosure can be used in combination or separately. This summary is provided to introduce a selection of concepts in a simplified form that a further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter. The foregoing and other objects, features, and advantages of the disclosure will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
In particular embodiments, a delivery assembly for implanting a prosthetic, transcatheter heart valve via a patient's vasculature includes a syringe for inflating a balloon of a delivery apparatus for the purpose of radially expanding a prosthetic valve radially crimped on the balloon. The balloon can be mounted on a distal end portion of a shaft of the delivery apparatus. The balloon and the crimped prosthetic valve can be inserted into the vasculature of a patient via an introducer sheath and, once the balloon and the crimped prosthetic valve reach a suitable location in the body, the prosthetic valve can be expanded at the treatment site (e.g., the native aortic valve).
In some embodiments, the first shaft 104 can be configured as a steerable guide catheter having an adjustable curvature for use in steering the delivery apparatus through the patient's vasculature. For example, the first shaft 104 can include a steerable distal section 110, the curvature of which can be adjusted by the operator to assist in guiding the apparatus through the patient's vasculature. A steering or pull wire (not shown) can extend through the shaft 104 and can have a distal end fixed at a location along the distal section 110 and a proximal end operatively connected to an adjustment mechanism, such as the illustrated knob 112, on the handle 102.
In some embodiments, the first shaft 104 and the second shaft 106 can be moved relative to each other (axially and/or rotationally) to facilitate delivery and positioning of the prosthetic valve 10 at an implantation site in the patient's body. The handle 102 can include an adjustment mechanism to produce relative movement between the shafts 104, 106. For example, the handle can include a slidable adjustment knob 114 that is operatively connected to the second shaft 106 and configured to produce axial movement of the second shaft 106 in the proximal and distal directions relative to the first shaft 104.
An inflatable balloon 116 can be mounted along the distal end portion of the second shaft 106, which can be referred to as a balloon catheter. As depicted in
The delivery apparatus 100 can include a proximal port 118 extending from the handle 102. The proximal port 118 is in fluid communication with a longitudinally extending fluid passageway of the delivery apparatus for delivering an inflation fluid to the balloon 116. The handle 102 can further include a side arm 120 which can be, for example, a flush tube having an internal passage that fluidly communicates with a lumen defined by the handle 102. The flush tube can terminate at or adjacent to a seal member where the flush tube connects with an inner passage defined by the shaft 106 and/or the shaft 104.
The proximal port 118 can be formed with a fluid passageway that is fluidly connectable to a fluid source (e.g., a syringe filled with saline, see
In some embodiments, the proximal port 118 can further comprise a stopcock (not shown) movable between an open position and a closed position (e.g., by manual actuation by a physician). Wherein when the stopcock is in the open position fluid from the fluid source can flow into the fluid passageway, and wherein when the stopcock is in the closed position fluid from the fluid source is prevented from flowing into the fluid passageway.
The first and second shafts 104, 106 can be formed from any of various suitable materials, such as nylon, braided stainless steel wires, or a polyether block amide (commercially available as Pebax®), to name a few. The shafts can have longitudinal sections formed from different materials in order to vary the flexibility of the shafts along their lengths. The second shaft 106 can have an inner liner or layer formed of Teflon® to minimize sliding friction with a guide wire.
Further details regarding the delivery apparatus 100 and methods for delivering and deploying a prosthetic valve using the delivery apparatus can be found, for example, in U.S. Publication No. 2017/0065415, which is incorporated herein by reference. Other examples of delivery apparatuses that can be used to implant a prosthetic heart valve with devices disclosed herein are described in U.S. Pat. Nos. 8,568,472 and 9,061,119, which are incorporated herein by reference.
