Removing debris from cleaning robots

Abstract
A cleaning robot system includes a robot and a robot maintenance station. The robot includes a chassis, a drive system configured to maneuver the robot as directed by a controller, and a cleaning assembly including a cleaning assembly housing and a driven cleaning roller. The robot maintenance station includes a station housing and a docking platform configured to support the robot when docked. A mechanical agitator engages the roller of the robot with the robot docked. The agitator includes an agitator comb having multiple teeth configured to remove accumulated debris from the roller as the agitator comb and roller are moved relative to one another. The robot maintenance station includes a collection bin arranged to receive and hold debris removed by the mechanical agitator.
Description
TECHNICAL FIELD

This disclosure relates to cleaning systems for coverage robots.


BACKGROUND

Autonomous robots are robots which can perform desired tasks in unstructured environments without continuous human guidance. Many kinds of robots are autonomous to some degree. Different robots can be autonomous in different ways. An autonomous coverage robot traverses a work surface without continuous human guidance to perform one or more tasks. In the field of home, office and/or consumer-oriented robotics, mobile robots that perform household functions such as vacuum cleaning, floor washing, lawn cutting and other such tasks have become commercially available.


SUMMARY

In one aspect, a cleaning robot system includes a robot and a robot maintenance station. The robot includes a chassis, a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system, and a cleaning assembly carried by the chassis. The cleaning assembly includes a cleaning assembly housing and a driven cleaning roller rotatably coupled to the cleaning assembly housing. The robot maintenance station includes a station housing and a docking platform carried by the station housing and configured to support the robot when docked. A mechanical agitator engages the roller of the robot with the robot docked. The agitator includes an agitator comb having multiple teeth configured to remove accumulated debris from the roller as the agitator comb and roller are moved relative to one another. The robot maintenance station includes a collection bin arranged to receive and hold debris removed by the mechanical agitator.


Implementations of this aspect of the disclosure may include one or more of the following features. In some examples, the robot maintenance station includes a station evacuation port configured to mate with the robot when the robot is received in the robot maintenance station for maintenance and a motorized vacuum pump in fluid communication with the collection bin and the station evacuation port. The motorized vacuum pump is configured to draw air into the vacuum pump and to evacuate accumulated debris removed by the mechanical agitator cleaning assembly into the collection bin. In some examples, the robot includes a downward facing cleaning agitator and the docking platform includes a locking assembly configured to secure the received robot to the platform so that the mechanical agitator cleaning assembly does not force the robot from the platform. The mechanical agitator cleaning assembly may include one or more blades configured to cut accumulated filaments off the roller. The mechanical agitator cleaning assembly may include an actuator configured to move the agitator of the docked robot. The cleaning robot system may include a vacuum assembly configured to evacuate cut filaments off the mechanical agitator cleaning assembly.


In another aspect, a cleaning robot system includes a robot and a robot maintenance station. The robot includes a chassis, a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system, and a cleaning assembly carried by the chassis. The cleaning assembly includes a cleaning assembly housing and a driven cleaning roller rotatably coupled to the cleaning assembly housing. The robot includes a cleaning bin carried by the chassis. The robot maintenance includes a station housing configured to receive the robot for maintenance. The station housing defines a blower port and an evacuation port spaced from the blower port. The station blower port and the evacuation port are both arranged to be exposed to the robot cleaning bin when the robot is received in the maintenance station for maintenance. The robot maintenance includes a collection bin carried by the station housing and in fluid communication with the evacuation port and an air pump that blows air through the station blower port into the cleaning bin while drawing air through the station evacuation port and evacuating debris from the robot cleaning bin into the collection bin.


Implementations of this aspect of the disclosure may include one or more of the following features. In some examples, the robot maintenance station includes a mechanical agitator cleaning assembly arranged to engage a driven cleaning agitator of the cleaning head. The mechanical agitator cleaning assembly includes an agitator comb having multiple teeth configured to remove accumulated debris from the driven cleaning agitator as the agitator comb and driven cleaning agitator are moved relative to one another. A collection bin receives accumulated debris from the agitator removed by the mechanical agitator cleaning assembly. The robot cleaning bin may be removable from the robot and the collection bin may be removable from the maintenance station. In some implementations, the cleaning head includes a vacuuming cleaning head configured to evacuate debris from the floor into the cleaning bin. In some implementations, the cleaning head includes a sweeping cleaning head configured to agitate debris from the floor and sweep the debris into the cleaning bin. The maintenance station may include a locking assembly configured to secure the robot with the station blower port and the station evacuation ports. The station blower port and the station evacuation ports are substantially sealed to the cleaning bin when the robot is received in the maintenance station for maintenance. In some implementations, the robot includes an internal bin maintenance sensor that monitors the contents of the robot cleaning bin for a maintenance condition. The controller of the robot causes the robot to begin seeking the maintenance station in order to dock and evacuate the robot cleaning bin in response to the maintenance condition.


In another aspect, a cleaning robot system includes a robot and a robot maintenance station. The robot includes a chassis, a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system, a cleaning head carried by the chassis and including a mechanical agitator, and a cleaning bin carried by the chassis. The robot maintenance station includes a docking platform configured to support the robot with the robot docked for maintenance and an agitator comb arranged to engage the agitator of the docked robot and configured to remove accumulated debris from the agitator as the agitator comb and agitator are moved relative to one another. The robot maintenance station includes a collection bin disposed more than one foot above the docking platform and an air pump that pumps air past the agitator comb. The pumped air motivates debris removed by the agitator comb into the collection bin.


Implementations of this aspect of the disclosure may include one or more of the following features. In some examples, the air pump also moves a flow of air that evacuates debris from the robot cleaning bin. The mechanical agitator may include one or both of rotating bristle brush members and a rotating pliable beater members. The agitator comb may include one or both of rotating bristle brush members and a rotating pliable beater members. In some examples, the agitator comb includes blades for severing filaments among the debris. In other examples, the agitator comb includes slicker teeth for severing filaments among the debris. The agitator comb may be rotated relative to the mechanical agitator.


In yet another aspect, a cleaning robot system includes a robot and a robot docking station. The robot includes a chassis, a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system, a driven cleaning head rotatably carried by the chassis, and a cleaning bin carried by the chassis and configured to receive debris from the cleaning head during cleaning. The robot docking station includes a docking station housing configured to receive the robot in a docked configuration for robot maintenance, a debris collection bin, and a motorized vacuum pump that draws air and debris from the robot cleaning bin to deposit the debris into the debris collection bin. The collection bin and vacuum pump are removable from the docking station housing as an assembly that also includes a graspable handle and forms a manually operable vacuum cleaner.


Implementations of this aspect of the disclosure may include one or more of the following features. In some examples, the housing of the docking station fluidly connects the motorized vacuum pump to the robot cleaning head to evacuate the robot cleaning head into the collection bin of the manually operable vacuum cleaner. In some implementations, the housing of the docking station fluidly connects the a vacuum cleaner cleaning head of the docking station to the robot cleaning head to evacuate the robot cleaning bin into the collection bin of the manually operable vacuum cleaner. In some examples, the robot cleaning head includes a mechanical agitator and the vacuum cleaner cleaning head includes at least one agitator comb. The housing of the docking station mechanically connecting the agitator comb of the vacuum cleaner cleaning head to the mechanical agitator of the robot cleaning head to remove accumulated debris from the mechanical agitator. The mechanical agitator may include one or both of rotating bristle brush members and a rotating pliable beater members. The agitator comb may include one or both of rotating bristle brush members and a rotating pliable beater members.


The details of one or more implementations of the disclosure are set fourth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1 is a perspective view of a maintenance station and a coverage robot.



FIG. 2 is a perspective view of a maintenance station.



FIG. 3 is a perspective view of a maintenance station and a coverage robot.



FIGS. 4-5 are exploded views of maintenance stations.



FIG. 6A is a top view of a coverage robot.



FIG. 6B is a bottom view of a coverage robot.



FIG. 7 is a side view of a locking assembly.



FIG. 8 is a perspective view of a cleaning assembly of a maintenance station.



FIG. 9 is a perspective view of a coverage robot with bin evacuation ports.



FIGS. 10A-10B are side views of a coverage robot docking with a maintenance station.



FIG. 11A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 11B is a side view of a coverage robot docking with a maintenance station.



FIG. 12A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 12B is a side view of a coverage robot docking with a maintenance station.



FIG. 12C is a schematic side view of a coverage robot having a cleaning bin cover panel operating to clean a floor.



FIG. 12D is a schematic side view of a coverage robot having a cleaning bin cover panel docked with a maintenance station.



FIG. 13A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 13B is a side view of a coverage robot docking with a maintenance station.



FIG. 14A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 14B is a perspective view of a coverage robot docking with a maintenance station.



FIG. 14C is a side view of a coverage robot docking with a maintenance station.



FIG. 15A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 15B is a side view of a coverage robot docking with a maintenance station.



FIG. 16A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 16B is a side view of a coverage robot docking with a maintenance station.



FIG. 17A is a perspective view of a coverage robot docking with a maintenance station.



FIG. 17B is a perspective view of a coverage robot docking with a maintenance station.



FIG. 17C is a side view of a coverage robot docking with a maintenance station.



FIG. 18A is a top view of a roller cleaning system.



FIG. 18B is a perspective view of a roller cleaning system.



FIG. 18C is a side sectional view of a roller cleaning tool.



FIG. 18D is a side view of a roller cleaning tool.



FIGS. 19A-19F are schematic views a coverage robot docking with a maintenance station for servicing.



FIGS. 20A-21B are perspective views of maintenance stations.



FIGS. 22A-22B are side views of maintenance stations and docked coverage robots.



FIGS. 23A-24B are perspective views of hand held maintenance stations.



FIG. 25A is a perspective view of a maintenance station with a trash can portion.



FIG. 25B is a schematic view of a maintenance station with a trash can portion.



FIGS. 26A-27B are perspective views a maintenance station connectible to a house central vacuum system.



FIGS. 27A-27C are schematic views of an upright vacuum cleaner configured to evacuate a coverage robot bin.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION

Referring to FIGS. 1-5, a maintenance station 100 for maintaining a robotic cleaner 10 includes a station housing 120 and a platform 122 on which the robot 10 is supported during servicing. In some examples, the maintenance station 100 defines an inner bay 124 enclosing the platform 122 for housing the robot 10 during servicing or for storage. A door 130 pivotally attached near the bottom of the maintenance station 100 encloses an opening 126 into the inner bay 124. The door 130 may be used as a ramp that the robot 10 maneuvers up to reach the platform 122 (e.g., as shown in FIG. 3). In some examples, the platform 120 includes an elevator configured to elevate the robot 10 up into the station 100 to a servicing position. The elevator may be a timing belt, four-bar linkage, walking beam, or other mechanical device. The elevator is most appropriate for robots having a brush or other mechanical cleaning implement primarily accessible via a lower surface of the robot. In such a case, the elevator elevates the robot 10 by a sufficient amount (e.g., at least one brush diameter, and preferably two brush diameters) such that mechanical servicing members and their driving apparatus can work beneath the robot. In examples where the platform 120 is not enclosed, e.g. FIG. 1, the platform 122 is inclined extending upward from the ground, allowing the robot 10 to maneuver up the platform 120 to a servicing position.


The maintenance station 100 may include a user interface 140 disposed on the housing 120. In some implementations, the user interface 140 is removably attachable to the housing 120 and configured to wirelessly (e.g., via radio frequencies—“RF”—or infrared emissions—“IR”) communicate to a communication module 1400 on the maintenance station 100, and/or to a compatible communication facility on the robot 10. The communication module 1400 includes an emitter 1403 and a detector 1405 configured to emit and detect RF and/or IR signals, which are preferably modulated and encoded with information. Information to be transmitted from the communication module 1400 includes directional signals having a defined area of effect or direction (e.g., homing signals detectable by the robotic cleaner 10 and used to locate and/or drive towards the source of the homing signal), and command signals having encoded content including remote commands (e.g., command or cleaning scheduling information detectable by the robot 10 or navigation devices for the robot 10). The user interface 140 includes buttons 142 and a display 144 allowing a user to input commands or instructions which are then processed by a controller 170 of the maintenance station 100 (or by the robot 10). The display 144 alerts the user to the status of the maintenance station 100 and provides visual feedback in response to commands and instructions inputted by the user. Preferably, the user interface 140 is removable and remotely operable external from the maintenance station 100 using the communication module 1400. In some examples, the user interface 140 is permanently installed on the maintenance station 100. Examples of indicators and controls that may be included on the user interface 140 include power on/off, a station bin full indicator, indicator for the robot on carpet or hardwood (allowing orbit self-adjusting to the surface demands), control to clean only the room the robot 10 or station 100 is placed in, return to station control, pause/resume cleaning, zone control, and scheduling.


The maintenance station 100 includes a collection bin 150 attached to the housing 120. The collection bin 150 is different from a (sweeper, vacuum, or combination) cleaner bin 50 located in the robot 10 in that its primary purpose is to collect and accumulate from the cleaner bin of a mobile robot 10. The collection bin 150 is three to ten times the volumetric capacity of the mobile robot bin 50. As shown in the examples illustrated in FIGS. 1-5, the collection bin 150 may be integral with the housing 120 (FIG. 1), removably attached to a top portion of the housing 120 to be disengaged substantially parallel to the ground (FIG. 3), removably attached to a front or overhanging portion of the housing 120 to be disengaged substantially parallel to the ground from underneath the overhang (FIG. 4), or removably attached to the top of the housing to be disengaged in a vertical direction (FIG. 5).


In the example shown in FIG. 5, the cleaning bin 150 is received by a bin receptacle 152 defined by the housing 120. A station cover 110 pivotally attached to the housing 120 encloses the bin receptacle 152. In some cases, the top of the housing 120 defines the bin receptacle 152 and receives the station cover 110. In other cases, the rear or side of the housing 120 defines the bin receptacle 152 and receives the station cover 110. In some examples, the station cover 110 is unhinged from the housing 120 for servicing the bin 150.


In some implementations, the maintenance station 100 includes a communication port 180. The port 180 may be installed along a bottom side edge of the maintenance station 100 so as not to interfere with nearby internal components. Example configurations of the port 180 include RS232 serial, USB, Ethernet, etc. The primary purpose of the communication port is (i) permitting “flashing” of microcontroller code for controlling the maintenance station 100 and (ii) permitting accessories to the maintenance station 100 (such as an auxiliary brush cleaner discussed herein) to be connected to and controlled along with the maintenance station 100 and robot 10.


Referring to FIG. 3, the maintenance station 100 includes a bin connecter 112 configured to mate with a corresponding bin connector 154 on the collection bin 150.


The bin connectors 112, 154 provide a flow path for evacuating debris from the robot bin 50 to the maintenance station collection bin 150.


