The invention relates to treatment of wastewater and more particularly to wastewater treatment associated with recovery of hydrocarbons, wherein the wastewater contains high levels of total organic carbon and silica/silicates and is treated using filtration media.
Steam assisted gravity drainage (SAGD) is considered an important process for recovery of hydrocarbons from oil sands in Alberta with about 80% of oil sands deposits being appropriate for use of this process.1-4 The process requires drilling of two horizontal wells.1 The upper well is utilized to inject the heated steam inside the oil well deposit. This steam builds up heat, which is transferred to the adjacent area, reducing the viscosity of the bitumen and subsequently mobilizing it.5 Thus, the mobilized bitumen, along with the condensate steam, are drained downward by gravity to the second horizontal well, which it pumps to the surface. At the surface, the bitumen is separated via subsequent cooling units followed by a phase containing oil and water generating significant volumes of wastewater as which is also known as “produced water.”1,5 The produced water derived from oil recovery processes (which is also known as “oily wastewater”) has high concentrations (from 1000 to 10,000 mg/L) of brine, silica and silicates, alkaline compounds, and total dissolved solids.6-8 From an environmental point of view, the contaminants of produced water can affect surface water quality and the ecosystem.6-8 The influent steam for the SAGD process, which must meet certain constraints with respect to water quality, is produced by a system known as a once-through steam generator (OTSG).9 This system generates steam with feed water containing up to 80% silica/silicates for thermal recovery applications.10 In OTSG, a single pass of water is run through the generator coil without a separator drum, generating 80% quality steam with a water to steam ratio of 1:4.10 The effluent of this process is typically characterized by low salinity, and high concentrations of silica/silicates, hardness, and total organic carbon (TOC). OTSG is specifically developed to use a heat recovery steam generator for thermal recovery applications.10
There continues to be a need for improving removal of contaminants from wastewater prior to its use in steam generation and other applications.
According to one embodiment, there is provides a filter medium for removal of contaminants from wastewater. The filter medium includes a nut shell particle having a metal hydro(oxide) nanoparticle bonded to a surface thereof. The metal may be a transition metal or a Group IIIA metal. In some embodiments, the metal is iron or aluminum or a mixture thereof. The nut shell may be a walnut shell or a pecan shell. The nanoparticle may be bonded to the surface of the nut shell particle via an oxygen bridge.
According to another embodiment, there is provided a process for preparing a filter medium for removal of contaminants from wastewater. The process includes the steps of: treating a nut shell filter medium with an aqueous acid solution and washing the nut shell filter medium; mixing the nut shell filter medium with a source of metal ions, to generate a mixture including an aqueous metal complex; and heating the mixture to promote a thermal hydrolysis reaction which generates a metal hydro(oxide) nanoparticle bonded to a surface of the nut shell medium. The metal may be a transition metal or a Group IIIA metal. The metal may be iron or aluminum or a mixture thereof. The nut shell may be a walnut shell or a pecan shell. The nanoparticle may be bonded to the surface of the nut shell particle via an oxygen bridge.
According to another embodiment, there is provided a process for treating wastewater to remove contaminants, the process includes the steps of contacting the wastewater with a nut shell particle as described herein, such that the contaminants adhere to the metal hydro(oxide) nanoparticle and recovering water having at least some of the contaminants removed therefrom. The step of contacting the wastewater with the nut-shell particle may be performed in a batch mode. The contaminants may include total organic carbon (TOC), silica or silicates.
In accordance with another embodiment, the process for treating wastewater to remove contaminants is used in treatment of wastewater in a steam-assisted gravity drainage (SAGD) operation.
Various objects, features and advantages of the invention will be apparent from the following description of particular embodiments of the invention, supported by the accompanying drawings. The drawings are not necessarily to scale. Emphasis is placed upon illustrating the principles of various embodiments of the invention.
Table 1 includes typical SAGD produced water concentrations (mg/L), as well as the desirable feed constraints for OTSG in form of total dissolved solids (TDS), total organic carbon (TOC), silica/silicates, and hardness (as CaCO3).11-13
Total organic carbon (TOC) is one of the most important sum parameters in the assessment of the organic pollution of water. Since it includes all carbon compounds as one mass, it is exactly defined and an absolute quantity. Therefore, it may be determined directly.
As used herein, the term “silica” is used to refer to any mixture of silica (SiO2) and silicate-based mineral compounds or ions which may be present in wastewater, including produced water and/or wastewater originating from SAGD operations.
