The present invention relates to a process for upgrading oil by contacting a hydrocarbon stream with supercritical water fluid and then subsequently introducing an alkaline solution to extract sulfur containing compounds. In particular, the hydrothermal upgrading process is conducted in the absence of externally provided hydrogen or catalysts to produce a high value crude oil having low sulfur, low nitrogen, low metallic impurities, and an increased API gravity for use as a hydrocarbon feedstock.
World-wide demand for petroleum products has increased dramatically in recent years, depleting much of the known, high value, light crude oil reservoirs. Consequently, production companies have turned their interest towards using low value, heavy oil in order to meet the ever increasing demands of the future. However, because current refining methods using heavy oil are less efficient than those using light crude oils, refineries producing petroleum products from heavier crude oils must refine larger volumes of heavier crude oil in order to get the same volume of final product. Unfortunately though, this does not account for the expected increase in future demand. Further exacerbating the problem, many countries have implemented or plan to implement more strict regulations on the specifications of the petroleum-based transportation fuel. Consequently, the petroleum industry is seeking to find new methods for treating heavy oil prior to refining in an effort to meet the ever-increasing demand for petroleum feedstocks and to improve the quality of available oil used in refinery processes.
In general, heavy oil provides lower amounts of the more valuable light and middle distillates. Additionally, heavy oil generally contains increased amounts of impurities, such as sulfur, nitrogen and metals, all of which generally require increased amounts of hydrogen and energy for hydroprocessing in order to meet strict regulations on impurity content in the final product.
Heavy oil, which is generally defined as bottom fraction from atmospheric and vacuum distillatory, also contains a high asphaltene content, high sulfur content, high nitrogen content, and high metal content. These properties make it difficult to refine heavy oil by conventional refining processes to produce end petroleum products with specifications that meet strict government regulations.
Low-value, heavy oil can be transformed into high-value, light oil by cracking the heavy fraction using various methods known in the art. Conventionally, cracking and cleaning have been conducted using a catalyst at elevated temperatures in the presence of hydrogen. However, this type of hydroprocessing has a definite limitation in processing heavy and sour oil.
Additionally, distillation and/or hydroprocessing of heavy crude feedstock produce large amounts of asphaltene and heavy hydrocarbons, which must be further cracked and hydrotreated to be utilized. Conventional hydrocracking and hydrotreating processes for asphaltenic and heavy fractions also require high capital investments and substantial processing.
Many petroleum refineries perform conventional hydroprocessing after distilling oil into various fractions, with each fraction being hydroprocessed separately. Therefore, refineries must utilize the complex unit operations for each fraction. Further, significant amounts of hydrogen and expensive catalysts are utilized in conventional hydrocracking and hydrotreating processes. The processes are carried out under severe reaction conditions to increase the yield from the heavy oil towards more valuable middle distillates and to remove impurities such as sulfur, nitrogen, and metals.
Currently, large amounts of hydrogen are used to adjust the properties of fractions produced from conventional refining processes in order to meet the required low molecular weight specifications for the end products; to remove impurities such as sulfur, nitrogen, and metal; and to increase the hydrogen-to-carbon ratio of the matrix. Hydrocracking and hydrotreating of asphaltenic and heavy fractions are examples of processes requiring large amounts of hydrogen, both of which result in the catalyst having a reduced life cycle.
Petroleum continues to be the dominant source for supplying the world's energy needs. However, with increased concern on air quality, world governments have urged producers to remove impurities, in particular, sulfur compounds, from petroleum streams. In particular, transportation fuels (gasoline and diesel) are required to be almost free from sulfur compounds (approximately less than 10 wt ppm sulfur). In order to meet such strict regulation on sulfur contents of transportation fuels, ultra deep desulfurization is generally carried out with distilled stream or cracked stream, which have boiling point ranges for gasoline and diesel.
Generally, desulfurization of the petroleum fraction (distilled & cracked stream) can be achieved by catalytic hydrotreatment in the presence of high pressure hydrogen gas. For heavier fractions of petroleum, catalytic hydrocracking and catalytic hydrotreatment is typically applied with very high pressures of hydrogen in order to convert high molecular weight hydrocarbons to low molecular weight ones, thereby meeting boiling point range requirements for transportation fuels. Catalysts for hydrotreatment and hydrocracking suffer from deactivation caused mainly by poisonous matters contained in feedstock and coking. Hence, high pressures of hydrogen are used to maintain the catalyst life. However, catalysts have certain life time in hydrotreatment and hydrocracking. Therefore, catalysts have to be replaced regularly and frequently. Additionally, the large quantities of hydrogen consumed during hydrotreatment and hydrocracking represent a significant disadvantage, as hydrogen is one of the most important and valuable chemicals in the refining and petrochemical industry.
Non-catalytic and non-hydrogenative thermal cracking of petroleum stream is also used for removing impurities. However, these types of refining processes are only capable of modest impurity removal. Moreover, these processes generally result in a significant amount of coke.
