REMOVAL OF UNWANTED MINERAL OIL HYDROCARBONS

Information

  • Patent Application
  • 20230272303
  • Publication Number
    20230272303
  • Date Filed
    July 28, 2021
    2 years ago
  • Date Published
    August 31, 2023
    8 months ago
Abstract
Present invention relates to process for reducing content of MOSH and/or MOAH from vegetable oil selected from group consisting of palm-based oil, cocoa butter-based oil and any mixture thereof, wherein process is comprising step of subjecting vegetable oil to short-path evaporation, wherein short-path evaporation is performed at pressure of below 1 mbar and further processing conditions either: a1) at evaporator temperature of between 210 and 240° C., and with a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment of from 35 to 105 kg/h·m2, or a2) at evaporator temperature of from 245 to 300° C., and feed rate per unit area of evaporator surface in range of from 110 and 170 kg/h·m2, and thus obtaining a retentate vegetable oil and a distillate. Present invention further relates to use of short-path evaporation for reducing content of MOSH and/or MOAH from vegetable oil.
Description

This application claims the benefit of European Provisional Application No. 20190409.1, filed Aug. 11, 2020, and European Provisional Application No. 21161234.6, filed Mar. 8, 2021 which are incorporated by reference herein in its entirety.


FIELD OF THE INVENTION

The present invention relates to a novel process for reducing the content of MOSH and/or MOAH in vegetable oils selected from the group consisting of palm-based oil, cocoa butter-based oil and any mixture thereof.


BACKGROUND OF THE INVENTION

Mineral Oil Hydrocarbons (MOH) may be present as contaminants in oils and fat as well as in foods prepared thereof. MOH are a complex mixture of molecules that are usually categorized into two main groups: Mineral Oil Saturated Hydrocarbons (MOSH) and Mineral Oil Aromatic Hydrocarbons (MOAH). MOSH are linear and branched alkanes and/or cyclo-alkanes. MOAH consists of highly alkylated mono- and/or polycyclic aromatic hydrocarbons.


Contamination of food and feed products with MOH may occur through migration from materials in contact with food such as plastic materials, like polypropylene or polyethylene, recycled cardboard and jute bags. Contamination also occurs from the use of mineral oil-based food additives or processing aids and from unintentional contamination like for example from lubricants or exhaust gases from combustion engines.


From a health perspective, it is desirable to reduce, or even completely remove, MOSH and MOAH contamination from edible vegetable oils.


Crude oils, as extracted from their original source, are not suitable for human consumption due the presence of impurities—such as free fatty acids, phosphatides, metals and pigments—which may be harmful or may cause an undesirable colour, odour or taste. Crude oils are therefore refined before use. The refining process typically consists of three major steps: degumming, bleaching and deodorizing. Optionally, a fourth step of chemical refining is included. An oil obtained after completion of the refining process (called a “refined oil” or more specifically a deodorized oil) is normally considered suitable for human consumption and may therefore be used in the production of any number of foods and beverages.


Unfortunately, existing refining processes are not effective to remove MOSH and/or MOAH. There is a need in the industry to identify an efficient and effective method for reducing MOSH and/or MOAH levels in vegetable oils. The present invention provides such a process.


SUMMARY OF THE INVENTION

The present invention relates to a process for reducing the content of MOSH and/or MOAH from vegetable oils selected from the group consisting of palm-based oil, cocoa butter-based oil and any mixture thereof, and the process is comprising the step of subjecting the vegetable oil to a short-path evaporation, wherein the short-path evaporation is performed at a pressure of below 1 mbar and under further processing conditions either:

    • a) at an evaporator temperature in a range of between 210 and 240° C., and with a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment in a range of from 35 to 105 kg/h·m2, or
    • b) at an evaporator temperature in a range of from 245 to 300° C., and with a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment in a range of from 110 and 170 kg/h·m2,


      and thus obtaining a retentate vegetable oil and a distillate.


The present invention further relates to the use of short-path evaporation performed at a pressure below 1 mbar, at a temperature in a range of from 150 to 300° C., and a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment of more than 35 kg/h·m2, for reducing the content of MOSH and/or MOAH from a vegetable oil selected from the group consisting of palm-based oil, cocoa butter-based oil and any mixture thereof.







