The present disclosure relates generally to removably couplable printer and verifier assemblies, including removably couplable printer and verifier assemblies with magnets configured to removably couple a verifier module to a media cover of a printer. The present disclosure also includes removably couplable verifiers, printers configured to receive removably couplable verifiers, and systems and methods pertaining to such printers, verifiers, and removably couplable printer and verifier assemblies.
Printers exist in a variety of forms and combinations, including thermal transfer, ink-jet, dot-matrix, laser, and xerographic printers. A printer typically includes a printhead and a drive system for causing relative movement between the printhead and a print media. A print media may take the form of either a continuous roll of paper or a fanfold of paper, plastic or other print media, or individual sheets of print media. The printhead is usually controlled by print logic which outputs print commands to a print driver. The print driver uses the print commands to provide energizing signals to the printhead.
The quality of a printed output may have some variability. Additionally, printing defects may be introduced in the printed output. Variable print quality or printing defects may arise from a variety of sources, including issues associated with the printer, the print media, or the printing process. For example, typical printing parameters that may introduce quality issues or printing defects include defective or worn-out printer components; variations or defects in print media, ink, ribbon or other consumables; variations in mechanical forces and tolerances in the printer; and variations in the transport rate of the print media relative to the printhead. Additionally, with a thermal printer, quality issues or printing defects may be introduced by the thermal lag time of the resistive elements in a thermal printhead, and heat generated by adjacent resistive elements and the composition of the media.
A verifier may be used to analyze various aspects of print quality or to detect printing errors. For example, a verifier may be used to analyze printed images according to industry standards. When a verifier is integrated with a printer, printed images may be analyzed in real-time as the images are printed. Real-time verification can be used to assure that every printed output is free from errors and meets the desired quality parameters. Conversely, separate verifier units typically are used for intermittent spot-checks.
A verifier may be included as original equipment with a newly-manufactured printer. However, typically a verifier will be a premium accessory among a printer product line because of cost considerations. These cost considerations include the technical precision required to mount the verifier with the printer while assuring that the verifier and the printhead are properly aligned. Alternatively, a verifier may be added to a printer as an after-market accessory. Installation of an after-market verifier typically requires a skilled service technical to disassemble portions of the printer.
Typical verifiers tend to require a complex arrangement of brackets, screws, and other hardware for mounting the verifier to the printer. This may be the case both for original equipment and after-market verifiers. Also, a scan path of the verifier typically will be aligned to a printing path of the printer. For example, this alignment may be necessary in order to allow the verifier to scan the full width of the printed media. This alignment typically is performed manually by a technician.
Mounting the verifier requires technical skill, time, and sometimes multiple iterations to achieve the correct alignment. Service fees for after-market installation can be expensive, and the installation service itself risks damage to sensitive printer components such as the printhead. Similar issues exist during maintenance, repair, or upgrade of printers where a verifier has been installed either as original equipment or as an after-market accessory.
Additionally, oftentimes a verifier may interfere with easy access to printer components. For example, some verifiers may be positioned at a location that is inconvenient when accessing internal portions of the printer, such as when installing or changing print media or other consumables.
Accordingly, a need exists for improved printer and verifier assemblies, and related systems and methods. This need is addressed by the presently disclosed removably couplable printer and verifier assemblies, including embodiments with magnets configured to removably couple a verifier module to a printer. This need is further addressed by the presently disclosed systems and methods pertaining to such removably couplable printer and verifier assemblies.
Accordingly, in one aspect, the present disclosure embraces a verifier and printer assembly with a verifier module that has a magnetic docking element, and a printer that has a docking portion operable to dock the verifier module. The magnetic docking element and the docking portion interact with each other to removably couple the verifier module to the printer.
In another aspect, the present disclosure embraces a magnetic attachment system for a verifier module. The magnetic attachment system includes a verifier module, a printer, and a magnetic connecting structure. The magnetic connecting structure includes a first magnetic docking element and a second magnetic docking element operable to removably couple the verifier module to the printer. The verifier module includes the first magnetic docking element and the printer includes the second magnetic docking element.
In some embodiments, the present disclosure embraces a removably couplable printer and verifier assembly. The removably couplable printer may include a media cover that has a printer-coupling and a verifier. The verifier may include a media support attached to the printer at a media-support attachment point. The verifier also may include a verifier module with a verifier-coupling configured to interface with the printer-coupling. The verifier-coupling and/or the printer-coupling may include one or more magnets configured to removably couple the verifier module to the media cover at least in part by magnetic force acting between the verifier-coupling and the printer-coupling.
A printer typically includes a printhead that has an array of print elements configured to print sequential segments of an image on corresponding sequential segments of a print media, and a platen roller configured to advance the print media when printing the sequential segments. A verifier typically includes an image sensor having an array of photo sensors configured to capture a representation of at least a portion of the sequential segments of the image having been printed on the print media as the platen roller advances the print media. In some embodiments, with the verifier module removably coupled to the media cover, magnetic force acting between the verifier-coupling and the printer-coupling operates to align the array of photo sensors to a fixed scanning position relative to the array of print elements.
The fixed scanning position may include the array of photo sensors having a substantially parallel orientation to a lateral print axis corresponding to the array of print elements. Additionally, the fixed scanning position may further include a photo sensor reference point corresponding to the array of photo sensors substantially aligned laterally with respect to a print axis reference point corresponding to the lateral print axis. Further, the fixed scanning position may also include the photo sensor reference point positioned substantially at a fixed distance from a media support reference point corresponding to the media support. The fixed distance from the media support reference point may be configured to provide space for advancing print media to move between the verifier module and the media support.
In some embodiments, the removably couplable printer and verifier assembly includes a verifier receiving space configured to removably couple with the verifier module. The verifier receiving space may be provided on a media cover of the printer.
In some embodiments, the verifier module includes one or more protrusions and the verifier receiving space includes one or more recesses corresponding to the one or more protrusions. Each of the one or more protrusions may be configured to fittingly mate with the respective one or more recesses.
In some embodiments, the verifier module includes one or more magnets and the verifier receiving space includes a magnetic material. The one or more magnets may be configured to interact with the magnetic material. Alternatively, or in addition, in some embodiments the verifier receiving space includes one or more magnets and the verifier module includes a magnetic material with which the one or more magnets interact.
In some embodiments, a verifier module includes a verifier-coupling magnetic array, and the verifier receiving space includes a printer-coupling magnetic array. Magnetic force acting between the verifier-coupling magnetic array and the printer-coupling magnetic array may be operable to align the array of photo sensors to the fixed scanning position. In some embodiments, at least one of the one or more magnets may be an electromagnet.
In some embodiments, the verifier-coupling magnetic array may include a first magnetic verifier-coupling with a north-polarity magnetic surface adjacent to and abutting a south-polarity magnetic surface along a first verifier-coupling magnetic border. The verifier-coupling magnetic array may additionally include a second magnetic verifier-coupling with a north-polarity magnetic surface adjacent to and abutting a south-polarity magnetic surface along a second verifier-coupling magnetic border.