Another option to produce clean transportation fuels is using sweet crude oil having fewer amounts of impurities, in particular, sulfur compounds. By using sweet crude oil, complicated and intensive hydrotreatment and hydrocracking can be carried out with lower operating costs. However, the supply of sweet crude oil is fairly limited, while sour crude oil is found in much larger quantities.
As an alternative to conventional catalytic hydrotreatment/hydrocracking and thermal cracking, contacting hydrocarbons in the presence of supercritical water is beginning to garner more attention. In the prior arts, supercritical or near critical water has been employed as a reaction medium to remove impurities and also crack large molecules into small ones without generating a large amount of coke. However, reactions occurring in supercritical water medium are not clearly identified yet.
The critical point of water is 374° C. and 22.06 MPa. Properties of water change dramatically near critical point. The dielectric constant of water changes from around ∈=78 at ambient condition to around ∈=7 at critical point. Furthermore, small changes of temperature and pressure in supercritical conditions result in wide variation of dielectric constant of water (∈=2-30). Such a wide range of dielectric constants covers non-polar organic solvent such as hexane (∈=1.8) and polar organic solvent such as methanol (∈=32.6). The density of water also changes dramatically at near critical points. At supercritical condition, density of water varies from 0.05 to 0.3 g/ml. Furthermore, supercritical water has much lower viscosity and high diffusivity than subcritical water.
Unique properties of supercritical water have been utilized for facilitating certain reactions. For example, high solubility of organic matters and oxygen gas in supercritical water is utilized for decomposing toxic waste materials (Supercritical Water Oxidation=SCWO).
Hydrocarbon molecules contained in petroleum stream are also more easily dissolved in supercritical water although solubility of hydrocarbon depends on its molecular weight and chemical structure. High temperature condition of supercritical water (>374° C.) generates radical species from hydrocarbon molecules, which are more easily converted to various hydrocarbons through complicated reaction networks. In general, termination through bi-radical reactions cause dimerization followed by coke generation. On the other hand, a hydrocarbon molecule carrying radicals are easily decomposed to smaller ones. Generally speaking, inter-molecular radical reaction generates larger molecules such as coke while intra-molecular radical reaction generates smaller molecules. The generation of a large quantity of coke in conventional thermal cracking of petroleum stream is caused by such inter-molecular radical reaction, whereas the presence of supercritical water as a reaction medium reduces inter-molecular radical reaction by cage effect, thereby facilitating intra-molecular radical reactions such as decomposition and isomerization. Therefore, the use of supercritical water allows for the petroleum stream to be converted to a lighter stream with negligible amount of coke.
Impurity removal is also possible with aid of supercritical water; however, the prior arts teach that supercritical water is more effective in decreasing viscosity than in desulfurization.
For example, Atsushi Kishita et al. (Journal of the Japanese Petroleum Institute, vol. 46, pp. 215-221, 2003) treated Canadian bitumen with supercritical water by using batch reactor. After 15 minute reaction at 430° C., the viscosity of bitumen decreased drastically from 2.8×104 mPa*S to 28 mPa*S, while the sulfur content decreased only from 4.8 wt % sulfur to 3.5 wt % sulfur. The amount of coke generated by the disclosed treatment was 9.6 wt % of feed bitumen.
Limited performance of supercritical water in removing impurities, in particular, sulfur, from petroleum stream is attributed to the limited availability of hydrogen. Although higher operating temperatures are certainly beneficial to improve desulfurization performance, heavy-duty reactor material and large quantities of energy are required to reach such high operating temperatures, e.g., over 450° C.
Feeding hydrogen with the petroleum stream is also beneficial to improve desulfurization. Hydrogen can be supplied by hydrogen gas or other chemicals which can generate hydrogen through certain reaction. For example, carbon monoxide can generate hydrogen by water gas shift reaction. Also, oxygen can be used to generate hydrogen through oxidation of hydrocarbons included in petroleum stream and following water gas shift reaction. However, injecting high pressure gases along with the petroleum stream and water causes many difficulties in handling and safety. Additionally, chemicals such as formaldehyde, can also be used to generate hydrogen through decomposition; however, adding chemicals in with the supercritical water decrease process economy and leads to greater complexities.
Therefore, it would be desirable to have an improved process for upgrading oil with supercritical water fluid that requires neither an external supply of hydrogen nor the presence of an externally supplied catalyst. It would be advantageous to create a process and apparatus that allows for the upgrade of the oil, rather than the individual fractions, to reach the desired qualities such that the refining process and various supporting facilities can be simplified.
Additionally, it would be beneficial to have an improved process that did not require complex equipment or facilities associated with other processes that require hydrogen supply or coke removal systems so that the process may be implemented at the production site.
