Renal denervation balloon catheter with ride along electrode support

Information

  • Patent Grant
  • 9943365
  • Patent Number
    9,943,365
  • Date Filed
    Friday, June 20, 2014
    10 years ago
  • Date Issued
    Tuesday, April 17, 2018
    6 years ago
Abstract
A renal nerve ablation device may include an elongate tubular member having a distal region. An expandable member may be coupled to the distal region. An electrode support may be coupled to the distal region of the elongate tubular member and extend over a body of the expandable member. The electrode support may be free of connection to the body of the expandable member. One or more electrodes may be coupled to the electrode support.
Description
TECHNICAL FIELD

The present disclosure pertains to medical devices, and methods for using and manufacturing medical devices. More particularly, the present disclosure pertains to medical devices for renal nerve ablation.


BACKGROUND

A wide variety of intracorporal medical devices have been developed for medical use, for example, intravascular use. Some of these devices include guidewires, catheters, and the like. These devices are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known medical devices and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices as well as alternative methods for manufacturing and using medical devices.


BRIEF SUMMARY

A medical device for renal nerve ablation may include a catheter shaft, an expandable member coupled to the catheter shaft, the expandable member having a proximal region, a distal region, and a body extending therebetween. The medical device may further include an electrode support coupled to the catheter shaft and positioned over the body of the expandable member, the electrode support including a plurality of flexible elongate members and a plurality of electrode assemblies disposed on the elongate members, the electrode support capable of expanding with the expandable member, wherein the electrode support is free from attachment with the body of the expandable member.


A medical device may include a catheter shaft, an expandable balloon, a flexible elongate electrode assembly, and a plurality of electrode elements. The expandable balloon may have a distal waist, proximal waist, and a body extending therebetween, the proximal waist being coupled to the catheter shaft. The flexible elongate electrode assembly may be coupled to the catheter shaft and may extend in a helix over the body of the expandable balloon, the electrode assembly free from attachment to the body of the expandable balloon. The plurality of electrode elements may be disposed on the flexible elongate electrode assembly.


A method for treating hypertension may include providing a medical device, the medical device including a catheter shaft, an expandable member coupled to the catheter shaft, an expandable electrode support coupled to the catheter shaft and positioned over the expandable member, the electrode support including a plurality of flexible elongate members and a plurality of electrode assemblies disposed on the elongate members, the electrode support capable of expanding with the expandable member, wherein the electrode support is free from attachment with the expandable member, and a delivery sheath. The method may further include the steps of advancing the medical device through a blood vessel to a position within a renal artery, expanding the expandable member, thereby expanding the electrode support, energizing the electrode assemblies, collapsing the expandable member, and thereafter, withdrawing the expandable member and the electrode support into the delivery sheath, thereby collapsing the electrode support.


The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify these embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following detailed description in connection with the accompanying drawings, in which:



FIG. 1 is a schematic view of an example renal nerve ablation device;



FIG. 2 is a perspective view of an example expandable member of a renal nerve ablation device;



FIG. 3 is a partial top view of the expandable member of FIG. 2 in an unrolled or flat configuration;



FIG. 4 is a top view of a portion of an example electrode assembly;



FIG. 5 is a partial cross-sectional view A-A of FIG. 4;



FIG. 6 is a partial cross-sectional view B-B of FIG. 4;



FIG. 7 is a perspective view of an example renal nerve ablation device;



FIG. 8 is a perspective view of the electrode support of FIG. 7;



FIG. 9 is a perspective view of an example expandable member;



FIG. 10 is an end view of the expandable member of FIG. 9;



FIG. 11 is a perspective view of the expandable member of FIG. 9 with an electrode support;



FIG. 12 is a perspective view of another example renal nerve ablation device;



FIG. 13 is a partial top view of the electrode support of FIG. 12 in an unrolled or flat configuration;



FIG. 14 is a perspective view of another example renal nerve ablation device; and



FIG. 15 is a perspective view of another example renal nerve ablation device.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DETAILED DESCRIPTION

The following description should be read with reference to the drawings, which are not necessarily to scale, wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings are intended to illustrate but not limit the claimed invention. Those skilled in the art will recognize that the various elements described and/or shown may be arranged in various combinations and configurations without departing from the scope of the disclosure. The detailed description and drawings illustrate example embodiments of the claimed invention.