Referring to
The valvular structure 14 can comprises a plurality of leaflets 16 mounted inside of the frame. The opposing sides of each leaflet 16 can be paired with adjacent leaflets to form commissures 18 of the valvular structure. The commissures 18 can be mounted to the frame via reinforcing members 20. The prosthetic valve 10 can also include a sealing member 22 mounted on the outside of the frame. The sealing member 22 is configured to help seal the prosthetic valve against surrounding tissue and prevent or minimize perivalvular leakage. The leaflets 16 can be made from any of various suitable biocompatible materials, including natural tissue, such as bovine pericardial tissue (or pericardial tissue from other sources) or synthetic materials, such as any of various fabrics or non-fabric materials (e.g., polyurethane). The reinforcing members 20 and the sealing member 22 desirably are made of a fabric material, such as polyethylene terephthalate (PET) fabric, although non-fabric materials and natural tissue also could be used. Further details of the prosthetic valve 10 are disclosed in U.S. Patent Application Publication No. 2018/0028310, which is incorporated herein by reference. Other types of prosthetic heart valves that can deployed using any of the devices and methods disclosed herein are described in U.S. Pat. Nos. 7,510,575; 7,993,394; and 9,393,110, which are incorporated herein by reference.
In particular embodiments, the prosthetic valve 10 can be radially expanded to an expanded state having an outer diameter within a range of expanded diameters. This allows the physician to expand the prosthetic valve 10 to a size that closely corresponds the diameter of the native annulus in which the prosthetic valve is to be implanted. For example, in one specific implementation, a prosthetic valve 10 having a “nominal” size of 23 mm can be expanded to a diameter within a range of diameters from about 21.5 mm to about 23.3 mm. As used herein, the “nominal” size of a prosthetic valve is an approximate value corresponding to the outer diameter of the prosthetic valve in the expanded state. The size range of expanded diameters for a prosthetic valve typically includes the nominal size of the prosthetic value. Typically, although not necessarily, the nominal size of a prosthetic valve defines the upper limit of the size range of expanded diameters or is close to the upper limit of the size range.
Once the prosthetic heart valve 10 has been positioned at the desired implantation location, the physician can introduce an appropriate amount of the inflation fluid into the balloon 116 to radially expand the prosthetic valve to a desired diameter at which the prosthetic valve securely engages the annulus of the native heart valve without over-expanding the native annulus.
Referring to
The syringe 126 can further comprise a plunger 134 comprising a shaft 136 that extends into the interior chamber of the body 128, a plunger head 138 (
A syringe gripping portion 142 can be mounted against the second end 132 of the body and can include a central opening through the plunger shaft 136 extends. Thus, in use, the physician can grip the syringe gripping portion 142 with one hand and grip the handle 140 of the plunger 134 with the other hand in order to adjust the position of the plunger head 138 within the body 128. The physician can fill the syringe body with a desired amount of the inflation fluid by pulling the plunger 134 away from the syringe body 128, which draws the fluid into the interior chamber of the body (assuming the conduit 144 is fluidly connected to another source of the inflation fluid). Alternatively, the inflation fluid can be introduced into the syringe body by completely removing the plunger 134 form the syringe body 128 so that the inflation fluid can be poured through the opening at the second end 132 of the body. The physician can push fluid out of the syringe body 128 by pushing the plunger 134 further into the interior chamber of the syringe body.
The syringe body 128 can be transparent or at least translucent to allow a user to see the amount of the inflation fluid and the position of the plunger head 138 inside the body. In some embodiments, the external surface of the syringe body can comprise a series of markings or measurement indicia 146 that allows the user to measure the amount of inflation fluid within the body 128. In other embodiments, the syringe can lack measurement indicia altogether (e.g., it can be a blank syringe). As shown in
The syringe body 128 can further comprise one or more first engagement elements 148 projecting outwardly from the external surface of the body. Each engagement element 148 can be a small cylindrical projection as shown, although the engagement elements can have any of various other shapes in cross-section (e.g., square, rectangle, triangle, ellipse, and/or combinations thereof) in other embodiments. In some embodiments, the one or more first engagement elements 148 can comprise a plurality of first engagement elements that can be spaced apart from each other along a length of the syringe body 128. In other embodiments, the one or more first engagement elements 148 can be a single engagement element. In particular embodiments, the single first engagement element 148 may be located at the first end portion 130 of the syringe and may extend outward from a surface thereof (e.g., the upward facing surface in the orientation shown in
In particular embodiments, the syringe 126 comprises a model QL38 syringe available from Atrion Medical (Arab, Ala.) that is modified to include one or more first engagement elements 148 on the syringe body.
