REMOVING DEBRIS FROM CLEANING ROBOTS

Abstract
A cleaning robot system including a robot and a robot maintenance station. The robot includes a robot body, a drive system, a cleaning assembly, and a cleaning bin carried by the robot body and configured to receive debris agitated by the cleaning assembly. The robot maintenance station includes a station housing configured to receive the robot for maintenance. The station housing has an evacuation passageway exposed to a top portion of the received robot. The robot maintenance station also includes an air mover in pneumatic communication with the evacuation passageway and a collection bin carried by the station housing and in pneumatic communication with the evacuation passageway. The station housing and the robot body fluidly connect the evacuation passageway to the cleaning bin of the received robot. The air mover evacuates debris held in the robot cleaning bin to the collection bin through the evacuation passageway.
Description
TECHNICAL FIELD

This disclosure relates to cleaning systems for coverage robots.


BACKGROUND

Autonomous robots are robots which can perform desired tasks in unstructured environments without continuous human guidance. Many kinds of robots are autonomous to some degree. Different robots can be autonomous in different ways. An autonomous coverage robot traverses a work surface without continuous human guidance to perform one or more tasks. In the field of home, office and/or consumer-oriented robotics, mobile robots that perform household functions such as vacuum cleaning, floor washing, lawn cutting and other such tasks have become commercially available.


SUMMARY

In one aspect, a cleaning robot system includes a robot and a robot maintenance station. The robot includes a chassis, a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system, and a cleaning assembly carried by the chassis. The cleaning assembly includes a cleaning assembly housing and a driven cleaning roller rotatably coupled to the cleaning assembly housing. The robot maintenance station includes a station housing and a docking platform carried by the station housing and configured to support the robot when docked. A mechanical agitator engages the roller of the robot with the robot docked. The agitator includes an agitator comb having multiple teeth configured to remove accumulated debris from the roller as the agitator comb and roller are moved relative to one another. The robot maintenance station includes a collection bin arranged to receive and hold debris removed by the mechanical agitator.


Implementations of this aspect of the disclosure may include one or more of the following features. In some examples, the robot maintenance station includes a station evacuation port configured to mate with the robot when the robot is received in the robot maintenance station for maintenance and a motorized vacuum pump in fluid communication with the collection bin and the station evacuation port. The motorized vacuum pump is configured to draw air into the vacuum pump and to evacuate accumulated debris removed by the mechanical agitator cleaning assembly into the collection bin. In some examples, the robot includes a downward facing cleaning agitator and the docking platform includes a locking assembly configured to secure the received robot to the platform so that the mechanical agitator cleaning assembly does not force the robot from the platform. The mechanical agitator cleaning assembly may include one or more blades configured to cut accumulated filaments off the roller. The mechanical agitator cleaning assembly may include an actuator configured to move the agitator of the docked robot. The cleaning robot system may include a vacuum assembly configured to evacuate cut filaments off the mechanical agitator cleaning assembly.


In another aspect, a cleaning robot system includes a robot and a robot maintenance station. The robot includes a chassis, a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system, and a cleaning assembly carried by the chassis. The cleaning assembly includes a cleaning assembly housing and a driven cleaning roller rotatably coupled to the cleaning assembly housing. The robot includes a cleaning bin carried by the chassis. The robot maintenance includes a station housing configured to receive the robot for maintenance. The station housing defines a blower port and an evacuation port spaced from the blower port. The station blower port and the evacuation port are both arranged to be exposed to the robot cleaning bin when the robot is received in the maintenance station for maintenance. The robot maintenance includes a collection bin carried by the station housing and in fluid communication with the evacuation port and an air pump that blows air through the station blower port into the cleaning bin while drawing air through the station evacuation port and evacuating debris from the robot cleaning bin into the collection bin.


Implementations of this aspect of the disclosure may include one or more of the following features. In some examples, the robot maintenance station includes a mechanical agitator cleaning assembly arranged to engage a driven cleaning agitator of the cleaning head. The mechanical agitator cleaning assembly includes an agitator comb having multiple teeth configured to remove accumulated debris from the driven cleaning agitator as the agitator comb and driven cleaning agitator are moved relative to one another. A collection bin receives accumulated debris from the agitator removed by the mechanical agitator cleaning assembly. The robot cleaning bin may be removable from the robot and the collection bin may be removable from the maintenance station. In some implementations, the cleaning head includes a vacuuming cleaning head configured to evacuate debris from the floor into the cleaning bin. In some implementations, the cleaning head includes a sweeping cleaning head configured to agitate debris from the floor and sweep the debris into the cleaning bin. The maintenance station may include a locking assembly configured to secure the robot with the station blower port and the station evacuation ports. The station blower port and the station evacuation ports are substantially sealed to the cleaning bin when the robot is received in the maintenance station for maintenance. In some implementations, the robot includes an internal bin maintenance sensor that monitors the contents of the robot cleaning bin for a maintenance condition. The controller of the robot causes the robot to begin seeking the maintenance station in order to dock and evacuate the robot cleaning bin in response to the maintenance condition.


In another aspect, a cleaning robot system includes a robot and a robot maintenance station. The robot includes a chassis, a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system, a cleaning head carried by the chassis and including a mechanical agitator, and a cleaning bin carried by the chassis. The robot maintenance station includes a docking platform configured to support the robot with the robot docked for maintenance and an agitator comb arranged to engage the agitator of the docked robot and configured to remove accumulated debris from the agitator as the agitator comb and agitator are moved relative to one another. The robot maintenance station includes a collection bin disposed more than one foot above the docking platform and an air pump that pumps air past the agitator comb. The pumped air motivates debris removed by the agitator comb into the collection bin.


Implementations of this aspect of the disclosure may include one or more of the following features. In some examples, the air pump also moves a flow of air that evacuates debris from the robot cleaning bin. The mechanical agitator may include one or both of rotating bristle brush members and a rotating pliable beater members. The agitator comb may include one or both of rotating bristle brush members and a rotating pliable beater members. In some examples, the agitator comb includes blades for severing filaments among the debris. In other examples, the agitator comb includes slicker teeth for severing filaments among the debris. The agitator comb may be rotated relative to the mechanical agitator.