DETAILED DESCRIPTION

The present invention relates to a process for reducing the content of MOSH and/or MOAH from vegetable oils selected from the group consisting of palm-based oil, cocoa butter-based and any mixture thereof, and the process is comprising the step of subjecting the vegetable oil to a short-path evaporation, wherein the short-path evaporation is performed at a pressure of below 1 mbar and under further processing conditions either:

    • a) at an evaporator temperature in a range of between 210 and 240° C., and with a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment in a range of from 35 to 105 kg/h·m2, or
    • b) at an evaporator temperature in a range of from 245 to 300° C., and with a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment in a range of from 110 and 170 kg/h·m2,


      and thus obtaining a retentate vegetable oil and a distillate.


Vegetable Oil as Starting Material

The term “palm-based oil” is an oil selected from the group consisting of a palm oil, palm oil stearin, palm oil super stearin, palm oil olein, palm oil super olein, palm oil mid-fraction and blends of one or more thereof.


The term “cocoa butter-based oil” is an oil selected from the group consisting of cocoa butter, cocoa butter olein, cocoa butter stearin and blends of two or more thereof.


Palm-based oil and cocoa butter-based are specific examples of vegetable oils with a molecular weight in a range of from 800 to 865 g/mol.


Preferably, the vegetable oil that is subjected to the process of the current invention is palm-based oil.


In one aspect of the invention, the vegetable oil that is subjected to the short-path evaporation of the process is a degummed, bleached and/or deodorized vegetable oil. Preferably the vegetable oil is at least degummed


Preferably, the vegetable oil is a palm-based oil selected from the group consisting of a palm oil, palm oil stearin, palm oil super stearin, palm oil olein, palm oil super olein, palm oil mid-fraction and blends of one or more thereof, that is degummed, or that is degummed and bleached, or that is degummed, bleached and deodorized.


Crude vegetable oil may be subjected to one or more degumming steps. Any of a variety of degumming processes known in the art may be used. One such process (known as “water degumming”) includes mixing water with the oil and separating the resulting mixture into an oil component and an oil-insoluble hydrated phosphatides component, sometimes referred to as “wet gum” or “wet lecithin”. Alternatively, phosphatide content can be reduced (or further reduced) by other degumming processes, such as acid degumming (using citric or phosphoric acid for instance), enzymatic degumming (e.g., ENZYMAX from Lurgi) or chemical degumming (e.g., SUPERIUNI degumming from Unilever or TOP degumming from VandeMoortele/Dijkstra CS). Alternatively, phosphatide content can also be reduced (or further reduced) by means of acid conditioning, wherein the oil is treated with acid in a high shear mixer and is subsequently sent without any separation of the phosphatides to the bleaching step.


The bleaching step in general is a process step whereby impurities are removed to improve the color and flavor of the oil. It is typically performed prior to deodorization. The nature of the bleaching step will depend, at least in part, on the nature and quality of the oil being bleached. Generally, a crude or partially refined oil will be mixed with a bleaching agent which combines, amongst others, with oxidation products, phosphatides, trace soaps, pigments and other compounds to enable their removal. The nature of the bleaching agent can be selected to match the nature of the crude or partially refined oil to yield a desirable bleached oil. Bleaching agents generally include natural or “activated” bleaching clays, also referred to as “bleaching earths”, activated carbon and various silicates. Natural bleaching agent refers to non-activated bleaching agents. They occur in nature or they occur in nature and have been cleaned, dried, milled and/or packed ready for use. Activated bleaching agent refers to bleaching agents that have been chemically modified, for example by activation with acid or alkali, and/or bleaching agents that have been physically activated, for example by thermal treatment. Activation includes the increase of the surface in order to improve the bleaching efficiency. Further, bleaching clays may be characterized based on their pH value. Typically, acid-activated clays have a pH value of 2.0 to 5.0. Neutral clays have a pH value of 5.5 to 9.0. A skilled person will be able to select a suitable bleaching agent from those that are commercially available based on the oil being refined and the desired end use of that oil.


The bleaching step for obtaining the bleached vegetable oil that is subjected to the short-path evaporation of the process, is performed at a temperature of from 80 to 115° C., from 85 to 110° C., or from 90 to 105° C., in presence of neutral and/or natural bleaching earth in an amount of from 0.2 to 5%, from 0.5 to 3%, or from 0.7 to 1.5% based on amount of oil.