For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about”, in the context of numeric values, generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the term “about” may include numbers that are rounded to the nearest significant figure. Other uses of the term “about” (i.e., in a context other than numeric values) may be assumed to have their ordinary and customary definition(s), as understood from and consistent with the context of the specification, unless otherwise specified.


The recitation of numerical ranges by endpoints includes all numbers within that range, including the endpoints (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it would be within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments, whether or not explicitly described, unless clearly stated to the contrary. That is, the various individual elements described below, even if not explicitly shown in a particular combination, are nevertheless contemplated as being combined or arranged with each other to form other additional embodiments or to complement and/or enrich the described embodiment(s), as would be understood by one of ordinary skill in the art.


Certain treatments are aimed at the temporary or permanent interruption or modification of select nerve function. One example treatment is renal nerve ablation, which is sometimes used to treat conditions such as or related to hypertension, congestive heart failure, diabetes, or other conditions impacted by high blood pressure or salt retention. The kidneys produce a sympathetic response, which may increase the undesired retention of water and/or sodium. The result of the sympathetic response, for example, may be an increase in blood pressure. Ablating some of the nerves running to the kidneys (e.g., disposed adjacent to or otherwise along the renal arteries) may reduce or eliminate this sympathetic response, which may provide a corresponding reduction in the associated undesired symptoms (e.g., a reduction in blood pressure).


Some embodiments of the present disclosure relate to a power generating and control apparatus, often for the treatment of targeted tissue in order to achieve a therapeutic effect. In some embodiments, the target tissue is tissue containing or proximate to nerves, including renal arteries and associated renal nerves. In other embodiments the target tissue is luminal tissue, which may further comprise diseased tissue such as that found in arterial disease.


In some embodiments of the present disclosure, the ability to deliver energy in a targeted dosage may be used for nerve tissue in order to achieve beneficial biologic responses. For example, chronic pain, urologic dysfunction, hypertension, and a wide variety of other persistent conditions are known to be affected through the operation of nervous tissue. For example, it is known that chronic hypertension that may not be responsive to medication may be improved or eliminated by disabling excessive nerve activity proximate to the renal arteries. It is also known that nervous tissue does not naturally possess regenerative characteristics. Therefore it may be possible to beneficially affect excessive nerve activity by disrupting the conductive pathway of the nervous tissue. When disrupting nerve conductive pathways, it is particularly advantageous to avoid damage to neighboring nerves or organ tissue. The ability to direct and control energy dosage is well-suited to the treatment of nerve tissue. Whether in a heating or ablating energy dosage, the precise control of energy delivery as described and disclosed herein may be directed to the nerve tissue. Moreover, directed application of energy may suffice to target a nerve without the need to be in exact contact, as would be required when using a typical ablation probe. For example, eccentric heating may be applied at a temperature high enough to denature nerve tissue without causing ablation and without requiring the piercing of luminal tissue. However, it may also be desirable to configure the energy delivery surface of the present disclosure to pierce tissue and deliver ablating energy similar to an ablation probe with the exact energy dosage being controlled by a power control and generation apparatus.


In some embodiments, efficacy of the denervation treatment can be assessed by measurement before, during, and/or after the treatment to tailor one or more parameters of the treatment to the particular patient or to identify the need for additional treatments. For instance, a denervation system may include functionality for assessing whether a treatment has caused or is causing a reduction in neural activity in a target or proximate tissue, which may provide feedback for adjusting parameters of the treatment or indicate the necessity for additional treatments.


While the devices and methods described herein are discussed relative to renal nerve ablation and/or modulation, it is contemplated that the devices and methods may be used in other treatment locations and/or applications where nerve modulation and/or other tissue modulation including heating, activation, blocking, disrupting, or ablation are desired, such as, but not limited to: blood vessels, urinary vessels, or in other tissues via trocar and cannula access. For example, the devices and methods described herein can be applied to hyperplastic tissue ablation, cardiac ablation, pulmonary vein isolation, pulmonary vein ablation, tumor ablation, benign prostatic hyperplasia therapy, nerve excitation or blocking or ablation, modulation of muscle activity, hyperthermia or other warming of tissues, etc.