In yet another aspect, a cleaning robot system includes a robot and a robot docking station. The robot includes a chassis, a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system, a driven cleaning head rotatably carried by the chassis, and a cleaning bin carried by the chassis and configured to receive debris from the cleaning head during cleaning. The robot docking station includes a docking station housing configured to receive the robot in a docked configuration for robot maintenance, a debris collection bin, and a motorized vacuum pump that draws air and debris from the robot cleaning bin to deposit the debris into the debris collection bin. The collection bin and vacuum pump are removable from the docking station housing as an assembly that also includes a graspable handle and forms a manually operable vacuum cleaner.


Implementations of this aspect of the disclosure may include one or more of the following features. In some examples, the housing of the docking station fluidly connects the motorized vacuum pump to the robot cleaning head to evacuate the robot cleaning head into the collection bin of the manually operable vacuum cleaner. In some implementations, the housing of the docking station fluidly connects the a vacuum cleaner cleaning head of the docking station to the robot cleaning head to evacuate the robot cleaning bin into the collection bin of the manually operable vacuum cleaner. In some examples, the robot cleaning head includes a mechanical agitator and the vacuum cleaner cleaning head includes at least one agitator comb. The housing of the docking station mechanically connecting the agitator comb of the vacuum cleaner cleaning head to the mechanical agitator of the robot cleaning head to remove accumulated debris from the mechanical agitator. The mechanical agitator may include one or both of rotating bristle brush members and a rotating pliable beater members. The agitator comb may include one or both of rotating bristle brush members and a rotating pliable beater members.


The details of one or more implementations of the disclosure are set fourth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1 is a perspective view of a maintenance station and a coverage robot.



FIG. 2 is a perspective view of a maintenance station.



FIG. 3 is a perspective view of a maintenance station and a coverage robot.



FIGS. 4-5 are exploded views of maintenance stations.



FIG. 6A is a top view of a coverage robot.



FIG. 6B is a bottom view of a coverage robot.



FIG. 7 is a side view of a locking assembly.



FIG. 8 is a perspective view of a cleaning assembly of a maintenance station.



FIG. 9 is a perspective view of a coverage robot with bin evacuation ports.



FIGS. 10A-10B are side views of a coverage robot docking with a maintenance station.



FIG. 11A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 11B is a side view of a coverage robot docking with a maintenance station.



FIG. 12A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 12B is a side view of a coverage robot docking with a maintenance station.



FIG. 12C is a schematic side view of a coverage robot having a cleaning bin cover panel operating to clean a floor.



FIG. 12D is a schematic side view of a coverage robot having a cleaning bin cover panel docked with a maintenance station.



FIG. 13A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 13B is a side view of a coverage robot docking with a maintenance station.



FIG. 14A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 14B is a perspective view of a coverage robot docking with a maintenance station.



FIG. 14C is a side view of a coverage robot docking with a maintenance station.



FIG. 15A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 15B is a side view of a coverage robot docking with a maintenance station.



FIG. 16A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 16B is a side view of a coverage robot docking with a maintenance station.



FIG. 17A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 17B is a perspective view of a coverage robot docking with a maintenance station.



FIG. 17C is a side view of a coverage robot docking with a maintenance station.



FIG. 18A is a top view of a roller cleaning system.



FIG. 18B is a perspective view of a roller cleaning system.



FIG. 18C is a side sectional view of a roller cleaning tool.



FIG. 18D is a side view of a roller cleaning tool.



FIGS. 19A-19F are schematic views a coverage robot docking with a maintenance station for servicing.



FIGS. 20A-21B are perspective views of maintenance stations.



FIGS. 22A-22B are side views of maintenance stations and docked coverage robots.



FIGS. 23A-24B are perspective views of hand held maintenance stations.



FIG. 25A is a perspective view of a maintenance station with a trash can portion.



FIG. 25B is a schematic view of a maintenance station with a trash can portion.



FIGS. 26A-27B are perspective views a maintenance station connectable to a house central vacuum system.



FIGS. 27A-27C are schematic views of an upright vacuum cleaner configured to evacuate a coverage robot bin.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION

Referring to FIGS. 1-5, a maintenance station 100 for maintaining a robotic cleaner 10 includes a station housing 120 and a platform 122 on which the robot 10 is supported during servicing. In some examples, the maintenance station 100 defines an inner bay 124 enclosing the platform 122 for housing the robot 10 during servicing or for storage. A door 130 pivotally attached near the bottom of the maintenance station 100 encloses an opening 126 into the inner bay 124. The door 130 may be used as a ramp that the robot 10 maneuvers up to reach the platform 122 (e.g., as shown in FIG. 3). In some examples, the platform 120 includes an elevator configured to elevate the robot 10 up into the station 100 to a servicing position. The elevator may be a timing belt, four-bar linkage, walking beam, or other mechanical device. The elevator is most appropriate for robots having a brush or other mechanical cleaning implement primarily accessible via a lower surface of the robot. In such a case, the elevator elevates the robot 10 by a sufficient amount (e.g., at least one brush diameter, and preferably two brush diameters) such that mechanical servicing members and their driving apparatus can work beneath the robot. In examples where the platform 120 is not enclosed, e.g. FIG. 1, the platform 122 is inclined extending upward from the ground, allowing the robot 10 to maneuver up the platform 120 to a servicing position.