Referring to FIGS. 6A-6B, the autonomous robotic cleaner 10 includes a chassis 31 which carries an outer shell 6. FIG. 6A illustrates the outer shell 6 of the robot 10 connected to a bumper 5. The robot 10 may move in forward and reverse drive directions; consequently, the chassis 31 has corresponding forward and back ends, 31A and 31B respectively. The forward end 31A is fore in the direction of primary mobility and in the direction of the bumper 5; the robot 10 typically moves in the reverse direction primarily during escape, bounces, and obstacle avoidance. A cleaning head assembly 40 is located towards the middle of the robot 10 and installed within the chassis 31. The cleaning head assembly 40 includes a main brush 60 and a secondary parallel brush 65 (either of these brushes may be a pliable multi-vane beater or a have pliable beater flaps 61 between rows of brush bristles 62). A battery 25 is housed within the chassis 31 proximate the cleaning head 40. A controller 49 is housed within the chassis 31. In some examples, the main 65 and/or the secondary parallel brush 60 are removable. In other examples, the cleaning head assembly 40 includes a fixed main brush 65 and/or secondary parallel brush 60, where fixed refers to a brush permanently installed on the chassis 31. In some examples, the robot includes a vacuuming cleaning head 44 configured to evacuate debris from a floor into the cleaning bin 50.


Installed along either side of the chassis 31 are differentially driven wheels 45 that mobilize the robot 10 and provide two points of support. The forward end 31A of the chassis 31 includes a caster wheel 35 which provides additional support for the robot 10 as a third point of contact with the floor and does not hinder robot mobility. Installed along the side of the chassis 31 is a side brush 20 configured to rotate 360 degrees when the robot 10 is operational. The rotation of the side brush 20 allows the robot 10 to better clean areas adjacent the robot's side by brushing and flicking debris beyond the robot housing in front of the cleaning path, and areas otherwise unreachable by the centrally located cleaning head assembly 40. A removable cleaning bin 50 is located towards the back end 31B of the robot 10 and installed within the outer shell 6.


Referring to FIG. 7, a lock assembly 260 may be installed on the platform 122 for securing the robotic cleaner 10 to the platform 122 via a corresponding lock assembly 72 on a bottom side of robot chassis 31. Referring to FIG. 7, in some implementations, a clip catch 74 is installed on the bottom of the robot chassis 31 and configured to mate with a clip 262 on the maintenance station 100. The clip 262 engages the catch 74 to lock the robot 10 in place during servicing of the bin 50 and/or brushes or rollers 60, 65. In order to service brushes or rollers 60, 65 in particular, if the robot 10 is elevated and the brushes 60, 65 available for service at the bottom of the robot 10, the upward force of rotating, reciprocating, or traversing cleaning tools as discussed herein may lift a relatively light weight robot (e.g., a 3-15 lb robot will be lifted by this much upward force). Accordingly, when the robot 10 is elevated or brought to a brush service position, the mating locking assemblies hold the robot 10 against this upward force. Referring to FIG. 8, in some implementations, the lock assembly 260 includes two protrusions or pegs 264 received by the robot lock assembly 72 to anchor the robot 10. The lock assembly 260 may provide communication (e.g. via the pegs 264) between the robot 10 and the maintenance station 100.


Once contacts on the underside of the robotic cleaner 10 connect with the contacts 264 on the platform 122, the maintenance station 100 may emit a command signal to the robotic cleaner 10 to cease driving. Alternatively, the robot's microcontroller and memory may exercise primary control of the maintenance station and robot combination. In response to the command signal, the robotic cleaner 10 stops driving forward and emits a return signal to the maintenance station 100 indicating that the drive system has shut down. The maintenance station 100 then commences a locking routine that mobilizes the locking assembly 260 to lock and secure the robotic cleaner 10 to the platform 122. Again, alternatively, the robot 10 may command the maintenance station to engage its locks.


Referring to FIG. 8, a cleaning assembly 300 is carried by the housing 120 and includes a bin evacuation (vacuuming) assembly 400 and a mechanical brush or roller cleaning assembly 500. The bin evacuation assembly 400 is secured to the platform 122 and positioned to engage an evacuation port assembly 80 of the cleaning bin 50, as shown in FIG. 9. The evacuation port assembly 80 may include a port cover 55. In some implementations, the port cover 55 includes a panel or panels 55A, 55B which may slide (or be otherwise translated) along a side wall of the chassis 31 and under or over side panels of the outer shell 6 to open the evacuation port assembly 80. The evacuation port assembly 80 is configured to mate with the corresponding evacuation assembly 400 on the maintenance station 100. In some implementations, the evacuation port assembly 80 is installed along an edge of the outer shell 6, on a top most portion of the outer shell 6, on the bottom of the chassis 31, or other similar placements where the evacuation port assembly 80 has ready access to the contents of the cleaning bin 50. In some implementations, the evacuation assembly 400 includes a manifold 410 defining a plurality of evacuation ports 80A, 80B, 80C that are distributed across the entire volume of the cleaning bin 50, e.g., center evacuation port 480A and two side evacuation ports 480B and 480C on either side. The evacuation ports 480A, 480B, 480C on the station 100 are configured to mate with corresponding evacuation ports 80A, 80B, 80C on the robot cleaning bin 50, preferably with a substantially air-tight vacuum seal. In some examples, the evacuation port assembly 80 is disposed on a top or bottom side of the cleaning bin 50. While evacuating from a top-side evacuation port assembly 80, a suction placed on at least one of the evacuation ports 80A, 80B, 80C tends to first draw loosely packed material off a top layer of debris, followed by successive layers of debris. Bin symmetry may aid bin evacuation.


Referring to FIGS. 10A-10B, when the robot 10 maneuvers onto the platform 122 to dock with the station 100 for servicing, the robot 10 is guided or aligned so that the evacuation port assembly 80 on the robot cleaning bin 50 engages the station evacuation assembly 400. The robot 10 may be guided by a homing signal, tracks on the platform 122, guide rails, a lever, or other guiding devices. The evacuation assembly 400 disengages the port cover 55 on the robot cleaning bin 50, in some examples, when the robot 10 docks with the station 100. In some implementations, each evacuation port 480A, 480B, 480C draws debris out of the cleaning bin 50. In other implementations, one or more evacuation ports 480A, 480B, 480C blow air into the cleaning bin 50, while one or more evacuation ports 480A, 480B, 480C draw debris out of the cleaning bin 50. For example, evacuation ports 480B and 480C blow air into the cleaning bin 50, while evacuation port 480A draws debris out of the cleaning bin 50. The evacuation manifold 410 is connected to a debris line that directs evacuated debris to the station bin 150. A filter 910 may be disposed at the intake of a vacuum 900 that provides suction for the evacuation assembly 400.


Referring to FIGS. 11A-12B, in some implementations, the robot 10 includes a port cover 55 accessible on a top side on the robot 10 providing access to the cleaning bin 50. FIGS. 11A-11B illustrate an example where the robot 10 docks with the forward chassis end 31A facing toward the station 100. Upon docking, either the robot 10 or the station 100 opens the port cover 55 to evacuate debris up out of the top of the robot bin 50 and into the station bin 150. FIGS. 12A-12B illustrate an example where the robot 10 docks with the rear chassis end 31B facing toward the station 100 to evacuate debris up out of the top of the robot bin 50 and into the station bin 150. In both examples, the robot 10 maneuvers under a portion of the station 100, which gains access to a top portion of the robot bin 50. As shown in FIG. 12C, a robot 10 cleans along the floor in the manner described herein, driven and supported by wheels 35, 45. Within the outer shell 6, the primary brush 60 turns in a direction opposite to forward travel, and the parallel secondary brush 65 catches debris agitated by the primary brush 60 and ejects it up and over the primary brush 60 into the bin 50. A squeegee vacuum may trail the primary brush 60, part of the bin 50. A panel 55, in this configuration, may cover the top of the brushes, with an angled surface within the chassis 31 or panel 55 to angle debris from the brushes 60, 65 into the bin 50. Referring to FIG. 12C, in some instances, the bin 50 includes a bin-full detection system 700 for sensing an amount of debris present in the bin 50. In one implementation, the bin-full detection system includes an emitter 755 and a detector 760 housed in the bin 50 and in communication with the controller 49.


As shown in FIG. 12D (a variation upon FIGS. 11B and 12B), the robot 10 may follow a platform 122 into the maintenance station 100. Once within or engaged with the maintenance station 100, the panel 55 is moved aside to expose at least the primary brush 60 (to expose any brushes which may accumulate filaments or fuzz, including bristle type brushes). The maintenance station 100 may lower, or locate in predetermined positions, brush-cleaning brush or beater 530 and optionally parallel brush or beater 535. The brush cleaning member/mechanism 530 engages the primary cleaning brush 65, and is driven by a motor (not shown) in the maintenance station 100 (or uses the brush 60 motor) to clean the brush 60. The optional parallel brush 535 may catch the debris or filaments agitated by the brush cleaning brush 530 and eject them up and over the brush 530 to the collection bin 150 in the maintenance station 100. As discussed herein, the collection bin 150 may be a vacuum bin, and include a vacuum filter 910 removable with the bin; may engage the maintenance bin via ports 154, 112, and be evacuated by a vacuum motor 900 in the maintenance station 100. In the configuration shown in FIG. 12D, the vacuum 900 is a high powered vacuum (e.g., 6-12 amp) that pulls air through the filter 910, through the collection bin 150, over and through the brushes 530, 535, and optionally directly or diverted from the cleaning bin 30 of the robot 10. Optionally, the remaining areas of the robot 10 (e.g., circuit board areas) may benefit from evacuation as well, and are not sealed from the vacuum.


Referring to FIGS. 13A-16B, in some implementations, the robot 10 maneuvers onto an inclined platform 122 of the station 100 to provide access to an underside of the robot 10 for servicing the cleaning bin 50. The station 100 evacuates debris down out of the robot bin 50 and into the station bin 150. FIGS. 13A-13B illustrate an example where the robot 10 docks with the station 100 with the forward chassis end 31A facing forward on the platform 122 and debris is evacuated down out of the bottom of the robot bin 50 into the station bin 150. FIGS. 14A-14C illustrate an example where the robot 10 docks with the station 100 with the rear chassis end 31B facing forward on the platform 122 and debris is evacuated down out of the bottom of the robot bin 50 into the station bin 150. FIGS. 15A-15B illustrate an example where the robot 10 docks with the station 100 with the rear chassis end 31B facing forward on the platform 122 and debris is evacuated down out of the bottom of the robot bin 50 and then up into the station bin 150. FIGS. 16A-16B illustrate an example where the robot 10 docks with the station 100 with the forward chassis end 31A facing forward on the platform 122 and debris is evacuated down out of the bottom of the robot bin 50 and then up into the station bin 150.


Referring to FIGS. 17A-17C, in some implementations, the robot 10 docks with the rear chassis end 31B facing toward the station 100 to evacuate debris out of the rear of the robot bin 50 and into the station bin 150. The station bin 150 may be located above, below, or level with the robot bin 50.


In any of the examples described, the evacuation station 100 may evacuate the robot bin to with a sweeper device (e.g. rotating bush or sweeper arm), in conjunction with or instead of vacuuming. In particular, the maintenance station mechanical service structures illustrated in FIGS. 8, 12D, 18A-18C may mechanically service brushes, flappers, beaters, or other rotating or reciprocating cleaning agitators in situ in the robot 10 from the top, bottom, or sides of the robot 10, and/or with the cleaning agitators being articulated to protrude from the robot 10; and/or wholly removed from the robot 10 as a cartridge unit or as a plain brush; and/or with the mechanical service structures being stationary or articulated to intrude into the shell 6 of the robot 10.


Referring to FIGS. 8 and 18A-18D, in some implementations, the platform 122 defines an opening 123 which provides access for the roller cleaning assembly 500 to the cleaning head assembly 40 of the robot 10 for servicing the main 65 brush and/or the secondary brush 60 (optionally included or the robot 10). The roller cleaning assembly 500 includes a driven linear slide guide 502 carrying a cleaning head cleaner 510 and/or a trimmer 520. In some examples, the driven linear slide guide 502 includes a guide mount or rail follower 503 carrying the cleaning head cleaner 510 and slidably secured to a shaft or rail 504. The rail follower 503 is driven by a motor 505 via a belt (as shown), lead screw, rack and pinion, or any other linear motion drive. A rotator 530 rotates the roller 60, 65 during cleaning. The maintenance station 100 includes a controller 1000 in communication with the communication module 1400 and the cleaning assembly 300 that may control the agitation and cleaning processes, set an order of events, and otherwise drive the mechanical and vacuum cleaning facilities described herein in an appropriate order.


The cleaning head cleaner 510, in some examples, includes a series of teeth or combs 512 configured to strip filament and debris from a roller 60, 65. In some implementations, the cleaning head cleaner 510 includes one or more flat, semi-tubular or quarter-tubular tools 511 having teeth 512, dematting rakes 514, combs, or slicker combs. The tubular tool 511 may be independently driven by one or more servo, step or other motors 505 and transmissions (which may be a belt, chain, worm, ball screw, spline, rack and pinion, or any other linear motion drive). In some examples, the roller 60, 65 and the cleaning head cleaner 510 are moved relative to one another. In other examples, the cleaning head cleaner 510 is fixed in place while the roller 60, 65 is moved over the cleaning head cleaner 510.


The roller 60, 65 is placed adjacent the cleaning head cleaner 510, either while in situ in the robot 10, in a removable cleaning head cartridge 40, or as a stand alone roller 60, 65 removed from the robot 10. If the roller 60, 65 is part of a removable cleaning head cartridge 40, the cleaning head cartridge 40 is removed from the robot 10 and placed in the station 100 for cleaning. Once the roller 60, 65 is positioned in the station 100 for cleaning, the station 100 commences a cleaning routine including traversing the cleaning head 510 over the roller 60, 65 such that the teeth 512, dematting rakes 514, combs, or slicker combs, separately or together, cut and remove filaments and debris from the roller 60, 65. In one example, as the cleaning head 510 traverses over the roller 60, 65, the teeth 512 are actuated in a rotating motion to facilitate removal of filaments and debris from the roller 60, 65. In some examples, an interference depth of the teeth 512 into the roller 60, 65 is variable and progressively increases with each subsequent pass of the cleaning head 510.



FIG. 18C illustrates an example semi-tubular tool 600 having first and second ends, 601 and 602 respectively. The first end 601 of the tool 600 defines a semi-bell shaped opening 605. The semi-tubular tool 600 includes teeth 610 disposed along an inner surface 603. In some implementations, the semi-tubular tool 600 includes trailing comb teeth 620, which may grab and trap remaining loose strands of hair or filaments missed or released by the teeth 610. The trailing comb teeth 620 may be more deformable, deeper, thinner, or harder (and vice versa) than the teeth 250 to scrape or sweep exterior surfaces of the roller 60.



FIG. 18D demonstrates a semi-tubular tool 600 in use. The semi-bell shaped opening 605 of the tool 600 is applied toward the roller 60 having bristles 61, facilitating entry of the roller 60 into the tool 60. In cases where the roller 60 includes inner pliable flaps 62, the semi-bell shaped opening 605 is at least slightly larger in diameter than the axial extension or spooling diameter of inner pliable flaps 62. Along the length of the tool 60, the tool 60 narrows to a constant, main diameter, and the inner pliable flaps 62 are deformed by the main inner diameter of the tool 600. In some implementations, the tool 600 defines inner protrusions 615 to deform the bristles 61 and/or the inner pliable flaps 62. Any filaments or hairs collected about the spooling diameter are positioned where they will be caught by the approaching teeth 610 (which extend into the tool 60 to a point that is closer to the roller axis than the undeformed flaps 62, but farther away than an end cap 63). Two kinds of teeth 610 are shown in FIG. 18D, triangular forward canted teeth 610A with a straight leading profile, and shark-tooth forward canted teeth 610B with a curved entry portion or hook, e.g., a U or J-shaped profile on the leading edge of each tooth, opening toward the roller 60 in the direction of tube application. Either or both teeth 610A, 610B may be used, in groups or otherwise. After one or more passes of the tool 600 over the roller 60, the station 100 retracts the tool 600 to a position for tool cleaning and evacuation of debris off the tool 600 and into the station bin 150.