The present invention is directed to a process that satisfies at least one of these needs. The present invention includes a process for upgrading heavy oil using supercritical water and a subsequent alkaline extraction. Advantageously, the process can be practiced in the absence of externally supplied hydrogen or externally supplied catalyst. The process generally includes introducing a reaction mixture of sour hydrocarbons and water into a reaction zone and subjecting the reaction mixture to operating conditions that are at or exceed the supercritical conditions of water, such that at least a portion of hydrocarbons in the reaction mixture undergo cracking to form an upgraded mixture, wherein at least a portion of sulfur compounds are converted to hydrogen sulfide and thiol compounds. The reaction zone is essentially free of an externally-provided catalyst and externally-provided alkaline solutions. Following the upgrading step, the upgraded mixture is cooled to a first cooling temperature that is below the critical temperature of water to form a cooled upgraded-mixture, with the cooled upgraded-mixture defining an oil phase and an aqueous phase. Those of ordinary skill in the art will recognize that the cooled-upgraded mixture can be intimately mixed such that an emulsion is formed having one phase within the other (oil-in-water, water-in-oil, or double emulsion). An alkaline solution can be mixed with the cooled upgraded-mixture in a mixing zone in order to extract a substantial portion of the thiol compounds from the oil phase into the aqueous phase. In one embodiment, the alkaline solution is made from an alkali salt and water. Preferred alkali salts include sodium hydroxide, potassium hydroxide, and combinations thereof. The cooled upgraded-mixture can be separated into a gas stream and an upgraded liquid stream, wherein the gas stream contains a substantial portion of the hydrogen sulfide. The upgraded liquid stream can then be separated into upgraded oil and recovered water. The upgraded oil has reduced amounts of asphaltene, sulfur, nitrogen or metal containing substances and an increased API gravity as compared to the hydrocarbons within the reaction mixture. The recovered water includes water and a transformed thiol compound.
In another embodiment, the process can further include cooling the cooled upgraded-mixture to a second cooling temperature following the step of mixing the alkaline solution and prior to the step of separating the cooled upgraded-mixture. The first cooling temperature is preferably between 100° C. and 300° C., more preferably between 150° C. and 250° C. In one embodiment, the reaction zone is essentially free of an externally-provided hydrogen source.
In another embodiment, the process further includes combining a hydrocarbon stream with a water stream in a mixing zone to form the reaction mixture while keeping the temperature of the reaction mixture below 150° C. Additionally, the reaction mixture can be subjected to ultrasonic energy to create a submicromulsion. The submicromulsion can then be pumped through a preheating zone using a high pressure pump. The high pressure pump increases the pressure of the submicromulsion to a target pressure that is at or above the critical pressure of water prior to the step of introducing the reaction mixture into the reaction zone. In another embodiment the process can further include the step of heating the submicromulsion to a first target temperature, to create a pre-heated submicromulsion, prior to the step of introducing the reaction mixture into the reaction zone and subsequent to the step of combining the hydrocarbon stream with the water stream. Preferably, the first target temperature is in the range of about 150° C. to 350° C.
In one embodiment, the reaction mixture preferably has a volumetric flow ratio of about 10:1 to about 1:50 of the hydrocarbon stream to the water stream at standard conditions. More preferably, the volumetric flow ratio is about 10:1 to about 1:10 of the hydrocarbon stream to the water stream at standard conditions.
In another embodiment, the process can also include the step of recycling the recovered water by combining at least a portion of the recovered water with the water stream to form the reaction mixture. Additionally, the process can further include the step of treating the recovered water in the presence of an oxidant at conditions that are at or above the supercritical conditions of water such that a cleaned recovered water stream is produced, such that the cleaned recovered water streams contains substantially less hydrocarbon content than the recovered water. Preferably, the oxidant is supplied by an oxygen source selected from the group consisting of air, liquefied oxygen, hydrogen peroxide, organic peroxide and combinations thereof.
In another embodiment of the present invention, the process for removing sulfur compounds from the hydrocarbon stream includes the steps of introducing the reaction mixture into the reaction zone, subjecting the reaction mixture to operating conditions that are at or exceed the supercritical conditions of water, such that at least a portion of hydrocarbons in the reaction mixture undergo cracking to form an upgraded mixture, wherein at least a portion of the sulfur compounds are converted to hydrogen sulfide and thiol compounds, and wherein the reaction zone is essentially free of an externally-provided catalyst and externally provided alkaline solutions. The upgraded mixture can be cooled to a first cooling temperature that is below the critical temperature of water to form a cooled upgraded-mixture. The cooled upgraded-mixture can be separated into a gas stream and a liquid stream. Preferably, the gas stream contains a substantial portion of the hydrogen sulfide. The alkaline feed is introduced and mixed with the liquid stream in a mixing zone to produce an upgraded liquid stream, wherein the upgraded liquid stream has an aqueous phase and an oil phase. During the mixing step, a substantial portion of the thiol compounds are extracted from the oil phase into the aqueous phase. The upgraded liquid stream can be separated into upgraded oil and recovered water. The upgraded oil has reduced amounts of asphaltene, sulfur, nitrogen or metal containing substances and an increased API gravity as compared to the hydrocarbon stream, and the recovered water includes water and transformed thiol compound.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, claims, and accompanying drawings. It is to be noted, however, that the drawings illustrate only several embodiments of the invention and are therefore not to be considered limiting of the invention's scope as it can admit to other equally effective embodiments.
While the invention will be described in connection with several embodiments, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all the alternatives, modifications and equivalence as may be included within the spirit and scope of the invention defined by the appended claims.