The maintenance station 100 may include a user interface 140 disposed on the housing 120. In some implementations, the user interface 140 is removably attachable to the housing 120 and configured to wirelessly (e.g., via radio frequencies—“RF”—or infrared emissions—“IR”) communicate to a communication module 1400 on the maintenance station 100, and/or to a compatible communication facility on the robot 10. The communication module 1400 includes an emitter 1403 and a detector 1405 configured to emit and detect RF and/or IR signals, which are preferably modulated and encoded with information. Information to be transmitted from the communication module 1400 includes directional signals having a defined area of effect or direction (e.g., homing signals detectable by the robotic cleaner 10 and used to locate and/or drive towards the source of the homing signal), and command signals having encoded content including remote commands (e.g., command or cleaning scheduling information detectable by the robot 10 or navigation devices for the robot 10). The user interface 140 includes buttons 142 and a display 144 allowing a user to input commands or instructions which are then processed by a controller 170 of the maintenance station 100 (or by the robot 10). The display 144 alerts the user to the status of the maintenance station 100 and provides visual feedback in response to commands and instructions inputted by the user. Preferably, the user interface 140 is removable and remotely operable external from the maintenance station 100 using the communication module 1400. In some examples, the user interface 140 is permanently installed on the maintenance station 100. Examples of indicators and controls that may be included on the user interface 140 include power on/off, a station bin full indicator, indicator for the robot on carpet or hardwood (allowing orbit self-adjusting to the surface demands), control to clean only the room the robot 10 or station 100 is placed in, return to station control, pause/resume cleaning, zone control, and scheduling.


The maintenance station 100 includes a collection bin 150 attached to the housing 120. The collection bin 150 is different from a (sweeper, vacuum, or combination) cleaner bin 50 located in the robot 10 in that its primary purpose is to collect and accumulate from the cleaner bin of a mobile robot 10. The collection bin 150 is three to ten times the volumetric capacity of the mobile robot bin 50. As shown in the examples illustrated in FIGS. 1-5, the collection bin 150 may be integral with the housing 120 (FIG. 1), removably attached to a top portion of the housing 120 to be disengaged substantially parallel to the ground (FIG. 3), removably attached to a front or overhanging portion of the housing 120 to be disengaged substantially parallel to the ground from underneath the overhang (FIG. 4), or removably attached to the top of the housing to be disengaged in a vertical direction (FIG. 5).


In the example shown in FIG. 5, the cleaning bin 150 is received by a bin receptacle 152 defined by the housing 120. A station cover 110 pivotally attached to the housing 120 encloses the bin receptacle 152. In some cases, the top of the housing 120 defines the bin receptacle 152 and receives the station cover 110. In other cases, the rear or side of the housing 120 defines the bin receptacle 152 and receives the station cover 110. In some examples, the station cover 110 is unhinged from the housing 120 for servicing the bin 150.


In some implementations, the maintenance station 100 includes a communication port 180. The port 180 may be installed along a bottom side edge of the maintenance station 100 so as not to interfere with nearby internal components. Example configurations of the port 180 include RS232 serial, USB, Ethernet, etc. The primary purpose of the communication port is (i) permitting “flashing” of microcontroller code for controlling the maintenance station 100 and (ii) permitting accessories to the maintenance station 100 (such as an auxiliary brush cleaner discussed herein) to be connected to and controlled along with the maintenance station 100 and robot 10.


Referring to FIG. 3, the maintenance station 100 includes a bin connector 112 configured to mate with a corresponding bin connector 154 on the collection bin 150. The bin connectors 112, 154 provide a flow path for evacuating debris from the robot bin 50 to the maintenance station collection bin 150.


Referring to FIGS. 6A-6B, the autonomous robotic cleaner 10 includes a chassis 31 which carries an outer shell 6. FIG. 6A illustrates the outer shell 6 of the robot 10 connected to a bumper 5. The robot 10 may move in forward and reverse drive directions; consequently, the chassis 31 has corresponding forward and back ends, 31A and 31B respectively. The forward end 31A is fore in the direction of primary mobility and in the direction of the bumper 5; the robot 10 typically moves in the reverse direction primarily during escape, bounces, and obstacle avoidance. A cleaning head assembly 40 is located towards the middle of the robot 10 and installed within the chassis 31. The cleaning head assembly 40 includes a main brush 60 and a secondary parallel brush 65 (either of these brushes may be a pliable multi-vane beater or a have pliable beater flaps 61 between rows of brush bristles 62). A battery 25 is housed within the chassis 31 proximate the cleaning head 40. In some examples, the main 65 and/or the secondary parallel brush 60 are removable. In other examples, the cleaning head assembly 40 includes a fixed main brush 65 and/or secondary parallel brush 60, where fixed refers to a brush permanently installed on the chassis 31.


Installed along either side of the chassis 31 are differentially driven wheels 45 that mobilize the robot 10 and provide two points of support. The forward end 31A of the chassis 31 includes a caster wheel 35 which provides additional support for the robot 10 as a third point of contact with the floor and does not hinder robot mobility. Installed along the side of the chassis 31 is a side brush 20 configured to rotate 360 degrees when the robot 10 is operational. The rotation of the side brush 20 allows the robot 10 to better clean areas adjacent the robot's side by brushing and flicking debris beyond the robot housing in front of the cleaning path, and areas otherwise unreachable by the centrally located cleaning head assembly 40. A removable cleaning bin 50 is located towards the back end 31B of the robot 10 and installed within the outer shell 6.


Referring to FIG. 7, a lock assembly 260 may be installed on the platform 122 for securing the robotic cleaner 10 to the platform 122 via a corresponding lock assembly 72 on a bottom side of robot chassis 31. Referring to FIG. 7, in some implementations, a clip catch 74 is installed on the bottom of the robot chassis 31 and configured to mate with a clip 262 on the maintenance station 100. The clip 262 engages the catch 74 to lock the robot 10 in place during servicing of the bin 50 and/or brushes or rollers 60, 65. In order to service brushes or rollers 60, 65 in particular, if the robot 10 is elevated and the brushes 60, 65 available for service at the bottom of the robot 10, the upward force of rotating, reciprocating, or traversing cleaning tools as discussed herein may lift a relatively light weight robot (e.g., a 3-15 lb robot will be lifted by this much upward force). Accordingly, when the robot 10 is elevated or brought to a brush service position, the mating locking assemblies hold the robot 10 against this upward force. Referring to FIG. 8, in some implementations, the lock assembly 260 includes two protrusions or pegs 264 received by the robot lock assembly 72 to anchor the robot 10. The lock assembly 260 may provide communication (e.g. via the pegs 264) between the robot 10 and the maintenance station 100.