It is undesirable to exceed the tabulated “threshold requirement concentrations” in reusing as boiler feed water in an oilfield steam generator. Therefore, effective treatment of the boiler feed water through selective water treatment technologies is required. The generated SAGD-produced water must meet strict requirements as an input for the boiler employed for steam generation. 5,11,12,14,15 Otherwise, the boiler drum and tubes can be damaged or corroded. Therefore, oil sands companies in Canada are seeking new technologies or modifying their currently implemented technologies. Efforts to develop improvements have costs representing a considerable proportion of the total cost in oil recovery. Traditionally, a sequence of water treatment technologies has been employed which depend on the chemical and physical characteristics of the produced water in conjunction with a conventional steam reboiler.11,16 A conventional SAGD wastewater treatment scheme is shown in
These technologies can be classified as pre-treatment (de-oiling) and primary (conventional treatment) stages. In the de-oiling unit, a series of gravity and flotation vessels (API and CPI vessels) are used, as well as skim tanks and induced static flotation (ISF) to remove the heavy bitumen from the produced water.11,17 Then the de-oiled water is mixed with fresh water to generate a feed for warm lime softening.11,17 In warm lime softening, the hardness (calcium and magnesium ions) as well as the alkalinity are neutralized by adding chemicals such as lime (Ca(OH)2), soda ash (Na2CO3), and caustic soda (NaOH).11,17 As a result, the concentration levels of silica, TOC, and TDS are reduced to ranges of 50-150 mg/L, 300-500 mg/L, and 1500-2000 mg/L, respectively.
Interestingly, the level of the silica (90%) reduced by warm lime softening is due to adsorption of the silica on the surface of precipitated magnesium ions.11 Subsequently, the free oil content is further lowered to below 20 mg/L using a walnut shell filter11,17 in the presence of a high concentration of divalent ions (Ca+2 and Mg+2). These divalent ions are then treated by applying weak acid cation exchange process, as a last step. During weak acid cation exchange, resins with carboxylic acid derivatives are added for de-alkalization of water.17 Thus, the total alkalinity (carbonates and non-carbonates) is removed. This conventionally treated water has negligible amounts of divalent ions, and also very low concentration of silica (<50 mg/L). The treated water, which can be used as a feed for the boiler, is known as boiler feed water. As effluent, boiler feed water is distributed into two streams. One stream is recycled back to the warm lime softening unit and the second stream is fed into the OTSG process. However, the process steps described above for the conventional SAGD design does not remove or reduce the high concentrations of both silica and TOC. TDS and TOC concentration levels are also increased with introduction of resins prior to the weak acid cation exchange part of the conventional process. The high levels of both of these contaminants severely interferes with subsequent recycling of the produced water because more low-quality water is blown down in OTSG. In fact, accumulation of silica and TOC results in damage and corrosion of OTSG drums and tubes, which leads to a requirement for more evaporators or larger volume evaporators. Therefore, effective emerging technologies are being investigated to address the high levels of silica and TOC.17
Technologies for modifying/replacing the current OTSG plant will be expected to reduce the capital and operational costs with fewer smaller evaporators. Therefore, an effective new method should be developed as secondary or tertiary treatment technology to improve water quality for steam generation.
Many potential technologies (e.g., chemical, physical, biological, and membrane filtration) have been considered for treatment of wastewater generated during extraction of hydrocarbons.8,18-21 Biological treatment by microbial agents, for instance, can be considered as an attractive solution to remove organic pollutants. However, microbial agent growth is highly sensitive to salinity.15,22 Cold weather also can slow down the activity of the micro-organisms that subsequently lead to a low treatment efficiency. Biological treatment has its own limitations and cannot be effectively used for oil field applications to treat or degrade numerous complex organic compounds.15 Therefore, biological treatment processes were deemed unreliable for the treatment of SAGD water.
Membrane filtration is increasingly investigated used as an alternative option which has attracted the attention of many researchers over the past 10 years. Two main parameters determine the membrane performance: selectivity and flux.8,18-21 In membrane filtration, selectivity provides the ability to keep the solute on the influent side, while the rate at which the solute material moves across the membrane influenced by pressure or concentration gradients (driving force for mass transfer) can be represented as flux. In membrane filtration, depositing TOC on the feed side causes membrane fouling which reduces the effectiveness of the membrane. Increasing the TOC or silica contents in the feed requires a thicker membrane but it can increase the resistance. Thus, flux is reduced, and less efficiency can be obtained, which considered as a strong downside for supplying fresh water for a SAGD process. Therefore, biological and filtration processes are inappropriate due to technical challenges as well as operational and capital costs.