Referring back to FIG. 1B, in some implementations, the robot 10 includes a communication module 90 installed on the bottom of the chassis 31. The communication module 90 provides a communication link between the communication module 1400 on the maintenance station 100 and the robot 10. The communication module 90 of the robot 10, in some instances, includes both an emitter and a detector, and provides an alternative communication path while the robot 10 is located within the maintenance station 100. In some implementations, the robot 10 includes a roller full (brush service) sensor assembly 85 installed on either side of and proximate the cleaning head 40, with a detection path extending along the length of the brush or roller to detect accumulations of filaments or fuzz along the length of the brush or roller. The roller full (brush service) sensor assembly 85 provides user and system feedback regarding a degree of filament wound about the main brush 65, the secondary brush 60, or both. The roller full sensor assembly 85 includes an emitter 85A for emitting modulated beams and a detector 85B configured to detect the beams. The emitter 85A and detector 86B are positioned on opposite sides of the cleaning head roller 60, 65 and aligned to detect filament wound about the cleaning head roller 60, 65. The roller full sensor assembly 85 includes a signal processing circuit configured to receive and interpret detector output. In some examples, the roller full sensor system 85 detects when the roller 60, 65 has accumulated filaments, when roller effectiveness has declined, or when a bin is full (as disclosed in U.S. Provisional Patent No. 60/741,442, filed Dec. 2, 2005, and herein incorporated by reference in its entirety), trigging the return of the robot to a maintenance station 100, as described herein, and notifying the robot 10 or maintenance station 100 that the brush(es) 60, 65 require service or cleaning. As discussed herein, a head cleaning tool 600 configured to clear debris from the cleaning roller 60, 65 in response to a timer, a received command from a remote terminal, the roller full sensor system 85, or a button located on the chassis/body 31 of the robot 10.


Once a cleaning cycle is complete, either via the roller full sensor system 85 or visual observation, the user can open the wire bale and pull out the roller(s) 60, 65. The roller(s) 60, 65 can then be wiped clean off hair and inserted back in place.


Referring to FIGS. 19A-F, in some implementations, the robot 10 includes a removable cleaning head cartridge 40, which includes at least one cleaning roller 60, 65. When the robot 10 determines that cleaning head or cleaning head cartridge 40 needs servicing (e.g. via a bin service, brush service, or roller full detection system 85, a bin full detection system, or a timer) the robot 10 initiates a maintenance routine. Step S19-1, illustrated in FIG. 19A, entails the robot 10 approaching the cleaning station 100 with the aid of a navigation system. In one example, the robot 10 navigates to the cleaning station 100 in response to a received homing signal emitted by the station 100. Docking, confinement, home base, and homing technologies discussed in U.S. Pat. Nos. 7,196,487; 7,188,000 or U.S. Patent Application Publication No. 20050156562 are suitable homing technologies. In step S19-2, illustrated in FIG. 19B, the robot 10 docks with the station 100. In the example shown, the robot 10 maneuvers up a ramp 122 and is secured in place by a locking assembly 260. In step S19-3, illustrated in FIG. 19C, the dirty cartridge 40A is automatically unloaded from the robot 10, either by the robot 10 or the cleaning station 100, into a transfer bay 190 in the cleaning station 100. In some examples, the dirty cartridge 40A is manually unloaded from the robot 10 and placed in the transfer bay 190 by a user. In other examples, the dirty cartridge 40A is automatically unloaded/discharged from the robot 10, but manually placed in the transfer bay 190 by the user. In step S19-4, illustrated in FIG. 19D, the cleaning station 100 exchanges a clean cartridge 40B in a cleaning bay 192 with the dirty cartridge 40A in the transfer bay 190. In one example, the cartridges 40A, 40B are moved by automation in the station 100. In another example, the transfer bay 190 and associated dirty cartridge 40A is automatically swapped with the cleaning bay 192 and associated clean cartridge 40B. In step S19-5, illustrated in FIG. 19E, the cleaning station 100 automatically transfers the clean cartridge 40B into the robot 10. In some examples, the user manually transfers the clean cartridge 40B from the transfer bay 190 into the robot 10. In step S19-6, illustrated in FIG. 19F, the robot 10 exits the station 100 and may continue a cleaning mission. Meanwhile, the dirty cartridge 40A in the station 100 is cleaned. The automated cleaning process may be slower than by hand, require less power, clean more thoroughly, and perform quietly (e.g. by taking many slow passes over the roller 60, 65).


Referring to FIGS. 20A-25B, a maintenance station 1100 evacuates the robot collection bin 50, but does not perform maintenance on the cleaning head assembly 40. FIGS. 20A-21B illustrate examples of the maintenance station 1100 including a station base 1102 and a handheld vacuum 1110 removably secured to the station base 1102. The base 1102 includes an evacuation assembly 400 in communication with the handheld vacuum 1110, while attached thereto. The handheld vacuum 1110 having a handle 1111 either manually (e.g. via operator control) or automatically evacuates the robot bin 50, once the robot 10 docks with the maintenance station 1100. The station base 1102 may include a locking assembly 260 for securing and/or communicating with the robot 10. While detached from the station base 1102, the handheld vacuum 1110 functions as a normal vacuum cleaner. In some examples, the handheld vacuum 1110 includes a vacuum hose 1112 and/or a cleaning head 1105 for cleaning surfaces. The station base 1102 may defines receptacles 1104 for receiving and storing vacuum attachments 1114. In some implementations, the station base 1102 includes a separate station bin 1150 from the handheld vacuum 1110.



FIGS. 22A-24B illustrate an example of the maintenance station 1100 including a handheld vacuum 1110 configured to be received directly by the bin 50 of the robot 10 for evacuation of debris out of the bin 50 and into the station bin 1150. In FIG. 21A, the maintenance station 1100 includes a station base 1102. In FIGS. 21B-24B, the maintenance station 1100 does not include a station base 1102. Instead, the handheld vacuum 1110 either supports itself or is held by a user during bin evacuation. A house attachment 1120 may be used to aid bin evacuation.



FIGS. 25A-25B illustrates an example of a maintenance station 1200 configured as a trash container or other utility “furniture”. The maintenance station 1200 includes a docking portion 1202 and a trash can portion 1210 including a trash can lid 1212. The docking portion 1202 is configured to evacuate debris from the docked robot bin 50 directly into a trash receptacle of the trash can portion 1210. The trash receptacle is accessible by the user for depositing other refuse as well. In some implementations, the trash can portion 1210 includes a trash compactor that periodically (or upon user command) compacts refuse in the trash can portion 1210. In such a case, the robot 10 may follow a platform 122 into a maintenance station 100 that includes a trash can portion 1210 (in this case, the maintenance station 100 may also be wholly enclosed in or part of the trash can 1200). Once within or engaged with the maintenance station 100, the panel 55 is moved aside to expose at least the primary brush 60 (to expose any brushes which may accumulate filaments or fuzz, including bristle type brushes). The docking portion 1202 may lower, or locate in predetermined positions, brush-cleaning brush or beater 530. The brush cleaning member/mechanism 530 engages the primary cleaning brush 65 of the robot 10, and is driven by a motor (not shown) in the maintenance station 100. The debris or filaments agitated by the brush cleaning brush 530 are collected in the trash can portion via ducting and hoses, entering a collection bin 150. FIG. 25B depicts alternative or combinable variations: a variation in which the collection bin 150 is a smaller bin accessible by opening the trash can lid 1212 (i.e., proximate the lid 1212); and a variation in which the collection bin 150 is replaced by or auxiliary to a container or receptacle for ordinary bin liners 150A or, e.g., 30 liter kitchen bags. In either variation (and generally herein as a replacement for a vacuum-bag or filter vacuum system), a cyclonic or other circulatory bagless vacuuming system that diverts debris using centripetal acceleration of debris may be used to divert the debris from the vacuum filter or flow. In each case, the smaller collection bin 150 may periodically (by timer, and/or full status as measured by a capacity sensor; and or every time the trash can lid 1212 is opened) be emptied into the main bin line 150, e.g., by opening a panel or door with a solenoid, motor, clutch, linkage to the lid 1212 and driven by lifting the lid 1212, or other actuator. As discussed herein, the collection bin 150 may be a vacuum bin, and include a vacuum filter 910 removable with the bin or removable separately from the trash can portion 1210 and is evacuated by a vacuum motor 900 in the maintenance station 100/trash can portion 1210. In the configuration shown in FIG. 25B, the vacuum 900 is a high powered vacuum (e.g., 6-12 amp) that pulls air through the filter 910 and via the collection bin 150, through ducting and hoses along or within the trash can portion 1210, over and through the brush 530, and optionally directly or diverted from the cleaning bin 30 of the robot 10. Optionally, the remaining areas of the robot 10 (e.g., circuit board areas) may benefit from evacuation as well, and are not sealed from the vacuum.



FIGS. 26A-26B illustrate an example of a wall mounted maintenance station 1300 to which the robot 10 docks for bin evacuation. The wall mounted maintenance station 1300 may be connected to a central vacuum system of a house or stand alone with a station bin 1350. A door 1312 pivotally attached to a station housing 1310 provides access to interior portions of the station housing 1310, which may house the station bin 1350 (if not connected to a central vacuum system), hoses, and vacuum attachments.



FIGS. 27A-27C illustrate an example where an upright vacuum cleaner 1400 is configured to evacuate the robot bin 50. The upright vacuum cleaner 1400 includes a vacuum head 1410 configured to mate with the robot bin 50 for evacuation of the bin 50. In such a case, the robot 10 may follow a platform 122 into a maintenance station 100 that receives the upright 1400 (in this case, the maintenance station 100 may also be wholly enclosed in or part of the upright 1400). Once within or engaged with the maintenance station 100, the panel 55 is moved aside to expose at least the primary brush 60 (to expose any brushes which may accumulate filaments or fuzz, including bristle type brushes). The maintenance station/upright 1400 may lower, or locate in predetermined positions, brush-cleaning brush or beater 530. The brush cleaning member/mechanism 530, in this case the upright's main cleaning brush or beater, engages the primary cleaning brush 65 of the robot 10, and is driven by a motor (not shown) in the maintenance station 100/upright 1400, the same motor usually used to rotate the brush cleaning member 530 in its role as the main beater or cleaning brush of the upright 1400. The debris or filaments agitated by the brush cleaning brush 530 are collected in the upright via ducting and hoses, entering the collection bin 150 in the maintenance station 100/upright 1400, in this case the collection bin 150 being the same as the main cleaning bin of the upright. As discussed herein, the collection bin 150 may be a vacuum bin, and include a vacuum filter 910 removable with the bin or removable separately from the upright 1400 and is evacuated by a vacuum motor 900 in the maintenance station 100. In the configuration shown in FIG. 27C, the vacuum 900 is a high powered vacuum (e.g., 6-12 amp) that pulls air through the filter 910 and via the collection bin 150, through ducting and hoses along or within the upright handle and cleaning head assembly, over and through the brush 530, and optionally directly or diverted from the cleaning bin 30 of the robot 10. Optionally, the remaining areas of the robot 10 (e.g., circuit board areas) may benefit from evacuation as well, and are not sealed from the vacuum.


Other details and features combinable with those described herein may be found in the following U.S. patent applications filed concurrently herewith, entitled “COVERAGE ROBOTS AND ASSOCIATED CLEANING BINS” having assigned Ser. No. 11/751,267; and “CLEANING ROBOT ROLLER PROCESSING” having assigned Ser. No. 11/751,413, the entire contents of the aforementioned applications are hereby incorporated by reference.


A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.