Once contacts on the underside of the robotic cleaner 10 connect with the contacts 264 on the platform 122, the maintenance station 100 may emit a command signal to the robotic cleaner 10 to cease driving. Alternatively, the robot's microcontroller and memory may exercise primary control of the maintenance station and robot combination. In response to the command signal, the robotic cleaner 10 stops driving forward and emits a return signal to the maintenance station 100 indicating that the drive system has shut down. The maintenance station 100 then commences a locking routine that mobilizes the locking assembly 260 to lock and secure the robotic cleaner 10 to the platform 122. Again, alternatively, the robot 10 may command the maintenance station to engage its locks.


Referring to FIG. 8, a cleaning assembly 300 is carried by the housing 120 and includes a bin evacuation (vacuuming) assembly 400 and a mechanical brush or roller cleaning assembly 500. The bin evacuation assembly 400 is secured to the platform 122 and positioned to engage an evacuation port assembly 80 of the cleaning bin 50, as shown in FIG. 9. The evacuation port assembly 80 may include a port cover 55. In some implementations, the port cover 55 includes a panel or panels 55A, 55B which may slide (or be otherwise translated) along a side wall of the chassis 31 and under or over side panels of the outer shell 6 to open the evacuation port assembly 80. The evacuation port assembly 80 is configured to mate with the corresponding evacuation assembly 400 on the maintenance station 100. In some implementations, the evacuation port assembly 80 is installed along an edge of the outer shell 6, on a top most portion of the outer shell 6, on the bottom of the chassis 31, or other similar placements where the evacuation port assembly 80 has ready access to the contents of the cleaning bin 50. In some implementations, the evacuation assembly 400 includes a manifold 410 defining a plurality of evacuation ports 80A, 80B, 80C that are distributed across the entire volume of the cleaning bin 50, e.g., center evacuation port 480A and two side evacuation ports 480B and 480C on either side. The evacuation ports 480A, 480B, 480C on the station 100 are configured to mate with corresponding evacuation ports 80A, 80B, 80C on the robot cleaning bin 50, preferably with a substantially air-tight vacuum seal. In some examples, the evacuation port assembly 80 is disposed on a top or bottom side of the cleaning bin 50. While evacuating from a top-side evacuation port assembly 80, a suction placed on at least one of the evacuation ports 80A, 80B, 80C tends to first draw loosely packed material off a top layer of debris, followed by successive layers of debris. Bin symmetry may aid bin evacuation.


Referring to FIGS. 10A-10B, when the robot 10 maneuvers onto the platform 122 to dock with the station 100 for servicing, the robot 10 is guided or aligned so that the evacuation port assembly 80 on the robot cleaning bin 50 engages the station evacuation assembly 400. The robot 10 may be guided by a homing signal, tracks on the platform 122, guide rails, a lever, or other guiding devices. The evacuation assembly 400 disengages the port cover 55 on the robot cleaning bin 50, in some examples, when the robot 10 docks with the station 100. In some implementations, each evacuation port 480A, 480B, 480C draws debris out of the cleaning bin 50. In other implementations, one or more evacuation ports 480A, 480B, 480C blow air into the cleaning bin 50, while one or more evacuation ports 480A, 480B, 480C draw debris out of the cleaning bin 50. For example, evacuation ports 480B and 480C blow air into the cleaning bin 50, while evacuation port 480A draws debris out of the cleaning bin 50. The evacuation manifold 410 is connected to a debris line that directs evacuated debris to the station bin 150. A filter 910 may be disposed at the intake of a vacuum 900 that provides suction for the evacuation assembly 400.


Referring to FIGS. 11A-12B, in some implementations, the robot 10 includes a port cover 55 accessible on a top side on the robot 10 providing access to the cleaning bin 50. FIGS. 11A-11B illustrate an example where the robot 10 docks with the forward chassis end 31A facing toward the station 100. Upon docking, either the robot 10 or the station 100 opens the port cover 55 to evacuate debris up out of the top of the robot bin 50 and into the station bin 150. FIGS. 12A-12B illustrate an example where the robot 10 docks with the rear chassis end 31B facing toward the station 100 to evacuate debris up out of the top of the robot bin 50 and into the station bin 150. In both examples, the robot 10 maneuvers under a portion of the station 100, which gains access to a top portion of the robot bin 50. As shown in FIG. 12C, a robot 10 cleans along the floor in the manner described herein, driven and supported by wheels 35, 45. Within the outer shell 6, the primary brush 60 turns in a direction opposite to forward travel, and the parallel secondary brush 65 catches debris agitated by the primary brush 60 and ejects it up and over the primary brush 60 into the bin 50. A squeegee vacuum may trail the primary brush 60, part of the bin 50. A panel 55, in this configuration, may cover the top of the brushes, with an angled surface within the chassis 31 or panel 55 to angle debris from the brushes 60, 65 into the bin 50. Referring to FIG. 12C, in some instances, the bin 50 includes a bin-full detection system 700 for sensing an amount of debris present in the bin 50. In one implementation, the bin-full detection system includes an emitter 755 and a detector 760 housed in the bin 50 and in communication with the controller 49.


As shown in FIG. 12D (a variation upon FIGS. 11B and 12B), the robot 10 may follow a platform 122 into the maintenance station 100. Once within or engaged with the maintenance station 100, the panel 55 is moved aside to expose at least the primary brush 60 (to expose any brushes which may accumulate filaments or fuzz, including bristle type brushes). The maintenance station 100 may lower, or locate in predetermined positions, brush-cleaning brush or beater 530 and optionally parallel brush or beater 535. The brush cleaning member/mechanism 530 engages the primary cleaning brush 65, and is driven by a motor (not shown) in the maintenance station 100 (or uses the brush 60 motor) to clean the brush 60. The optional parallel brush 535 may catch the debris or filaments agitated by the brush cleaning brush 530 and eject them up and over the brush 530 to the collection bin 150 in the maintenance station 100. As discussed herein, the collection bin 150 may be a vacuum bin, and include a vacuum filter 910 removable with the bin; may engage the maintenance bin via ports 154, 112, and be evacuated by a vacuum motor 900 in the maintenance station 100. In the configuration shown in FIG. 12D, the vacuum 900 is a high powered vacuum (e.g., 6-12 amp) that pulls air through the filter 910, through the collection bin 150, over and through the brushes 530, 535, and optionally directly or diverted from the cleaning bin 30 of the robot 10. Optionally, the remaining areas of the robot 10 (e.g., circuit board areas) may benefit from evacuation as well, and are not sealed from the vacuum.