Likewise, in some embodiments, the printer-coupling magnetic array may include a first magnetic printer-coupling with a north-polarity magnetic surface adjacent to and abutting a south-polarity magnetic surface along a first printer-coupling magnetic border. The printer-coupling may additionally include a second magnetic printer-coupling with a north-polarity magnetic surface adjacent to and abutting a south-polarity magnetic surface along a second printer-coupling magnetic border.
The first magnetic printer-coupling may be configured to removably couple with the first magnetic verifier-coupling. Magnetic force acting between the first magnetic verifier-coupling and the first magnetic printer-coupling may operate to substantially align a photo sensor reference point laterally with respect to the print axis reference point. The second magnetic printer-coupling may be configured to removably couple with the second magnetic verifier-coupling. Magnetic force acting between the second magnetic verifier-coupling and the second magnetic printer-coupling may operate to position the photo sensor reference point substantially at the fixed distance from the media support reference point.
In some embodiments, the verifier-coupling magnetic array may further include a third magnetic verifier-coupling with a north-polarity magnetic surface adjacent to and abutting a south-polarity magnetic surface along a third verifier-coupling magnetic border. Likewise, the printer-coupling magnetic array may further include a third magnetic printer-coupling with a north-polarity magnetic surface adjacent to and abutting a south-polarity magnetic surface along a third printer-coupling magnetic border. The third magnetic printer-coupling may be configured to removably couple with the third magnetic verifier-coupling. Magnetic force acting between the third magnetic verifier-coupling and the third magnetic printer-coupling may further operate to substantially align the photo sensor reference point laterally with respect to the print axis reference point.
In some embodiments, the verifier-coupling magnetic array may further include a fourth magnetic verifier-coupling with a north-polarity magnetic surface adjacent to and abutting a south-polarity magnetic surface along a fourth verifier-coupling magnetic border. Likewise, the printer-coupling magnetic array may further include a fourth magnetic printer-coupling with a north-polarity magnetic surface adjacent to and abutting a south-polarity magnetic surface along a fourth printer-coupling magnetic border. The fourth magnetic printer-coupling may be configured to removably couple with the fourth magnetic verifier-coupling. Magnetic force acting between the fourth magnetic verifier-coupling and the fourth magnetic printer-coupling may further operate to position the photo sensor reference point substantially at the fixed distance from the media support reference point.
In some embodiments, at least a portion of the first magnetic verifier-coupling and at least a portion of the second magnetic verifier-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface. At least a portion of the first magnetic verifier-coupling and at least a portion of the second magnetic verifier-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface. At least a portion of the second magnetic verifier-coupling and at least a portion of the third magnetic verifier-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface. At least a portion of the third magnetic verifier-coupling and at least a portion of the fourth magnetic verifier-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface. At least a portion of the fourth magnetic verifier-coupling and at least a portion of the first magnetic verifier-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface.
In some embodiments, a verifier module may include one or more verifier-fittings, and the media cover may include one or more printer-fittings. The one or more verifier-fittings and the one or more printer-fittings may be respectively configured to fittingly mate with one another. These fittings may aid alignment of the array of photo sensors to the fixed scanning position. A verifier-coupling may include at least a portion of the one or more verifier-fittings. A printer-coupling may include at least a portion of the one or more printer-fittings.
In some embodiments, a verifier may include a verifier communication module, and a printer may include a printer communication module. The printer and the verifier module may be configured to communicate with one another at least in part by a communication link between the printer-communication interface and the verifier-communication interface. Thus, the verifier communication module and the printer communication module may be configured to communicate with one another. The verifier communication module and the printer communication module may be configured to communicate with one another wirelessly.
In some embodiments, a verifier module includes a verifier power source. The verifier power source may include a battery, a capacitor, and/or a supercapacitor. The verifier power source may include a wireless energy harvesting node configured to harvest energy from a wireless signal. The printer may include a wireless communication module, and the wireless energy harvesting node may include an energy harvesting circuit configured to harvest energy from a wireless signal transmitted by the wireless communication module.
In some embodiments, the verifier-coupling includes at least a portion of the verifier-communication interface, and/or the printer-coupling includes at least a portion of the printer-communication interface. Additionally, or in the alternative, one of the one or more verifier-fittings may include at least a portion of the verifier-communication interface, and/or one of the one or more printer-fittings may include at least a portion of the printer-communication interface.
In some embodiments, the verifier power source includes a verifier-power interface and the printer includes a printer-power interface. The printer-power interface may be configured to supply electrical power to the verifier at least in part by an electrical connection between the verifier-power interface and the printer-power interface. The verifier-coupling may include at least a portion of the verifier-power interface, and/or the printer-coupling may include at least a portion of the printer-power interface. Additionally, or in the alternative, one of the one or more verifier-fittings may include at least a portion of the verifier-power interface, and/or one of the one or more printer-fittings may include at least a portion of the printer-power interface.
In yet another aspect, the present disclosure embraces methods of removably coupling a verifier module and a printer for verification of a printed machine-readable symbol. The method comprises positioning the verifier module in proximity with the printer causing interaction between a magnetic docking element of the verifier module and a docking portion of the printer and magnetically attaching the verifier module to the printer using the interaction.
In some embodiments a method of removably coupling a verifier module to a printer includes positioning a verifier module that has a verifier-coupling in proximity with a printer that has a verifier receiving space with a printer-coupling. The verifier-coupling and/or the printer-coupling may include one or more magnets configured to supply magnetic force. The method may include removably coupling the verifier module to the media cover at least in part by magnetic force acting between the verifier-coupling and the printer-coupling.
The printer may include a printhead with an array of print elements configured to print sequential segments of an image on corresponding sequential segments of a print media, and a platen roller configured to advance the print media when printing the sequential segments. The verifier module may include an image sensor with an array of photo sensors configured to capture a representation of at least a portion of the sequential segments of the image having been printed on the print media as the platen roller advances the print media.
Removably coupling the verifier module to the media cover may include aligning the array of photo sensors to a fixed scanning position relative to the array of print elements. Removably coupling the verifier module to the media cover may additionally include fittingly mating one or more verifier-fittings and one or more printer-fittings with one another.
The array of photo sensors may be aligned to the fixed scanning position at least in part by magnetic force acting between the verifier-coupling and the printer-coupling. Aligning the array of photo sensors to the fixed scanning position may include orienting the array of photo sensors substantially parallel to a lateral print axis corresponding to the array of print elements.
The foregoing summary is illustrative only, and is not intended to be in any way limiting. In addition to the illustrative features and embodiments described above, further aspects, features, and embodiments will become apparent by references to the following drawings, the detailed description set forth below, and the claims.
In the following detailed description, various aspects and features are described in greater detail with reference to the accompanying figures, including among other aspects and features, exemplary embodiments of removably couplable printer and verifier assemblies, including embodiments with magnets configured to removably couple a verifier module to a media cover of a printer. These various aspects and features further include systems and methods pertaining to such removably couplable printer and verifier assemblies. Numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be apparent, however, to one skilled in the art, that the presently disclosed devices, systems, and methods may be performed without some or all of these specific details. In other instances, well known aspects have not been described in detail in order not to unnecessarily obscure the present disclosure. The following detailed description is therefore not to be taken in a limiting sense, and it is intended that other embodiments are within the spirit and scope of the present disclosure.