Recently, investigators have focused their efforts on modifying or replacing the existing technology to achieve improvements in industrial compliance. In the walnut shell filtration part of the process, deep bed-filter media known as walnut shell filters are conventionally used due to their oil and solid filtration performance combined with ease of backwashing. Walnut shell filter media have several unique characteristics which do not exist in mineral and polymer-based media. The material is hard, light, chemically inert, nontoxic, and biodegradable).23 These characteristics, in addition to having a high affinity for uptake of mineral oils, have led to the use of walnut shell filter media for separating crude oil from water (e.g., reduction of TOC concentration from SAGD wastewater). Walnut shell particles can be prepared with a fairly uniform size, which is considered an important feature to attain effective rapid filtration. This uniformity allows the filter to operate at a high hydraulic rate that contributes to lowering of the head loss and provides a void space greater than the filtered particles. Straining tends to be the limiting mechanism for removing the pollutant particles. Therefore, the particles can be removed from the entire depth of the filter by depth filtration, which gives the filter high capacity for solid retention without rapid clogging. For particles to be removed via depth filtration as wastewater passes through the filter bed, they should adhere to the filter grains after destabilization via a coagulation step. Without a coagulation step, a repulsion force will prevent contact the particle from contacting the media. Generally, an interaction between the walnut shell particles and the contaminants occurs when the contaminant particles are dissolved or are smaller than the void spaces in the media via three main mechanisms: interception, sedimentation (gravity settling), and diffusion (which may include sorption). However, limited success in removing TOC and silica from SAGD produced water indicates that the walnut shell filter media are not capable of increasing the efficiency of diffusion or interception. Efficiency of both phenomena can be increased by surface modification of the walnut shell filter.
The present application describes an effective process for improving the deep-bed filtration efficiency by enhancing the sorption capacity of the walnut shell filter particles. This is accomplished by anchoring a low mass fraction of nanoparticles to the walnut shell particles. Interactions between TOC and silica enhances the removal efficiency of the TOC and silica. Having low mass percentages of nanoparticles will enhance the sorption affinity of the walnut shell particles without impacting the rate of wastewater flux through the filtration process. A nanoparticle is a microscopic particle with at least one dimension less than 100 nm.
Iron hydro(oxide) nanomaterials have been extensively used as adsorbents for organic and non-organic matters from various types of wastewater, because they can be efficiently synthesized within wide range of nano-sizes and during the synthesis, their surfaces can be conveniently and efficiently controlled or manipulated by coating or functionalization. Moreover, these nanomaterials have low negative environmental impacts due to low toxicity and biocompatibility. It was recognized by the inventors that iron hydro(oxide) nanoparticles could be generated and hydrothermally anchored to walnut shell particles under controlled conditions with appropriate concentrations of metal precursor and temperature to provide an improved walnut shell filter medium. As used herein, the term “iron hydro(oxide) nanoparticle” refers to a nanoscale crystalline network of various oxygen-bridged iron species in any oxidation state, which are formed upon thermal hydrolysis of simpler iron species such as Fe(OH2)63+, and Fe[(OH)(OH2)52+, for example. Other iron-based precursors could include iron (III) salts such as Fe(NO3)3 or FeBr3.
The modified walnut shell particles were characterized by scanning electron microscopy (SEM) and compared with the non-modified particles, to confirm the presence of iron hydroxide nanoparticles. Acid digestion followed by an elemental analysis of ICP-OES were performed to quantify the percentages of the nanoparticles on the walnut shell filter. The modified particles synthesized at optimal conditions were found to be capable of removing the high levels of silica and TOC from SAGD wastewater in batch and continuous adsorption experiments. The removal efficiency for silica and TOC before and after the surface modifications was also determined. Successful application of the modified particles inside the walnut shell filtration unit of a SAGD wastewater treatment process is expected to contribute to remediation of the high levels of silica and TOC without need to provide additional separation processes.
While the description below is focused on an investigation of iron hydro(oxide) nanoparticles anchored to nut shell media, the inventors further recognize that other transition metals and Group IIIA metals, such as aluminum for example, may also be used to generate suitable metal hydro(oxide) nanoparticles that can be anchored to walnut shell particles.
Various embodiments will now be described in the description below. Emphasis is placed on highlighting the various contributions of the features described herein to the functionality of various embodiments. A number of possible alternative features are introduced during the course of this description. It is to be understood that, according to the knowledge and judgment of persons skilled in the art, such alternative features may be substituted in various combinations to arrive at different embodiments.
Materials—Walnut shell filter particles and steam assisted gravity drainage wastewater samples were obtained from local sources in Calgary, Alberta, Canada. For the surface modification, 70% HNO3, and 97% FeCl3.6H2O were used. Both chemicals were purchased from Sigma Aldrich and used as received without any pyrolysis or treatment.
Modification of Walnut Shell Particles—Walnut shell filter media are conventionally used to remove oil from water. In the oil and gas industry, walnut shell filters are designed for loadings under 100 mg/L oil and 100 mg/L suspended solids and operate with 90-95% oil removal efficiency. Alternative nut shells include but are not limited to, pecan shells.