Referring to FIGS. 13A-16B, in some implementations, the robot 10 maneuvers onto an inclined platform 122 of the station 100 to provide access to an underside of the robot 10 for servicing the cleaning bin 50. The station 100 evacuates debris down out of the robot bin 50 and into the station bin 150. FIGS. 13A-13B illustrate an example where the robot 10 docks with the station 100 with the forward chassis end 31A facing forward on the platform 122 and debris is evacuated down out of the bottom of the robot bin 50 into the station bin 150. FIGS. 14A-14C illustrate an example where the robot 10 docks with the station 100 with the rear chassis end 31B facing forward on the platform 122 and debris is evacuated down out of the bottom of the robot bin 50 into the station bin 150. FIGS. 15A-15B illustrate an example where the robot 10 docks with the station 100 with the rear chassis end 31B facing forward on the platform 122 and debris is evacuated down out of the bottom of the robot bin 50 and then up into the station bin 150. FIGS. 16A-16B illustrate an example where the robot 10 docks with the station 100 with the forward chassis end 31A facing forward on the platform 122 and debris is evacuated down out of the bottom of the robot bin 50 and then up into the station bin 150.


Referring to FIGS. 17A-17C, in some implementations, the robot 10 docks with the rear chassis end 31B facing toward the station 100 to evacuate debris out of the rear of the robot bin 50 and into the station bin 150. The station bin 150 may be located above, below, or level with the robot bin 50.


In any of the examples described, the evacuation station 100 may evacuate the robot bin to with a sweeper device (e.g. rotating bush or sweeper arm), in conjunction with or instead of vacuuming. In particular, the maintenance station mechanical service structures illustrated in FIGS. 8, 12D, 18A-18C may mechanically service brushes, flappers, beaters, or other rotating or reciprocating cleaning agitators in situ in the robot 10 from the top, bottom, or sides of the robot 10, and/or with the cleaning agitators being articulated to protrude from the robot 10; and/or wholly removed from the robot 10 as a cartridge unit or as a plain brush; and/or with the mechanical service structures being stationary or articulated to intrude into the shell 6 of the robot 10.


Referring to FIGS. 8 and 18A-18D, in some implementations, the platform 122 defines an opening 123 which provides access for the roller cleaning assembly 500 to the cleaning head assembly 40 of the robot 10 for servicing the main 65 brush and/or the secondary brush 60 (optionally included or the robot 10). The roller cleaning assembly 500 includes a driven linear slide guide 502 carrying a cleaning head cleaner 510 and/or a trimmer 520. In some examples, the driven linear slide guide 502 includes a guide mount or rail follower 503 carrying the cleaning head cleaner 510 and slidably secured to a shaft or rail 504. The rail follower 503 is driven by a motor 505 via a belt (as shown), lead screw, rack and pinion, or any other linear motion drive. A rotator 530 rotates the roller 60, 65 during cleaning. The maintenance station 100 includes a controller 1000 in communication with the communication module 1400 and the cleaning assembly 300 that may control the agitation and cleaning processes, set an order of events, and otherwise drive the mechanical and vacuum cleaning facilities described herein in an appropriate order.


The cleaning head cleaner 510, in some examples, includes a series of teeth or combs 512 configured to strip filament and debris from a roller 60, 65. In some implementations, the cleaning head cleaner 510 includes one or more flat, semi-tubular or quarter-tubular tools 511 having teeth 512, dematting rakes 514, combs, or slicker combs. The tubular tool 511 may be independently driven by one or more servo, step or other motors 505 and transmissions (which may be a belt, chain, worm, ball screw, spline, rack and pinion, or any other linear motion drive). In some examples, the roller 60, 65 and the cleaning head cleaner 510 are moved relative to one another. In other examples, the cleaning head cleaner 510 is fixed in place while the roller 60, 65 is moved over the cleaning head cleaner 510.


The roller 60, 65 is placed adjacent the cleaning head cleaner 510, either while in situ in the robot 10, in a removable cleaning head cartridge 40, or as a stand alone roller 60, 65 removed from the robot 10. If the roller 60, 65 is part of a removable cleaning head cartridge 40, the cleaning head cartridge 40 is removed from the robot 10 and placed in the station 100 for cleaning. Once the roller 60, 65 is positioned in the station 100 for cleaning, the station 100 commences a cleaning routine including traversing the cleaning head 510 over the roller 60, 65 such that the teeth 512, dematting rakes 514, combs, or slicker combs, separately or together, cut and remove filaments and debris from the roller 60, 65. In one example, as the cleaning head 510 traverses over the roller 60, 65, the teeth 512 are actuated in a rotating motion to facilitate removal of filaments and debris from the roller 60, 65. In some examples, an interference depth of the teeth 512 into the roller 60, 65 is variable and progressively increases with each subsequent pass of the cleaning head 510.



FIG. 18C illustrates an example semi-tubular tool 600 having first and second ends, 601 and 602 respectively. The first end 601 of the tool 600 defines a semi-bell shaped opening 605. The semi-tubular tool 600 includes teeth 610 disposed along an inner surface 603. In some implementations, the semi-tubular tool 600 includes trailing comb teeth 620, which may grab and trap remaining loose strands of hair or filaments missed or released by the teeth 610. The trailing comb teeth 620 may be more deformable, deeper, thinner, or harder (and vice versa) than the teeth 250 to scrape or sweep exterior surfaces of the roller 60.