Deodorization is a process whereby free fatty acids (FFAs) and other volatile impurities are removed by treating (or “stripping”) a crude or partially refined oil under vacuum and at elevated temperature with sparge steam, nitrogen or other gasses. The deodorization process and its many variations and manipulations are well known in the art and the deodorization step of the present invention may be based on a single variation or on multiple variations thereof.


For instance, deodorizers may be selected from any of a wide variety of commercially available systems (such as those sold by Krupp of Hamburg, Germany; De Smet Group, S.A. of Brussels, Belgium; Gianazza Technology s.r.l. of Legnano, Italy; Alfa Laval AB of Lund, Sweden, Crown Ironworks of the United States, or others). The deodorizer may have several configurations, such as horizontal vessels or vertical tray-type deodorizers.


Deodorization is typically carried out at elevated temperatures and reduced pressure to better volatilize the FFAs and other impurities. The precise temperature and pressure may vary depending on the nature and quality of the oil being processed. The pressure, for instance, will preferably be no greater than 10 mm Hg but certain aspects of the invention may benefit from a pressure below or equal to 5 mm Hg, e.g. 1-4 mm Hg. The temperature in the deodorizer may be varied as desired to optimize the yield and quality of the deodorized oil. At higher temperatures, reactions which may degrade the quality of the oil will proceed more quickly. For example, at higher temperatures, cis-fatty acids may be converted into their less desirable trans form. Operating the deodorizer at lower temperatures may minimize the cis-to-trans conversion, but will generally take longer or require more stripping medium or lower pressure to remove the requisite percentage of volatile impurities. As such, deodorization is typically performed at a temperature of the oil in a range of 200 to 280° C., with temperatures of about 220-270° C. being useful for many oils. For cocoa butter-based oil, a deodorization temperature in a range of 130 to 220° C. is advised. Typically, deodorization is thus occurring in a deodorizer whereby volatile components such as FFAs and other unwanted volatile components that may cause off-flavors in the oil, are removed. Deodorization may also result in the thermal degradation of unwanted components.


The deodorization step for obtaining the deodorized vegetable oil that is subjected to the short-path evaporation of the process, is performed at a temperature of from 200° C. to 270° C., from 210° C. to 260° C., or from 220° C. to 250° C. The deodorization step is taking place for a period of time from 30 min to 240 min, from 45 min to 180 min, or from 60 min to 150 min.


The deodorization step for obtaining the deodorized vegetable oil that is subjected to the short-path evaporation of the process, is performed in the presence of sparge steam in a range of from 0.50 to 2.50 wt %, from 0.75 to 2.00 wt %, from 1.00 to 1.75 wt %, or from1.25 to 1.50 wt % based on amount of oil, and at an absolute pressure of 10 mbar or less, 7 mbar or less, 5 mbar or less, 3 mbar or less, 2 mbar or less.


Typically, a degummed, bleached and deodorized vegetable edible oil is known to be obtained by means of 2 major types of refining processes, i.e. a chemical or a physical refining process. The chemical refining process may typically comprise the major steps of degumming, alkali refining, also called neutralization, bleaching and deodorizing. The thus obtained deodorized oil is a chemically refined oil, also called “NBD” oil. Alternatively, the physical refining process may typically comprise the major steps of degumming, bleaching and deodorizing. A physically refining process is not comprising an alkali neutralization step as is present in the chemical refining process. The thus obtained deodorized oil is a physically refined oil, also called “RBD” oil.


In a specific aspect, the palm-based oil that is subjected to the short-path evaporation of the process is a degummed, bleached and deodorized palm-based oil and a method for obtaining the degummed, bleached and deodorized vegetable oil is comprising the steps of:

    • i) Degumming and obtaining a degummed palm-based oil,
    • ii) Optionally alkali neutralizing the degummed palm-based oil from step i),
    • iii) Bleaching the degummed oil from step i) or the alkali neutralized oil from step ii)
      • at a temperature of from 80 to 115° C., from 85 to 110° C., or from 90 105° C., and
      • with neutral and/or natural bleaching earth in an amount of from 0.2 to 5%, from 0.5 to 3%, or from 0.7 to 1.5%, and obtaining a degummed and bleached oil, and
    • iv) Deodorizing the oil from step iii)
      • at a temperature of from 200 to 270° C., from 210 to 260° C., or from 220 to 250° C.,
      • for a period of time in a range of from 30 min to 240 min, from 45 min to 180 min, or from 60 min to 150 min.