Surface modification of walnut shell particles was carried out in two successive reactions; (i) a reaction of the walnut shell particles with an oxidizing agent, followed by (ii) a reaction to anchor iron hydro(oxide) nanoparticles to the walnut shell particles via a thermal hydrolysis reaction.
In the first step, the walnut shell particles were oxidized with 10% HNO3. The reaction was carried out by adding 50 g of the walnut shell filter particles to 70 mL of 10% HNO3 in a 200-mL glass container. Then, the container was partially closed and placed under a fume hood for 3 h. Then the acid treated walnut shell particles were washed with deionized water and dried under vacuum overnight. In the second step, 10 g of acid-treated walnut shell particles was added to 500 mL of either 1 M or 2M FeCl3.6H2O under magnetic stirring for 5 h inside a sealed plastic container. Thermal hydrolysis was carried out by placing the container inside a pre-heated furnace at either 80° C. or 100° C. for 4, 8 or 12 hours to promote the hydrothermal reaction. The reaction generates walnut shell particles with anchored iron hydro(oxide) nanoparticles. During the synthesis, anchoring of iron hydro(oxide) nanoparticles to the walnut shell surface was controlled by three main factors: concentration of the precursor FeCl3.6H2O, hydrolysis time and temperature. Twelve individual experiments were performed for synthesis of the walnut shell particles with anchored iron hydro(oxide) nanoparticles. After the hydrolysis reaction, the walnut shell particles with anchored iron hydro(oxide) nanoparticles were recovered, washed, and dried prior to characterization and testing for removal of TOC and silica.
Characterization of Walnut Shell Particles with Anchored Iron Hydro(oxide) Nanoparticles—To characterize the surface changes occurring for the walnut shell particles after the acid treatment and anchorage of the iron hydro(oxide) nanoparticles, a field emission Quanta 250 scanning electron microscopy analysis (SEM) was performed for the samples: untreated walnut shell particles (WS-VR), acid-treated walnut shell particles (WS-AT), and walnut shell particles with anchored iron hydro(oxide)nanoparticles (WS-NPs) to confirm the presence of iron hydro(oxide)nanoparticles following the anchoring procedure. For the analysis, a small amount of each sample was deposited over a carbon tape sample holder. The holder then was tapped to release an extra amount of each sample. After imaging the surface of the walnut shell particles, X-ray diffraction (XRD) analysis was performed for WS-VR before and after surface modifications using a Rigaku ULTIMA III X-ray diffractometer with Cu Kα radiation as the X-ray source. The X-ray scans were performed in the range of 2 to 90 degrees of 2θ using a 0.05-degree step and a counting time of 1.0 degree per min, operating at 40 kV and 44 mA to obtain the full diffractogram for the analyzed material. Furthermore, Fourier-transform infrared spectroscopy (FTIR) measurements were made for the three samples to confirm anchoring of the iron hydro(oxide) nanoparticles to the walnut shell surface, using an IRAffinity-1S spectrometer (Shimadzu Corporation). The FTIR spectrometer was operated in the diffuse reflectance mode in the range of 4000-400 cm−1 with 4 cm−1 resolution to provide spectra with an average of 50 scans. Potassium bromide (KBr) was used to disperse the powder sample (2 mg per 200 mg, 1% w/w). After that, the iron content of each sample was quantified by a microwave assisted acid digestion (MARS) analysis monitored by inductively coupled plasma optical emission spectroscopy (ICP-OES). For the MARS analysis, a commercial procedure was used as implemented by model MARS 6 unit (CEM cooperation, Matthews, N.C., USA). For the analysis, each solid sample (WS-VR, WS-AT, and WS-NPs) was weighed and mixed with 10 mL of 70% HNO3 inside 100 mL-plastic vessels (polyethylene). Then the contents of each vessel were digested inside the MARS unit operating at frequency of 2.45 GHz at 100% of full power (maximum of 1600 W). After the acid digestion, the residual concentration of iron and silica for each sample was measured by a Thermo Scientific ICAP series ICP-OES spectrometer. Calibration curves for the iron and silica were generated using Dashboard-iCAP 7200 with ASX560 with respect to iron and silica standard solutions, which were purchased from Sigma Aldrich at purities of 99.5% and 98%, respectively.