FIG. 18D demonstrates a semi-tubular tool 600 in use. The semi-bell shaped opening 605 of the tool 600 is applied toward the roller 60 having bristles 61, facilitating entry of the roller 60 into the tool 60. In cases where the roller 60 includes inner pliable flaps 62, the semi-bell shaped opening 605 is at least slightly larger in diameter than the axial extension or spooling diameter of inner pliable flaps 62. Along the length of the tool 60, the tool 60 narrows to a constant, main diameter, and the inner pliable flaps 62 are deformed by the main inner diameter of the tool 600. In some implementations, the tool 600 defines inner protrusions 615 to deform the bristles 61 and/or the inner pliable flaps 62. Any filaments or hairs collected about the spooling diameter are positioned where they will be caught by the approaching teeth 610 (which extend into the tool 60 to a point that is closer to the roller axis than the undeformed flaps 62, but farther away than an end cap 63). Two kinds of teeth 610 are shown in FIG. 18D, triangular forward canted teeth 610A with a straight leading profile, and shark-tooth forward canted teeth 610B with a curved entry portion or hook, e.g., a U or J-shaped profile on the leading edge of each tooth, opening toward the roller 60 in the direction of tube application. Either or both teeth 610A, 610B may be used, in groups or otherwise. After one or more passes of the tool 600 over the roller 60, the station 100 retracts the tool 600 to a position for tool cleaning and evacuation of debris off the tool 600 and into the station bin 150.


Referring back to FIG. 1B, in some implementations, the robot 10 includes a communication module 90 installed on the bottom of the chassis 31. The communication module 90 provides a communication link between the communication module 1400 on the maintenance station 100 and the robot 10. The communication module 90 of the robot 10, in some instances, includes both an emitter and a detector, and provides an alternative communication path while the robot 10 is located within the maintenance station 100. In some implementations, the robot 10 includes a roller full (brush service) sensor assembly 85 installed on either side of and proximate the cleaning head 40, with a detection path extending along the length of the brush or roller to detect accumulations of filaments or fuzz along the length of the brush or roller. The roller full (brush service) sensor assembly 85 provides user and system feedback regarding a degree of filament wound about the main brush 65, the secondary brush 60, or both. The roller full sensor assembly 85 includes an emitter 85A for emitting modulated beams and a detector 85B configured to detect the beams. The emitter 85A and detector 86B are positioned on opposite sides of the cleaning head roller 60, 65 and aligned to detect filament wound about the cleaning head roller 60, 65. The roller full sensor assembly 85 includes a signal processing circuit configured to receive and interpret detector output. In some examples, the roller full sensor system 85 detects when the roller 60, 65 has accumulated filaments, when roller effectiveness has declined, or when a bin is full (as disclosed in U.S. Provisional Patent No. 60/741,442, filed Dec. 2, 2005, and herein incorporated by reference in its entirety), trigging the return of the robot to a maintenance station 100, as described herein, and notifying the robot 10 or maintenance station 100 that the brush(es) 60, 65 require service or cleaning. As discussed herein, a head cleaning tool 600 configured to clear debris from the cleaning roller 60, 65 in response to a timer, a received command from a remote terminal, the roller full sensor system 85, or a button located on the chassis/body 31 of the robot 10.


Once a cleaning cycle is complete, either via the roller full sensor system 85 or visual observation, the user can open the wire bale and pull out the roller(s) 60, 65. The roller(s) 60, 65 can then be wiped clean off hair and inserted back in place.


Referring to FIGS. 19A-F, in some implementations, the robot 10 includes a removable cleaning head cartridge 40, which includes at least one cleaning roller 60, 65. When the robot 10 determines that cleaning head or cleaning head cartridge 40 needs servicing (e.g. via a bin service, brush service, or roller full detection system 85, a bin full detection system, or a timer) the robot 10 initiates a maintenance routine. Step S19-1, illustrated in FIG. 19A, entails the robot 10 approaching the cleaning station 100 with the aid of a navigation system. In one example, the robot 10 navigates to the cleaning station 100 in response to a received homing signal emitted by the station 100. Docking, confinement, home base, and homing technologies discussed in U.S. Pat. Nos. 7,196,487; 7,188,000 or U.S. Patent Application Publication No. 20050156562 are suitable homing technologies. In step S19-2, illustrated in FIG. 19B, the robot 10 docks with the station 100. In the example shown, the robot 10 maneuvers up a ramp 122 and is secured in place by a locking assembly 260. In step S19-3, illustrated in FIG. 19C, the dirty cartridge 40A is automatically unloaded from the robot 10, either by the robot 10 or the cleaning station 100, into a transfer bay 190 in the cleaning station 100. In some examples, the dirty cartridge 40A is manually unloaded from the robot 10 and placed in the transfer bay 190 by a user. In other examples, the dirty cartridge 40A is automatically unloaded/discharged from the robot 10, but manually placed in the transfer bay 190 by the user. In step S19-4, illustrated in FIG. 19D, the cleaning station 100 exchanges a clean cartridge 40B in a cleaning bay 192 with the dirty cartridge 40A in the transfer bay 190. In one example, the cartridges 40A, 40B are moved by automation in the station 100. In another example, the transfer bay 190 and associated dirty cartridge 40A is automatically swapped with the cleaning bay 192 and associated clean cartridge 40B. In step S19-5, illustrated in FIG. 19E, the cleaning station 100 automatically transfers the clean cartridge 40B into the robot 10. In some examples, the user manually transfers the clean cartridge 40B from the transfer bay 190 into the robot 10. In step S19-6, illustrated in FIG. 19F, the robot 10 exits the station 100 and may continue a cleaning mission. Meanwhile, the dirty cartridge 40A in the station 100 is cleaned. The automated cleaning process may be slower than by hand, require less power, clean more thoroughly, and perform quietly (e.g. by taking many slow passes over the roller 60, 65).


Referring to FIGS. 20A-25B, a maintenance station 1100 evacuates the robot collection bin 50, but does not perform maintenance on the cleaning head assembly 40. FIGS. 20A-21B illustrate examples of the maintenance station 1100 including a station base 1102 and a handheld vacuum 1110 removably secured to the station base 1102. The base 1102 includes an evacuation assembly 400 in communication with the handheld vacuum 1110, while attached thereto. The handheld vacuum 1110 having a handle 1111 either manually (e.g. via operator control) or automatically evacuates the robot bin 50, once the robot 10 docks with the maintenance station 1100. The station base 1102 may include a locking assembly 260 for securing and/or communicating with the robot 10. While detached from the station base 1102, the handheld vacuum 1110 functions as a normal vacuum cleaner. In some examples, the handheld vacuum 1110 includes a vacuum hose 1112 and/or a cleaning head 1105 for cleaning surfaces. The station base 1102 may defines receptacles 1104 for receiving and storing vacuum attachments 1114. In some implementations, the station base 1102 includes a separate station bin 1150 from the handheld vacuum 1110.