Known delivery systems typically are provided with a prosthetic valve that has only one functional expanded diameter that is expanded using a balloon that is inflated with a predetermined amount of fluid that corresponds to one of the volume indicators 146 on the syringe body 128 (usually the volume of fluid is whole number). This allows the user to fill the syringe with the precise amount of fluid required for the procedure. However, if the prosthetic valve has more than one functional expanded diameter and instead can be expanded within a range of expanded diameters, it can be difficult for the user to draw the precise amount of inflation fluid into the syringe body that is required to expand a prosthetic valve to a desired size if the required volume falls between two of the volume markings 146.
As shown in
During an implantation procedure, a physician can have access to multiple volume indicators 200, for example, in a kit, and select the appropriate volume indicator corresponding to the appropriately sized prosthetic valve. The variety of volume indicators allow a single syringe 126 to be used for the implantation procedure regardless of the size of prosthetic valve 10 ultimately selected by the physician. Each volume indicator 200 can be labeled, marked, colored, and/or patterned to indicate a corresponding nominal prosthetic heart valve size. In the illustrated embodiment, each volume indicator has a molded embossment 208 indicating the nominal diameter of the corresponding prosthetic valve. In other embodiments, the volume indicator 200 can be labelled using, for example, pad-printing, laser engraving, or other method of marking.
Referring now to
As shown in
Referring again to
For example, as shown in
It also should be noted that, while in the illustrated embodiment the second engagement elements 206 are C-shaped notches configured to receive correspondingly shaped cylindrical first engagement elements 148, in other embodiments, the second engagement elements 206 can be any of various sizes and shapes (e.g., circular, rectangular, oval, etc.) configured to mate with the first engagement elements 148.
Moreover, in alternative embodiments, one or more of the second engagement elements 206 can be openings formed in the indicator body 202 that are configured to form releasable connections with respective first engagement elements 148 (e.g., by snapping, clipping, or inserting the first engagement elements into or through the second engagement elements). Examples of such embodiments are described in more detail below with reference to
Referring to
The window portion 204 can be formed within the indicator body 202 and can extend a length L2, wherein L2 is less than the length of the indicator body L1. Referring again to
In some embodiments, as shown in
The window portion 204 can further comprise inflation indicia 214 corresponding to the volume of fluid necessary to expand the prosthetic heart valve to a selected diameter within the range of diameters for a particular prosthetic valve. The inflation indicia 214 can be a series of markings or protrusions that visually indicate to a physician the volumes of fluid that are needed to expand the prosthetic heart valve to different diameters. In a volume indicator 200a for use with a prosthetic valve having a nominal diameter of 23 mm, the inflation indicia can, for example, correspond to the volume of fluid necessary to expand the valve to diameters of 22.5 mm, 23 mm, and 23.5 mm, respectively. In a volume indicator 200b for use with a prosthetic valve having a nominal diameter of 26 mm, the inflation indicia can, for example, correspond to the volume of fluid necessary to expand the valve to diameters of 24.5 mm, 25.8 mm, and 27 mm, respectively. In a volume indicator 200c for use with a prosthetic valve having a nominal diameter of 29 mm, the inflation indicia can, for example, correspond to the volume of fluid necessary to expand the valve to diameters of 27.5 mm, 28.8 mm, and 30.0 mm, respectively. In an exemplary volume indicator for use with a prosthetic valve having a nominal diameter of 21 mm, the inflation indicia can, for example, correspond to the volume of fluid necessary to expand the valve to diameters of 20.5 mm, 21 mm, and 21.5 mm, respectively.