Batch Removal of TOC and silica from a SAGD Wastewater Sample—TOC and silica removal was tested for the WS-VR, WS-AT, WS-NPs using batch-mode adsorption. Each experiment was performed by adding a fixed amount of each material (100 mg) to a series of 25-mL glass vials filled with 10 mL of SAGD wastewater solution with a concentration of silica of 145 mg/L and TOC 410 mg/L. The vials were then sealed and placed in a Wrist Action shaker (Burrel, Model 75-BB) for 4 hours, which was a sufficient period to attain equilibrium. After that, the vials were left overnight on a lab bench at room temperature to allow the materials to settle down. After settling, all vials were centrifuged for 10 min at 5000 rpm in an Eppendorf centrifuge 5804 to separate the residuals after the batch adsorption experiments. The residual concentrations of TOC and silica were measured by using the TOC (TOC-L CPH/CPN) analyzer and ICP-OES, respectively. Then the percentage removal of silica and TOC for each sample were calculated as follows:
Additionally, the adsorbed amount (Qe) in mg/g can be also determined by applying the mass balance as follows:
where V, m, and Ce are the volume of solution (mL), the mass of adsorbent (g), and the equilibrium concentration (mg/L), respectively. The maximum adsorption capacity in addition to kinetic parameters for the removal of silica and TOC were determined by performing the batch adsorption experiments at various dosages of WS-NPs. Then, the obtained equilibrium data were plotted to estimate the batch adsorption isotherm. The adsorption isotherm data were described by the Sips model, which is commonly known as Freundlich-Langmuir combined model, as represented by the following equation:
where k, Qm, and n , respectively, are Sips equilibrium constant (L/mg)n, maximum adsorption capacity (mg/g), and heterogeneity coefficient (dimensionless) that express the sensitivity of the model towards Langmuir or Freundlich tendency. The model tends to be fully Langmuirian if the n value is equal to one. Having n=zero indicates the Freundlich isotherm model. The Sips equation allows description of a system with single molecule adsorbed per site where adsorbed molecules can interact as well. The duality of the Sips equation is apparent as it approaches the Langmuir model as n approaches 1 (implying homogeneity) or Freundlich as n approaches zero (implying heterogenicity).
Fixed-bed Column TOC and Silica Removal—After performing the batch adsorption tests, silica and TOC removal were also tested for the walnut shell particles, before and after modifying the surface with a low mass fraction of nanoparticles, in a continuous flow mode using a fixed bed column.
Recyclability and regeneration/backwashing of the filtration media is a necessary and critical step. In the real field, the regeneration of the walnut shell filter is part of the filtration cycle and can be triggered by one of the following: (1) the quality of the water outlet, (2) the pressure drop profile, and (3) the pre-set time for the filtration stage. In many deep filtration sites, the backwash is either performed inside the same vessel or in a separate vessel.36 However, direct backwashing of the saturated walnut shell filtration column is technically challenging and requires a significant amount of energy and fresh water since the oil does not directly get adsorbed in the media and tends to be agglomerated in an event known as “mud balling”. Thus, injecting fresh water in a direction opposite to that of the filtration stage, even at high volumetric flow rate, is not sufficient. In fact, every cycle requires agitation of the complete bed of the media in a violent turbulent fashion. Recently, three backwashing modes have been reported to regenerate the dirty walnut shell media from the oilfield wastewater filter: fluidization, hydraulic swirling, and blade stirring.25 The results showed that blade stirring, compared with the other backwashing methods, is the most effective backwashing method with the least water consumption. The regeneration was performed using two primary methods: direct backwashing and blade stirring. The direct backwashing was done by reverse-injecting a very diluted sodium hydroxide solution (1 mM) to the spent filter at high flow rate. This experiment was done on the spent column that was obtained at Q=10 mL/min, Z=4 in, and Co,TOC=155 and Co,Silica=450 mg/L. After a specified time (attaining clean samples from the outlet), the backwashing stopped, and the flow reversed for the second cycle with the original SAGD produced water sample at the same conditions. After saturation, the column flow was stopped, and the same backwashing procedure was repeated for three regeneration cycles. Furthermore, the blade stirring method was also applied in our regeneration study for spent filter that was obtained at Q=10 mL/min, Z=6 in, and Co,TOC=155 and Co,Silica=450 mg/L. The blade stirring regeneration method was conducted by recovering the spent material after shutting down the column. Prior to the recovery, the spent WS-NPs were soaked with 40 mL sodium hydroxide (0.1 mM) at pH=6 and stirred by the mixer at 500 rpm for 5 min inside a 50 mL plastic bottle. After that, the recovered material was filtered under a vacuum and washed 3 times with fresh water to be reused for the next cycle. During the next cycle, the column was run at the same operational parameters as the first cycle and the clean water was periodically collected until the column was saturated. The same regeneration procedure was repeated for the second and third regeneration cycles.