The vegetable oil that is subjected to the short-path evaporation may have a content of MOSH of 20 ppm or higher, 40 ppm or higher, 60 ppm or higher, or even 80 ppm or higher. The content of MOAH may be more than 5 ppm or higher, more than 10 or higher, more than 20 ppm or higher, more than 40 ppm or higher, or even more than 60 ppm or higher.


Short-Path Evaporation

Short-path evaporation, also called short-path distillation or molecular distillation, is a distillation technique that involves the distillate travelling a short distance, often only a few centimetres, and it is normally done at reduced pressure. With short path distillation, a decrease of boiling temperature is obtained by reducing the operating pressure. It is a continuous process with very short residence time. This technique is often used for compounds which are unstable at high temperatures or to purify small amounts of compounds. The advantage is that the heating temperature can be considerably lower (at reduced pressure) than the boiling point of the liquid at standard pressure. Additionally, short-path evaporation allows working at very low pressure.


Different types of short-path evaporation apparatus can be used that are well known to the skilled person. Examples are, but are not limited to, falling film, centrifugal, or wiped film evaporation apparatus. Preferably the short-path evaporation of the current process is performed in a wiped film evaporation apparatus.


The short-path evaporation is performed at a pressure below 1 mbar, preferably below 0.05 mbar, more preferably below 0.01 mbar, most preferably below 0.001 mbar.


The short-path evaporation is further performed at specific conditions of evaporator temperature and feed rate per unit area of evaporator surface of the shorth-path evaporation equipment.


The “feed rate per unit area of evaporator surface of the shorth-path evaporation equipment”, also called “specific throughput” or “specific feed rate”, expressed in kg/h·m2, is defined as the flow of oil, expressed in kg/h, per unit area of evaporator surface of the short-path evaporation equipment, expressed in m2. The feed rate per unit area of evaporator surface of the shorth-path evaporation equipment in the process of the current invention is applicable to any short-path equipment, including industrial short-path evaporation equipment independent of the dimensions of the equipment. Preferably stainless steel short-path evaporation equipment is used in the current invention.


Either, the short-path evaporation of the current process is performed under condition a) at a temperature in a range of between 210 and 240° C., from 215 to 235° C., or from 220 to 230° C., and with a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment either in a range of from 35 to 105 kg/h·m2, from 45 to 103 kg/h·m2, from 50 to 100, kg/h·m2, from 53 to 90 kg/h·m2, or from 60 to 85 kg/h·m2.


Alternatively, the short-path evaporation of the current process is performed under condition b) at an evaporator temperature in a range of from 245 to 300° C., from 255 to 290° C., from 260 to 285° C., or from 265 to 280° C., and with a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment in a range of either from 110 to 170 kg/h·m2, from 115 to 165 kg/h·m2, from 120 to 160 kg/h·m2, from 125 to 155 kg/h·m2, or from 130 to 145 kg/h·m2.


Furthermore, the process of the current invention is not comprising the step of subjecting palm-based oil to a short-path evaporation, wherein the short-path evaporation is performed at 0.01 Pa, at a temperature of 230° C., and a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment of 7.2×10−3 L/h·cm2.


In the process according to the invention, two fractions are obtained from the short-path evaporation: a retentate vegetable oil and a distillate.


The process according to the invention results in a retentate vegetable oil having a reduced content of MOSH and/or MOAH and a distillate having an elevated content of MOSH and/or MOAH, compared to the vegetable oil that is subjected to the short-path evaporation.


Method DIN EN 16995:2017 (as part of CEN/TC275/WG 13) is the method that is used to measure the content of MOSH as well as the content of MOAH


The “content of MOSH” is defined as the total amount of saturated hydrocarbons (MOSH) with a carbon chain length in a range of C10 to C50.


The “content of MOAH” is defined as the total amount of aromatic hydrocarbons (MOAH) with a carbon chain length in a range of C10 to C50.


In one aspect of the invention, the process according to the invention results in a retentate vegetable oil having a content of MOSH and/or MOAH that is reduced for at least 25%, at least 30%, at least 40%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70% or even at least 80%, compared to the vegetable oil that is subjected to the short-path evaporation.