FIGS. 22A-24B illustrate an example of the maintenance station 1100 including a handheld vacuum 1110 configured to be received directly by the bin 50 of the robot 10 for evacuation of debris out of the bin 50 and into the station bin 1150. In FIG. 21A, the maintenance station 1100 includes a station base 1102. In FIGS. 21B-24B, the maintenance station 1100 does not include a station base 1102. Instead, the handheld vacuum 1110 either supports itself or is held by a user during bin evacuation. A house attachment 1120 may be used to aid bin evacuation.



FIGS. 25A-25B illustrates an example of a maintenance station 1200 configured as a trash container or other utility “furniture”. The maintenance station 1200 includes a docking portion 1202 and a trash can portion 1210 including a trash can lid 1212. The docking portion 1202 is configured to evacuate debris from the docked robot bin 50 directly into a trash receptacle of the trash can portion 1210. The trash receptacle is accessible by the user for depositing other refuse as well. In some implementations, the trash can portion 1210 includes a trash compactor that periodically (or upon user command) compacts refuse in the trash can portion 1210. In such a case, the robot 10 may follow a platform 122 into a maintenance station 100 that includes a trash can portion 1210 (in this case, the maintenance station 100 may also be wholly enclosed in or part of the trash can 1200). Once within or engaged with the maintenance station 100, the panel 55 is moved aside to expose at least the primary brush 60 (to expose any brushes which may accumulate filaments or fuzz, including bristle type brushes). The docking portion 1202 may lower, or locate in predetermined positions, brush-cleaning brush or beater 530. The brush cleaning member/mechanism 530 engages the primary cleaning brush 65 of the robot 10, and is driven by a motor (not shown) in the maintenance station 100. The debris or filaments agitated by the brush cleaning brush 530 are collected in the trash can portion via ducting and hoses, entering a collection bin 150. FIG. 25B depicts alternative or combinable variations: a variation in which the collection bin 150 is a smaller bin accessible by opening the trash can lid 1212 (i.e., proximate the lid 1212); and a variation in which the collection bin 150 is replaced by or auxiliary to a container or receptacle for ordinary bin liners 150A or, e.g., 30 liter kitchen bags. In either variation (and generally herein as a replacement for a vacuum-bag or filter vacuum system), a cyclonic or other circulatory bagless vacuuming system that diverts debris using centripetal acceleration of debris may be used to divert the debris from the vacuum filter or flow. In each case, the smaller collection bin 150 may periodically (by timer, and/or full status as measured by a capacity sensor; and or every time the trash can lid 1212 is opened) be emptied into the main bin line 150, e.g., by opening a panel or door with a solenoid, motor, clutch, linkage to the lid 1212 and driven by lifting the lid 1212, or other actuator. As discussed herein, the collection bin 150 may be a vacuum bin, and include a vacuum filter 910 removable with the bin or removable separately from the trash can portion 1210 and is evacuated by a vacuum motor 900 in the maintenance station 100/trash can portion 1210. In the configuration shown in FIG. 25B, the vacuum 900 is a high powered vacuum (e.g., 6-12 amp) that pulls air through the filter 910 and via the collection bin 150, through ducting and hoses along or within the trash can portion 1210, over and through the brush 530, and optionally directly or diverted from the cleaning bin 30 of the robot 10. Optionally, the remaining areas of the robot 10 (e.g., circuit board areas) may benefit from evacuation as well, and are not sealed from the vacuum.



FIGS. 26A-26B illustrate an example of a wall mounted maintenance station 1300 to which the robot 10 docks for bin evacuation. The wall mounted maintenance station 1300 may be connected to a central vacuum system of a house or stand alone with a station bin 1350. A door 1312 pivotally attached to a station housing 1310 provides access to interior portions of the station housing 1310, which may house the station bin 1350 (if not connected to a central vacuum system), hoses, and vacuum attachments.



FIGS. 27A-27C illustrate an example where an upright vacuum cleaner 1400 is configured to evacuate the robot bin 50. The upright vacuum cleaner 1400 includes a vacuum head 1410 configured to mate with the robot bin 50 for evacuation of the bin 50. In such a case, the robot 10 may follow a platform 122 into a maintenance station 100 that receives the upright 1400 (in this case, the maintenance station 100 may also be wholly enclosed in or part of the upright 1400). Once within or engaged with the maintenance station 100, the panel 55 is moved aside to expose at least the primary brush 60 (to expose any brushes which may accumulate filaments or fuzz, including bristle type brushes). The maintenance station/upright 1400 may lower, or locate in predetermined positions, brush-cleaning brush or beater 530. The brush cleaning member/mechanism 530, in this case the upright's main cleaning brush or beater, engages the primary cleaning brush 65 of the robot 10, and is driven by a motor (not shown) in the maintenance station 100/upright 1400, the same motor usually used to rotate the brush cleaning member 530 in its role as the main beater or cleaning brush of the upright 1400. The debris or filaments agitated by the brush cleaning brush 530 are collected in the upright via ducting and hoses, entering the collection bin 150 in the maintenance station 100/upright 1400, in this case the collection bin 150 being the same as the main cleaning bin of the upright. As discussed herein, the collection bin 150 may be a vacuum bin, and include a vacuum filter 910 removable with the bin or removable separately from the upright 1400 and is evacuated by a vacuum motor 900 in the maintenance station 100. In the configuration shown in FIG. 27C, the vacuum 900 is a high powered vacuum (e.g., 6-12 amp) that pulls air through the filter 910 and via the collection bin 150, through ducting and hoses along or within the upright handle and cleaning head assembly, over and through the brush 530, and optionally directly or diverted from the cleaning bin 30 of the robot 10. Optionally, the remaining areas of the robot 10 (e.g., circuit board areas) may benefit from evacuation as well, and are not sealed from the vacuum.