Characterization—
Furthermore, FTIR measurements were performed for the same samples (WS-VR, WS-AT, and WS-NPs) to confirm anchoring of iron hydro(oxide) nanoparticles to the walnut shell particle surface in the range of 400-4000 cm−1 (
These results provide an indication that the iron hydro(oxide) nanoparticles interact with the active groups OH of phenolic groups, as well as the COOH of carboxylic acids on the surfaces of the walnut shell particles.
Without being bound to any particular theory, it is believed that the acid treatment effectively removes a relatively inert surface layer of the nut shell to expose a porous surface which increase the surface area of the outer layer, thereby exposing greater quantities of carboxylic acids and phenolic groups which can react with the nanoparticles (see
Upon anchoring of the iron hydro(oxide) nanoparticles to the surfaces of the walnut shell particles via thermal hydrolysis, the bands observed at 2925 cm−1, 2854 cm−1 1708 cm−1, and 1622 cm−1 are reduced in intensity due to reduction in carboxylic acid groups. Thus, the iron cations tend to interact with the oxygenated surface (negatively charged carboxylate groups, or the de-protonated hydroxyl groups) as illustrated in FIG. 6. For WS-NPs, a vibration band was obtained at 586 cm−1 which is assigned to stretching of a Fe—O bond provides evidence of successful anchoring of walnut shell particles with iron(hydroxide) nanoparticles.
To gain better insights into the anchoring mechanism of the iron cations and the oxygenated walnut shell surface, the hydrolysis conditions at which the iron hydro(oxide) is formed is described in
FeCl3.6H2O(s)→Fe(OH2)63+(aq)+3Cl− (Reaction 1)
such that the water molecules are coordinately bonded to the metal cation. The formed hexa-aqueous complexes pass through a series of hydrolytic reactions as illustrated in
Batch removal of TOC and Silica—Table 3 lists the weight percentages of iron, which were obtained by MARS analysis followed by ICP-OES through surface modification of the walnut shell particles after controlling the factors of the concentration of initial iron precursor, hydrolysis temperature and time.
Changes in functionality of the WS-NPs before and after the batch sorption tests was determined by the FTIR analysis and the spectra for each sample are compared to the spectrum of a dried SAGD wastewater sample (SAGD influent) in
Dissolved silica, on the other hand, has many stable and unstable species that can exist under aqueous conditions. Soluble silica contains various silica species; monomers, dimers, trimers, and polymeric silicic acid.27 Based on a medium pH range and the presence of other ions, the silica species are in transition between the species (see
Removal of TOC and Silica using a Fixed-Bed Column—Breakthrough profiles for the removal of TOC and silica, that were obtained from the fixed-bed column experiments through packing the column with WS-VR and WS-NPs at constant initial concentrations of silica (155 mg/L) and TOC (450 mg/L), bed depth of 4 in, flow rate of 10 mL/min, and pH 8.90, are shown in
Flow rate effect—The performance of any treatment process in continuous mode is significantly affected by the flow rate in the pilot or industrial scale.58
Feed initial concentration effects—The feed quality of SAGD produced water significantly influences the performance of the bed inside the column. Thus, the effect of feed initial concentrations of TOC and silica on the breakthrough behavior was investigated in
Effect of bed height—To study the effect of the length of the bed on the removal performance and breakthrough behavior, fixed-bed experiments were conducted at different lengths (10.2,15.2, and 25.4 cm), with unchanged feed concentration of silica (155 mg/L) and TOC (450 mg/L), and flow rate (10 mL/L). The experimental BTCs at these conditions are shown in
Regeneration and recyclability—
As confirmed from the data of Table 7, the regeneration efficiency was successfully implemented for the WS-NPs, and the regeneration efficiency was slightly influenced. In fact, each cycle was repeated by nearly complete removal of silica and TOC for three more subsequent cycles with capture efficiencies of 100, 91.5, and 81% for the subsequent cycles, proving that the characteristic of the WS-NPs was almost preserved. This indicated for attaining minor or insignificant leaching with respect to the material's performance as sorbent for both TOC and silica. The figure also confirms that the pressure drop profile was insignificantly impacted in every cycle. Interestingly enough, these obtained results can be considered strong evidence for the replacement of the employed material with our modified material without impacting the operating efficiency of the process, but significantly improving its removal capacity.