The yield of the retentate vegetable oil of the short-path evaporation is more than more than 80%, more than 90%, more than 95%, or even more than 97%. The yield is expressed as the ratio of the amount of retentate vegetable oil that is obtained versus the amount of vegetable oil that was subjected to the short-path evaporation. The yield is expressed as the ratio of the amount of retentate vegetable liquid oil that is obtained versus the amount of vegetable liquid oil that was subjected to the short-path evaporation.


More specifically, the short-path evaporation of the current process that is performed under conditions according to point a) results in a retentate vegetable oil that has a content of MOSH and/or MOAH that is reduced for at least 25%, at least 30%, at least 40%, or even at least 50%, in a range of from 25% to 75%, from 27% to 70%, or from 30% to 65%, compared to the vegetable oil that is subjected to the short-path evaporation, and wherein the yield of the retentate vegetable oil of the short-path evaporation is more than 95%, more than 97%, more than 98%, or even more than 99%.


In a preferred aspect of the invention, the short-path evaporation of the current invention allows obtaining a reduction of MOSH and/or MOAH content of the retentate vegetable palm-based oil may be obtained in a range of from 45 to 65%, while the yield is in a range of from 98 to 99.8%.


Alternatively, the short-path evaporation of the current process that is performed under conditions according to point b) results in a retentate vegetable oil that has a content of MOSH and/or MOAH that is reduced for at least 70%, at least 75%, at least 80%, or even at least 85%, up to 95%, or up to 99% compared to the vegetable oil that is subjected to the short-path evaporation, and wherein the yield of the retentate vegetable oil of the short-path evaporation is either more than 85%, more than 88%, more than 90%, or even more than 92%, up to 99.5%, or up to 99.8%.


In an alternative, preferred aspect of the invention, the short-path evaporation of the current invention allows obtaining a reduction of MOSH and/or MOAH content of the retentate vegetable oils selected from the group consisting of palm-based oil, cocoa butter-based oil and any mixture thereof may be obtained in a range of from 85 to 90%, while the yield is in a range of from 90 to 95%.


Additionally, the retentate vegetable oil may have a reduced content of glycidyl esters (GE). GE are contaminants that are typically being formed as a result of the oils being exposed to high temperatures during oil processing, especially during deodorization. The GE content of the retentate vegetable oil is below 1.0 ppm, below 0.8 ppm, below 0.5 ppm, below 0.3 ppm, below 0.1 ppm, or below LOQ (limit of quantification). The content of GE is measured with Method DGF Standard Methods Section C (Fats) C-VI 18(10).


Further Treatment

In another aspect of the invention, the process is characterized in that it is comprising a further treatment with sparge steam of the retentate vegetable oil obtained from the short-path evaporation.


The further treatment with sparge steam may be performed in equipment commonly known for treatment with sparge steam, such as, but not limited to, a deodorizer unit, a stripping unit, or a collection tray.


The further treatment with sparge steam is carried out at a temperature below 260° C., below 240° C., or below 220° C.


The further treatment with sparge steam is carried out in the presence of sparge steam in an amount of from 0.1 to 2.0 wt %, from 0.2 to 1.8 wt %, or from 0.3 to 1.5 wt % based on amount of oil.


Furthermore, the further treatment with sparge steam is carried out for a period of time of from 5 to 120 min, from 10 to 90 min, from 20 to 60 min, or from 30 to 45 min.


The further treatment with sparge steam in the present process may result in a further improvement of the flavour of the retentate vegetable oil. The refined vegetable oil after further treatment with sparge steam has an overall flavour quality score (taste), according to AOCS method Cg 2-83, in a range of from 7 to 10, or from 8 to 10 or from 9 to 10 (with 10 being an excellent overall flavour quality score and 1 being the worst score).