As shown in
Referring now to
In some embodiments, the inflation indicia can be made of metal, plastic and/or other material. In some embodiments, the inflation indicia can be formed integrally with the window portion. Alternatively, the inflation indicia can be formed separately and be joined later in the fabrication process, such as by welding, adhesive, and/or mechanical means such as screws. In embodiments wherein the window portion is a transparent portion of the indicator body, the inflation indicia can be colored and/or patterned, transparent or semi-transparent bands formed integrally with the window portion.
In some embodiments, the inflation indicia can include markings that communicate valve-specific information (e.g., the volume of fluid within the syringe or the deployed valve diameter for each indicator mark). These markings can be created using, for example, molded embossments, pad-printing, laser engraving, or other method of marking.
In one specific embodiment, the inflation indicia 214 can indicate increasingly larger diameter sizes sequentially from the first end 210 of the window to the second end 212. For example, referring now to
In use, when the volume indicator 200 of
In another embodiment, the inflation indicia on a volume indicator can indicate or correspond to increasingly larger diameter sizes sequentially from the second end 212 of the window 204 to the first end 210. Assuming the entire syringe body is filled with the inflation fluid, each indicator can correspond to a volume of fluid that would be ejected from the syringe body starting from the second end 132 of the syringe 126 for expanding the prosthetic valve to a selected diameter. For example, referring to
In some embodiments (see e.g.,
In use, when the volume indicator 200 of
In one specific method for implanting a prosthetic heart valve in a patient's heart, a physician can select a prosthetic heart valve 10 having an expanded diameter range sized to accommodate a specific patient's anatomical variability (e.g., selecting the nominal size that is closest in size to the native annulus in which the prosthetic valve is to implanted). If needed, conventional techniques and/or devices can be used to measure the size of the native heart valve annulus in which the prosthetic heart valve will be implanted to facilitate selection of a properly sized prosthetic heart valve. Once the size of the prosthetic valve is selected (e.g., a 21-mm valve, a 23-mm valve, 26-mm valve, or a 29-mm valve), the physician can select a corresponding volume indicator 200 having inflation indicia 214 that correspond to the diameter range of that prosthetic valve.
Referring now to
In embodiments wherein the volume of inflation fluid is measured from the first end 130 of the syringe body, during filling the end surface 150 of the plunger head 138 can be aligned with a selected inflation indicator 214 corresponding to the selected expanded valve diameter (see e.g.,
Once filled, the syringe 126 can be fluidly coupled to the handle 102 of the delivery apparatus 100 at the proximal port 118, such as by connecting the tubing 144 to the proximal port 118. The prosthetic heart valve 10 can be mounted in a crimped configuration over balloon 116 on a distal end portion of the delivery apparatus 100. A representative method of implanting the prosthetic heart valve 10 using the delivery apparatus 100 can proceed in the following manner. The distal end portion of the delivery apparatus (along with the prosthetic valve 10) can be introduced into the patient's vasculature via, for example, an incision in the femoral artery. The distal end portion of the delivery apparatus 100 (along with the prosthetic valve 10) can be advanced through the femoral artery and the aorta toward the native aortic valve. Once the prosthetic heart valve 10 is positioned at the desired implantation location (typically within the native aortic annulus), the prosthetic heart valve can be deployed (e.g., radially expanded). Additional details regarding the implantation procedure can be found, for example, in U.S. Publication No. 2017/0065415.
To deploy the prosthetic valve 10, the physician can depress the plunger 134 of the syringe 126 such that the total volume of fluid within the syringe flows through the fluid passageway of the delivery apparatus and into the balloon 116 to inflate the same and deploy the prosthetic valve 10 to the selected diameter.