An exemplary removably couplable verifier 104 is shown in more detail in
The media support may be secured to the printer at one or more media-support attachment points 204. Bolts, screws, pins, rivets, or other mounting hardware may be used to attach the media support to the printer. The media support may be attached to the printer, in a fixed or demountable configuration. Alternatively, the media support may be permanently fixed to the printer.
The verifier module 200 typically resides above the media support 202. For example, the verifier module may be configured to align with the media support, and a portion of the verifier module may rest on the media support. Alternatively, the verifier module, when removably coupled to the printer, may be supported above the media support. A media space 206 provides room for advancing print media to move between the verifier module and the media support.
The verifier module may be removably coupled to the printer, such as to a suitable portion of the printer case, enclosure, or chassis. For example, the verifier module may be removably coupled to a media cover or door. The verifier module may be removably coupled to an internal or an external portion of the printer.
As shown in
The media cover 300 can be pivoted from a closed position (as shown in
As shown in
The verifier module 200 may be removably coupled to the printer, providing a removably couplable printer and verifier assembly. In some embodiments, the verifier module includes a verifier-coupling and the printer includes a printer-coupling. The verifier-coupling may be configured to interface with the printer-coupling. One or both of the verifier-coupling and the printer-coupling may include one or more magnets. The one or more magnets may be configured to removably couple the verifier module to the printer. For example, as shown in
In some embodiments, a printer may include a verifier receiving space where the verifier module 200 removably couples with the printer. The verifier receiving space may be configured in accordance with the present disclosure, so as to removably couple with the verifier module. The verifier receiving space may be suitably located on the media cover or elsewhere where the verifier module removably couples with the printer.
The verifier receiving space 400 may be configured to removably couple with the verifier module 200. The verifier module 200 includes a verifier-coupling 402 configured to removably couple with a printer-coupling 404 at the verifier receiving space 400. The verifier-coupling 402 includes one or more magnets or electromagnets, and/or one or more verifier-fittings (e.g., protrusions or recesses) configured to removably couple with the printer-coupling. Likewise, the printer-coupling 404 includes one or more magnets or electromagnets, and/or one or more printer-fittings (e.g., protrusions or recesses) configured to removably couple with the verifier-coupling. Magnetic force acting between the verifier-coupling and the printer-coupling may removably couple the verifier module to the printer at the verifier receiving space 400. As shown in
In some embodiments, the verifier module may include a verifier-coupling magnetic array and the verifier receiving space may include printer-coupling magnetic array. For example, the media cover 300 may include a printer-coupling magnetic array. Magnetic force acting between the verifier-coupling magnetic array and the printer-coupling magnetic array may removably couple the verifier module 200 to the printer at the verifier receiving space 400. Additionally, the magnetic force acting between the verifier-coupling magnetic array and the printer-coupling magnetic array may be effective to align a reference point on the verifier module 200 with a reference point on the printer, thereby providing a fixed scanning position as discussed herein.
In some embodiments, the verifier receiving space 400 may be configured at least partially from a non-magnetic material, and magnetic force acting between the verifier-coupling magnetic array and the printer-coupling magnetic array may be sufficiently strong to removably couple the verifier module to the printer at the verifier receiving space and/or to align a reference point on the verifier module 200 with a reference point on the printer. For example, the media cover 300 may be a plastic or other non-magnetic material, and a printer-coupling magnetic array may be located within or behind the non-magnetic material of the media cover.
Alternatively, in some embodiments the verifier receiving space may be formed at least in part from a magnetic material. The verifier receiving space may itself exert a magnetic force. In one embodiment, the verifier receiving space may include one or more magnets or electromagnets, which may be arranged as a magnetic array, thereby providing a printer-coupling configured to interface with the verifier-coupling. In another embodiment, the verifier receiving space may be formed of a magnetic material, such as a metal alloy or other ferromagnetic material. The magnetic material may not itself provide a meaningful magnetic field, but may be sufficiently attracted to a magnetic field provided by the verifier-coupling to removably couple the verifier module 200 to the verifier receiving space 400.
In some embodiments a verifier module may include one or more protrusions (verifier-fittings) and a verifier receiving space 400 may include one or more recesses (printer-fittings) corresponding to the one or more protrusions. Similarly, the verifier module may include one or more recesses (verifier-fittings) and the verifier receiving space 400 may include one or more corresponding protrusions (printer-fittings), or each may include a combination of corresponding recesses and protrusions. Each of the one or more verifier-fittings may be configured to fittingly mate with the respective one or more printer-fittings.
As shown in
In an exemplary embodiment, a verifier module has a fixed scanning position such that with the verifier module removably coupled to a verifier receiving space, a reference point on the verifier module aligns with a reference point on the printer. The fixed scanning position provides a reference point for comparison of digital representations of scanned images obtained from the verifier module to the images as instructed by print logic. In an exemplary embodiment, each pixel of a scanned image may be correlated to a corresponding print command. The fixed scanning position may be provided by magnetic force, one or more verifier-fittings and the one or more printer-fittings respectively configured to fittingly mate with one another, or a combination of magnetic force and fittings.
As discussed herein, the verifier module includes an image sensor with an array of photo sensors. The image sensor is configured to capture a representation of at least a portion of the sequential segments of the image printed on the print media. With the verifier module removably coupled to the printer (e.g. to the media cover), magnetic force acting between the verifier-coupling and the printer-coupling at least in part operates to align the array of photo sensors to a fixed scanning position relative to the array of print elements. In some embodiments, a combination of magnetic force together with verifier-fittings mated to printer-fittings operate to align the array of photo sensors to a fixed scanning position relative to the array of print elements. In some embodiments, magnetic force alone operates to align the array of photo sensors to a fixed scanning position relative to the array of print elements.
In some embodiments, a fixed scanning position may be characterized with respect to a lateral print axis 806 and a scan line 808. An array of print elements 706 in a printhead 702 are typically aligned substantially parallel to the lateral print axis 806 and perpendicular to the print direction, and an array of photo sensors in a verifier module 200 are typically oriented parallel to the scan line 808 and perpendicular to the print direction. Thus, a fixed scanning position may include a scan line 808 substantially parallel to a lateral print axis 806. The fixed scanning position may be characterized using a cartesian coordinate system. For example, as shown in
The fixed scanning position may include the scan line being at a fixed point on the “X” axis relative to the lateral print axis 806, a fixed point on the “Y” axis relative to the lateral print axis 806, and/or a fixed point on the “Z” axis relative to the media support 202. For example, a photo sensor reference point 810 corresponding to an array of photosensors may have fixed X, Y, and Z coordinates relative to a print axis reference point 812 corresponding to the lateral print axis. Additionally, a photo sensor reference point 810 may have fixed X, Y, and Z coordinates relative to a media support reference point 814 corresponding to the media support, such that the photosensor reference point is a fixed distance from the media support reference point. The fixed distance between photosensor reference point and the media support reference point may be selected to provide suitable space for advancing print media to move between the verifier module 200 and the media support 202.