Claims
  • 1. A cleaning robot system comprising: a robot comprising: a chassis;a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system; anda cleaning assembly carried by the chassis and comprising:a cleaning assembly housing; anda driven cleaning roller rotatably coupled to the cleaning assembly housing; anda robot maintenance station comprising: a station housing;a docking platform carried by the station housing and configured to support the robot when docked;a mechanical agitator that engages the cleaning roller of the robot with the robot docked, the agitator comprising an agitator comb having multiple teeth configured to remove accumulated debris from the cleaning roller as the agitator comb and the cleaning roller are moved relative to one another; anda collection bin arranged to receive and hold debris removed by the mechanical agitator;wherein the agitator comb is configured to traverse longitudinally across the cleaning roller of the docked robot.
  • 2. The cleaning robot system of claim 1, wherein the robot maintenance station further comprises: a station evacuation port configured to mate with the robot when the robot is received by the robot maintenance station for maintenance; anda motorized vacuum pump in fluid communication with the collection bin and the station evacuation port, the motorized vacuum pump configured to draw air into the vacuum pump and to evacuate accumulated debris removed by the mechanical agitator into the collection bin.
  • 3. The cleaning robot system of claim 1, wherein the cleaning assembly of the robot faces downward, and the docking platform further comprises a locking assembly configured to secure the received robot to the platform so that the mechanical agitator does not force the robot from the platform.
  • 4. The cleaning robot system of claim 1, wherein the mechanical agitator further comprises one or more blades configured to cut accumulated filaments off the cleaning roller.
  • 5. The cleaning robot system of claim 1, wherein the mechanical agitator further comprises an actuator configured to move the cleaning roller of the docked robot.
  • 6. The cleaning robot system of claim 1, further comprising a vacuum assembly configured to evacuate cut filaments off the mechanical agitator.
  • 7. A cleaning robot system comprising: a robot comprising: a chassis;a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system;a cleaning assembly carried by the chassis and comprising:a cleaning assembly housing; anda driven cleaning roller rotatably coupled to the cleaning assembly housing; anda robot cleaning bin carried by the chassis; anda robot maintenance station comprising: a station housing configured to receive the robot for maintenance, the station housing defining a blower port and an evacuation port spaced from the blower port, the station blower port and the evacuation port both arranged to be exposed to the robot cleaning bin when the robot is received by the maintenance station for maintenance;a collection bin carried by the station housing and in fluid communication with the evacuation port;an air pump configured to blow air through the station blower port into the cleaning bin while drawing air through the station evacuation port and evacuating debris from the robot cleaning bin into the collection bin; anda mechanical agitator arranged to engage the cleaning roller, the agitator comprising an agitator comb comprising at least one of a rotating bristle brush member and a rotating pliable beater member.
  • 8. The cleaning robot system of claim 7, wherein the robot cleaning bin is removable from the robot and the collection bin is removable from the maintenance station.
  • 9. The cleaning robot system of claim 7, wherein the maintenance station further comprises a locking assembly configured to secure the robot to the station blower port and the station evacuation port, the station blower port and the station evacuation port being substantially sealed to the cleaning bin when the robot is received by the maintenance station.
  • 10. The cleaning robot system of claim 7, wherein the robot further comprises an internal bin maintenance sensor that monitors the contents of the robot cleaning bin for a maintenance condition, and wherein the controller of the robot causes the robot to begin seeking the maintenance station in order to dock and evacuate the robot cleaning bin in response to the maintenance condition.
  • 11. The cleaning robot system of claim 7, wherein the collection bin and the air pump are removable from the docking station housing as an assembly that also includes a graspable handle and forms a manually operable vacuum cleaner, wherein the housing of the docking station fluidly connects the air pump to the robot cleaning assembly to evacuate the robot cleaning assembly into the collection bin of the manually operable vacuum cleaner.
  • 12. The cleaning robot system of claim 7, wherein the agitator comb comprises a comb having multiple teeth configured to remove accumulated debris from the cleaning roller as the agitator comb and the cleaning roller are moved relative to one another.
  • 13. The cleaning robot system of claim 7, wherein the mechanical agitator further comprises one or more blades configured to cut accumulated filaments off the cleaning roller.
  • 14. A cleaning robot system comprising: a robot comprising: a chassis;a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system;a cleaning head carried by the chassis and including a mechanical agitator, the mechanical agitator of the robot comprising at least one of a rotating bristle brush member, a rotating pliable beater member, slicker teeth for severing filaments among the debris, and a combination thereof; anda cleaning bin carried by the chassis; anda robot maintenance station comprising: a docking platform configured to support the robot with the robot docked for maintenance,an agitator comb arranged to engage the agitator of the docked robot and configured to remove accumulated debris from the agitator as the agitator comb and agitator are moved relative to one another;a collection bin disposed more than one foot above the docking platform; andan air pump configured to pump air past the agitator comb, the pumped air motivating debris removed by the agitator comb into the collection bin;wherein the agitator comb comprises blades for severing filaments among the debris.
  • 15. The cleaning robot system of claim 14, wherein the air pump also moves a flow of air that evacuates debris from the robot cleaning bin.
  • 16. The cleaning robot system of claim 14, wherein the agitator comb is rotated relative to the mechanical agitator of the robot.
  • 17. The cleaning robot system of claim 14, wherein the mechanical agitator of the cleaning head comprises at least one of a rotating bristle brush member and a rotating pliable beater member.
  • 18. The cleaning robot system of claim 14, wherein the agitator comb comprises at least one of a rotating bristle brush member and a rotating pliable beater member.
  • 19. A cleaning robot system comprising: a robot comprising: a chassis;a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system;a cleaning head carried by the chassis and including a mechanical agitator, the agitator of the cleaning head comprising at least one of a rotating bristle brush member and a rotating pliable beater member; anda cleaning bin carried by the chassis; anda robot maintenance station comprising: a docking platform configured to support the robot with the robot docked for maintenance,an agitator comb arranged to engage the agitator of the docked robot and configured to remove accumulated debris from the agitator as the agitator comb and agitator are moved relative to one another;a collection bin disposed more than one foot above the docking platform; andan air pump configured to pump air past the agitator comb, the pumped air motivating debris removed by the agitator comb into the collection bin;wherein the agitator comb comprises blades for severing filaments among the debris.
  • 20. A cleaning robot system comprising: a robot comprising: a chassis;a drive system mounted on the chassis and configured to maneuver the robot as directed by a controller in communication with the drive system;a cleaning head carried by the chassis and including a mechanical agitator; anda cleaning bin carried by the chassis; anda robot maintenance station comprising: a docking platform configured to support the robot with the robot docked for maintenance,an agitator comb arranged to engage the agitator of the docked robot and configured to remove accumulated debris from the agitator as the agitator comb and agitator are moved relative to one another, the agitator comb comprising at least one of a rotating bristle brush member and a rotating pliable beater member;a collection bin disposed more than one foot above the docking platform; andan air pump configured to pump air past the agitator comb, the pumped air motivating debris removed by the agitator comb into the collection bin;wherein the agitator comb comprises blades for severing filaments among the debris.
CROSS-REFERENCE TO RELATED APPLICATIONS