FIG. 1 is a schematic view of an example renal nerve ablation system 100. System 100 may include a renal nerve ablation device 120. Renal nerve ablation device 120 may be used to ablate nerves (e.g., renal nerves) disposed adjacent to the kidney K (e.g., renal nerves disposed about a renal artery RA). In use, renal nerve ablation device 120 may be advanced through a blood vessel such as the aorta A to a position within the renal artery RA. This may include advancing renal nerve ablation device 120 through a guide sheath or catheter 14. When positioned as desired, renal nerve ablation device 120 may be activated to activate one or more electrodes (not shown). This may include operatively coupling renal nerve ablation device 120 to a control unit 110, which may include an RF generator, so as to supply the desired activation energy to the electrodes. For example, renal nerve ablation device 120 may include a wire or conductive member 18 with a connector 20 that can be connected to a connector 22 on the control unit 110 and/or a wire 24 coupled to the control unit 110. In at least some embodiments, the control unit 110 may also be utilized to supply/receive the appropriate electrical energy and/or signal to activate one or more sensors disposed at or near a distal end of renal nerve ablation device 120. When suitably activated, the electrodes may be capable of ablating tissue (e.g., renal nerves) as described below and the sensors may be used to detect desired physical and/or biological parameters.


An exemplary control unit 110 and associated energy delivery methods useable with the embodiments disclosed herein are disclosed in U.S. Patent Application Publication No. 2012/0095461 entitled “Power Generating and Control Apparatus for the Treatment of Tissue”, the full disclosure of which is incorporated by reference herein. Further examples useable with the embodiments disclosed herein are disclosed in U.S. Pat. No. 7,742,795 entitled “Tuned RF Energy for Selective Treatment of Atheroma and Other Target Tissues and/or Structures”, U.S. Pat. No. 7,291,146 entitled “Selectable Eccentric Remodeling and/or Ablation of Atherosclerotic Material”, and U.S. Patent Application Publication No. 2008/0188912 entitled “System for Inducing Desirable Temperature Effects on Body Tissue”, the full disclosures of which are incorporated herein by reference. In some embodiments, particularly in some embodiments utilizing monopolar energy delivery, the system 100 may also include a ground/common electrode (not shown), which may be associated with the ablation device 120. The ground/common electrode may be a separate pad that is electrically or otherwise operatively coupled to the control unit 110, or otherwise associated with the system 100.


In some embodiments, the control unit 110 may include a processor or otherwise be coupled to a processor to control or record treatment. The processor may typically comprise computer hardware and/or software, often including one or more programmable processor units running machine-readable program instructions or code for implementing some, or all, of one or more of the embodiments and methods described herein. The code may often be embodied in a tangible media such as a memory (optionally a read-only memory, a random access memory, a non-volatile memory, or the like) and/or a recording media (such as a floppy disk, a hard drive, a CD, a DVD, or other optical media, a non-volatile solid-state memory card, or the like). The code and/or associated data and signals may also be transmitted to or from the processor via a network connection (such as a wireless network, an ethernet, an internet, an intranet, or the like), and some or all of the code may also be transmitted between components of a renal nerve ablation system and within the processor via one or more buses, and appropriate standard or proprietary communications cards, connectors, cables, and the like may often be included in the processor. The processor may often be configured to perform the calculations and signal transmission steps described herein at least in part by programming the processor with the software code, which may be written as a single program, a series of separate subroutines or related programs, or the like. The processor may comprise standard or proprietary digital and/or analog signal processing hardware, software, and/or firmware, and may desirably have sufficient processing power to perform the calculations described herein during treatment of the patient, the processor may optionally comprise a personal computer, a notebook computer, a tablet computer, a proprietary processing unit, or a combination thereof. Standard or proprietary input devices (such as a mouse, keyboard, touchscreen, joystick, etc.) and output devices (such as a printer, speakers, display, etc.) associated with modern computer systems may also be included, and processors having a plurality of processing units (or even separate computers) may be employed in a wide range of centralized or distributed data processing architectures.


In some embodiments, control software for the system 100 may use a client-server scheme to further enhance system ease of use, flexibility, and reliability. “Clients” may be the system control logic; “servers” may be the control hardware. A communications manager may deliver changes in system conditions to subscribing clients and servers. Clients may “know” what the present system condition is, and what command or decision to perform based on a specific change in condition. Servers may perform the system function based on client commands. Because the communications manager may be a centralized information manager, new system hardware may not require changes to prior existing client-server relationships; new system hardware and its related control logic may then merely become an additional “subscriber” to information managed through the communications manager. This control schema may provide the benefit of having a robust central operating program with base routines that are fixed; no change to base routines may be necessary in order to operate new circuit components designed to operate with the system.