The fixed scanning position of the photo sensor reference point relative to the print axis reference point and/or the media support reference point may be provided by the verifier-coupling 408 being removably coupled to the printer-coupling 404. For example, magnetic force acting between the verifier coupling (e.g., from one or more magnets, electromagnets, or magnetic materials arranged to provide a verifier-coupling magnetic array 804) and the printer-coupling (e.g., from one or more magnets, electromagnets, or magnetic materials arranged to provide a printer-coupling magnetic array 802) operates to align the array of photo sensors to a fixed scanning position relative to the array of print elements.
The verifier-coupling magnetic array 804 and the printer-coupling magnetic array 802 may be configured to use magnetic force to resist movement of the verifier module 202 when removably coupled to the printer at the verifier receiving space 400. The verifier-coupling magnetic array 804 and the printer-coupling magnetic array 802 may be configured so that the magnetic force resists movement in one or more directions. For example, a first magnetic verifier-coupling of the verifier-coupling magnetic array may interface with a first magnetic printer-coupling of the printer-coupling magnetic array, to provide magnetic force that resists movement in a first direction. A second magnetic verifier-coupling of the verifier-coupling magnetic array may interface with a second magnetic printer-coupling of the printer-coupling magnetic array, to provide magnetic force that resists movement in a second direction. The first direction and the second direction may be perpendicular to one another. The sum of these magnetic forces resisting movement in the first direction and the second direction may additionally resist movement in any direction around a 360-degree plane between the interface of the verifier-coupling magnetic array 802 and the printer-coupling magnetic array 804. Additionally, or in the alternative, further magnetic verifier-couplings of the verifier-coupling magnetic array may be provided to interface with corresponding further magnetic printer-couplings of the printer-coupling magnetic array, to provide magnetic force that further resists movement in respective directions.
As shown in
The first magnetic-verifier-coupling 816 has a north-polarity magnetic surface 820 adjacent to and abutting a south-polarity magnetic surface 822 along a first verifier-coupling magnetic border 824. The second magnetic verifier-coupling having a north-polarity magnetic surface 820 adjacent to and abutting a south-polarity magnetic surface 826 along a second verifier-coupling magnetic border 828.
Likewise, a printer-coupling magnetic array may include a corresponding first magnetic printer-coupling 830 and a second magnetic printer-coupling 832. The first magnetic printer-coupling 830 has a north-polarity magnetic surface 834 adjacent to and abutting a south-polarity magnetic surface 836 along a first printer-coupling magnetic border 838. The second magnetic printer-coupling 832 has a north-polarity magnetic surface 840 adjacent to and abutting a south-polarity magnetic surface 836 along a second printer-coupling magnetic border 842.
The first magnetic printer-coupling 830 may be configured to removably couple with the first magnetic verifier-coupling 816. In some embodiments, magnetic force acting between the first magnetic verifier-coupling 816 and the first magnetic printer-coupling 830 operates to position and hold the verifier module so that the photo sensor reference point substantially aligns laterally along the “X” axis with respect to the print axis reference point. The second magnetic printer-coupling 832 may be configured to removably couple with the second magnetic verifier-coupling 818. In some embodiments, magnetic force acting between the second magnetic verifier-coupling 818 and the second magnetic printer-coupling 832 operates to position and hold the photo sensor reference point substantially at the fixed distance along the “Z” axis from the media support reference point 814 and/or at a fixed distance along the “Z” axis relative to the print axis reference point 812.
In some embodiments, a verifier-coupling magnetic array may optionally include a third magnetic verifier-coupling 844, as shown in
In some embodiments, a verifier-coupling magnetic array may optionally include a fourth magnetic verifier-coupling 856. The fourth magnetic verifier-coupling 856 has a north-polarity magnetic surface 846 adjacent to and abutting a south-polarity magnetic surface 822 along a fourth verifier-coupling magnetic border 858. Likewise, in some embodiments, a printer-coupling magnetic array may optionally include a fourth magnetic printer-coupling 860 having a north-polarity magnetic surface 834 adjacent to and abutting a south-polarity magnetic surface 852 along a fourth printer-coupling magnetic border 862. The fourth magnetic printer-coupling 860 may be configured to removably couple with the fourth magnetic verifier-coupling 856. In some embodiments, magnetic force acting between the fourth magnetic verifier-coupling 856 and the fourth magnetic printer-coupling 860 further operates to position and hold the photo sensor reference point substantially at the fixed distance along the “Z” axis from the media support reference point 814 and/or at a fixed distance along the “Z” axis relative to the print axis reference point 812.
In some embodiments, at least a portion of a first magnetic verifier-coupling and at least a portion of a second magnetic verifier-coupling share a north-polarity magnetic surface and/or a south-polarity magnetic surface. Likewise, in some embodiments, at least a portion of a first magnetic printer-coupling and at least a portion of a second magnetic printer-coupling share a north-polarity magnetic surface and/or a south-polarity magnetic surface.
By way example, in some embodiments, at least a portion of the first magnetic verifier-coupling and at least a portion of the second magnetic verifier-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface. Additionally, or in the alternative, at least a portion of the second magnetic verifier-coupling and at least a portion of the third magnetic verifier-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface. Further in addition or in the alternative, at least a portion of the third magnetic verifier-coupling and at least a portion of the fourth magnetic verifier-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface. Even further in addition or in the alternative, at least a portion of the fourth magnetic verifier-coupling and at least a portion of the first magnetic verifier-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface.
Likewise, in some embodiments, at least a portion of the first magnetic printer-coupling and at least a portion of the second magnetic printer-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface. Additionally, or in the alternative, at least a portion of the second magnetic printer-coupling and at least a portion of the third magnetic printer-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface. Further in addition or in the alternative, at least a portion of the third magnetic printer-coupling and at least a portion of the fourth magnetic printer-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface. Even further in addition or in the alternative, at least a portion of the fourth magnetic printer-coupling and at least a portion of the first magnetic printer-coupling may share a north-polarity magnetic surface and/or a south-polarity magnetic surface.
For example, as shown in
As additionally shown in
Any one or more of these exemplary magnetic arrangements may be configured to provide a verifier-coupling magnetic array 802 or a printer-coupling magnetic array 804. In some embodiments, a verifier-coupling magnetic array 802. As shown in
While particular magnet configurations have been described, it is to be understood that other magnet arrangements may be used (circular pattern, rectangular, etc.), including difference size magnets and different surface configurations, all of which are within the spirit and scope of the present disclosure.