Referring to
In one embodiment, the process includes introducing the reaction mixture to preheating device 40, where it is preferably heated to a temperature of about 250° C., before being fed into reaction zone 50 via line 42. The operating conditions within reaction zone 50 are at or above the critical point of water, which is approximately 374° C. and 22.06 MPa. During this period of intense heat and pressure, the reaction mixture undergoes cracking and forms the upgraded mixture. At this point, the sulfur compounds that were in hydrocarbon stream 4 are converted to H2S and thiol compounds, with the thiol compounds generally being found in the oil phase of the upgraded mixture. Exemplary reaction zones 50 include tubular type reactors, vessel type reactor equipped with stirrers, or other devices known in the art. Horizontal and/or vertical type reactors can be used. Preferably, the temperature within reaction zone 50 is between 380° C. to 500° C., more preferably 390° C. to 500° C., most preferably 400° C. to 450° C. Preferred residence times within reaction zone 50 are between 1 second to 120 minutes, more preferably 10 seconds to 60 minutes, most preferably 30 seconds to 20 minutes.
The upgraded mixture then moves to first cooler 60 via line 52, where it is cooled to a temperature below the critical temperature of water prior to mixing with alkaline solution 64 in extraction zone 70. First cooler 60 can be a chiller, heater exchanger or any other cooling device known in the arts. In one embodiment, the temperature of cooled upgraded-mixture 62 is between 5° C. and 200° C., more preferably, 10° C. and 150° C., most preferably 50° C. and 100° C. In one embodiment, the apparatus can include a pressure regulating device (not shown) to reduce the pressure of the upgraded mixture before it enters extraction zone 70. Those of ordinary skill in the art will readily recognize acceptable pressure regulating devices. In one embodiment, the residence time of the extraction fluid in extraction zone 70 is 1-120 minutes, preferably, 10-30 minutes. During this mixing step, the alkalines help to extract the thiol compounds from the oil phase into the water phase. Exemplary extraction zones 70 include tubular type or vessel type. In some embodiments, extraction zones 70 can include a mixing device such as a rotating impeller. Preferably, extraction zone 70 is purged with nitrogen or helium to remove oxygen within extraction zone 70. In one embodiment, the temperature within extraction zone 70 is maintained at 10° C. to 100° C., more preferably 30° C. to 70° C.
Subsequent the extraction step, extraction fluid 72 is fed to liquid-gas separator 80 where gas stream 82 is removed after depressurizing extraction fluid 72. Preferred pressure is between 0.1 MPa to 0.5 MPa, more preferably 0.01 MPa to 0.2 MPa.
Upgraded liquid stream 84 is then sent to oil-water separator 90 where recovered water 94 and upgraded oil 92 are separated. Upgraded oil 92 has reduced amounts of asphaltene, sulfur, nitrogen or metal containing substances and an increased API gravity as compared to hydrocarbon stream 4. In an optional step, recovered water 94 can be introduced along with oxidant stream 96 into oxidation reactor 110 in order to help remove contaminants from recovered water 94 to form cleaned water 112.
Baseline Product
Whole range Arabian Heavy crude oil (AH) and deionized water (DW) were pressurized by metering pumps to 25 MPa. Mass flow rates of AH and DW at standard condition were 0.509 and 0.419 kg/hour, respectively. Pressurized AH was combined with water after pre-heating pressurized water to 490° C. Reaction zone was maintained at 450° C. Residence time of AH and water mixture was estimated to be around 3.9 minutes. After cooling and depressurizing, liquid product was obtained. Total liquid yield was 91.4 wt %. Total sulfur content of AH and product were measured as 2.91 wt % sulfur and 2.49 wt % sulfur (roughly 0.4 wt % reduction).
Improved Product
The baseline product was treated by an alkaline solution containing 10 wt % NaOH. The alkaline solution was added to the baseline product by 1:1 wt/wt. After mixing by magnetic stirrer, the mixture was subjected to ultrasonic irradiation for 1.5 minutes. After 10 minutes, the mixture was centrifuged at 2500 rpm for 20 minutes. The oil phase was separated from the water phase and analyzed by total sulfur analyzer. Total sulfur content was decreased to 2.30 wt % sulfur (an additional 0.2 wt % reduction).
While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations as fall within the spirit and broad scope of the appended claims. The present invention may suitably comprise, consist or consist essentially of the elements disclosed and may be practiced in the absence of an element not disclosed.