In some embodiments, the renal nerve ablation device 120 may include an elongate tubular member or catheter shaft 122, as shown in FIG. 2. In some embodiments, the elongate tubular member or catheter shaft 122 may be configured to be slidingly advanced over a guidewire or other elongate medical device to a target site. In some embodiments, the elongate tubular member or catheter shaft 122 may be configured to be slidingly advanced within a guide sheath or catheter 14 to a target site. In some embodiments, the elongate tubular member or catheter shaft 122 may be configured to be advanced to a target site over a guidewire, within a guide sheath or catheter 14, or a combination thereof.


An expandable member 130 may be disposed at, on, about, or near a distal region of the elongate tubular member or catheter shaft 122. The expandable member 130 may have a body 135, a proximal waist 136, and a distal waist 137. In some embodiments, the expandable member 130 may be fixedly attached to the elongate tubular member or catheter shaft 122. In some embodiments the proximal waist 136 and the distal waist 137 are attached to the catheter shaft 122 while the body 135 is free from attachment to the catheter shaft 122. In some embodiments, the expandable member 130 may be self-expanding from a collapsed delivery state to an expanded state, such as a basket, a swellable foam or other material, or a plurality of struts, for example. In some embodiments, the expandable member 130 may be selectively expanded from a collapsed delivery state to an expanded state, such as a compliant, non-compliant, or semi-compliant balloon, for example. In some embodiments, one or more electrodes may be disposed on, disposed about, or coupled to an outer surface of the expandable member 130. In some embodiments, the one or more electrodes may be operatively and/or electrically connected to the control unit 110 and/or the RF generator. In some embodiments, the one or more electrodes may include a plurality of electrode assemblies. In some embodiments, one or more of the plurality of electrode assemblies may be configured to be monopolar or bipolar, and may further include a temperature sensor, for example, a thermistor or thermocouple.


For example, as shown in FIG. 2, in some embodiments, the electrode assemblies may be arranged on the expandable member 130, shown here in an expanded state, according to a plurality of generally cylindrical treatment zones A-D. In other embodiments, the expandable member 130 or other components of the treatment system may include additional electrode assemblies that are not in a treatment zone or are otherwise not used or configured to deliver a treatment energy.


The treatment zones A-D and associated electrode assemblies 140a-d are further illustrated in FIG. 3, which is an “unrolled” depiction of a portion of the expandable member 130 of FIG. 2. In some embodiments, the expandable member may be a balloon with a 4 mm diameter and two electrode assemblies 140a-b. In other embodiments, the expandable member may be a balloon with a 5 mm diameter and three electrode assemblies 140a-c. In some embodiments, the expandable member may be a balloon with a 6, 7, or 8 mm diameter and four electrode assemblies 140a-d, as depicted in FIG. 2. For any of these configurations, the expandable member may have a working length of about 10 mm to about 100 mm, or about 18 mm to about 25 mm, which may be the approximate longitudinal span of all the treatment zones A-D shown in FIGS. 2 and 3. The electrode assemblies 140a-d may be attached to a balloon using adhesive, or other suitable means.


Returning to FIG. 2, the treatment zones A-D may be longitudinally adjacent to one another along longitudinal axis L-L, and may be configured such that energy applied by the electrode assemblies create treatments that do not overlap. Treatments applied by the longitudinally adjacent bipolar electrode assemblies 140a-d may be circumferentially non-continuous along longitudinal axis L-L. For example, with reference to FIG. 3, lesions created in treatment zone A may in some embodiments minimize overlap about a circumference (laterally with respect to L-L in this view) with lesions created in treatment zone B. In other embodiments, however, the energy applied by the electrode assemblies, such as the electrode assemblies shown in FIG. 3, may overlap, longitudinally, circumferentially, and/or in other ways, to at least some extent.