With sustained lower oil prices and increased attention to environmental issues, there has been a growing need to improve water treatment efficiencies and cost. It is a good time to reflect on the technology used in the SAGD water treatment process, as existing plants are seeking to improve operating costs and uptime. In some SAGD sites, a precipitation softening process is involved through a warm lime softening (WLS) for silica removal, followed by filtration using a walnut shell filter (WSF), and weak acid cation exchange (WAC) to remove the carbonated and non-carbonated hardness. These technologies primarily focus on water recycling at high capital and operating costs, and very few of them showed effective remediation of silica and TOC with a lower environmental footprint. The technology presented herein modifies the surface of nutshell filter particles by anchoring iron(hydroxide) nanomaterials to the surface at various hydrolysis conditions (time, temperature, and concentration of iron precursor). The particles are fully characterized and tested to confirm their capacity for removal of the total organic carbon and silica in batch and fixed-bed column operations. Compared to the virgin particles, the walnut shell particles, in the presence of the nanomaterials at low mass percentage, have significant capacity to remove TOC and silica. In the batch experiments, the modified material performed well in removing up to 85% of silica and TOC compared with the non-modified nutshell filter particles that showed <5% removal efficiency. While in the fixed-bed column experiments, and similar to the industrial operation, the filter particle in presence of active nanomaterials, improved the breakthrough behavior, without having channeling or pressure drop limitations. Regeneration and recyclability of the spent column were successfully implemented through three successful cycles following direct backwashing and blade stirring methods. Similar efficiency of cleaning up of silica and TOC using conventional processes, has not been achieved. In fact, this outstanding efficiency can be reached with a simpler process: a single hybrid unit can outperform three existing units (WLS, WAC, and WSF) in the recycling of produced water generated from SAGD process. This unit can be simply implemented with minor modifications to the existing units, which would reduce the capital and operational costs. In summary, the innovative process described herein provides an outstanding “hybrid WSF unit” that would be transformative to many oil industries.
Other than described herein, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages, such as those for amounts of materials, elemental contents, times and temperatures, ratios of amounts, and others, in the following portion of the specification and attached claims may be read as if prefaced by the word “about” even though the term “about” may not expressly appear with the value, amount, or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Any patent, publication, internet site, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art.
It will be understood by those skilled in the art that various changes in form and details may be made to the embodiments described therein without departing from the scope of the invention encompassed by the appended claims.
In the claims, articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context.
It is also noted that the term “comprising” is intended to be open and permits but does not require the inclusion of additional elements or steps. When the term “comprising” is used herein, the term “consisting of” is thus also encompassed and disclosed. Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. Where the term “about” is used, it is understood to reflect +/− 10% of the recited value. In addition, it is to be understood that any particular embodiment of the present invention that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein.
(1) Ji, D. et al. Analysis of steam—solvent—bitumen phase behavior and solvent mass transfer for improving the performance of the ES-SAGD process. J. Petroleum Sci & Eng. 2015, 133, 826-837.
(2) Liang G. et al. A new optimization method for steam-liquid level intelligent control model in oil sands steam-assisted gravity drainage (SAGD) process. Petroleum Exp. Dev. 2016, 43(2), 301-307.
(3) Dong, X. et al. Performance of multiple thermal fluids assisted gravity drainage process in post SAGD reservoirs. J. Petroleum. Sci. Eng. 2017, 154, 528-536.
(4) S. F. Abdelwahab, N. A., Shukry, N., & El-kalyoubi, Separation of emulsified oil from wastewater using polystyrene and surfactant modified sugarcane bagasse wastes blend., Clean Technol. Environ. Policy. (2020) 1-15. doi:10.1016/j.seppur.2008.06.002.
(5) Kar, T. et al. The Effect of Clay Type on Steam-Assisted-Gravity-Drainage Performance. J. Can. Petroleum Tech. 2015, 54(6), 412-423.
(6) Petersen, M. A., Grade, H. Analysis of Steam Assisted Gravity Drainage Produced Water using Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry. Ind. Eng. Chem. Res. 2011, 50, 12217-12224.
(7) Zhou, Y-B. et al. Emulsified oily wastewater treatment using a hybrid-modified resin and activated carbon system. Sep. Purif. Technol. 2008, 63(2), 400-406.
(8) Yan, L.; Hong, S.; Li, M.; Shui, Y. Application of the Al2O3—PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Sep. Purif. Technol. 2009, 66, 347-352.
(9) Heins, W. et al. Achieving Zero Liquid Discharge in SAGD Heavy Oil Recovery. J. Can. Petroleum Tech. 2004, 43(8), 37-42.
(10) Sankovich, M. F., McDonald, B. N. Once-Through Steam Generation. XVI Nuclear Congress, Rome, Italy, Mar. 25, 1971.
(11) Hajinasiri, J. Treatment of steam assisted gravity drainage produced water using polymeric membranes, University of Alberta Thesis, 2015.
(12) Bridle, M. Treatment of SAGD Produced Waters Without Lime Softening. SPE International Thermal Operations and Heavy Oil Symposium, Calgary, Nov. 1, 2005.