Other details and features combinable with those described herein may be found in the following U.S. patent applications filed concurrently herewith, entitled “COVERAGE ROBOTS AND ASSOCIATED CLEANING BINS” having assigned Ser. No. 11/751,267; and “CLEANING ROBOT ROLLER PROCESSING” having assigned Ser. No. 11/751,413, the entire contents of the aforementioned applications are hereby incorporated by reference.


A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.

Claims
  • 1-15. (canceled)
  • 16. A cleaning robot system comprising: a mobile robot comprising: a debris bin configured to hold debris retrieved by the mobile robot from a surface traversed by the mobile robot, wherein the mobile robot further comprises at least one roller or a brush configured to direct the debris on the surface toward the debris bin, whereby the surface being traversed is cleaned; anda controller configured to wirelessly communicate with a user interface device, andan evacuation station comprising: an intake port configured to align to an exhaust port of the debris bin;a collection unit configured to store debris from the debris bin;a conduit extending from the intake port through which debris is transported from the exhaust port of the debris bin to the collection unit when the intake port is aligned with the exhaust port of the debris bin;a motor configured to provide suction at the debris bin to remove debris from the debris bin of the mobile robot; anda graspable handle attached to the collection unit, the graspable handle configured to disengage the collection unit from the evacuation station.
  • 17. The cleaning robot system of claim 16, wherein the controller is configured to receive scheduling commands from the user interface device.
  • 18. The cleaning robot system of claim 16, wherein the controller is configured to provide a debris bin full indication to the user interface device.
  • 19. The cleaning robot system of claim 16, wherein the controller is configured to provide a floor type indication to the user interface device.
  • 20. The cleaning robot system of claim 16, wherein the mobile robot comprises an infrared homing system configured to position the mobile robot with respect to the evacuation station.
  • 21. The cleaning robot system of claim 20, wherein the infrared homing system comprises an infrared receiver.
  • 22. The cleaning robot system of claim 16, wherein the evacuation station comprises: a first portion comprising a first bin connector; anda second portion comprising a second bin connector configured to mate with the first bin connector, wherein the second portion is removable from the first portion.
  • 23. The cleaning robot system of claim 22, wherein the first bin connector and the second bin connector provide a flow path for debris from the debris bin of the mobile robot to the collection bin of the evacuation station.
  • 24. The cleaning robot system of claim 23, wherein the second portion of the evacuation station comprises the collection bin and the graspable handle.
  • 25. The cleaning robot system of claim 16, wherein the evacuation station comprises a controller configured to provide a bin full indicator to a user interface device.
  • 26. The evacuation station of claim 16, wherein a capacity of the collection unit of the evacuation station is 3 to 10 times larger than a capacity of the debris bin of the mobile robot.
  • 27. An evacuation station comprising: an intake port configured to align to an exhaust port of a debris bin in a mobile cleaning robot, the intake port extending in a horizontal direction, a bottom surface of the intake port being located above bottom surface of the mobile cleaning robot, a top surface of the intake port being located below a top surface of the mobile cleaning robot;a collection unit configured to store debris from the debris bin;a conduit extending from the intake port through which debris is transported from the exhaust port to the collection unit when the intake port is aligned with the exhaust port;a motor configured to provide suction at the debris bin to remove debris from the debris bin of the mobile cleaning robot; anda graspable handle attached to the collection unit, the graspable handle configured to disengage the collection unit from the evacuation station.
  • 28. The evacuation station of claim 27, comprising a controller configured to provide a bin full indicator to a user interface device.
  • 29. The evacuation station of claim 27, comprising: a first portion comprising a first bin connector; anda second portion comprising a second bin connector configured to mate with the first bin connector, wherein the second portion is removable from the first portion.
  • 30. The evacuation station of claim 29, wherein the first bin connector and the second bin connector provide a flow path for debris from the debris bin of the mobile cleaning robot to the collection unit of the evacuation station.
  • 31. The evacuation station of claim 30, wherein the second portion of the evacuation station comprises the collection unit and the graspable handle.
  • 32. The evacuation station of claim 27, wherein a capacity of the collection unit of the evacuation station is 3 to 10 times larger than a capacity of the debris bin of the mobile cleaning robot.
CROSS-REFERENCE TO RELATED APPLICATIONS

This U.S. patent application is a continuation of and claims priority to under 35 U.S.C. § 120 from, U.S. application Ser. No. 16/774,849, filed on Jan. 28, 2020, which is continuation of, and claims priority under 35 U.S.C. § 120 from, U.S. application Ser. No. 16/544,235, filed on Aug. 19, 2019, which is a continuation of, and claims priority under 35 U.S.C. § 120 from, U.S. Ser. No. 15/278,772, filed on Sep. 28, 2016, which is a continuation of and claims priority to U.S. patent application Ser. No. 14/140,099, filed on Dec. 24, 2013 (now U.S. Pat. No. 9,492,048), which is a continuation of and claims priority to U.S. patent application Ser. No. 12/687,464, filed on Jan. 14, 2010, which is a continuation of, and claims priority to U.S. patent application Ser. No. 11/751,470, filed on May 21, 2007, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent applications 60/747,791, filed on May 19, 2006, 60/803,504, filed on May 30, 2006, and 60/807,442, filed on Jul. 14, 2006. The disclosures of these prior applications are considered part of the disclosure of this application and are hereby incorporated by reference in their entireties.

Provisional Applications (3)
Number Date Country
60747791 May 2006 US
60803504 May 2006 US
60807442 Jul 2006 US
Continuations (6)
Number Date Country
Parent 16774849 Jan 2020 US
Child 16778447 US
Parent 16544235 Aug 2019 US
Child 16774849 US
Parent 15278772 Sep 2016 US
Child 16544235 US
Parent 14140099 Dec 2013 US
Child 15278772 US
Parent 12687464 Jan 2010 US
Child 14140099 US
Parent 11751470 May 2007 US
Child 12687464 US