Number | Name | Date | Kind |
---|---|---|---|
2880171 | Flinn et al. | Mar 1959 | A |
2944012 | Thompson | Jul 1960 | A |
2967204 | Beuther et al. | Jan 1961 | A |
3116234 | Douwes et al. | Dec 1963 | A |
3501396 | Gatsis | Mar 1970 | A |
3576596 | Krane et al. | Apr 1971 | A |
3586621 | Pitchford et al. | Jun 1971 | A |
3654139 | Winsor et al. | Apr 1972 | A |
3708421 | Rippie | Jan 1973 | A |
3733259 | Wilson et al. | May 1973 | A |
3830752 | Mickelson | Aug 1974 | A |
3842014 | Friend et al. | Oct 1974 | A |
3864451 | Lee et al. | Feb 1975 | A |
3948754 | McCollum et al. | Apr 1976 | A |
3948755 | McCollum et al. | Apr 1976 | A |
3960706 | McCollum et al. | Jun 1976 | A |
3960708 | McCollum et al. | Jun 1976 | A |
3988238 | McCollum et al. | Oct 1976 | A |
3989618 | McCollum et al. | Nov 1976 | A |
4005005 | McCollum et al. | Jan 1977 | A |
4082695 | Rosinski et al. | Apr 1978 | A |
4151068 | McCollum et al. | Apr 1979 | A |
4203829 | Bertolacini | May 1980 | A |
4210628 | Ninomiya et al. | Jul 1980 | A |
4325926 | Blanton, Jr. | Apr 1982 | A |
4464252 | Eberly, Jr. | Aug 1984 | A |
4483761 | Paspek, Jr. | Nov 1984 | A |
4485007 | Tam et al. | Nov 1984 | A |
4530755 | Ritchie et al. | Jul 1985 | A |
4544481 | Seiver et al. | Oct 1985 | A |
4594141 | Paspek, Jr. et al. | Jun 1986 | A |
4719000 | Beckberger | Jan 1988 | A |
4743357 | Patel et al. | May 1988 | A |
4762814 | Parrott et al. | Aug 1988 | A |
4813370 | Capamaggio | Mar 1989 | A |
4818370 | Gregoli et al. | Apr 1989 | A |
4840725 | Paspek | Jun 1989 | A |
4908122 | Frame et al. | Mar 1990 | A |
5087350 | Paris-Marcano | Feb 1992 | A |
5096567 | Paspek, Jr. et al. | Mar 1992 | A |
5167797 | Ou | Dec 1992 | A |
5278138 | Ott et al. | Jan 1994 | A |
5316659 | Brons et al. | May 1994 | A |
5411658 | Chawla et al. | May 1995 | A |
5421854 | Kodas et al. | Jun 1995 | A |
5439502 | Kodas et al. | Aug 1995 | A |
5466363 | Audeh et al. | Nov 1995 | A |
5496464 | Piskorz et al. | Mar 1996 | A |
5529968 | Sudhakar et al. | Jun 1996 | A |
5538930 | Sudhakar et al. | Jul 1996 | A |
5558783 | McGuinness | Sep 1996 | A |
5560823 | Whiting | Oct 1996 | A |
5597476 | Hearn et al. | Jan 1997 | A |
5611915 | Siskin et al. | Mar 1997 | A |
5616165 | Glicksman et al. | Apr 1997 | A |
5626742 | Brons et al. | May 1997 | A |
5676822 | Sudhakar | Oct 1997 | A |
5695632 | Brons et al. | Dec 1997 | A |
5837640 | Sudhakar et al. | Nov 1998 | A |
5851381 | Tanaka et al. | Dec 1998 | A |
5861136 | Glicksman et al. | Jan 1999 | A |
5906730 | Hatanaka et al. | May 1999 | A |
5928497 | Iaccino | Jul 1999 | A |
5958224 | Ho et al. | Sep 1999 | A |
6063265 | Chiyoda et al. | May 2000 | A |
6103393 | Kodas et al. | Aug 2000 | A |
6120679 | Hatanaka et al. | Sep 2000 | A |
6153123 | Hampden-Smith et al. | Nov 2000 | A |
6159267 | Hampden-Smith et al. | Dec 2000 | A |
6197718 | Brignac et al. | Mar 2001 | B1 |
6228254 | Jossens et al. | May 2001 | B1 |
6248230 | Min et al. | Jun 2001 | B1 |
6277271 | Kocal | Aug 2001 | B1 |
6303020 | Podrebarac et al. | Oct 2001 | B1 |
6316100 | Kodas et al. | Nov 2001 | B1 |
6325921 | Andersen | Dec 2001 | B1 |
6334948 | Didillon et al. | Jan 2002 | B1 |
6488840 | Greaney et al. | Dec 2002 | B1 |
6500219 | Gunnerman | Dec 2002 | B1 |
6551501 | Whitehurst | Apr 2003 | B1 |
6579444 | Feimer et al. | Jun 2003 | B2 |
6596157 | Gupta et al. | Jul 2003 | B2 |
6610197 | Stuntz et al. | Aug 2003 | B2 |
6623627 | Zhou | Sep 2003 | B1 |
6685762 | Brewster et al. | Feb 2004 | B1 |
6689186 | Hampden-Smith et al. | Feb 2004 | B1 |
6699304 | Hampden-Smith et al. | Mar 2004 | B1 |
6780350 | Kodas et al. | Aug 2004 | B1 |
6827845 | Gong et al. | Dec 2004 | B2 |
6881325 | Morris et al. | Apr 2005 | B2 |
7144498 | McCall et al. | Dec 2006 | B2 |
7264710 | Hokari et al. | Sep 2007 | B2 |
7435330 | Hokari et al. | Oct 2008 | B2 |
7780847 | Choi | Aug 2010 | B2 |
7842181 | Choi | Nov 2010 | B2 |
20030062163 | Moulton et al. | Apr 2003 | A1 |
20030217952 | Brignac et al. | Nov 2003 | A1 |
20040007506 | Song et al. | Jan 2004 | A1 |