Whether or not treatment zones between electrodes/electrode pairs will overlap may be influenced by a wide variety of factors, including, but not limited to, electrode geometry, electrode placement density, electrode positioning, ground/common electrode(s) placement and geometry (in monopolar embodiments), energy generator output settings, output voltage, output power, duty cycle, output frequency, tissue characteristics, tissue type, etc. In some embodiments, individual electrodes of a bipolar electrode pair may each define its own treatment zone, and such treatment zones may partially or entirely overlap. In some embodiments, the overlap of treatment zones may extend substantially continuously around a circumference of the expandable member and/or around a circumference in a tissue surrounding a body passageway. In other embodiments, there may be overlap in treatment zones, however, that overlap may not be substantially continuous around a circumference and significant discontinuities in the treatment zones may be present.


Returning to FIG. 3, each electrode pad assembly may include four major elements, which are a distal electrode pad 150a-d, intermediate tail 160a-d, proximal electrode pad 170a-d, and proximal tail 180b,d (not shown for electrode pad assemblies 140b and 140c). Constructional details of the electrode assemblies 140a-d are shown and described with reference to FIGS. 4-6.



FIG. 4 shows a top view of electrode assembly 200, which is identified in FIG. 3 as electrode assembly 140. The electrode assembly 200 may be constructed as a flexible circuit having a plurality of layers. Such layers may be continuous or non-contiguous, i.e., made up of discrete portions. Shown in FIGS. 5 and 6, a base layer 202 of insulation may provide a foundation for the electrode assembly 200. The base layer 202 may be constructed from a flexible polymer such as polyimide, although other materials are contemplated. In some embodiments, the base layer 202 may be from about 0.01 mm thick to about 0.02 mm thick. In some embodiments, the base layer 202 may be approximately 0.5 mil (0.0127 mm) thick. A conductive layer 204 made up of a plurality of discrete traces may be layered on top of the base layer 202. The conductive layer 204 may be, for example, a layer of electrodeposited copper. Other materials are also contemplated. In some embodiments, the conductive layer 204 may be from about 0.01 mm thick to about 0.02 mm thick. In some embodiments, the conductive layer 204 may be approximately 0.5 mil (0.018 mm) thick. An insulating layer 206 may be discretely or continuously layered on top of the conductive layer 204, such that the conductive layer 204 may be fluidly sealed between the base layer 202 and the insulating layer 206. Like the base layer 202, the insulating layer 206 may be constructed from a flexible polymer such as polyimide, although other materials are contemplated. In some embodiments, the insulating layer 206 may be from about 0.01 mm thick to about 0.02 mm thick. In some embodiments, the insulating layer 206 may be approximately 0.5 mil (0.0127 mm) thick. In other embodiments, the insulating layer 206 may be a complete or partial polymer coating, such as PTFE or silicone. Other materials are also contemplated.


The electrode assembly 200 shown in FIG. 4 may include a distal electrode pad 208. In this region, the base layer 202 may form a rectangular shape. This is not intended to be limiting. Other shapes are contemplated. As shown, the electrode assembly 200 may include a plurality of openings to provide for added flexibility, and the pads and other portions of the assemblies may include rounded or curved corners, transitions and other portions. In some instances, the openings and rounded/curved features may enhance the assembly's resistance to delamination from its expandable device, as may occur, in some instances, when the expandable device is repeatedly expanded and collapsed (which may also entail deployment from and withdrawal into a protective sheath), such as may be needed when multiple sites are treated during a procedure.


The distal electrode pad 208 may include a plurality of discrete traces layered on top of the base layer 202. These traces may include a ground trace 210, an active electrode trace 212, and a sensor trace 214. The ground trace 210 may include an elongated electrode support 216 laterally offset from a sensor ground pad 218. The sensor ground pad 218 may be electrically coupled to the elongated electrode support 216 of the ground trace 210 and may be centrally located on the distal electrode pad 208. A bridge 220 may connect a distal most portion of the sensor ground pad 218 to a distal portion of the elongated electrode support 216 of the ground trace 210. The bridge 220 may taper down in width as it travels to the sensor ground pad 218. In some embodiments, the bridge 220 may have a relatively uniform and thin width to enable a desired amount of flexibility. The elongated electrode support 216 may taper down in width at its proximal end, however, this is not required. In some embodiments, the elongated electrode support 216 may abruptly transition to a much thinner trace at its proximal portion, to enable a desired amount of flexibility. Generally, the curvature of the traces where necking is shown may be optimized to reduce balloon recapture forces and the potential for any snagging that sharper contours may present. The shape and position of the traces may also be optimized to provide dimensional stability to the electrode assembly 200 as a whole, so as to prevent distortion during deployment and use.