In one preferred aspect, the further treatment with sparge steam in the present process is carried out at a temperature below 220° C., below 210° C., or below 190° C., from 130 to 210° C., or from 150 to 185° C. This further refining at a temperature below 220° C. may result in a retentate vegetable oil that is reduced in MOSH and/or MOAH, and that has a reduced content of GE, and that has a taste that is acceptable to good. The GE content of the retentate vegetable oil is below 1 ppm, below 0.8 ppm, below 0.5 ppm, below 0.3 ppm, below 0.1 ppm, or below LOQ (limit of quantification). The retentate vegetable oil after further treatment with sparge steam has an overall flavour quality score (taste), according to AOCS method Cg 2-83, in a range of from 7 to 10, or from 8 to 10 or from 9 to 10 (with 10 being an excellent overall flavour quality score and 1 being the worst score).


The Use of a Short-Path Evaporation

The present invention further relates to the use of short-path evaporation performed at a pressure below 1 mbar, at a temperature in a range of from 150 to 300° C., and a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment of more than 35 kg/h·m2, for reducing the content of MOSH and/or MOAH from a vegetable oil selected from the group consisting of palm-based oil, cocoa butter-based oil and any mixture thereof.


The current invention relates to the use, wherein the short-path evaporation is performed preferably at a pressure below 0.05 mbar, more preferably below 0.01 mbar, most preferably below 0.001 mbar.


The current invention relates to the use, wherein the short-path evaporation is performed at a temperature in a range of from 160 to 290° C., from 180 to 280° C., or from 215 to 260° C.


The current invention relates to the use, wherein the short-path evaporation is performed at a a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment in a range of from 35 to 170 kg/h·m2, from 50 to 160 kg/h·m2, or from 60 to 145 kg/h·m2.


Preferably, the current invention relates to the use, wherein the vegetable oil that is subjected to the short-path evaporation of the process is palm-based oil


The use of the short-path evaporation allows reducing the content of MOSH and/or MOAH in the vegetable oil.


The current invention relates to use wherein the content of MOSH and/or MOAH in the retentate vegetable oil is reduced for at least 25%, at least 30%, at least 40%, at least 50%, at least 55%, at least 60%, at least 70% or even at least 80%, compared to the vegetable oil that is subjected to the short-path evaporation.


Furthermore, the current invention relates to use wherein the yield of retentate vegetable oil of the short-path evaporation is more than 40%, more than 55%, more than 60%, more than 65%, more than 70%, more than 80%, or even more than 90%.


In one aspect, the current invention relates to the use wherein the temperature is in a range of between 210 and 240° C., from 215 to 235° C., or from 220 to 230° C., and the feed rate per unit area of evaporator surface of the shorth-path evaporation equipment is in a range of from 35 to 105 kg/h·m2, from 45 to 103 kg/h·m2, from 50 to 100, kg/h·m2, from 53 to 90 kg/h·m2, or from 60 to 85 kg/h·m2, for obtaining retentate vegetable oil, wherein the content of MOSH and/or MOAH in is reduced for at least 25%, at least 30%, at least 40%, or even at least 50%, in a range of from 25 to 75%, from 27 to 70%, or from 30 to 65%, compared to the vegetable oil that is subjected to the short-path evaporation, and wherein the yield of the retentate vegetable oil of the short-path evaporation is more than 95%, more than 97%, more than 98%, or even more than 99%.


In an alternative aspect, the current invention relates to use wherein the temperature is in a range of from 245 to 300° C., from 255 to 290° C., from 260 to 285° C., or from 265 to 280° C., and the feed rate per unit area of evaporator surface of the shorth-path evaporation equipment is in a range of from 110 to 170 kg/h·m2, from 115 to 165 kg/h·m2, from 120 to 160 kg/h·m2, from 125 to 155 kg/h·m2, or from 130 to 145 kg/h·m2, for obtaining retentate vegetable oil, wherein the content of MOSH and/or MOAH in the retentate vegetable oil is reduced for at least 70%, at least 75%, at least 80%, or even at least 85% compared to the vegetable oil that is subjected to the short-path evaporation, and wherein the yield of the retentate vegetable oil of the short-path evaporation is more than 85%, more than 88%, more than 90%, or even more than 92%.


EXAMPLES
1. Starting Material

Refined, bleached and deodorized (RBD) palm oil stearin was spiked with 75 ppm of a master-mix based on lubricants, lube sprays and used engine oil containing MOSH-MOAH. Table 1 describes the composition of the MOSH-MOAH master-mix.