Referring to
Once the prosthetic heart valve 10 is at the desired implantation location, the prosthetic valve can be deployed to, for example, a first diameter in the range (e.g., the smallest diameter in the range) by depressing the plunger until the end surface 150 of the plunger head 138 aligns with the inflation indicator 222a indicating the first diameter. The physician may then evaluate the fit of the prosthetic valve within the native annulus. If further expansion of the prosthetic valve is required, the prosthetic valve can be expanded to, for example, the second diameter in the range by depressing the plunger until the end surface 150 of the plunger head 138 aligns with the inflation indicator 222b indicating the second diameter. This process can be repeated as necessary until the prosthetic valve is expanded to a diameter that best fits the native annulus. For example, the prosthetic valve 10 desirably is expanded to a diameter sufficient to anchor the prosthetic valve in place against the surrounding tissue with minimal or no paravalvular leakage and without over-expanding and rupturing the native annulus.
Referring now to
In some embodiments, as shown in
Referring again to
It should be noted that, while in the illustrated embodiment the engagement element 224 is a U-shaped notch opening configured to receive a correspondingly U-shaped engagement element 154 of the syringe body 128, in other embodiments, the one or more second engagement elements 224 can be any of various sizes and shapes (e.g., circular, rectangular, triangular, etc.) configured to mate with correspondingly shaped one or more engagement elements 154.
In some embodiments, aligning the engagement elements 154, 224 aligns the volume indicator 200 over the syringe 126 such that the engagement elements 148, 206 are positioned to engage one another. This allows a user to quickly and easily clip the volume indicator 200 onto the syringe 126 in the correct orientation.
The window portion 204 in the embodiment of
In embodiments wherein the proximal port 118 comprises a stopcock, prior to actuating the plunger 134 the physician can actuate the stopcock from the closed position to the open position such that fluid from the fluid source can flow through the stopcock and into the fluid passageway of the delivery apparatus 100.
Although the disclosed embodiments pertain generally to delivery apparatuses and methods for implantation of prosthetic heart valves in the native aortic valve, it should be understood that the disclosed embodiments can be used implant prosthetic devices at any location of the heart or elsewhere in the body. Additionally, although the disclosed embodiments pertain generally to transfemoral delivery of prosthetic devices, it should be understood that the disclosed embodiments can be adapted for use with, for example, transapical procedures, transaortic procedures, trans-subclavian procedures, transradial procedures, or trans-septal procedures.
General Considerations
For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatus, and systems should not be construed as being limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
Although the operations of some of the disclosed embodiments are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “provide” or “achieve” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms may vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.
All features described herein are independent of one another and, except where structurally impossible, can be used in combination with any other feature described herein. For example, a volume indicator can comprise the window portion 204 as shown in
As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the terms “coupled” and “associated” generally mean electrically, electromagnetically, and/or physically (e.g., mechanically or chemically) coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language.
In the context of the present application, the terms “lower” and “upper” are used interchangeably with the terms “inflow” and “outflow”, respectively. Thus, for example, the lower end of the valve is its inflow end and the upper end of the valve is its outflow end.
As used herein, the term “proximal” refers to a position, direction, or portion of a device that is closer to the user and further away from the implantation site. As used herein, the term “distal” refers to a position, direction, or portion of a device that is further away from the user and closer to the implantation site. Thus, for example, proximal motion of a device is motion of the device toward the user, while distal motion of the device is motion of the device away from the user. The terms “longitudinal” and “axial” refer to an axis extending in the proximal and distal directions, unless otherwise expressly defined.
In view of the many possible embodiments to which the principles of the disclosure may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosure is defined by the following claims.