Embodiments that include one or more magnets or electro magnets, such as arranged in a magnetic array, may also include one or more fittings. A verifier module may include a verifier-coupling that includes one or more verifier-fittings, and a verifier receiving space may include a printer-coupling that includes one or more printer-fittings. The one or more verifier-fittings and the one or more printer-fittings may be respectively configured to fittingly mate with one another, aiding alignment of the array of photo sensors to the fixed scanning position. For example, verifier-fittings and/or printer-fittings may be combined with the embodiments shown in
In some embodiments, a verifier module includes a verifier communication module configured to allow the verifier to send and receive communications. Such communications may include data pertaining to scans of printed images obtained by the image sensor, and other communications pertaining to the operation of the verifier module. In some embodiments, the printer includes a printer communication module. The printer communication module may be configured to allow the verifier module and the printer to communicate with one another. The verifier may include a verifier-communication interface and printer may include a printer-communication interface. The verifier-communication interface and the printer-communication interface may be configured to provide a communication link allowing communications to be transmitted between the verifier module and the printer. The communication link may be configured for wired or wireless communications.
Alternatively, as shown in
As shown in
A verifier-coupling may include at least a portion of the verifier-communication interface, and a printer-coupling may include at least a portion of the printer-communication interface. Alternatively, a verifier-communication interface may be provided separately from a verifier-coupling, and/or a printer-communication interface may be provided separately from a printer-coupling.
A verifier-coupling may include at least a portion of the verifier-power interface, and a printer-coupling may include at least a portion of the printer-power interface. Alternatively, a verifier-power interface may be provided separately from a verifier-coupling, and/or a printer-power interface may be provided separately from a printer-coupling.
The printer communication module and the verifier communication module may be configured to communicate with one another, such as by a communication link between the verifier-communication interface and the printer-communication interface. The verifier communication module and the printer communication module may be configured to communicate with one another wirelessly.
In some embodiments, the verifier power source 1610 may include a wireless energy harvesting node 1612. The wireless energy harvesting node may include one or more energy harvesting circuits. An energy harvesting circuit may be configured to harvest energy from a wireless signal or a low current power source such as a powered Ethernet cable or USB port.
In some embodiments, the printer communication module 1506 may include a wireless communication module 1512. The verifier communication module 1606 may also include a wireless communication module 1614. The printer communication module may be configured to communicate with the verifier communication module wirelessly using a wireless signal transmitted between the respective wireless communication modules 1512, 1614. In some embodiments, the wireless energy harvesting node 1612 may include an energy harvesting circuit configured to harvest energy from a wireless signal transmitted by a wireless communication module 1512 in the printer.
A verifier and printer assembly may include a first wireless communication module located in the printer and a second wireless communication system located in the verifier module. In some embodiments, upon removably coupling the verifier module and the printer, a wireless signal is sent from the first wireless communication system to the second wireless communication system to exchange data between the printer and the verifier module.
The present disclosure embraces various methods pertaining to the removably couplable printer and verifier assemblies disclosed herein.
With the verifier module removably coupled to the printer, the printer and verifier assembly provides an array of photo sensors in the verifier module aligned to a fixed scanning position relative to an array of print elements in a printhead of the printer. For example, a printer may have a printhead with an array of print elements configured to print sequential segments of an image on corresponding sequential segments of a print media. The printer may additionally include a platen roller configured to advance the print media when printing the sequential segments. The verifier module may include an image sensor with an array of photo sensors configured to capture a representation of at least a portion of the sequential segments of the image printed on the print media as the platen roller advances the print media past the array of photo sensors.
The array of photo sensors may be aligned to a fixed scanning position relative to the array of print elements at least in part by magnetic force acting between the verifier-coupling and the printer-coupling. The array of photo sensors may be oriented substantially parallel to a lateral print axis corresponding to the array of print elements.
In some embodiments, the verifier module may further include one or more verifier-fittings, and the media cover may further include one or more printer-fittings. Removably coupling the verifier module to the media cover may include fittingly mating the one or more verifier-fittings and the one or more printer-fittings with one another.
When removably coupled to a printer, a verifier module may be configured to have a fixed scanning position, such that an array of photo sensors in the verifier align with or relative to an array of print elements in the printer. In some embodiments, magnetic force alone operates to align the array of photo sensors to a fixed scanning position relative to the array of print elements. The verifier module is removable between the fixed scanning position and a removed or undocked position. The removed or undocked position reflects a position where the verifier module is removed from the printer and a magnetic connection between the verifier module and the printer has been disengaged.
The verifier module, when removably coupled to the printer, auto-aligns to the fixed scanning position. For example, magnetic force may allow the verifier module to be removably coupled to the printer in a snapping manner. If the verifier module is slightly misaligned when being removably coupled to the printer, the magnetic force may snap the verifier module into the fixed scanning position. When the verifier module is in the fixed scanning position, the image sensor in the verifier module may scan the correct portion of the printed medium to verify print quality and identify printing errors. Additionally, the verifier module does not obstruct the print media from moving through the media space between the verifier module and the media support. The verifier module auto-aligns to the fixed scanning position when the magnets are configured as described in accordance with the present disclosure, including as shown in
The method 1900 continues with placing a print media in the printer 1904. The printer may be configured such that the print media may follow a media path. In some embodiments, the print media may be threaded along a media path. After the print media has been placed in the printer, the method continues with closing the media cover 1906. The verifier module 200, being removably coupled to the media cover, accompanies the media cover as the media cover is pivoted from the closed position to the open position or otherwise returned to cover the various internal components of the printer.
Various embodiments of the present disclosure provide easy, tool free mounting of a verifier module to a printer (and the printer to the verifier) such that the verifier module is removably coupled to the printer. Various embodiments improve setup of a verifier and printer assembly. Various embodiments also enable a verifier to communicate wirelessly a printer, which in some embodiments eliminates the need for cables or wire, which sometimes require technical skill to install. Various embodiments enable an easy upgrade to a printer to add a verifier module and associated functionalities. In accordance with the present disclosure, typically, a user can install (e.g., removably couple) a verifier to a printer without technical skill and tools. Various embodiments provide a secure removable coupling, mounting, or connection of the verifier module to the printer such that the verifier typically does not move about or disengage from the printer with the usual vibrations or jarring that tends to happen in various operating environments where the verifier and printer assembly may be deployed. Additionally, various embodiments provide a fixed scanning position for the verifier module, which substantially ensures that the verifier module will scan the correct portion of the printed media and not obstruct the media path.
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
U.S. Design Patent No. D702,237; U.S. Design Pat. No. D716,285; U.S. Design Pat. No. D723,560; U.S. Design Pat. No. D730,357; U.S. Design Pat. No. D730,901; U.S. Design Pat. No. D730,902; U.S. Design Pat. No. D734,339; U.S. Design Pat. No. D737,321; U.S. Design Pat. No. D754,205; U.S. Design Pat. No. D754,206; U.S. Design Pat. No. D757,009; U.S. Design Pat. No. D760,719; U.S. Design Pat. No. D762,604; U.S. Design Pat. No. D766,244; U.S. Design Pat. No. D777,166; U.S. Design Pat. No. D771,631; U.S. Design Pat. No. D783,601; U.S. Design Pat. No. D785,617; U.S. Design Pat. No. D785,636; U.S. Design Pat. No. D790,505; U.S. Design Pat. No. D790,546;
The foregoing detailed description and accompanying figures set forth typical embodiments of the devices, systems, and methods presently disclosed. The present disclosure is not limited to such exemplary embodiments. It will be apparent that numerous other devices, systems, and methods may be provided in accordance with the present disclosure. The present disclosure may utilize any variety of aspects, features, or steps, or combinations thereof which may be within the contemplation of those skilled in the art.