This U.S. patent application claims priority under 35 U.S.C. §120 from PCT application PCT/US2007/069389, filed on May 21, 2007, which claims priority under 35 U.S.C. §119(e) to U.S. provisional patent application Ser. No. 60/747,791, filed on May 19, 2006, Ser. No. 60/803,504, filed on May 30, 2006, and Ser. No. 60/807,442, filed on Jul. 14, 2006. The entire contents of the aforementioned applications are hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2007/069389 5/21/2007 WO 00 9/21/2009
Publishing Document Publishing Date Country Kind
WO2007/137234 11/29/2007 WO A
US Referenced Citations (887)
Number Name Date Kind
1755054 Darst Apr 1930 A
1780221 Buchmann Nov 1930 A
1970302 Gerhardt Aug 1934 A
2136324 John Nov 1938 A
2302111 Dow et al. Nov 1942 A
2353621 Sav et al. Jul 1944 A
2770825 Pullen Nov 1956 A
3119369 Harland et al. Jan 1964 A
3166138 Dunn Jan 1965 A
3333564 Waters Aug 1967 A
3375375 Robert et al. Mar 1968 A
3381652 Schaefer et al. May 1968 A
3457575 Bienek Jul 1969 A
3550714 Bellinger Dec 1970 A
3569727 Aggarwal et al. Mar 1971 A
3674316 De Jul 1972 A
3678882 Kinsella Jul 1972 A
3744586 Leinauer Jul 1973 A
3756667 Bombardier et al. Sep 1973 A
3809004 Leonheart May 1974 A
3816004 Bignardi Jun 1974 A
3845831 James Nov 1974 A
RE28268 Autrand Dec 1974 E
3853086 Asplund Dec 1974 A
3863285 Hukuba Feb 1975 A
3888181 Kups Jun 1975 A
3937174 Haaga Feb 1976 A
3952361 Wilkins Apr 1976 A
3989311 Debrey Nov 1976 A
3989931 Phillips Nov 1976 A
4004313 Capra Jan 1977 A
4012681 Finger et al. Mar 1977 A
4070170 Leinfelt Jan 1978 A
4099284 Shinozaki et al. Jul 1978 A
4119900 Kremnitz Oct 1978 A
4175589 Nakamura et al. Nov 1979 A
4175892 De Nov 1979 A
4196727 Verkaart et al. Apr 1980 A
4198727 Farmer Apr 1980 A
4199838 Simonsson Apr 1980 A
4209254 Reymond et al. Jun 1980 A
D258901 Keyworth Apr 1981 S
4297578 Carter Oct 1981 A
4306329 Yokoi Dec 1981 A
4309758 Halsall et al. Jan 1982 A
4328545 Halsall et al. May 1982 A
4367403 Miller Jan 1983 A
4369543 Chen et al. Jan 1983 A
4401909 Gorsek Aug 1983 A
4416033 Specht Nov 1983 A
4445245 Lu May 1984 A
4465370 Yuasa et al. Aug 1984 A
4477998 You Oct 1984 A
4481692 Kurz Nov 1984 A
4482960 Pryor Nov 1984 A
4492058 Goldfarb et al. Jan 1985 A
4513469 Godfrey et al. Apr 1985 A
D278732 Ohkado May 1985 S
4518437 Sommer May 1985 A
4534637 Suzuki et al. Aug 1985 A
4556313 Miller et al. Dec 1985 A
4575211 Matsumura et al. Mar 1986 A
4580311 Kurz Apr 1986 A
4601082 Kurz Jul 1986 A
4618213 Chen Oct 1986 A
4620285 Perdue Oct 1986 A
4624026 Olson et al. Nov 1986 A
4626995 Lofgren et al. Dec 1986 A
4628454 Ito Dec 1986 A
4638445 Mattaboni Jan 1987 A
4644156 Takahashi et al. Feb 1987 A
4649504 Krouglicof et al. Mar 1987 A
4652917 Miller Mar 1987 A
4654492 Koerner et al. Mar 1987 A
4654924 Getz et al. Apr 1987 A
4660969 Sorimachi et al. Apr 1987 A
4662854 Fang May 1987 A
4674048 Okumura Jun 1987 A
4679152 Perdue Jul 1987 A
4680827 Hummel Jul 1987 A
4696074 Cavalli Sep 1987 A
D292223 Trumbull Oct 1987 S
4700301 Dyke Oct 1987 A
4700427 Knepper Oct 1987 A
4703820 Reinaud Nov 1987 A
4710020 Maddox et al. Dec 1987 A
4716621 Zoni Jan 1988 A
4728801 O'Connor Mar 1988 A
4733343 Yoneda et al. Mar 1988 A
4733430 Westergren Mar 1988 A
4733431 Martin Mar 1988 A
4735136 Lee et al. Apr 1988 A
4735138 Gawler et al. Apr 1988 A
4748336 Fujie et al. May 1988 A
4748833 Nagasawa Jun 1988 A
4756049 Uehara Jul 1988 A
4767213 Hummel Aug 1988 A
4769700 Pryor Sep 1988 A
4777416 George et al. Oct 1988 A
D298766 Tanno et al. Nov 1988 S
4782550 Jacobs Nov 1988 A
4796198 Boultinghouse et al. Jan 1989 A
4806751 Abe et al. Feb 1989 A
4811228 Hyyppa Mar 1989 A
4813906 Matsuyama et al. Mar 1989 A
4815157 Tsuchiya Mar 1989 A
4817000 Eberhardt Mar 1989 A
4818875 Weiner Apr 1989 A
4829442 Kadonoff et al. May 1989 A
4829626 Harkonen et al. May 1989 A
4832098 Palinkas et al. May 1989 A
4851661 Everett Jul 1989 A
4854000 Takimoto Aug 1989 A
4854006 Nishimura et al. Aug 1989 A
4855915 Dallaire Aug 1989 A
4857912 Everett et al. Aug 1989 A
4858132 Holmquist Aug 1989 A
4867570 Sorimachi et al. Sep 1989 A
4880474 Koharagi et al. Nov 1989 A
4887415 Martin Dec 1989 A
4891762 Chotiros Jan 1990 A
4893025 Lee Jan 1990 A
4901394 Nakamura et al. Feb 1990 A
4905151 Weiman et al. Feb 1990 A
4912643 Beirne Mar 1990 A
4918441 Bohman Apr 1990 A
4919224 Shyu et al. Apr 1990 A
4919489 Kopsco Apr 1990 A
4920060 Parrent et al. Apr 1990 A
4920605 Takashima May 1990 A
4933864 Evans et al. Jun 1990 A
4937912 Kurz Jul 1990 A
4953253 Fukuda et al. Sep 1990 A
4954962 Evans et al. Sep 1990 A
4955714 Stotler et al. Sep 1990 A
4956891 Wulff Sep 1990 A
4961303 McCarty et al. Oct 1990 A
4961304 Ovsborn et al. Oct 1990 A
4962453 Pong et al. Oct 1990 A
4971591 Raviv et al. Nov 1990 A
4973912 Kaminski et al. Nov 1990 A
4974283 Holsten et al. Dec 1990 A
4977618 Allen Dec 1990 A
4977639 Takahashi et al. Dec 1990 A
4986663 Cecchi et al. Jan 1991 A
5001635 Yasutomi et al. Mar 1991 A
5002145 Wakaumi et al. Mar 1991 A
5012886 Jonas et al. May 1991 A
5018240 Holman May 1991 A
5020186 Lessig et al. Jun 1991 A
5022812 Coughlan et al. Jun 1991 A
5023788 Kitazume et al. Jun 1991 A
5024529 Svetkoff et al. Jun 1991 A
D318500 Malewicki et al. Jul 1991 S
5032775 Mizuno et al. Jul 1991 A
5033151 Kraft et al. Jul 1991 A
5033291 Podoloff et al. Jul 1991 A
5040116 Evans et al. Aug 1991 A
5045769 Everett Sep 1991 A
5049802 Mintus et al. Sep 1991 A
5051906 Evans et al. Sep 1991 A
5062819 Mallory Nov 1991 A
5070567 Holland Dec 1991 A
5084934 Lessig et al. Feb 1992 A
5086535 Grossmeyer et al. Feb 1992 A
5090321 Abouav Feb 1992 A
5093955 Blehert et al. Mar 1992 A
5094311 Akeel Mar 1992 A
5105502 Takashima Apr 1992 A
5105550 Shenoha Apr 1992 A
5109566 Kobayashi et al. May 1992 A
5115538 Cochran et al. May 1992 A
5127128 Lee Jul 1992 A
5136675 Hodson Aug 1992 A
5136750 Takashima et al. Aug 1992 A
5142985 Stearns et al. Sep 1992 A
5144471 Takanashi et al. Sep 1992 A
5144714 Mori et al. Sep 1992 A
5144715 Matsuyo et al. Sep 1992 A
5152028 Hirano Oct 1992 A
5152202 Strauss Oct 1992 A
5155684 Burke et al. Oct 1992 A
5163202 Kawakami et al. Nov 1992 A
5163320 Goshima et al. Nov 1992 A
5164579 Pryor et al. Nov 1992 A
5165064 Mattaboni Nov 1992 A
5170352 McTamaney et al. Dec 1992 A
5173881 Sindle Dec 1992 A
5182833 Yamaguchi et al. Feb 1993 A
5202742 Frank et al. Apr 1993 A
5204814 Noonan et al. Apr 1993 A
5206500 Decker et al. Apr 1993 A
5208521 Aoyama May 1993 A
5216777 Moro et al. Jun 1993 A
5227985 DeMenthon Jul 1993 A
5233682 Abe et al. Aug 1993 A
5239720 Wood et al. Aug 1993 A
5251358 Moro et al. Oct 1993 A
5261139 Lewis Nov 1993 A
5276618 Everett Jan 1994 A
5276939 Uenishi Jan 1994 A
5277064 Knigga et al. Jan 1994 A
5279672 Betker et al. Jan 1994 A
5284452 Corona Feb 1994 A
5284522 Kobayashi et al. Feb 1994 A
5293955 Lee Mar 1994 A
D345707 Alister Apr 1994 S
5303448 Hennessey et al. Apr 1994 A
5307273 Oh et al. Apr 1994 A
5309592 Hiratsuka May 1994 A
5310379 Hippely et al. May 1994 A
5315227 Pierson et al. May 1994 A
5319827 Yang Jun 1994 A
5319828 Waldhauser et al. Jun 1994 A
5321614 Ashworth Jun 1994 A
5323483 Baeg Jun 1994 A
5324948 Dudar et al. Jun 1994 A
5341186 Kato Aug 1994 A
5341540 Soupert et al. Aug 1994 A
5341549 Wirtz et al. Aug 1994 A
5345649 Whitlow Sep 1994 A
5353224 Lee et al. Oct 1994 A
5363305 Cox et al. Nov 1994 A
5363935 Schempf et al. Nov 1994 A
5369347 Yoo Nov 1994 A
5369838 Wood et al. Dec 1994 A
5386862 Glover et al. Feb 1995 A
5399951 Lavallee et al. Mar 1995 A
5400244 Watanabe et al. Mar 1995 A
5404612 Ishikawa Apr 1995 A
5410479 Coker Apr 1995 A
5435405 Schempf et al. Jul 1995 A
5440216 Kim Aug 1995 A
5442358 Keeler et al. Aug 1995 A
5444965 Colens Aug 1995 A
5446356 Kim Aug 1995 A
5446445 Bloomfield et al. Aug 1995 A
5451135 Schempf et al. Sep 1995 A
5454129 Kell Oct 1995 A
5455982 Armstrong et al. Oct 1995 A
5465525 Mifune et al. Nov 1995 A
5465619 Sotack et al. Nov 1995 A
5467273 Faibish et al. Nov 1995 A
5471560 Allard et al. Nov 1995 A
5491670 Weber Feb 1996 A
5497529 Boesi Mar 1996 A
5498948 Bruni et al. Mar 1996 A
5502638 Takenaka Mar 1996 A
5505072 Oreper Apr 1996 A
5507067 Hoekstra et al. Apr 1996 A
5510893 Suzuki Apr 1996 A
5511147 Abdel Apr 1996 A
5515572 Hoekstra et al. May 1996 A
5534762 Kim Jul 1996 A
5537017 Feiten et al. Jul 1996 A
5537711 Tseng Jul 1996 A
5539953 Kurz Jul 1996 A
5542146 Hoekstra et al. Aug 1996 A
5542148 Young Aug 1996 A
5546631 Chambon Aug 1996 A
5548511 Bancroft Aug 1996 A
5551525 Pack et al. Sep 1996 A
5553349 Kilstrom et al. Sep 1996 A
5555587 Guha Sep 1996 A
5560077 Crotchett Oct 1996 A
5568589 Hwang Oct 1996 A
D375592 Ljunggren Nov 1996 S
5608306 Rybeck et al. Mar 1997 A
5608894 Kawakami et al. Mar 1997 A
5608944 Gordon Mar 1997 A
5610488 Miyazawa Mar 1997 A
5611106 Wulff Mar 1997 A
5611108 Knowlton et al. Mar 1997 A
5613261 Kawakami et al. Mar 1997 A
5613269 Miwa Mar 1997 A
5621291 Lee Apr 1997 A
5622236 Azumi et al. Apr 1997 A
5634237 Paranjpe Jun 1997 A
5634239 Tuvin et al. Jun 1997 A
5636402 Kubo et al. Jun 1997 A
5642299 Hardin et al. Jun 1997 A
5646494 Han Jul 1997 A
5647554 Ikegami et al. Jul 1997 A
5650702 Azumi Jul 1997 A
5652489 Kawakami Jul 1997 A
5682313 Edlund et al. Oct 1997 A
5682839 Grimsley et al. Nov 1997 A
5696675 Nakamura et al. Dec 1997 A
5698861 Oh Dec 1997 A
5709007 Chiang Jan 1998 A
5710506 Broell et al. Jan 1998 A
5714119 Kawagoe et al. Feb 1998 A
5717169 Liang et al. Feb 1998 A
5717484 Hamaguchi et al. Feb 1998 A
5720077 Nakamura et al. Feb 1998 A
5732401 Conway Mar 1998 A
5735959 Kubo et al. Apr 1998 A
5745235 Vercammen et al. Apr 1998 A
5752871 Tsuzuki May 1998 A
5756904 Oreper et al. May 1998 A
5761762 Kubo Jun 1998 A
5764888 Bolan et al. Jun 1998 A
5767437 Rogers Jun 1998 A
5767960 Orman Jun 1998 A
5777596 Herbert Jul 1998 A
5778486 Kim Jul 1998 A
5781697 Jeong Jul 1998 A
5781960 Kilstrom et al. Jul 1998 A
5786602 Pryor et al. Jul 1998 A
5787545 Colens Aug 1998 A
5793900 Nourbakhsh et al. Aug 1998 A
5794297 Muta Aug 1998 A
5812267 Everett et al. Sep 1998 A
5814808 Takada et al. Sep 1998 A
5815880 Nakanishi Oct 1998 A
5815884 Imamura et al. Oct 1998 A
5819008 Asama et al. Oct 1998 A
5819360 Fujii Oct 1998 A
5819936 Saveliev et al. Oct 1998 A
5820821 Kawagoe et al. Oct 1998 A
5821730 Drapkin Oct 1998 A
5825981 Matsuda Oct 1998 A
5828770 Leis et al. Oct 1998 A
5831597 West et al. Nov 1998 A
5839156 Park et al. Nov 1998 A
5839532 Yoshiji et al. Nov 1998 A
5841259 Kim et al. Nov 1998 A
5867800 Leif Feb 1999 A
5869910 Colens Feb 1999 A
5896611 Haaga Apr 1999 A
5903124 Kawakami May 1999 A
5905209 Oreper May 1999 A
5907886 Buscher Jun 1999 A
5910700 Crotzer Jun 1999 A
5911260 Suzuki Jun 1999 A
5916008 Wong Jun 1999 A
5924167 Wright et al. Jul 1999 A
5926909 McGee Jul 1999 A
5933102 Miller et al. Aug 1999 A
5933913 Wright et al. Aug 1999 A
5935179 Kleiner et al. Aug 1999 A
5940346 Sadowsky et al. Aug 1999 A
5940927 Haegermarck et al. Aug 1999 A
5940930 Oh et al. Aug 1999 A
5942869 Katou et al. Aug 1999 A
5943730 Boomgaarden Aug 1999 A
5943733 Tagliaferri Aug 1999 A
5947225 Kawakami et al. Sep 1999 A
5950408 Schaedler Sep 1999 A
5959423 Nakanishi et al. Sep 1999 A
5968281 Wright et al. Oct 1999 A
5974348 Rocks Oct 1999 A
5974365 Mitchell Oct 1999 A
5983448 Wright et al. Nov 1999 A
5984880 Lander et al. Nov 1999 A
5987383 Keller et al. Nov 1999 A
5989700 Krivopal Nov 1999 A
5991951 Kubo et al. Nov 1999 A
5995883 Nishikado Nov 1999 A
5995884 Allen et al. Nov 1999 A
5996167 Close Dec 1999 A
5998953 Nakamura et al. Dec 1999 A
5998971 Corbridge Dec 1999 A
6000088 Wright et al. Dec 1999 A
6009358 Angott et al. Dec 1999 A
6021545 Delgado et al. Feb 2000 A
6023813 Thatcher et al. Feb 2000 A
6023814 Imamura Feb 2000 A
6025687 Himeda et al. Feb 2000 A
6026539 Mouw et al. Feb 2000 A
6030464 Azevedo Feb 2000 A
6030465 Marcussen et al. Feb 2000 A
6032542 Warnick et al. Mar 2000 A
6036572 Sze Mar 2000 A
6038501 Kawakami Mar 2000 A
6040669 Hog Mar 2000 A
6041471 Charky et al. Mar 2000 A
6041472 Kasen et al. Mar 2000 A
6046800 Ohtomo et al. Apr 2000 A
6049620 Dickinson et al. Apr 2000 A
6052821 Chouly et al. Apr 2000 A
6055042 Sarangapani Apr 2000 A
6055702 Imamura et al. May 2000 A
6061868 Moritsch et al. May 2000 A
6065182 Wright et al. May 2000 A
6073432 Schaedler Jun 2000 A
6076025 Ueno et al. Jun 2000 A
6076026 Jambhekar et al. Jun 2000 A
6076226 Reed Jun 2000 A
6076227 Schallig et al. Jun 2000 A
6081257 Zeller Jun 2000 A
6088020 Mor Jul 2000 A
6094775 Behmer Aug 2000 A
6099091 Campbell Aug 2000 A
6101671 Wright et al. Aug 2000 A
6108031 King et al. Aug 2000 A
6108067 Okamoto Aug 2000 A
6108076 Hanseder Aug 2000 A
6108269 Kabel Aug 2000 A
6108597 Kirchner et al. Aug 2000 A
6112143 Allen et al. Aug 2000 A
6112996 Matsuo Sep 2000 A
6119057 Kawagoe Sep 2000 A
6122798 Kobayashi et al. Sep 2000 A
6124694 Bancroft et al. Sep 2000 A
6125498 Roberts et al. Oct 2000 A
6131237 Kasper et al. Oct 2000 A
6138063 Himeda Oct 2000 A
6142252 Kinto et al. Nov 2000 A
6146278 Kobayashi Nov 2000 A