(13) Pedenaud, P. et al. Oily-Water Treatment Schemes for Steam Generation in SAGD Heavy-Oil Developments. SPE International Thermal Operations and Heavy Oil Symposium, Calgary, Nov. 1, 2005.
(14) Kawaguchi, H. et al. Dissolved organic compounds in reused process water for steam-assisted gravity drainage oil sands extraction. Water Res. 2012, 46(17), 5566-5574.
(15) Allen, E. W. Process water treatment in Canada's oil sands industry: I. Target pollutants and treatment objectives. J. Environ. Eng. Sci. 2008, 7(2), 123-138.
(16) Igunnu, E. T.; Chen, G. Z. Produced water treatment technologies. Int. J. Low-Carbon Tech. 2014, 9(3), 157-177.
(17) Elsayed, N. A. et al. An integrated approach for incorporating thermal membrane distillation in treating water in heavy oil recovery using SAGD. J. Unconventional Oil & Gas Resources 2015, 12, 6-14.
(18) Ku, A. Y. et al. Aging of Water from Steam-Assisted Gravity Drainage (SAGD) Operations Due to Air Exposure and Effects on Ceramic Membrane Filtration. Ind. Eng. Chem. Res. 2012, 51, 7170-7126.
(19) Munirasu, S. et al. Use of membrane technology for oil field and refinery produced water treatment—A review. Process Safety & Envir. Prot. 2016, 100, 183-202.
(20) Campos, J. C. et al. Oilfield wastewater treatment by combined microfiltration and biological processes. Water Res. 2002, 36(1), 95-104.
(21) Zhong, J. et al. Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Sep. Purif. Tech. 2003, 32(1-3), 93-98.
(22) Tsuno, H., Zainol, N. Nitrogen nutrient removals from wastewater and river water. Water Sci. Technol. 2018, 45, 197-204.
(23) Rawlins, C. H.; et al. Experimental Study on Oil Removal in Nutshell Filters for Produced-Water Treatment. SPE Prod. Oper. 2018, 33, 145-153.
(24) Rawlins, C. H. Experimental study on oil and solids removal in nutshell filters for produced water treatment. SPE Western Regional Meeting, Garden Grove, Calif., USA, Apr. 22, 2018.
(25) A. L. S. Liu, Study on performance of three backwashing modes of filtration media for oilfield wastewater filter, Desalin. Water Treat. 57 (2015) 10498-10505.
(26) G. Crittenden, J., Trusell, R., Hand, D., Howe, K., & Techobanoglous, Water Treatment: Principles and Design, 2005, pp. 674-678.
(27) R. M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, 2nd ed., Copyright © 2003 Wiley-VCH Verlag GmbH & Co. KGaA, 2003. doi:10.1002/3527602097, pp 203-207.
(28) J. R. Nieto-Delgado, C., & Rangel-Mendez, Anchorage of iron hydro (oxide) nanoparticles onto activated carbon to remove As (V) from water, Water Res. 46 (2012) 2973-2982.
(29) X. Zhu, L. Yiming, H. Yang, Z. Yangge, S. Changxing, W. Weiqing, Adsorption of ferric ions on the surface of bastnaesite and its significance in flotation, Miner. Eng. 158 (2020) 106588.
(30) J. Zhao, Z. Lu, X. He, X. Zhang, Q. Li, T. Xia, W. Zhang, C. Lu, Y. Deng, One-Step Fabrication of Fe(OH)3@Cellulose Hollow Nanofibers with Superior Capability for Water Purification, ACS Appl. Mater. Interfaces. 9 (2017) 25339-25349. doi: 10. 1021/acsami.7b07038.
(31) van den Heuvel, D. B., Gunnlaugsson, E., Gunnarsson, I., Stawski, T. M., Peacock, C. L., & Benning, L. G. (2018). Understanding amorphous silica scaling under well-constrained conditions inside geothermal pipelines. Geothermics, 76, 231-241.
(32) Alexander, G. B. et al. The solubility of amorphous silica in water. J. Phys. Chem. 1954, 58 (6), 453-455.
(33) Manceau, A. et al. Crystal chemistry of hydrous iron silicate scale deposits at the Salton Sea geothermal field. Clays Clay Miner. 1995, 43(3), 304-317.
(34) Luo, M., & Wang, Z. Complex fouling and cleaning-in-place of a reverse osmosis desalination system. Desalination 2001, 141(1), 15-22.
(35) Al-As'ad, A. Treatment of SAGD water using low coagulant dose and Fenton oxidation, University of Calgary, 2013.
(36) U.S. Patent Application No. US20150192003.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/986,306, filed on Mar. 6, 2020, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2021/050255 | 2/26/2021 | WO |
Number | Date | Country | |
---|---|---|---|
62986306 | Mar 2020 | US |