Various embodiments have been set forth via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects and/or features of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of ordinary skill in the art in light of the present disclosure.
In addition, those skilled in the art will appreciate that some mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies equally regardless of the signal bearing media used to carry out the distribution. Examples of a signal bearing media include, but are not limited to, the following: recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives, SSD drives, flash drives, optical discs (e.g., CD ROMs, DVDs, etc.), and computer memory; and transmission type media such as digital and analog communication links using TDM or IP based communication links (e.g., packet links).
In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment).
Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use engineering practices to integrate such described devices and/or processes into data processing systems. That is, at least a portion of the devices and/or processes described herein can be integrated into a data processing system via a reasonable amount of experimentation. Those having skill in the art will recognize that a typical data processing system generally includes one or more of a system unit housing, a video display device, a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices, such as a touch pad or screen, and/or control systems including feedback loops and control elements (e.g., feedback for sensing temperature; control heaters for adjusting temperature). A typical data processing system may be implemented utilizing any suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
The foregoing described aspects depict different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.
The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
While various aspects, features, and embodiments have been disclosed herein, other aspects, features, and embodiments will be apparent to those skilled in the art. The various aspects, features, and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting. It is intended that the scope of the present disclosure be defined by the following claims and their equivalents:
This application is a continuation of U.S. Non-Provisional application Ser. No. 15/880,723, filed Jan. 26, 2018, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4492355 | Bylin | Jan 1985 | A |
5198650 | Wike, Jr. | Mar 1993 | A |
5209583 | Lewis et al. | May 1993 | A |
5513922 | Umbach | May 1996 | A |
6042279 | Ackley | Mar 2000 | A |
6612763 | Yoshihara | Sep 2003 | B1 |
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7556564 | Silverbrook | Jul 2009 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Van et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein, Jr. | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8632266 | Simmons | Jan 2014 | B1 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre, Jr. | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz, Sr. | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van et al. | Aug 2014 | B2 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue et al. | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein, Jr. | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8903172 | Smith | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8934810 | Ishino et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | El et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8988876 | Corbin et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber et al. | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9061527 | Tobin et al. | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9076459 | Braho et al. | Jul 2015 | B2 |
9079423 | Bouverie et al. | Jul 2015 | B2 |
9080856 | Laffargue | Jul 2015 | B2 |
9082023 | Feng et al. | Jul 2015 | B2 |
9082031 | Liu et al. | Jul 2015 | B2 |
9084032 | Rautiola et al. | Jul 2015 | B2 |
9087250 | Coyle | Jul 2015 | B2 |
9092681 | Havens et al. | Jul 2015 | B2 |
9092682 | Wilz et al. | Jul 2015 | B2 |
9092683 | Koziol et al. | Jul 2015 | B2 |
9093141 | Liu | Jul 2015 | B2 |
D737321 | Lee | Aug 2015 | S |
9098763 | Lu et al. | Aug 2015 | B2 |
9104929 | Todeschini | Aug 2015 | B2 |
9104934 | Li et al. | Aug 2015 | B2 |
9107484 | Chaney | Aug 2015 | B2 |
9111159 | Liu et al. | Aug 2015 | B2 |
9111166 | Cunningham, IV | Aug 2015 | B2 |
9135483 | Liu et al. | Sep 2015 | B2 |
9137009 | Gardiner | Sep 2015 | B1 |
9141839 | Xian et al. | Sep 2015 | B2 |
9147096 | Wang | Sep 2015 | B2 |
9148474 | Skvoretz | Sep 2015 | B2 |
9158000 | Sauerwein, Jr. | Oct 2015 | B2 |
9158340 | Reed et al. | Oct 2015 | B2 |
9158953 | Gillet et al. | Oct 2015 | B2 |
9159059 | Daddabbo et al. | Oct 2015 | B2 |
9165174 | Huck | Oct 2015 | B2 |
9171543 | Emerick et al. | Oct 2015 | B2 |
9183425 | Wang | Nov 2015 | B2 |
9189669 | Zhu et al. | Nov 2015 | B2 |
9195844 | Todeschini et al. | Nov 2015 | B2 |
9202458 | Braho et al. | Dec 2015 | B2 |
9208366 | Liu | Dec 2015 | B2 |
9208367 | Smith | Dec 2015 | B2 |
9219836 | Bouverie et al. | Dec 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224024 | Bremer et al. | Dec 2015 | B2 |
9224027 | Van et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9235553 | Fitch et al. | Jan 2016 | B2 |
9239950 | Fletcher | Jan 2016 | B2 |
9245492 | Ackley et al. | Jan 2016 | B2 |
9248640 | Heng | Feb 2016 | B2 |
9250652 | London et al. | Feb 2016 | B2 |
9250712 | Todeschini | Feb 2016 | B1 |
9251411 | Todeschini | Feb 2016 | B2 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9262660 | Lu et al. | Feb 2016 | B2 |
9262662 | Chen et al. | Feb 2016 | B2 |
9269036 | Bremer | Feb 2016 | B2 |
9270782 | Hala et al. | Feb 2016 | B2 |
9274812 | Doren et al. | Mar 2016 | B2 |
9275388 | Havens et al. | Mar 2016 | B2 |
9277668 | Feng et al. | Mar 2016 | B2 |
9280693 | Feng et al. | Mar 2016 | B2 |
9286496 | Smith | Mar 2016 | B2 |
9297900 | Jiang | Mar 2016 | B2 |
9298964 | Li et al. | Mar 2016 | B2 |
9301427 | Feng et al. | Mar 2016 | B2 |
D754205 | Nguyen et al. | Apr 2016 | S |
D754206 | Nguyen et al. | Apr 2016 | S |
9304376 | Anderson | Apr 2016 | B2 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