20040024072 | Lin et al. | Feb 2004 | A1 |
20040118748 | Lesemann et al. | Jun 2004 | A1 |
20040178123 | Podrebarac | Sep 2004 | A1 |
20040188327 | Groten | Sep 2004 | A1 |
20050040078 | Zinnen et al. | Feb 2005 | A1 |
20050067323 | Balko | Mar 2005 | A1 |
20050072137 | Hokari et al. | Apr 2005 | A1 |
20050075528 | Burkhardt et al. | Apr 2005 | A1 |
20050098478 | Gupta et al. | May 2005 | A1 |
20050167333 | McCall et al. | Aug 2005 | A1 |
20050173297 | Toida | Aug 2005 | A1 |
20050252831 | Dysard et al. | Nov 2005 | A1 |
20050284794 | Davis et al. | Dec 2005 | A1 |
20060011511 | Hokari et al. | Jan 2006 | A1 |
20060154814 | Zanibelli et al. | Jul 2006 | A1 |
20060163117 | Hong | Jul 2006 | A1 |
20070111319 | Bastide et al. | May 2007 | A1 |
20070227950 | Martinie et al. | Oct 2007 | A1 |
20070234640 | Jia et al. | Oct 2007 | A1 |
20080099373 | Hokari et al. | May 2008 | A1 |
20080099374 | He et al. | May 2008 | A1 |
20080099375 | Landau et al. | May 2008 | A1 |
20080099376 | He et al. | May 2008 | A1 |
20080099377 | He et al. | May 2008 | A1 |
20080099378 | He et al. | May 2008 | A1 |
20090032436 | Takahashi et al. | Feb 2009 | A1 |
20090139715 | Choi | Jun 2009 | A1 |
20090145807 | Choi et al. | Jun 2009 | A1 |
20090145808 | Choi et al. | Jun 2009 | A1 |
20090148374 | Choi | Jun 2009 | A1 |
20090230026 | Choi et al. | Sep 2009 | A1 |
20110024330 | Choi | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
0 199 555 | Oct 1986 | EP |
0341893 | Nov 1989 | EP |
1454976 | Sep 2004 | EP |
1 537 912 | Jun 2005 | EP |
1577007 | Sep 2005 | EP |
1923452 | May 2008 | EP |
2913235 | Sep 2008 | FR |
1098698 | Jan 1968 | GB |
07-265689 | Oct 1995 | JP |
2000282063 | Oct 2000 | JP |
2001019984 | Jan 2001 | JP |
2001192676 | Jul 2001 | JP |
2003049180 | Feb 2003 | JP |
2003277770 | Oct 2003 | JP |
2005015533 | Jan 2005 | JP |
WO9600269 | Jan 1996 | WO |
WO9967345 | Dec 1999 | WO |
WO0179391 | Oct 2001 | WO |
WO02053684 | Jul 2002 | WO |
WO 2004067682 | Aug 2004 | WO |
WO2005005582 | Jan 2005 | WO |
WO2007015391 | Feb 2007 | WO |
2009073446 | Jun 2009 | WO |
WO2009070561 | Jun 2009 | WO |
Entry |
---|
Arturo J. Hernandez and Ralph T. Yang, “Desulfurization of Transportation Fuels by Adsorption”, Catalysis Reviews (2004), pp. 111-150, vol. 46, No. 2. |
Y. Sano, K.H. Choi, Y. Korai, I. Mochida, “Selection and Further Activation of Activated Carbons for Removal of Nitrogen Species in Gas Oil as a Pretreatment for Its Deep Hydrodesulfurization”, Energy & Fuels (2004), pp. 644-651, vol. 18. |
Y. Sano, K. Sugahara, K.H. Choi, Y. Korai, I. Mochida, “Two-step adsorption process for deep desulfurization of diesel oil”, Fuel (2005), pp. 903-910, vol. 84, Elsevier Ltd. |
Y. Sano, K. Choi, Y. Korai, I. Mochida, “Adsorptive removal of sulfur and nitrogen species from a straight run gas oil for its deep hydrodesulfurization”, American Chemical Society, Fuel Chemistry Division Preprints (2003), vol. 48(1), pp. 138-139. |
Y. Sano, K. Choi, Y. Korai, I. Mochida, “Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization”, Applied Catalysis B: Environmental (2004), vol. 49, pp. 219-225. |
Y. Sano, K. Choi, Y. Korai, I. Mochida, “Effects of nitrogen and refractory sulfur species removal on the deep HDS of gas oil”, Applied Catalysis B: Environmental (2004), vol. 53, pp. 169-174. |
K. Choi, N. Kunisada, Y. Korai, I. Mochida, K. Nakano, “Facile ultra-deep desulfurization of gas oil through two-stage or -layer catalyst bed”, Catalysis Today (2003), vol. 86, pp. 277-286. |
K. Choi, Y. Korai, I. Mochida, J. Ryu, W. Min, “Impact of removal extent of nitrogen species in gas oil on its HDS performance: an efficient approach to its ultra deep desulfurization”, Applied Catalysis B: Environmental (2004), vol. 50, pp. 9-16. |
Y. Sano, K Choi, Y. Korai, I. Mochida, “Selection and Further Activation of Activated Carbons for Removal of Nitrogen Species in Gas Oil as a Pre-Treatment for Deep Desulfurization” American Chemical Society, Fuel Chemistry Division Preprints (2003), vol. 48(2), pp. 658-659. |