6154279 Thayer Nov 2000 A
6154694 Aoki et al. Nov 2000 A
6160479 Åhlén et al. Dec 2000 A
6167332 Kurtzberg et al. Dec 2000 A
6167587 Kasper et al. Jan 2001 B1
6192548 Huffman Feb 2001 B1
6216307 Kaleta et al. Apr 2001 B1
6220865 Macri et al. Apr 2001 B1
6226830 Hendriks et al. May 2001 B1
6230362 Kasper et al. May 2001 B1
6237741 Guidetti May 2001 B1
6240342 Fiegert et al. May 2001 B1
6243913 Frank et al. Jun 2001 B1
6255793 Peless et al. Jul 2001 B1
6259979 Holmquist Jul 2001 B1
6261379 Conrad et al. Jul 2001 B1
6263539 Baig Jul 2001 B1
6263989 Won Jul 2001 B1
6272936 Oreper et al. Aug 2001 B1
6276478 Hopkins et al. Aug 2001 B1
6278918 Dickson et al. Aug 2001 B1
6282526 Ganesh Aug 2001 B1
6283034 Miles Sep 2001 B1
6285778 Nakajima et al. Sep 2001 B1
6285930 Dickson et al. Sep 2001 B1
6300737 Bergvall et al. Oct 2001 B1
6321337 Reshef et al. Nov 2001 B1
6321515 Colens Nov 2001 B1
6323570 Nishimura et al. Nov 2001 B1
6324714 Walz et al. Dec 2001 B1
6327741 Reed Dec 2001 B1
6332400 Meyer Dec 2001 B1
6339735 Peless et al. Jan 2002 B1
6362875 Burkley Mar 2002 B1
6370453 Sommer Apr 2002 B2
6374155 Wallach et al. Apr 2002 B1
6374157 Takamura Apr 2002 B1
6381802 Park May 2002 B2
6385515 Dickson et al. May 2002 B1
6388013 Saraf et al. May 2002 B1
6389329 Colens May 2002 B1
6400048 Nishimura et al. Jun 2002 B1
6401294 Kasper Jun 2002 B2
6408226 Byrne et al. Jun 2002 B1
6415203 Inoue et al. Jul 2002 B1
6421870 Basham et al. Jul 2002 B1
6427285 Legatt et al. Aug 2002 B1
6430471 Kintou et al. Aug 2002 B1
6431296 Won Aug 2002 B1
6437227 Theimer Aug 2002 B1
6437465 Nishimura et al. Aug 2002 B1
6438456 Feddema et al. Aug 2002 B1
6438793 Miner et al. Aug 2002 B1
6442476 Poropat Aug 2002 B1
6443509 Levin et al. Sep 2002 B1
6444003 Sutcliffe Sep 2002 B1
6446302 Kasper et al. Sep 2002 B1
6454036 Airey et al. Sep 2002 B1
D464091 Christianson Oct 2002 S
6457206 Judson Oct 2002 B1
6459955 Bartsch et al. Oct 2002 B1
6463368 Feiten et al. Oct 2002 B1
6465982 Bergvall et al. Oct 2002 B1
6473167 Odell Oct 2002 B1
6480762 Uchikubo et al. Nov 2002 B1
6481515 Kirkpatrick et al. Nov 2002 B1
6490539 Dickson et al. Dec 2002 B1
6491127 Holmberg et al. Dec 2002 B1
6493612 Bisset et al. Dec 2002 B1
6493613 Peless et al. Dec 2002 B2
6496754 Song et al. Dec 2002 B2
6496755 Wallach et al. Dec 2002 B2
6502657 Kerrebrock et al. Jan 2003 B2
6504610 Bauer et al. Jan 2003 B1
6507773 Parker et al. Jan 2003 B2
6525509 Petersson et al. Feb 2003 B1
D471243 Cioffi et al. Mar 2003 S
6532404 Colens Mar 2003 B2
6535793 Allard Mar 2003 B2
6540607 Mokris et al. Apr 2003 B2
6548982 Papanikolopoulos et al. Apr 2003 B1
6553612 Dyson et al. Apr 2003 B1
6556722 Russell et al. Apr 2003 B1
6556892 Kuroki et al. Apr 2003 B2
6557104 Vu et al. Apr 2003 B2
D474312 Stephens et al. May 2003 S
6563130 Dworkowski et al. May 2003 B2
6571415 Gerber et al. Jun 2003 B2
6571422 Gordon et al. Jun 2003 B1
6572711 Sclafani et al. Jun 2003 B2
6574536 Kawagoe et al. Jun 2003 B1
6580246 Jacobs Jun 2003 B2
6584376 Van Kommer Jun 2003 B1
6586908 Petersson et al. Jul 2003 B2
6587573 Stam et al. Jul 2003 B1
6590222 Bisset et al. Jul 2003 B1
6594551 McKinney et al. Jul 2003 B2
6594844 Jones Jul 2003 B2
D478884 Slipy et al. Aug 2003 S
6601265 Burlington Aug 2003 B1
6604021 Imai et al. Aug 2003 B2
6604022 Parker et al. Aug 2003 B2
6605156 Clark et al. Aug 2003 B1
6611120 Song et al. Aug 2003 B2
6611734 Parker et al. Aug 2003 B2
6611738 Ruffner Aug 2003 B2
6615108 Peless et al. Sep 2003 B1
6615885 Ohm Sep 2003 B1
6622465 Jerome et al. Sep 2003 B2
6624744 Wilson et al. Sep 2003 B1
6625843 Kim et al. Sep 2003 B2
6629028 Paromtchik et al. Sep 2003 B2
6639659 Granger Oct 2003 B2
6658325 Zweig Dec 2003 B2
6658354 Lin Dec 2003 B2
6658692 Lenkiewicz et al. Dec 2003 B2
6658693 Reed Dec 2003 B1
6661239 Ozick Dec 2003 B1
6662889 De et al. Dec 2003 B2
6668951 Won Dec 2003 B2
6670817 Fournier et al. Dec 2003 B2
6671592 Bisset et al. Dec 2003 B1
6687571 Byrne et al. Feb 2004 B1
6690134 Jones et al. Feb 2004 B1
6690993 Foulke et al. Feb 2004 B2
6697147 Ko et al. Feb 2004 B2
6711280 Stafsudd et al. Mar 2004 B2
6732826 Song et al. May 2004 B2
6737591 Lapstun et al. May 2004 B1
6741054 Koselka et al. May 2004 B2
6741364 Lange et al. May 2004 B2
6748297 Song et al. Jun 2004 B2
6756703 Chang Jun 2004 B2
6760647 Nourbakhsh et al. Jul 2004 B2
6764373 Osawa et al. Jul 2004 B1
6769004 Barrett Jul 2004 B2
6774596 Bisset Aug 2004 B1
6779380 Nieuwkamp Aug 2004 B1
6781338 Jones et al. Aug 2004 B2
6809490 Jones et al. Oct 2004 B2
6810305 Kirkpatrick Oct 2004 B2
6830120 Yashima et al. Dec 2004 B1
6832407 Salem et al. Dec 2004 B2
6836701 McKee Dec 2004 B2
6841963 Song et al. Jan 2005 B2
6845297 Allard Jan 2005 B2
6856811 Burdue et al. Feb 2005 B2
6859010 Jeon et al. Feb 2005 B2
6859682 Naka et al. Feb 2005 B2
6860206 Rudakevych et al. Mar 2005 B1
6865447 Lau et al. Mar 2005 B2
6870792 Chiappetta Mar 2005 B2
6871115 Huang et al. Mar 2005 B2
6883201 Jones et al. Apr 2005 B2
6886651 Slocum et al. May 2005 B1
6888333 Laby May 2005 B2
6901624 Mori et al. Jun 2005 B2
6906702 Tanaka et al. Jun 2005 B1
6914403 Tsurumi Jul 2005 B2
6917854 Bayer Jul 2005 B2
6925679 Wallach et al. Aug 2005 B2
6929548 Wang Aug 2005 B2
D510066 Hickey et al. Sep 2005 S
6938298 Aasen Sep 2005 B2
6940291 Ozick Sep 2005 B1
6941199 Bottomley et al. Sep 2005 B1
6956348 Landry et al. Oct 2005 B2
6957712 Song et al. Oct 2005 B2
6960986 Asama et al. Nov 2005 B2
6965209 Jones et al. Nov 2005 B2
6965211 Tsurumi Nov 2005 B2
6968592 Takeuchi et al. Nov 2005 B2
6971140 Kim Dec 2005 B2
6975246 Trudeau Dec 2005 B1
6980229 Ebersole Dec 2005 B1
6985556 Shanmugavel et al. Jan 2006 B2
6993954 George et al. Feb 2006 B1
6999850 McDonald Feb 2006 B2
7013527 Thomas et al. Mar 2006 B2
7024278 Chiappetta et al. Apr 2006 B2
7024280 Parker et al. Apr 2006 B2
7027893 Perry et al. Apr 2006 B2
7030768 Wanie Apr 2006 B2
7031805 Lee et al. Apr 2006 B2
7032469 Bailey Apr 2006 B2
7054716 McKee et al. May 2006 B2
7057120 Ma et al. Jun 2006 B2
7057643 Iida et al. Jun 2006 B2
7065430 Naka et al. Jun 2006 B2
7066291 Martins et al. Jun 2006 B2
7069124 Whittaker et al. Jun 2006 B1
7079923 Abramson et al. Jul 2006 B2
7085623 Siegers Aug 2006 B2
7085624 Aldred et al. Aug 2006 B2
7113847 Chmura et al. Sep 2006 B2
7133746 Abramson et al. Nov 2006 B2
7142198 Lee Nov 2006 B2
7148458 Schell et al. Dec 2006 B2
7155308 Jones Dec 2006 B2
7167775 Abramson et al. Jan 2007 B2
7171285 Kim et al. Jan 2007 B2
7173391 Jones et al. Feb 2007 B2
7174238 Zweig Feb 2007 B1
7188000 Chiappetta et al. Mar 2007 B2
7193384 Norman et al. Mar 2007 B1
7196487 Jones et al. Mar 2007 B2
7201786 Wegelin et al. Apr 2007 B2
7206677 Huldén Apr 2007 B2
7211980 Bruemmer et al. May 2007 B1
7246405 Yan Jul 2007 B2
7248951 Huldén Jul 2007 B2
7275280 Haegermarck et al. Oct 2007 B2
7283892 Boillot et al. Oct 2007 B1
7288912 Landry et al. Oct 2007 B2
7318248 Yan Jan 2008 B1
7320149 Huffman et al. Jan 2008 B1
7324870 Lee Jan 2008 B2
7328196 Peters Feb 2008 B2
7332890 Cohen et al. Feb 2008 B2
7352153 Yan Apr 2008 B2
7359766 Jeon et al. Apr 2008 B2
7360277 Moshenrose et al. Apr 2008 B2
7363108 Noda et al. Apr 2008 B2
7388879 Sabe et al. Jun 2008 B2
7389166 Harwig et al. Jun 2008 B2
7408157 Yan Aug 2008 B2
7418762 Arai et al. Sep 2008 B2
7430455 Casey et al. Sep 2008 B2
7430462 Chiu et al. Sep 2008 B2
7441298 Svendsen et al. Oct 2008 B2
7444206 Abramson et al. Oct 2008 B2
7448113 Jones et al. Nov 2008 B2
7459871 Landry et al. Dec 2008 B2
7467026 Sakagami et al. Dec 2008 B2
7474941 Kim et al. Jan 2009 B2
7503096 Lin Mar 2009 B2
7515991 Egawa et al. Apr 2009 B2
7555363 Augenbraun et al. Jun 2009 B2
7557703 Yamada et al. Jul 2009 B2
7568259 Yan Aug 2009 B2
7571511 Jones et al. Aug 2009 B2
7578020 Jaworski et al. Aug 2009 B2
7600521 Woo Oct 2009 B2
7603744 Reindle Oct 2009 B2
7617557 Reindle Nov 2009 B2
7620476 Morse et al. Nov 2009 B2
7636982 Jones et al. Dec 2009 B2
7647144 Haegermarck Jan 2010 B2
7650666 Jang Jan 2010 B2
7660650 Kawagoe et al. Feb 2010 B2
7663333 Jones et al. Feb 2010 B2
7693605 Park Apr 2010 B2
7706917 Chiappetta et al. Apr 2010 B1
7765635 Park Aug 2010 B2
7801645 Taylor et al. Sep 2010 B2
7805220 Taylor et al. Sep 2010 B2
7809944 Kawamoto Oct 2010 B2
7849555 Hahm et al. Dec 2010 B2
7853645 Brown et al. Dec 2010 B2
7920941 Park et al. Apr 2011 B2
7937800 Yan May 2011 B2
7957836 Myeong et al. Jun 2011 B2
20010004719 Sommer Jun 2001 A1
20010013929 Torsten Aug 2001 A1
20010020200 Das et al. Sep 2001 A1
20010025183 Shahidi Sep 2001 A1
20010037163 Allard Nov 2001 A1
20010043509 Green et al. Nov 2001 A1
20010045883 Holdaway et al. Nov 2001 A1
20010047231 Peless et al. Nov 2001 A1
20010047895 De et al. Dec 2001 A1
20020011367 Kolesnik Jan 2002 A1
20020011813 Koselka et al. Jan 2002 A1
20020016649 Jones Feb 2002 A1
20020021219 Edwards Feb 2002 A1
20020027652 Paromtchik et al. Mar 2002 A1
20020036779 Kiyoi et al. Mar 2002 A1
20020081937 Yamada et al. Jun 2002 A1
20020095239 Wallach et al. Jul 2002 A1
20020097400 Jung et al. Jul 2002 A1
20020104963 Mancevski Aug 2002 A1
20020108209 Peterson Aug 2002 A1
20020112742 Bredo et al. Aug 2002 A1
20020113973 Ge Aug 2002 A1
20020116089 Kirkpatrick Aug 2002 A1
20020120364 Colens Aug 2002 A1
20020124343 Reed Sep 2002 A1
20020153185 Song et al. Oct 2002 A1
20020156556 Ruffner Oct 2002 A1
20020159051 Guo Oct 2002 A1
20020166193 Kasper Nov 2002 A1
20020169521 Goodman et al. Nov 2002 A1
20020173877 Zweig Nov 2002 A1
20020189871 Won Dec 2002 A1
20030009259 Hattori et al. Jan 2003 A1
20030019071 Field et al. Jan 2003 A1
20030023356 Keable Jan 2003 A1
20030024986 Mazz et al. Feb 2003 A1
20030025472 Jones et al. Feb 2003 A1
20030028286 Glenn et al. Feb 2003 A1
20030030399 Jacobs Feb 2003 A1
20030058262 Sato et al. Mar 2003 A1
20030060928 Abramson et al. Mar 2003 A1
20030067451 Tagg et al. Apr 2003 A1
20030097875 Lentz et al. May 2003 A1
20030120389 Abramson et al. Jun 2003 A1
20030124312 Autumn Jul 2003 A1
20030126352 Barrett Jul 2003 A1
20030137268 Papanikolopoulos et al. Jul 2003 A1
20030146384 Logsdon et al. Aug 2003 A1
20030192144 Song et al. Oct 2003 A1
20030193657 Uomori et al. Oct 2003 A1
20030216834 Allard Nov 2003 A1
20030221114 Hino et al. Nov 2003 A1
20030229421 Chmura et al. Dec 2003 A1
20030229474 Suzuki et al. Dec 2003 A1
20030233171 Heiligensetzer Dec 2003 A1
20030233177 Johnson et al. Dec 2003 A1
20030233870 Mancevski Dec 2003 A1
20030233930 Ozick Dec 2003 A1
20040016077 Song et al. Jan 2004 A1
20040020000 Jones Feb 2004 A1
20040030448 Solomon Feb 2004 A1
20040030449 Solomon Feb 2004 A1
20040030450 Solomon Feb 2004 A1
20040030451 Solomon Feb 2004 A1
20040030570 Solomon Feb 2004 A1
20040030571 Solomon Feb 2004 A1
20040031113 Wosewick et al. Feb 2004 A1
20040049877 Jones et al. Mar 2004 A1
20040055163 McCambridge et al. Mar 2004 A1
20040068351 Solomon Apr 2004 A1
20040068415 Solomon Apr 2004 A1
20040068416 Solomon Apr 2004 A1
20040074038 Im et al. Apr 2004 A1
20040076324 Burl et al. Apr 2004 A1
20040083570 Song et al. May 2004 A1
20040085037 Jones et al. May 2004 A1
20040088079 Lavarec et al. May 2004 A1
20040093122 Galibraith May 2004 A1
20040098167 Yi et al. May 2004 A1
20040111184 Chiappetta et al. Jun 2004 A1
20040111821 Lenkiewicz et al. Jun 2004 A1
20040113777 Matsuhira et al. Jun 2004 A1
20040117064 McDonald Jun 2004 A1
20040117846 Karaoguz et al. Jun 2004 A1
20040118998 Wingett et al. Jun 2004 A1
20040128028 Miyamoto et al. Jul 2004 A1
20040133316 Dean Jul 2004 A1
20040134336 Solomon Jul 2004 A1
20040134337 Solomon Jul 2004 A1
20040143919 Wilder Jul 2004 A1
20040148419 Chen et al. Jul 2004 A1
20040148731 Damman et al. Aug 2004 A1
20040153212 Profio et al. Aug 2004 A1
20040156541 Jeon et al. Aug 2004 A1
20040158357 Lee et al. Aug 2004 A1
20040181706 Chen et al. Sep 2004 A1
20040187249 Jones et al. Sep 2004 A1
20040187457 Colens Sep 2004 A1
20040196451 Aoyama Oct 2004 A1
20040200505 Taylor et al. Oct 2004 A1
20040204792 Taylor et al. Oct 2004 A1
20040210345 Noda et al. Oct 2004 A1
20040210347 Sawada et al. Oct 2004 A1
20040211444 Taylor et al. Oct 2004 A1
20040221790 Sinclair et al. Nov 2004 A1
20040236468 Taylor et al. Nov 2004 A1
20040244138 Taylor et al. Dec 2004 A1
20040255425 Arai et al. Dec 2004 A1
20050000543 Taylor et al. Jan 2005 A1
20050010330 Abramson et al. Jan 2005 A1
20050010331 Taylor et al. Jan 2005 A1
20050015920 Kim et al. Jan 2005 A1
20050021181 Kim et al. Jan 2005 A1
20050067994 Jones et al. Mar 2005 A1
20050085947 Aldred et al. Apr 2005 A1
20050137749 Jeon et al. Jun 2005 A1
20050144751 Kegg et al. Jul 2005 A1
20050150074 Diehl et al. Jul 2005 A1
20050154795 Kuz et al. Jul 2005 A1
20050156562 Cohen et al. Jul 2005 A1
20050165508 Kanda et al. Jul 2005 A1
20050166354 Uehigashi Aug 2005 A1
20050166355 Tani Aug 2005 A1
20050172445 Diehl et al. Aug 2005 A1
20050183229 Uehigashi Aug 2005 A1
20050183230 Uehigashi Aug 2005 A1
20050187678 Myeong et al. Aug 2005 A1
20050192707 Park et al. Sep 2005 A1
20050204717 Colens Sep 2005 A1