9313377 | Todeschini et al. | Apr 2016 | B2 |
9317037 | Byford et al. | Apr 2016 | B2 |
9319548 | Showering et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342723 | Liu et al. | May 2016 | B2 |
9342724 | McCloskey et al. | May 2016 | B2 |
9360304 | Xue et al. | Jun 2016 | B2 |
9361882 | Ressler et al. | Jun 2016 | B2 |
9365381 | Colonel et al. | Jun 2016 | B2 |
9373018 | Colavito et al. | Jun 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
9378403 | Wang et al. | Jun 2016 | B2 |
D760719 | Zhou et al. | Jul 2016 | S |
9383848 | Daghigh | Jul 2016 | B2 |
9384374 | Bianconi | Jul 2016 | B2 |
9390304 | Chang et al. | Jul 2016 | B2 |
9390596 | Todeschini | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
9411386 | Sauerwein, Jr. | Aug 2016 | B2 |
9412242 | Van et al. | Aug 2016 | B2 |
9418269 | Havens et al. | Aug 2016 | B2 |
9418270 | Van et al. | Aug 2016 | B2 |
9423318 | Liu et al. | Aug 2016 | B2 |
9424454 | Tao et al. | Aug 2016 | B2 |
D766244 | Zhou et al. | Sep 2016 | S |
9436860 | Smith et al. | Sep 2016 | B2 |
9443123 | Hejl | Sep 2016 | B2 |
9443222 | Singel et al. | Sep 2016 | B2 |
9454689 | McCloskey et al. | Sep 2016 | B2 |
9464885 | Lloyd et al. | Oct 2016 | B2 |
9465967 | Xian et al. | Oct 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
9478983 | Kather et al. | Oct 2016 | B2 |
D771631 | Fitch et al. | Nov 2016 | S |
9481186 | Bouverie et al. | Nov 2016 | B2 |
9487113 | Schukalski | Nov 2016 | B2 |
9488986 | Solanki | Nov 2016 | B1 |
9489782 | Payne et al. | Nov 2016 | B2 |
9490540 | Davies et al. | Nov 2016 | B1 |
9491729 | Rautiola et al. | Nov 2016 | B2 |
9497092 | Gomez et al. | Nov 2016 | B2 |
9507974 | Todeschini | Nov 2016 | B1 |
9519814 | Cudzilo | Dec 2016 | B2 |
9521331 | Bessettes et al. | Dec 2016 | B2 |
9530038 | Xian et al. | Dec 2016 | B2 |
D777166 | Bidwell et al. | Jan 2017 | S |
9558386 | Yeakley | Jan 2017 | B2 |
9572901 | Todeschini | Feb 2017 | B2 |
9606581 | Howe et al. | Mar 2017 | B1 |
D783601 | Schulte et al. | Apr 2017 | S |
D785617 | Bidwell et al. | May 2017 | S |
D785636 | Oberpriller et al. | May 2017 | S |
9646189 | Lu et al. | May 2017 | B2 |
9646191 | Unemyr et al. | May 2017 | B2 |
9652648 | Ackley et al. | May 2017 | B2 |
9652653 | Todeschini et al. | May 2017 | B2 |
9656487 | Ho et al. | May 2017 | B2 |
9659198 | Giordano et al. | May 2017 | B2 |
D790505 | Vargo et al. | Jun 2017 | S |
D790546 | Zhou et al. | Jun 2017 | S |
9680282 | Hanenburg | Jun 2017 | B2 |
9697401 | Feng et al. | Jul 2017 | B2 |
9701140 | Alaganchetty et al. | Jul 2017 | B1 |
10444794 | De La Fuente | Oct 2019 | B1 |
10809949 | Wong et al. | Oct 2020 | B2 |
20050063763 | Lee | Mar 2005 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20080185432 | Caballero et al. | Aug 2008 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100225429 | Tsai | Sep 2010 | A1 |
20100265880 | Rautiola et al. | Oct 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20120070201 | Shiobara | Mar 2012 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120168511 | Kotlarsky et al. | Jul 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120194692 | Mers et al. | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20120228382 | Havens et al. | Sep 2012 | A1 |
20120248188 | Kearney | Oct 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130082104 | Kearney et al. | Apr 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedrao | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130332524 | Fiala et al. | Dec 2013 | A1 |
20130332996 | Fiala et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140034734 | Sauerwein, Jr. | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140097249 | Gomez et al. | Apr 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140106725 | Sauerwein, Jr. | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140166759 | Liu et al. | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140191684 | Valois | Jul 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140278387 | Digregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140332590 | Wang et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150001304 | Todeschini | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150039878 | Barten | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150102109 | Huck | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150178523 | Gelay et al. | Jun 2015 | A1 |
20150178537 | El et al. | Jun 2015 | A1 |
20150178685 | Krumel et al. | Jun 2015 | A1 |
20150181109 | Gillet et al. | Jun 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150193023 | Odgers et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150212565 | Murawski et al. | Jul 2015 | A1 |
20150213647 | Laffargue et al. | Jul 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150220901 | Gomez et al. | Aug 2015 | A1 |
20150227189 | Davis et al. | Aug 2015 | A1 |
20150236984 | Sevier | Aug 2015 | A1 |
20150239348 | Chamberlin | Aug 2015 | A1 |
20150242658 | Nahill et al. | Aug 2015 | A1 |
20150248572 | Soule et al. | Sep 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150261643 | Caballero et al. | Sep 2015 | A1 |
20150264624 | Wang et al. | Sep 2015 | A1 |
20150268971 | Barten | Sep 2015 | A1 |
20150269402 | Barber et al. | Sep 2015 | A1 |
20150288689 | Todeschini et al. | Oct 2015 | A1 |
20150288896 | Wang | Oct 2015 | A1 |
20150310243 | Ackley et al. | Oct 2015 | A1 |
20150310244 | Xian et al. | Oct 2015 | A1 |
20150310389 | Crimm et al. | Oct 2015 | A1 |
20150312780 | Wang et al. | Oct 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160025697 | Alt et al. | Jan 2016 | A1 |
20160026838 | Gillet et al. | Jan 2016 | A1 |
20160026839 | Qu et al. | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160062473 | Bouchat et al. | Mar 2016 | A1 |
20160070944 | McCloskey et al. | Mar 2016 | A1 |
20160092805 | Geisler et al. | Mar 2016 | A1 |
20160101936 | Chamberlin | Apr 2016 | A1 |
20160102975 | McCloskey et al. | Apr 2016 | A1 |
20160104019 | Todeschini et al. | Apr 2016 | A1 |
20160104274 | Jovanovski et al. | Apr 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue et al. | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160117627 | Raj et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160125873 | Braho et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160171597 | Todeschini | Jun 2016 | A1 |