Masaomi Amemiya, Yozo Korai, and lsao Mochida, “Catalyst Deactivation in Distillate Hydrotreating (Part 2) Raman Analysis of Carbon Deposited on Hydrotreating Catalyst for Vacuum Gas Oil,” Journal of the Japan Petroleum Institute (2003), pp. 99-104, vol. 46, No. 2. |
Edward Furimsky and Franklin E. Massoth, “Deactivation of hydroprocessing catalysts,” Catalysis Today (1999), pp. 381-495, vol. 52. |
Min “A Unique Way to Make Ultra Low Sulfur Diesel,” Korean Journal of Chemical Engineering, vol. 19, No. 4 (2002) pp. 601-606, XP008084152. |
Examiner's Report issued in EP Patent Application No. 08858377.8, dated Oct. 4, 2011 (6 pages). |
Sara E. Skrabalak et al., “Porous MoS2 Synthesized by Ultrasonic Spray Pyrolysis” J. Am. Chem. Soc. 2005, 127, 9990-9991. |
Ki-Hyouk Choi et al., “Preparation and Characterization on nano-sized CoMo/AI2O3 catalyst for hydrodesulfurization, ” Applied Catalysis A: General 260 (2004) 229-236. |
K. Choi et al., “Preparation of CO2 Absorbent by Spray Pyrolysis,” Chemistry Letters, vol. 32, No. 10 (2003), p. 924-925. |
Y. Okamoto et al., “A study on the preparation of supported metal oxide catalysts using JRC-reference catalysts. I. Preparation of a molybdena-alumina catalyst. Part 1. Surface area of alumina, ” Applied Catalysis A: General 170 (1998), p. 315-328. |
Messing et al., “Ceramic Powder Synthesis by Spray Pyrolysis,” Journal of the American Ceramic Society, vol. 76, No. 11, pp. 2707-2726 (1993). |
Okuyama at al., “Preparation of nanoparticles via spray route,” Chemical Engineering Science, vol. 58, pp. 537-547 (2003). |
Uematsu et al., “New application of spray reaction technique to the preparation of supported gold catalysts for environmental catalysis,” Journal of Molecular Catalysis A: Chemical 182-183, pp. 209-214 (2002). |
Mizushima et al., “Preparation of Silica-supported Nickel Catalyst by Fume Pyrolysis: Effects of Preparation Conditions of Precursory Solution on Porosity and Nickel Dispersion,” Journal of the Japan Petroleum Institute, vol. 48, No. 2, pp. 90-96 (2005). |
Tim Old and Jeff Vander Lan, ConocoPhillips S ZorbTM Sulfur Removal Technology: A Proven Solution to the ULSG Challenge, ERTC 9th Annual Meeting, Prague, pp. 1-16, presented at the ERTC 9th Annual Meeting, Refining & Petrochemical, Apr. 27-29, 2005, Kuala Lumpur, Malaysia. |
Gary, J. H., “Petroleum Refining Technology and Economics,” 5th ed., CRC Press, 463 pgs (2007). |
EP Examiner's Report issued in EP Patent Application No. 08857250.8, dated Jun. 28, 2011 (13 pages). |
Gao et al., “Adsorption and reduction of NO2 over activated carbon at low temperature,” Fuel Processing Technology 92, 2011, pp. 139-146, Elsevier B.V. |
M. Te et al., “Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems,” Applied Catalysis A: General 219 (2001), p. 267-280. |
P. De Filippis et al., “Oxidation Desulfurization: Oxidation Reactivity of Sulfur Compunds in Different Organic Matrixes,” Energy & Fuels, vol. 17, No. 6 (2003), p. 1452-1455. |
K. Yazu et al., “Oxidative Desulfurization of Diesel Oil with Hydrogen Peroxide in the Presence of Acid Catalyst in Diesel Oil/Acetic Acid Biphasic System,” Chemistry Letters, vol. 33, No. 10 (2004), p. 1306-1307. |
S. Otsuki et al., “Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction,” Energy & Fuels, vol. 14, No. 6 (2000), p. 1232-1239. |
J.T. Sampanthar et al., “A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel,” Applied Catalysis B: Environmental 63 (2006), p. 85-93. |
A. Chica et al., “Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor,” Journal of Catalysis, vol. 242 (2006), p. 299-308. |
K. Yazu et al., “Immobilized Tungstophosphoric Acid-catalyzed Oxidative Desulfurization of Diesel Oil with Hydrogen Peroxide,” Journal of Japan Petroleum Institute, vol. 46, No. 6 (2003), p. 379-382. |
S. Murata et al., “A Novel Oxidative Desulfurization System for Diesel Fuels with Molecular Oxygen in the Presence of Cobalt Catalysts and Aldehydes,” Energy & Fuels, vol. 18, No. 1 (2004), p. 116-121. |