20050209736 Kawagoe Sep 2005 A1
20050211880 Schell et al. Sep 2005 A1
20050212929 Schell et al. Sep 2005 A1
20050213082 DiBernardo et al. Sep 2005 A1
20050213109 Schell et al. Sep 2005 A1
20050217042 Reindle Oct 2005 A1
20050218852 Landry et al. Oct 2005 A1
20050222933 Wesby Oct 2005 A1
20050229340 Sawalski et al. Oct 2005 A1
20050229355 Crouch et al. Oct 2005 A1
20050235451 Yan Oct 2005 A1
20050251292 Casey et al. Nov 2005 A1
20050255425 Pierson Nov 2005 A1
20050258154 Blankenship et al. Nov 2005 A1
20050273967 Taylor et al. Dec 2005 A1
20050288819 de Guzman Dec 2005 A1
20060000050 Cipolla et al. Jan 2006 A1
20060010638 Shimizu et al. Jan 2006 A1
20060020369 Taylor et al. Jan 2006 A1
20060020370 Abramson Jan 2006 A1
20060021168 Nishikawa Feb 2006 A1
20060025134 Cho et al. Feb 2006 A1
20060037170 Shimizu Feb 2006 A1
20060042042 Mertes et al. Mar 2006 A1
20060044546 Lewin et al. Mar 2006 A1
20060060216 Woo Mar 2006 A1
20060061657 Rew et al. Mar 2006 A1
20060064828 Stein et al. Mar 2006 A1
20060087273 Ko et al. Apr 2006 A1
20060089765 Pack et al. Apr 2006 A1
20060100741 Jung May 2006 A1
20060119839 Bertin et al. Jun 2006 A1
20060143295 Costa et al. Jun 2006 A1
20060146776 Kim Jul 2006 A1
20060190133 Konandreas et al. Aug 2006 A1
20060190146 Morse et al. Aug 2006 A1
20060196003 Song et al. Sep 2006 A1
20060220900 Ceskutti et al. Oct 2006 A1
20060259194 Chiu Nov 2006 A1
20060259494 Watson et al. Nov 2006 A1
20060288519 Jaworski et al. Dec 2006 A1
20060293787 Kanda et al. Dec 2006 A1
20070006404 Cheng et al. Jan 2007 A1
20070017061 Yan Jan 2007 A1
20070028574 Yan Feb 2007 A1
20070032904 Kawagoe et al. Feb 2007 A1
20070042716 Goodall et al. Feb 2007 A1
20070043459 Abbott et al. Feb 2007 A1
20070061041 Zweig Mar 2007 A1
20070114975 Cohen et al. May 2007 A1
20070150096 Yeh et al. Jun 2007 A1
20070157415 Lee et al. Jul 2007 A1
20070157420 Lee et al. Jul 2007 A1
20070179670 Chiappetta et al. Aug 2007 A1
20070226949 Hahm et al. Oct 2007 A1
20070234492 Svendsen et al. Oct 2007 A1
20070244610 Ozick et al. Oct 2007 A1
20070245511 Hahm et al. Oct 2007 A1
20070250212 Halloran et al. Oct 2007 A1
20070266508 Jones et al. Nov 2007 A1
20080007203 Cohen et al. Jan 2008 A1
20080039974 Sandin et al. Feb 2008 A1
20080052846 Kapoor et al. Mar 2008 A1
20080091304 Ozick et al. Apr 2008 A1
20080184518 Taylor Aug 2008 A1
20080276407 Schnittman et al. Nov 2008 A1
20080281470 Gilbert et al. Nov 2008 A1
20080282494 Won et al. Nov 2008 A1
20080294288 Yamauchi Nov 2008 A1
20080302586 Yan Dec 2008 A1
20080307590 Jones et al. Dec 2008 A1
20090007366 Svendsen et al. Jan 2009 A1
20090038089 Landry et al. Feb 2009 A1
20090049640 Lee et al. Feb 2009 A1
20090055022 Casey et al. Feb 2009 A1
20090102296 Greene et al. Apr 2009 A1
20090292393 Casey et al. Nov 2009 A1
20100011529 Won et al. Jan 2010 A1
20100049365 Jones et al. Feb 2010 A1
20100063628 Landry et al. Mar 2010 A1
20100107355 Won et al. May 2010 A1
20100257690 Jones et al. Oct 2010 A1
20100257691 Jones et al. Oct 2010 A1
20100263158 Jones et al. Oct 2010 A1
20100268384 Jones et al. Oct 2010 A1
20100312429 Jones et al. Dec 2010 A1
Foreign Referenced Citations (252)
Number Date Country
2003275566 Jun 2004 AU
2128842 Dec 1980 DE
3317376 Nov 1984 DE
3536907 Feb 1989 DE
3404202 Dec 1992 DE
199311014 Oct 1993 DE
4414683 Oct 1995 DE
4338841 Aug 1999 DE
19849978 Feb 2001 DE
10357636 Jul 2005 DE
102004041021 Aug 2005 DE
102005046813 Apr 2007 DE
338988 Dec 1988 DK
265542 May 1988 EP
281085 Sep 1988 EP
307381 Jul 1990 EP
358628 May 1991 EP
437024 Jul 1991 EP
433697 Dec 1992 EP
479273 May 1993 EP
294101 Dec 1993 EP
554978 Mar 1994 EP
615719 Sep 1994 EP
861629 Sep 1998 EP
792726 Jun 1999 EP
930040 Oct 1999 EP
845237 Apr 2000 EP
1018315 Jul 2000 EP
1172719 Jan 2002 EP
1228734 Jun 2003 EP
1331537 Jul 2003 EP
1380246 Mar 2005 EP
1553472 Jul 2005 EP
1642522 Nov 2007 EP
2238196 Nov 2006 ES
2601443 Nov 1991 FR
702426 Jan 1954 GB
2128842 Apr 1986 GB
2213047 Aug 1989 GB
2225221 May 1990 GB
2284957 Jun 1995 GB
2267360 Dec 1995 GB
2300082 Sep 1999 GB
2404330 Jul 2005 GB
2417354 Feb 2006 GB
53021869 Feb 1978 JP
57014726 Jan 1982 JP
57064217 Apr 1982 JP
59005315 Feb 1984 JP
59033511 Mar 1984 JP
59094005 May 1984 JP
59099308 Jul 1984 JP
59112311 Jul 1984 JP
59120124 Aug 1984 JP
59131668 Sep 1984 JP
59164973 Sep 1984 JP
59184917 Oct 1984 JP
2283343 Nov 1984 JP
59212924 Dec 1984 JP
59226909 Dec 1984 JP
60211510 Oct 1985 JP
60259895 Dec 1985 JP
61097712 May 1986 JP
62074018 Apr 1987 JP
62070709 May 1987 JP
62164431 Oct 1987 JP
62263508 Nov 1987 JP
62189057 Dec 1987 JP
63079623 Apr 1988 JP
63158032 Jul 1988 JP
63241610 Oct 1988 JP
1162454 Jun 1989 JP
2283343 Nov 1990 JP
3197758 Aug 1991 JP
3201903 Sep 1991 JP
4019586 Mar 1992 JP
4084921 Mar 1992 JP
5023269 Apr 1993 JP
5042076 Jun 1993 JP
5046246 Jun 1993 JP
5150827 Jun 1993 JP
5150829 Jun 1993 JP
5054620 Jul 1993 JP
5040519 Oct 1993 JP
5257527 Oct 1993 JP
5257533 Oct 1993 JP
5285861 Nov 1993 JP
6137828 May 1994 JP
6293095 Oct 1994 JP
6327598 Nov 1994 JP
7059702 Mar 1995 JP
7129239 May 1995 JP
7222705 Aug 1995 JP
7270518 Oct 1995 JP
7281742 Oct 1995 JP
7281752 Oct 1995 JP
7295636 Nov 1995 JP
7313417 Dec 1995 JP
8089449 Apr 1996 JP
8089451 Apr 1996 JP
2520732 May 1996 JP
8123548 May 1996 JP
8152916 Jun 1996 JP
8263137 Oct 1996 JP
8322774 Dec 1996 JP
8335112 Dec 1996 JP
943901 Feb 1997 JP
9044240 Feb 1997 JP
9066855 Mar 1997 JP
9145309 Jun 1997 JP
9160644 Jun 1997 JP
9179625 Jul 1997 JP
9179685 Jul 1997 JP
9185410 Jul 1997 JP
9206258 Aug 1997 JP
9265319 Oct 1997 JP
9269807 Oct 1997 JP
9269810 Oct 1997 JP
9319432 Dec 1997 JP
9319434 Dec 1997 JP
9325812 Dec 1997 JP
10055215 Feb 1998 JP
10118963 May 1998 JP
10177414 Jun 1998 JP
10228316 Aug 1998 JP
10295595 Nov 1998 JP
11015941 Jan 1999 JP
11085269 Mar 1999 JP
11102219 Apr 1999 JP
11102220 Apr 1999 JP
11162454 Jun 1999 JP
11174145 Jul 1999 JP
11175149 Jul 1999 JP
11212642 Aug 1999 JP
11213157 Aug 1999 JP
11508810 Aug 1999 JP
11510935 Sep 1999 JP
11295412 Oct 1999 JP
2000047728 Feb 2000 JP
2000056006 Feb 2000 JP
2000056831 Feb 2000 JP
2000066722 Mar 2000 JP
2000075925 Mar 2000 JP
10240343 May 2000 JP
2000275321 Oct 2000 JP
2000353014 Dec 2000 JP
2001022443 Jan 2001 JP
2001067588 Mar 2001 JP
2001087182 Apr 2001 JP
2001258807 Sep 2001 JP
2001265437 Sep 2001 JP
2001275908 Oct 2001 JP
2001525567 Dec 2001 JP
2002204768 Jul 2002 JP
2002532178 Oct 2002 JP
2002323925 Nov 2002 JP
2002333920 Nov 2002 JP
03356170 Dec 2002 JP
2002355206 Dec 2002 JP
2002360471 Dec 2002 JP
2002360479 Dec 2002 JP
2002360482 Dec 2002 JP
2002366227 Dec 2002 JP
2003005296 Jan 2003 JP
2003010076 Jan 2003 JP
2003010088 Jan 2003 JP
2003015740 Jan 2003 JP
03375843 Feb 2003 JP
2003036116 Feb 2003 JP
2003505127 Feb 2003 JP
2003061882 Mar 2003 JP
2003180586 Jul 2003 JP
2003180587 Jul 2003 JP
2003262520 Sep 2003 JP
2003310489 Nov 2003 JP
2003310509 Nov 2003 JP
2004123040 Apr 2004 JP
2004148021 May 2004 JP
2004160102 Jun 2004 JP
2004166968 Jun 2004 JP
2004174228 Jun 2004 JP
2005118354 May 2005 JP
2005135400 May 2005 JP
2005224265 Aug 2005 JP
2005230032 Sep 2005 JP
2005245916 Sep 2005 JP
2005296511 Oct 2005 JP
2005352707 Dec 2005 JP
2006043071 Feb 2006 JP
2006155274 Jun 2006 JP
2006164223 Jun 2006 JP
2006247467 Sep 2006 JP
2006260161 Sep 2006 JP
2006293662 Oct 2006 JP
2006296697 Nov 2006 JP
2007034866 Feb 2007 JP
2007213180 Aug 2007 JP
04074285 Apr 2008 JP
2009015611 Jan 2009 JP
2010198552 Sep 2010 JP
WO9530887 Nov 1995 WO
WO9617258 Feb 1997 WO
WO9905580 Feb 1999 WO
WO0036962 Jun 2000 WO
WO0038026 Jun 2000 WO
WO0038028 Jun 2000 WO
WO0038029 Jun 2000 WO
WO0078410 Dec 2000 WO
WO0106904 Feb 2001 WO
WO0180703 Nov 2001 WO
WO0191623 Dec 2001 WO
WO0239864 May 2002 WO
WO0239868 May 2002 WO
WO02058527 Aug 2002 WO
WO02062194 Aug 2002 WO
WO02067752 Sep 2002 WO
WO02069774 Sep 2002 WO
WO02075350 Sep 2002 WO
WO02075469 Sep 2002 WO
WO02075470 Sep 2002 WO
WO02081074 Oct 2002 WO
WO03015220 Feb 2003 WO
WO03024292 Mar 2003 WO
WO0269775 May 2003 WO
WO03040546 May 2003 WO
WO03040845 May 2003 WO
WO03040846 May 2003 WO
WO03062850 Jul 2003 WO
WO03062852 Jul 2003 WO
WO02101477 Oct 2003 WO
WO03026474 Nov 2003 WO
WO2004004533 Jan 2004 WO
WO2004004534 Jan 2004 WO
WO2004005956 Jan 2004 WO
WO2004006034 Jan 2004 WO
WO2004025947 May 2004 WO
WO2004043215 May 2004 WO
WO2004058028 Jul 2004 WO
WO2005006935 Jan 2005 WO
WO2005036292 Apr 2005 WO
WO2005055796 Jun 2005 WO
WO2005076545 Aug 2005 WO
WO2005077243 Aug 2005 WO
WO2005081074 Sep 2005 WO
WO2005082223 Sep 2005 WO
WO2005098475 Oct 2005 WO
WO2005098476 Oct 2005 WO
WO2006046400 May 2006 WO
WO2006073248 Jul 2006 WO
WO2007036490 May 2007 WO
WO2007065033 Jun 2007 WO
WO2007137234 Nov 2007 WO
Non-Patent Literature Citations (111)
Entry
International Search Report and Written Opinion.
International Preliminary Report on Patentability in corresponding application PCT/US2007/069389, dated Nov. 4, 2008.
Examination report dated Jul. 15, 2011 from corresponding U.S. Appl. No. 12/687,464.
Andersen et al., “Landmark based navigation strategies”, SPIE Conference on Mobile Robots XIII, SPIE vol. 3525, pp. 170-181, Jan. 8, 1999.
U.S. Appl. No. 60/605,066 as provided to WIPO in PCT/US2005/030422, corresponding to National Stage Entry U.S. Appl. No. 11/574,290, U.S. publication 2008/0184518, filed Aug. 27, 2004.
U.S. Appl. No. 60/605,181 as provided to WIPO in PCT/US2005/030422, corresponding to National Stage Entry U.S. Appl. No. 11/574,290, U.S. publication 2008/0184518, filed Aug. 27, 2004.
Derek Kurth, “Range-Only Robot Localization and Slam with Radio”, http://www.ri.cmu.edu/pub—files/pub4/kurth—derek—2004—1/kurth—derek—2004—1.pdf. 60 pages, May 2004, accessed Jul. 27, 2012.
Electrolux Trilobite, Jan. 12, 2001, http://www.electrolux-ui.com:8080/2002%5C822%5C833102EN.pdf, accessed Jul. 2, 2012, 10 pages.
Florbot GE Plastics, 1989-1990, 2 pages, available at http://www.fuseid.com/, accessed Sep. 27, 2012.
Gregg et al., “Autonomous Lawn Care Applications,” 2006 Florida Conference on Recent Advances in Robotics, Miami, Florida, May 25-26, 2006, Florida International University, 5 pages.
Home Robot—UBOT; Microbotusa.com, retrieved from the WWW at www.microrobotusa.com, accessed Dec. 2, 2008.
King and Weiman, “Helpmate™ Autonomous Mobile Robots Navigation Systems,” SPIE vol. 1388 Mobile Robots, pp. 190-198 (1990).
Li et al. “Robust Statistical Methods for Securing Wireless Localization in Sensor Networks,” Information Procesing in Sensor Networks, 2005, Fourth International Symposium on, pp. 91-98, Apr. 2005.
Martishevcky, “The Accuracy of point light target coordinate determination by dissectoral tracking system”, SPIE vol. 2591, pp. 25-30, Oct. 23, 2005.
Miwako Doi “Using the symbiosis of human and robots from approaching Research and Development Center,” Toshiba Corporation, 16 pages, available at http://warp.ndl.go.jp/info:ndljp/pid/258151/www.soumu.go.jp/joho—tsusin/policyreports/chousa/netrobot/pdf/030214—1—33—a.pdf, Feb. 26, 2003.
Paromtchik “Toward Optical Guidance of Mobile Robots,” Proceedings of the Fourth World Multiconference on Systemics, Cybermetics and Informatics, Orlando, FL, USA, Jul. 23, 2000, vol. IX, pp. 44-49, available at http://emotion.inrialpes.fr/˜paromt/infos/papers/paromtchik:asama:sci:2000.ps.gz, accessed Jul. 3, 2012.
Roboking—not just a vacuum cleaner, a robot!, Jan. 21, 2004, infocom.uz/2004/01/21/robokingne-prosto-pyilesos-a-robot/, accessed Oct. 10, 2011, 7 pages.
Sebastian Thrun, “Learning Occupancy Grid Maps With Forward Sensor Models,” Autonomous Robots 15, 111-127, Sep. 1, 2003.
SVET Computers—New Technologies—Robot Vacuum Cleaner, Oct. 1999, available at http://www.sk.rs/1999/10/sknt01.html, accessed Nov. 1, 2011.
Written Opinion of the International Searching Authority, PCT/US2004/001504, Aug. 20, 2012, 9 pages.
Borges et al. “Optimal Mobile Robot Pose Estimation Using Geometrical Maps”, IEEE Transactions on Robotics and Automation, vol. 18, No. 1, pp. 87-94, Feb. 2002.
Braunstingl et al. “Fuzzy Logic Wall Following of a Mobile Robot Based on the Concept of General Perception” ICAR '95, 7th International Conference on Advanced Robotics, Sant Feliu De Guixols, Spain, pp. 367-376, Sep. 1995.
Bulusu, et al. “Self Configuring Localization systems: Design and Experimental Evaluation”, ACM Transactions on Embedded Computing Systems vol. 3 No. 1 pp. 24-60, 2003.
Caccia, et al. “Bottom-Following for Remotely Operated Vehicles”, 5th IFAC conference, Alaborg, Denmark, pp. 245-250 Aug. 1, 2000.
Chae, et al. “StarLITE: A new artificial landmark for the navigation of mobile robots”, http://www.irc.atr.jp/jk-nrs2005/pdf/Starlite.pdf, 4 pages, 2005.
Chamberlin et al. “Team 1: Robot Locator Beacon System” NASA Goddard SFC, Design Proposal, 15 pages, Feb. 17, 2006.
Champy “Physical management of IT assets in Data Centers using RFID technologies”, RFID 2005 University, Oct. 12-14, 2005.
Chiri “Joystick Control for Tiny OS Robot”, http://www.eecs.berkeley.edu/Programs/ugrad/superb/papers2002/chiri.pdf. 12 pages, Aug. 8, 2002.