This application claims the benefit of U.S. Provisional Application 62/680,980 filed on Jun. 5, 2018, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
519297 | Bauer | May 1894 | A |
4035849 | Angell et al. | Jul 1977 | A |
4592340 | Boyles | Jun 1986 | A |
4955895 | Sugiyama et al. | Sep 1990 | A |
4994077 | Dobben | Feb 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5176698 | Burns et al. | Jan 1993 | A |
5192297 | Hull | Mar 1993 | A |
5213115 | Zytkovicz | May 1993 | A |
5266073 | Wall | Nov 1993 | A |
5325845 | Adair | Jul 1994 | A |
5358496 | Ortiz et al. | Oct 1994 | A |
5411552 | Andersen et al. | May 1995 | A |
5554185 | Block et al. | Sep 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5599305 | Hermann et al. | Feb 1997 | A |
5632760 | Sheiban et al. | May 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5728068 | Leone et al. | Mar 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5782809 | Umeno et al. | Jul 1998 | A |
5824044 | Quiachon et al. | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5908405 | Imran et al. | Jun 1999 | A |
5916147 | Boury | Jun 1999 | A |
5961536 | Mickley et al. | Oct 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
6019777 | Mackenzie | Feb 2000 | A |
6027510 | Alt | Feb 2000 | A |
6033381 | Kontos | Mar 2000 | A |
6143016 | Bleam et al. | Nov 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6174327 | Mertens et al. | Jan 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6235050 | Quiachon et al. | May 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6383171 | Gifford et al. | May 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6471672 | Brown et al. | Oct 2002 | B1 |
6500147 | Omaleki et al. | Dec 2002 | B2 |
6514228 | Hamilton et al. | Feb 2003 | B1 |
6527979 | Constantz et al. | Mar 2003 | B2 |
6579305 | Lashinski | Jun 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6764504 | Wang et al. | Jul 2004 | B2 |
6767362 | Schreck | Jul 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
7011094 | Rapacki et al. | Mar 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7137993 | Acosta et al. | Nov 2006 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7320702 | Hammersmark et al. | Jan 2008 | B2 |
7320704 | Lashinski et al. | Jan 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7435257 | Lashinski et al. | Oct 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7594926 | Linder et al. | Sep 2009 | B2 |
7597709 | Goodin | Oct 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7780723 | Taylor | Aug 2010 | B2 |
7785366 | Maurer et al. | Aug 2010 | B2 |
7959607 | Smit | Jun 2011 | B2 |
7959661 | Hijlkema et al. | Jun 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
RE43882 | Hopkins et al. | Dec 2012 | E |
8449606 | Eliasen et al. | May 2013 | B2 |
8475523 | Duffy | Jul 2013 | B2 |
8568472 | Marchand et al. | Oct 2013 | B2 |
9061119 | Le et al. | Jun 2015 | B2 |
9119716 | Lee et al. | Sep 2015 | B2 |
9795477 | Tran et al. | Oct 2017 | B2 |
20010002445 | Vesely | May 2001 | A1 |
20010007082 | Dusbabek et al. | Jul 2001 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020088131 | Baxa et al. | Jul 2002 | A1 |
20020165461 | Hayzelden et al. | Nov 2002 | A1 |
20030040792 | Gabbay | Feb 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030120341 | Shennib et al. | Jun 2003 | A1 |
20040019323 | Carter et al. | Jan 2004 | A1 |
20040093061 | Acosta et al. | May 2004 | A1 |
20040133263 | Dusbabek et al. | Jul 2004 | A1 |
20040143197 | Soukup et al. | Jul 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050080474 | Andreas et al. | Apr 2005 | A1 |
20050096736 | Osse et al. | May 2005 | A1 |