I. Mochida et al., “Kinetic study of the continuous removal of Sox on polyacrylonitrile-based activated carbon fibres,” Fuel, vol. 76, No. 6 (1997), p. 533-536. |
I. Mochida et al., “Removal of Sox and Nox over activated carbon fibers,” Carbon, vol. 38 (2000), p. 227-239. |
N. Shirahama et al., “Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers,” Carbon, vol. 40 (2002), p. 2605-2611. |
E. Raymundo-Pinero et al., “Temperature programmed desorption study on the mechanism of SO2 oxidation by activated carbon and activated carbon fibres,” Carbon, vol. 39 (2001) p. 231-242. |
Mochida et al., “Adsorption and Adsorbed Species of SO2 during its Oxidative Removal over Pitch-Based Activated Carbon Fibers,” Energy & Fuels, vol. 13, No. 2, 1999, pp. 369-373. |
Zhou et al., “Deep Desulfurization of Diesel Fuels by Selective Adsorption with Activated Carbons,” Prepr. Pap.-Am. Chem. Soc., Div. Pet, Chem, 2004, 49(3), pp. 329-332. |
Kouzu et al., “Catalytic potential of carbon-supported Ni-Mo-sulfide for ultra-deep hydrodesulfurization of diesel fuel,” Applied Catalysis A: General 265 (2004) 61-67. |
Pawelec et al., “Carbon-supported tungsten and nickel catalysts for hydrodesulfurization and hydrogenation reactions,” Applied Catalysis A: General 206 (2001) 295-307. |
Farag et al., “Carbon versus alumina as a support for Co-Mo catalysts reactivity towards HDS of dibenzothiophenes and diesel fuel,” Catalysis Today 50 (1999) 9-17. |
Adschiri et al. “Hydrogenation through Partial Oxidation of Hydrocarbon in Supercritical Water”, published in Int. J. of the Soc. of Mat. Eng. for Resources, vol. 7, No. 2, pp. 273-281, (1999). |
Adschiri et al. “Catalytic Hydrodesulfurization of Dibenzothiophene through Partial Oxidation and a Water-Gas Shift Reaction in Supercritical Water”, published in Ind. Eng. Chem. Res., vol. 37, pp. 2634-2638, (1998). |
Sato et al. “Upgrading of asphalt with and without partial oxidation in supercritical water”, published in Science Direct, Fuel, vol. 82, pp. 1231-1239 (2003). |
Choi et al., “Petroleum Upgrading and Desulfurizing Process,” U.S. Appl. No. 13/009,062, filed Jan. 19, 2011. |
PCT International Search Report and Written Opinion dated Mar. 29, 2012, International Application No. PCT/US2011/041413, International Filing Date Jun. 22, 2011. |
Kishita, A., Takahashi, S., Kamimura, H., Miki, M., Moriya, T., and Enomoto, H., Upgrading of Bitumen by Hydrothermal Visbreaking in Supercritical Water with Alkali, Journal of the Japan Petroleum Institute, 2003, 215-221, 46 (4). |
Amestica, L.A. and Wolf, E.E., Catalytic Liquefaction of Coal With Supercritical Water/CO/Solvent Media, XP-002663069, Fuel, Sep. 30, 1986, pp. 1226-1332, vol. 65, Butterworth & Co, (1986). |
Robinson, P.R. and Kraus, L.S., Thermochemistry of Coking in Hydroprocessing Units: Modeling Competitive Naphthalene Saturation and Condensation Reactions, XP-002663070, Apr. 26, 2006, Retrieved from Internet (see attached PCT Int'l Search Report dated Nov. 21, 2011). |
PCT International Search Report dated Nov. 21, 2011, International Application No. PCT/US2011/051192, International Filing Date: Sep. 12, 2011. |
Parker, R.J. and Simpson, P.L., Liquefaction of Black Thunder Coal with Counterflow Reactor Technology, XP-002663163, Ninth Pittsburgh Coal Conference, Oct. 31, 1992, pp. 1191-1195, Retrieved from Internet (see attached PCT Int'l Search Report dated Nov. 23, 2011). |
McCall, T.F., Technology Status Report—Coal Liquefaction, Cleaner Coal Technology Programme, XP-002663181, Department of Trade of Industry of the United Kingdom, Oct. 31, 1999, pp. 1-14, Retrieved from Internet (see attached PCT Int'l Search Report dated Nov. 23, 2011). |
PCT International Search Report dated Nov. 23, 2011, International Application No. PCT/US2011/051183, International Filing Date: Sep. 12, 2011. |
State Intellectual Property Office (SIPO) Search Report dated Feb. 25, 2014; Chinese Patent Application No. 201180032487.6; Search Report issued with Office Action in corresponding Chinese Application. |
Number | Date | Country | |
---|---|---|---|
20110315600 A1 | Dec 2011 | US |