20160171666 | McCloskey | Jun 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160171775 | Todeschini et al. | Jun 2016 | A1 |
20160171777 | Todeschini et al. | Jun 2016 | A1 |
20160174674 | Oberpriller et al. | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160178685 | Young et al. | Jun 2016 | A1 |
20160178707 | Young et al. | Jun 2016 | A1 |
20160179132 | Harr | Jun 2016 | A1 |
20160179143 | Bidwell et al. | Jun 2016 | A1 |
20160179368 | Roeder | Jun 2016 | A1 |
20160179378 | Kent et al. | Jun 2016 | A1 |
20160180130 | Bremer | Jun 2016 | A1 |
20160180133 | Oberpriller et al. | Jun 2016 | A1 |
20160180136 | Meier et al. | Jun 2016 | A1 |
20160180594 | Todeschini | Jun 2016 | A1 |
20160180663 | McMahan et al. | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160180713 | Bernhardt et al. | Jun 2016 | A1 |
20160185136 | Ng et al. | Jun 2016 | A1 |
20160185291 | Chamberlin | Jun 2016 | A1 |
20160186926 | Oberpriller et al. | Jun 2016 | A1 |
20160188861 | Todeschini | Jun 2016 | A1 |
20160188939 | Sailors et al. | Jun 2016 | A1 |
20160188940 | Lu et al. | Jun 2016 | A1 |
20160188941 | Todeschini et al. | Jun 2016 | A1 |
20160188942 | Good et al. | Jun 2016 | A1 |
20160188943 | Franz | Jun 2016 | A1 |
20160188944 | Wilz et al. | Jun 2016 | A1 |
20160189076 | Mellott et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160189088 | Pecorari et al. | Jun 2016 | A1 |
20160189092 | George et al. | Jun 2016 | A1 |
20160189284 | Mellott et al. | Jun 2016 | A1 |
20160189288 | Todeschini et al. | Jun 2016 | A1 |
20160189366 | Chamberlin et al. | Jun 2016 | A1 |
20160189443 | Smith | Jun 2016 | A1 |
20160189447 | Valenzuela | Jun 2016 | A1 |
20160189489 | Au et al. | Jun 2016 | A1 |
20160191684 | Dipiazza et al. | Jun 2016 | A1 |
20160192051 | Dipiazza et al. | Jun 2016 | A1 |
20160202951 | Pike et al. | Jul 2016 | A1 |
20160202958 | Zabel et al. | Jul 2016 | A1 |
20160202959 | Doubleday et al. | Jul 2016 | A1 |
20160203021 | Pike et al. | Jul 2016 | A1 |
20160203429 | Mellott et al. | Jul 2016 | A1 |
20160203797 | Pike et al. | Jul 2016 | A1 |
20160203820 | Zabel et al. | Jul 2016 | A1 |
20160204623 | Haggerty et al. | Jul 2016 | A1 |
20160204636 | Allen et al. | Jul 2016 | A1 |
20160204638 | Miraglia et al. | Jul 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Wilz et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
20160316190 | McCloskey et al. | Oct 2016 | A1 |
20160323310 | Todeschini et al. | Nov 2016 | A1 |
20160325677 | Fitch et al. | Nov 2016 | A1 |
20160327614 | Young et al. | Nov 2016 | A1 |
20160327930 | Charpentier et al. | Nov 2016 | A1 |
20160328762 | Pape | Nov 2016 | A1 |
20160330218 | Hussey et al. | Nov 2016 | A1 |
20160343163 | Venkatesha et al. | Nov 2016 | A1 |
20160343176 | Ackley | Nov 2016 | A1 |
20160364914 | Todeschini | Dec 2016 | A1 |
20160370220 | Ackley et al. | Dec 2016 | A1 |
20160372282 | Bandringa | Dec 2016 | A1 |
20160373847 | Vargo et al. | Dec 2016 | A1 |
20160377414 | Thuries et al. | Dec 2016 | A1 |
20160377417 | Jovanovski et al. | Dec 2016 | A1 |
20170010141 | Ackley | Jan 2017 | A1 |
20170010328 | Mullen et al. | Jan 2017 | A1 |
20170010780 | Waldron et al. | Jan 2017 | A1 |
20170016714 | Laffargue et al. | Jan 2017 | A1 |
20170018094 | Todeschini | Jan 2017 | A1 |
20170046603 | Lee et al. | Feb 2017 | A1 |
20170047864 | Stang et al. | Feb 2017 | A1 |
20170053146 | Liu et al. | Feb 2017 | A1 |
20170053147 | Germaine et al. | Feb 2017 | A1 |
20170053647 | Nichols et al. | Feb 2017 | A1 |
20170055606 | Xu et al. | Mar 2017 | A1 |
20170060183 | Zhang et al. | Mar 2017 | A1 |
20170060316 | Larson | Mar 2017 | A1 |
20170061961 | Nichols et al. | Mar 2017 | A1 |
20170064634 | Van et al. | Mar 2017 | A1 |
20170083730 | Feng et al. | Mar 2017 | A1 |
20170091502 | Furlong et al. | Mar 2017 | A1 |
20170091706 | Lloyd et al. | Mar 2017 | A1 |
20170091741 | Todeschini | Mar 2017 | A1 |
20170091904 | Ventress, Jr. | Mar 2017 | A1 |
20170092908 | Chaney | Mar 2017 | A1 |
20170094238 | Germaine et al. | Mar 2017 | A1 |
20170098947 | Wolski | Apr 2017 | A1 |
20170100949 | Celinder et al. | Apr 2017 | A1 |
20170108838 | Todeschini et al. | Apr 2017 | A1 |
20170108895 | Chamberlin et al. | Apr 2017 | A1 |
20170118355 | Wong et al. | Apr 2017 | A1 |
20170123598 | Phan et al. | May 2017 | A1 |
20170124369 | Rueblinger et al. | May 2017 | A1 |
20170124396 | Todeschini et al. | May 2017 | A1 |
20170124687 | McCloskey et al. | May 2017 | A1 |
20170126873 | McGary et al. | May 2017 | A1 |
20170126904 | D'Armancourt et al. | May 2017 | A1 |
20170139012 | Smith | May 2017 | A1 |
20170140329 | Bernhardt et al. | May 2017 | A1 |
20170140731 | Smith | May 2017 | A1 |
20170147847 | Berggren et al. | May 2017 | A1 |
20170150124 | Thuries | May 2017 | A1 |
20170169198 | Nichols | Jun 2017 | A1 |
20170171035 | Lu et al. | Jun 2017 | A1 |
20170171703 | Maheswaranathan | Jun 2017 | A1 |
20170171803 | Maheswaranathan | Jun 2017 | A1 |
20170180359 | Wolski et al. | Jun 2017 | A1 |
20170180577 | Nguon et al. | Jun 2017 | A1 |
20170181299 | Shi et al. | Jun 2017 | A1 |
20170190192 | Delario et al. | Jul 2017 | A1 |
20170193432 | Bernhardt | Jul 2017 | A1 |
20170193461 | Celinder et al. | Jul 2017 | A1 |
20170193727 | Van et al. | Jul 2017 | A1 |
20170199266 | Rice et al. | Jul 2017 | A1 |
20170200108 | Au et al. | Jul 2017 | A1 |
20170200275 | Mccloskey et al. | Jul 2017 | A1 |
20180018836 | Fankhauser | Jan 2018 | A1 |
20180124379 | Lin | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2013163789 | Nov 2013 | WO |
Entry |
---|
Notice of Allowance and Fees Due (PTOL-85) dated Aug. 7, 2020 for U.S. Appl. No. 15/880,723. |
Notice of Allowance and Fees Due (PTOL-85) dated Jun 22, 2020 for U.S. Appl. No. 15/880,723. |
Printronix, “Online Data Validator User's Manual; SL500r and T5000r RFID Smart Label and Thermal Printers”, [downloaded from http://printronixautoid.com/wp-content/uploads/manuals/PTX_UM_SL5R_T5R_OVD_253432H.pdf, May 5, 2015], Copyrighted 2005, 2012, 92 pages. |
Number | Date | Country | |
---|---|---|---|
20210004185 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15880723 | Jan 2018 | US |
Child | 17025504 | US |