TABLE 1







MOSH-MOAH master-mix










Lubricants & used engine oil
Part







Cassida Fluid HF 46
1



Cassida Fluid HF 15
1



Rivolta TRS Plus Spray
1



Rivolta SKS 48
1



Panreco Drageol
1



Used engine oil—15W40
3










2. SPE Conditions

Short-Path Evaporation (SPE) Unit KD10 from UIC was used for the short-path evaporation. The KD10 unit has an evaporator surface of 0.1 m2


The following conditions were applied:

    • Feed-temperature: 144° C.
    • Condenser Temp.: 140° C.
    • Wiper speed: 400 rpm
    • Pressure: below 10−3 mbar
    • Test conditions: Feed rate per unit area of evaporator surface of the shorth-path evaporation equipment (in kg/h·m2) and evaporation temperature were set as given in table 2.









TABLE 2







Test conditions











Test
Evaporation
Feed rate per unit area of evaporator



number
temperature
surface of in KD10 (kg/h.m2)















Test 1
225° C.
53



Test 2
240° C.
103



Test 3
280° C.
154










Thus, the example is conducted according to the specifications of the claims.


3. Results

MOSH and MOAH content of the oils was analyzed for the spiked RBD oils before the SPE treatment (=starting material of test) and after (=retentate of test). The yield of the retentate vegetable oil was calculated based on the amount of retentate vegetable oil after SPE treatment versus the amount of spiked RBD oil before the SPE treatment. The results are shown in Table 3.









TABLE 3







Results














MOSH +






MOAH




MOSH
MOAH
C10-C50
Retentate



C10-C50
C10-C50
reduction
yield
















Starting material
87.0
ppm
2.2
ppm




(RBD palm stearin oil)








Retentate Test 1
45.3
ppm
1.6
ppm
47.4%
99.5%


Retentate Test 2
30.9
ppm
1.3
ppm
63.9%
99.3%


Retentate Test 3
11.4
ppm
0.0
ppm
87.2%
93.6%








Claims
  • 1. A process for reducing the content of MOSH and/or MOAH from vegetable oils selected from the group consisting of palm-based oil, cocoa butter-based oil and any mixtures thereof, and the process comprises: subjecting the vegetable oil to a short-path evaporation to obtain a retentate vegetable oil and a distillate, wherein the short-path evaporation is performed at a pressure of below 1 mbar and under further processing conditions either: a) at an evaporator temperature in a range of between 210 and 240° C., and with a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment in a range of from 35 to 105 kg/h·m2, orb) at an evaporator temperature in a range of from 245 to 300° C., and with a feed rate per unit area of evaporator surface of the shorth-path evaporation equipment in a range of from 110 and 170 kg/h·m2.
  • 2. The process according to claim 1, wherein the short-path evaporation in step a) is performed at a pressure below 0.01 mbar.
  • 3. The process according to claim 1, wherein the vegetable oil is degummed, bleached and/or deodorized.
  • 4. The process according to claim 1, wherein the vegetable oil is at least degummed.
  • 5. The process according to claim 1, wherein the vegetable oil is palm-based oil.
  • 6-7. (canceled)
  • 8. The process according to claim 1, wherein the MOSH and/or MOAH content is reduced for at least 25%, compared to the vegetable oil that is subjected to the short-path evaporation.
  • 9. The process according to claim 1, wherein the temperature is in a range of between 210 and 240° C., and the feed rate per unit area of evaporator surface of the shorth-path evaporation equipment is in a range of from 35 to 105 kg/h·m2, for obtaining the retentate vegetable oil wherein the content of MOSH and/or MOAH in is reduced for at least 25% compared to the vegetable oil that is subjected to the short-path evaporation, and wherein the yield of the retentate vegetable oil of the short-path evaporation is more than 95%.
  • 10. The process according to claim 1, wherein the temperature is in a range of from 245 to 300° C., and the feed rate per unit area of evaporator surface of the shorth-path evaporation equipment is in a range of from 110 to 170 kg/h·m2, for obtaining the retentate vegetable oil wherein the content of MOSH and/or MOAH in the retentate vegetable oil is reduced for at least 70% compared to the vegetable oil that is subjected to the short-path evaporation, and wherein the yield of the retentate vegetable oil of the short-path evaporation is more than 85%.
Priority Claims (2)
Number Date Country Kind
20190409.1 Aug 2020 EP regional
21161234.6 Mar 2021 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/043472 7/28/2021 WO