20050137689 | Salahieh et al. | Jun 2005 | A1 |
20050149160 | McFerran | Jul 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050245894 | Zadno-Azizi | Nov 2005 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060173415 | Cummins | Aug 2006 | A1 |
20060282150 | Olson et al. | Dec 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070073389 | Bolduc et al. | Mar 2007 | A1 |
20070088431 | Bourang et al. | Apr 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070129719 | Kendale | Jun 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070219612 | Andreas et al. | Sep 2007 | A1 |
20070239254 | Chia et al. | Oct 2007 | A1 |
20070244546 | Francis | Oct 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080108952 | Horvath et al. | May 2008 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080294230 | Parker | Nov 2008 | A1 |
20090024428 | Hudock, Jr. | Jan 2009 | A1 |
20090069889 | Suri et al. | Mar 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090192585 | Bloom et al. | Jul 2009 | A1 |
20090228093 | Taylor et al. | Sep 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090299456 | Melsheimer | Dec 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20100030318 | Berra | Feb 2010 | A1 |
20100036472 | Papp | Feb 2010 | A1 |
20100036473 | Roth | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100076402 | Mazzone et al. | Mar 2010 | A1 |
20100076541 | Kumoyama | Mar 2010 | A1 |
20100082089 | Quadri et al. | Apr 2010 | A1 |
20100094394 | Beach et al. | Apr 2010 | A1 |
20100121425 | Shimada | May 2010 | A1 |
20100145431 | Wu et al. | Jun 2010 | A1 |
20100160894 | Julian | Jun 2010 | A1 |
20100161036 | Pintor et al. | Jun 2010 | A1 |
20100174363 | Castro | Jul 2010 | A1 |
20100198347 | Zakay et al. | Aug 2010 | A1 |
20100274344 | Dusbabek et al. | Oct 2010 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20110054596 | Taylor | Mar 2011 | A1 |
20110137331 | Walsh et al. | Jun 2011 | A1 |
20110160846 | Bishop et al. | Jun 2011 | A1 |
20110313349 | Krulevitch | Dec 2011 | A1 |
20120041389 | Giambattista | Feb 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120239142 | Liu et al. | Sep 2012 | A1 |
20130030519 | Tran et al. | Jan 2013 | A1 |
20130261601 | Webler | Oct 2013 | A1 |
20130317598 | Rowe et al. | Nov 2013 | A1 |
20130338581 | Stevens | Dec 2013 | A1 |
20140074140 | Johnson | Mar 2014 | A1 |
20140296962 | Cartledge et al. | Oct 2014 | A1 |
20150080807 | Schneider | Mar 2015 | A1 |
20150080809 | Dasbach | Mar 2015 | A1 |
20150272733 | Le et al. | Oct 2015 | A1 |
20150306318 | Lockhart et al. | Oct 2015 | A1 |
20160235458 | Roberts | Aug 2016 | A1 |
20170065415 | Rupp et al. | Mar 2017 | A1 |
20170354787 | Leary | Dec 2017 | A1 |
20180153689 | Maimon et al. | Jun 2018 | A1 |
20180344456 | Barash et al. | Dec 2018 | A1 |
20190117899 | Byskov | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
19532846 | Mar 1997 | DE |
19907646 | Aug 2000 | DE |
0592410 | Oct 1995 | EP |
0850607 | Jul 1998 | EP |
2815844 | May 2002 | FR |
9117720 | Nov 1991 | WO |
0176510 | Oct 2001 | WO |
0222054 | Mar 2002 | WO |
0236048 | May 2002 | WO |
02060352 | Aug 2002 | WO |
03030776 | Apr 2003 | WO |
03047468 | Jun 2003 | WO |
2004019825 | Mar 2004 | WO |
2005084595 | Sep 2005 | WO |
2006032051 | Mar 2006 | WO |
2006111391 | Oct 2006 | WO |
2006138173 | Mar 2007 | WO |
2005102015 | Apr 2007 | WO |
2007047488 | Apr 2007 | WO |
2007067942 | Jun 2007 | WO |
2008028569 | Mar 2008 | WO |
2010098928 | Sep 2010 | WO |
2010121076 | Oct 2010 | WO |
2014088582 | Jun 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20190366061 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62680980 | Jun 2018 | US |