Christensen et al. “Theoretical Methods for Planning and Control in Mobile Robotics” 1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, pp. 81-86, May 21-27, 1997.
Clerentin, et al. “A localization method based on two omnidirectional perception systems cooperation” Proc of IEEE International Conference on Robotics & Automation, San Francisco, CA vol. 2, pp. 1219-1224, Apr. 2000.
Corke “High Performance Visual serving for robots end-point control”. SPIE vol. 2056 Intelligent robots and computer vision 1993.
Cozman et al. “Robot Localization using a Computer Vision Sextant”, IEEE International Midwest Conference on Robotics and Automation, pp. 106-111, 1995.
D'Orazio, et al. “Model based Vision System for mobile robot position estimation”, SPIE vol. 2058 Mobile Robots VIII, pp. 38-49, 1992.
De Bakker, et al. “Smart PSD-array for sheet of light range imaging”, Proc. of SPIE vol. 3965, pp. 1-12, May 15, 2000.
Desaulniers, et al. “An Efficient Algorithm to find a shortest path for a car-like Robot”, IEEE Transactions on robotics and Automation vol. 11 No. 6, pp. 819-828, Dec. 1995.
Dorfmüller-Ulhaas “Optical Tracking From User Motion to 3D Interaction”, http://www.cg.tuwien.ac.at/research/publications/2002/Dorfmueller-Ulhaas-thesis, 182 pages, 2002.
Dorsch, et al. “Laser Triangulation: Fundamental uncertainty in distance measurement”, Applied Optics, vol. 33 No. 7, pp. 1306-1314, Mar. 1, 1994.
Dudek, et al. “Localizing a Robot with Minimum Travel” Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms, vol. 27 No. 2 pp. 583-604, Apr. 1998.
Dulimarta, et al. “Mobile Robot Localization in Indoor Environment”, Pattern Recognition, vol. 30, No. 1, pp. 99-111, 1997.
EBay “Roomba Timer -> Timed Cleaning—Floorvac Robotic Vacuum”, Cgi.ebay.com/ws/eBay|SAP|.dll?viewitem&category=43526&item=4375198387&rd=1, 5 pages, Apr. 20, 2005.
Electrolux “Welcome to the Electrolux trilobite” www.electroluxusa.com/node57.asp?currentURL=node142.asp%3F, 2 pages, Mar. 18, 2005.
Eren, et al. “Accuracy in position estimation of mobile robots based on coded infrared signal transmission”, Proceedings: Integrating Intelligent Instrumentation and Control, Instrumentation and Measurement Technology Conference, 1995. IMTC/95. pp. 548-551, 1995.
Eren, et al. “Operation of Mobile Robots in a Structured Infrared Environment”, Proceedings. ‘Sensing, Processing, Networking’, IEEE Instrumentation and Measurement Technology Conference, 1997 (IMTC/97), Ottawa, Canada vol. 1, pp. 20-25, May 19-21, 1997.
Becker, et al. “Reliable Navigation Using Landmarks” IEEE International Conference on Robotics and Automation, 0-7803-1965-6, pp. 401-406, 1995.
Benayad-Cherif, et al., “Mobile Robot Navigation Sensors” SPIE vol. 1831 Mobile Robots, VII, pp. 378-387, 1992.
Facchinetti, Claudio et al. “Using and Learning Vision-Based Self-Positioning for Autonomous Robot Navigation”, ICARCV '94, vol. 3 pp. 1694-1698, 1994.
M. Betke and L. Gurvits, “Mobile robot localization using landmarks”, IEEE Trans. Robot. Automat., vol. 13, pp. 251-263 (1997).
Facchinetti, Claudio et al. “Self-Positioning Robot Navigation Using Ceiling Images Sequences”, ACCV '95, 5 pages, Dec. 5-8, 1995.
Fairfield, Nathaniel et al. “Mobile Robot Localization with Sparse Landmarks”, SPIE vol. 4573 pp. 148-155, 2002.
Favre-Bulle, Bernard “Efficient tracking of 3D-Robot Position by Dynamic Triangulation”, IEEE Instrumentation and Measurement Technology Conference IMTC 98 Session on Instrumentation and Measurement in Robotics, vol. 1, pp. 446-449, May 18-21, 1998.
Fayman “Exploiting Process Integration and Composition in the context of Active Vision”, IEEE Transactions on Systems, Man, and Cybernetics—Part C: Application and reviews, vol. 29 No. 1, pp. 73-86, Feb. 1999.
Franz, et al. “Biomimetric robot navigation”, Robotics and Autonomous Systems vol. 30 pp. 133-153, 2000.
Friendly Robotics “Friendly Robotics—Friendly Vac, Robotic Vacuum Cleaner”, www.friendlyrobotics.com/vac.htm. 5 pages Apr. 20, 2005.
Fuentes, et al. “Mobile Robotics 1994”, University of Rochester. Computer Science Department, TR 588, 44 pages, Dec. 7, 1994.
Bison, P et al., “Using a structured beacon for cooperative position estimation” Robotics and Autonomous Systems vol. 29, No. 1, pp. 33-40, Oct. 1999.
Fukuda, et al. “Navigation System based on Ceiling Landmark Recognition for Autonomous mobile robot”, 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95. ‘Human Robot Interaction and Cooperative Robots’, Pittsburgh, PA, pp. 1466/1471, Aug. 5-9, 1995.
Gionis “A hand-held optical surface scanner for environmental Modeling and Virtual Reality”, Virtual Reality World, 16 pages 1996.
Goncalves et al. “A Visual Front-End for Simultaneous Localization and Mapping”, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 44-49, Apr. 2005
Hamamatsu “SI PIN Diode S5980, S5981 S5870—Multi-element photodiodes for surface mounting”, Hamatsu Photonics, 2 pages Apr. 2004.
Hammacher Schlemmer “Electrolux Trilobite Robotic Vacuum” www.hammacher.com/publish/71579.asp?promo=xsells, 3 pages, Mar. 18, 2005.
Haralick et al. “Pose Estimation from Corresponding Point Data”, IEEE Transactions on systems, Man, and Cybernetics, vol. 19, No. 6, pp. 1426-1446, Nov. 1989.
Hausler “About the Scaling Behaviour of Optical Range Sensors”, Fringe '97, Proceedings of the 3rd International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, pp. 147-155, Sep. 15-17, 1997.
Blaasvaer, et al. “AMOR—An Autonomous Mobile Robot Navigation System”, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 2266-2271, 1994.
Hoag, et al. “Navigation and Guidance in interstellar space”, ACTA Astronautica vol. 2, pp. 513-533 , Feb. 14, 1975.
Huntsberger et al. “CAMPOUT: A Control Architecture for Tightly Coupled Coordination of Multirobot Systems for Planetary Surface Exploration”, IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 33, No. 5, pp. 550-559, Sep. 2003.
Iirobotics.com “Samsung Unveils Its Multifunction Robot Vacuum”, www.iirobotics.com/webpages/hotstuff.php?ubre=111, 3 pages, Mar. 18, 2005.
Jarosiewicz et al. “Final Report—Lucid”, University of Florida, Departmetn of Electrical and Computer Engineering, EEL 5666—Intelligent Machine Design Laboratory, 50 pages, Aug. 4, 1999.
Jensfelt, et al. “Active Global Localization for a mobile robot using multiple hypothesis tracking”, IEEE Transactions on Robots and Automation vol. 17, No. 5, pp. 748-760, Oct. 2001.
Jeong, et al. “An intelligent map-building system for indoor mobile robot using low cost photo sensors”, SPIE vol. 6042 6 pages, 2005.
Kahney, “Robot Vacs are in the House,” www.wired.com/news/technology/o,1282,59237,00.html, 6 pages, Aug. 18, 2003.
Karcher “Product Manual Download Karch”, www.karcher.com, 17 pages, 2004.
Karcher “Karcher RoboCleaner RC 3000”, www.robocleaner.de/english/screen3.html, 4 pages, Dec. 12, 2003.
Karcher USA “RC 3000 Robotics cleaner”, www.karcher-usa.com, 3 pages, Mar. 18, 2005.
Karlsson et al., The vSLAM Algorithm for Robust Localization and Mapping, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 24-29, Apr. 2005.
Karlsson, et al Core Technologies for service Robotics, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2979-2984, Sep. 28-Oct. 2, 2004.
Kleinberg, The Localization Problem for Mobile Robots, Laboratory for Computer Science, Massachusetts Institute of Technology, 1994 IEEE, pp. 521-531, 1994.
Knight, et al., “Localization and Identification of Visual Landmarks”, Journal of Computing Sciences in Colleges, vol. 16 Issue 4, 2001 pp. 312-313, May 2001.
Kolodko et al. “Experimental System for Real-Time Motion Estimation”, Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), pp. 981-986, 2003.
Komoriya et al., Planning of Landmark Measurement for the Navigation of a Mobile Robot, Proceedings of the 1992 IEEE/RSJ International Cofnerence on Intelligent Robots and Systems, Raleigh, NC pp. 1476-1481, Jul. 7-10, 1992.
Krotov, et al. “Digital Sextant”, Downloaded from the internet at: http://www.cs.cmu.edu/˜epk/ , 1 page, 1995.
Krupa et al. “Autonomous 3-D Positioning of Surgical Instruments in Robotized Laparoscopic Surgery Using Visual Servoing”, IEEE Transactions on Robotics and Automation, vol. 19, No. 5, pp. 842-853, Oct. 5, 2003.
Kuhl, et al. “Self Localization in Environments using Visual Angles”, VRCAI '04 Proceedings of the 2004 ACM SIGGRAPH international conference on Virtual Reality continuum and its applications in industry, pp. 472-475, 2004.
Lambrinos, et al. “A mobile robot employing insect strategies for navigation”, http://www8.cs.umu.se/kurser/TDBD17/VT04/dl/Assignment%20Papers/lambrinos-RAS-2000.pdf, 38 pages, Feb. 19, 1999.
Lang et al. “Visual Measurement of Orientation Using Ceiling Features”, 1994 IEEE, pp. 552-555, 1994.
Lapin, “Adaptive position estimation for an automated guided vehicle”, SPIE vol. 1831 Mobile Robots VII, pp. 82-94, 1992.
LaValle et al. “Robot Motion Planning in a Changing, Partially Predictable Environment”, 1994 IEEE International Symposium on Intelligent Control, Columbus, OH, pp. 261-266, Aug. 16-18, 1994.
Lee, et al. “Localization of a Mobile Robot Using the Image of a Moving Object”, IEEE Transaction on Industrial Electronics, vol. 50, No. 3 pp. 612-619, Jun. 2003.
Lee, et al. “Development of Indoor Navigation system for Humanoid Robot Using Multi-sensors Integration”, ION NTM, San Diego, CA pp. 798-805, Jan. 22-24, 2007.
Leonard, et al. “Mobile Robot Localization by tracking Geometric Beacons”, IEEE Transaction on Robotics and Automation, vol. 7, No. 3 pp. 376-382, Jun. 1991.
Li et al. “Making a Local Map of Indoor Environments by Swiveling a Camera and a Sonar”, Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 954-959, 1999.
Lin, et al.. “Mobile Robot Navigation Using Artificial Landmarks”, Journal of robotics System 14(2). pp. 93-106, 1997.
Linde “Dissertation, “On Aspects of Indoor Localization”” https://eldorado.tu-dortmund.de/handle/2003/22854, University of Dortmund, 138 pages, Aug. 28, 2006.
Lumelsky, et al. “An Algorithm for Maze Searching with Azimuth Input”, 1994 IEEE International Conference on Robotics and Automation, San Diego, CA vol. 1, pp. 111-116, 1994.
Luo et al., “Real-time Area-Covering Operations with Obstacle Avoidance for Cleaning Robots,” 2002, IEeE, p. 2359-2364.
Ma “Thesis: Documentation on Northstar”, California Institute of Technology, 14 pages, May 17, 2006.
Madsen, et al. “Optimal landmark selection for triangulation of robot position”, Journal of Robotics and Autonomous Systems vol. 13 pp. 277-292, 1998.
Matsutek Enterprises Co. Ltd “Automatic Rechargeable Vacuum Cleaner”, http://matsutek.manufacturer.globalsources.com/si/6008801427181/pdtl/Home-vacuum/10..., Apr. 23, 2007, 3 pages.
McGillem, et al. “Infra-red Lacation System for Navigation and Autonomous Vehicles”, 1988 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1236-1238, Apr. 24-29, 1988.
McGillem,et al. “A Beacon Navigation Method for Autonomous Vehicles”, IEEE Transactions on Vehicular Technology, vol. 38, No. 3, pp. 132-139, Aug. 1989.
Michelson “Autonomous Navigation”, 2000 Yearbook of Science & Technology, McGraw-Hill, New York, ISBN 0-07-052771-7, pp. 28-30, 1999.
Miro, et al. “Towards Vision Based Navigation in Large Indoor Environments”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2096-2102, Oct. 9-15, 2006.
MobileMag “Samsung Unveils High-tech Robot Vacuum Cleaner”, http://www.mobilemag.com/content/100/102/C2261/, 4 pages, Mar. 18, 2005.
Monteiro, et al. “Visual Servoing for Fast Mobile Robot: Adaptive Estimation of Kinematic Parameters”, Proceedings of the IECON '93., International Conference on Industrial Electronics, Maui, HI, pp. 1588-1593, Nov. 15-19, 1993.
Moore, et al. A simple Map-bases Localization strategy using range measurements, SPIE vol. 5804 pp. 612-620, 2005.
Munich et al. “SIFT-ing Through Features with ViPR”, IEEE Robotics & Automation Magazine, pp. 72-77, Sep. 2006.
Munich et al. “ERSP: A Software Platform and Architecture for the Service Robotics Industry”, Intelligent Robots and Systems, 2005. (IROS 2005), pp. 460-467, Aug. 2-6, 2005.
Nam, et al. “Real-Time Dynamic Visual Tracking Using PSD Sensors and extended Trapezoidal Motion Planning”, Applied Intelligence 10, pp. 53-70, 1999.
Nitu et al. “Optomechatronic System for Position Detection of a Mobile Mini-Robot”, IEEE Ttransactions on Industrial Electronics, vol. 52, No. 4, pp. 969-973, Aug. 2005.
On Robo “Robot Reviews Samsung Robot Vacuum (VC-RP30W)”, www.onrobo.com/reviews/AT—Home/vacuum—cleaners/on00vcrb30rosam/index.htm.. 2 pages, 2005.
InMach “Intelligent Machines”, www.inmach.de/inside.html, 1 page , Nov. 19, 2008.
Innovation First “2004 EDU Robot Controller Reference Guide”, http://www.ifirobotics.com, 13 pgs., Mar. 1, 2004.
Related Publications (1)
Number Date Country
20100011529 A1 Jan 2010 US
Provisional Applications (3)
Number Date Country
60747791 May 2006 US
60803504 May 2006 US
60807442 Jul 2006 US