The ground trace 210 and active electrode trace 212 of FIG. 4 may share a similar construction. The active electrode trace 212 may also include an elongated electrode support 216.



FIG. 5 shows a partial cross-section A-A of the distal electrode pad 208. An electrode 222 is shown layered over a portion of the insulating layer 206, which may have a plurality of passages (e.g., holes) to enable the electrode 222 to couple to the elongated electrode support 216 of the ground trace 210 (of conductive layer 204).


As shown in FIG. 4, the ground electrode trace 210 and active electrode trace 212 may include a plurality of electrodes. Three electrodes 222 may be provided for each electrode trace, however, more or less may be used. Additionally, each electrode 222 may have radiused corners to reduce tendency to snag on other devices and/or tissue. Although the above description of the electrodes 222 and the traces associated with them has been described in the context of a bi-polar electrode assembly, those of skill in the art will recognize that the same electrode assembly may function in a monopolar mode as well. For instance, as one non-limiting example, the electrodes associated with active electrode traces 212 and 242 may be used as monopolar electrodes, with ground trace 210 disconnected during energization of those electrodes.


In some embodiments, as shown in FIG. 4 for example, each electrode 222 may be approximately 1.14 mm by 0.38 mm, with approximately 0.31 mm gaps lying between the electrodes 222. The electrodes 222 of the ground trace 210 and active electrode trace 212 may be laterally spaced by approximately 1.85 mm. In some embodiments, as shown in FIG. 5 for example, the electrodes 222 may be gold pads approximately 0.038 mm thick from the conductive layer 204 and that may protrude about 0.025 mm above the insulating layer 206. Without limiting the use of other such suitable materials, gold may be a good electrode material because it is very biocompatible, radiopaque, and electrically and thermally conductive. In other embodiments, the electrode thickness of the conductive layer 204 may range from about 0.030 mm to about 0.051 mm. At such thicknesses, relative stiffness of the electrodes 222, as compared to, for example, the copper conductive layer 204, may be high. Because of this, using a plurality of electrodes, as opposed to a single electrode, may increase flexibility. In other embodiments, the electrodes may be as small as about 0.5 mm by about 0.2 mm or as large as about 2.2 mm by about 0.6 mm for electrode 222.


While it may be an important design optimization consideration to balance the thickness of the gold above the insulating layer 206 so as to achieve good flexibility while maintaining sufficient height so as to provide good tissue contact, this may be counterbalanced with the goal of avoiding a surface height that may snag during deployment or collapse of the balloon. These issues may vary according to other elements of a particular procedure, such as balloon pressure. For many embodiments, it has been determined that electrodes that protrude approximately 0.025 mm above the insulating layer 206 will have good tissue contact at balloon inflation pressures below 10 atm and as low as 2 atm. These pressures may be well below the typical inflation pressure of an angioplasty balloon.


The sensor trace 214 may be centrally located on the distal electrode pad 208 and may include a sensor power pad 224 facing the sensor ground pad 218. These pads may connect to power and ground poles of a temperature sensor 226, such as a thermocouple (for example, Type T configuration: Copper/Constantan) or thermistor, as shown in the partial cross-section depicted in FIG. 6.


The temperature sensor 226 may be proximately connected to the sensor power pad 224 and may be distally connected to the sensor ground pad 218. To help reduce overall thickness, the temperature sensor 226 may be positioned within an opening within the base layer 202. In some embodiments, the temperature sensor 226 may be a thermistor having a thickness of about 0.1 mm, which is unusually thin—approximately two-thirds of industry standard. As shown, the temperature sensor 226 may be on a non-tissue contacting side of the distal electrode pad 208. Accordingly, the temperature sensor 226 may be captured between the electrode structure and a balloon when incorporated into a final device, such as ablation device 120. This may be advantageous since surface-mounted electrical components, like thermistors, typically have sharp edges and corners, which may get caught on tissue and possibly cause problems in balloon deployment and/or retraction. This arrangement may also keep soldered connections from making contact with blood, since solder is typically non-biocompatible. Further, due to the placement of the temperature sensor, it may measure temperature representative of tissue and the electrodes 222.


From the distal electrode pad 208, the combined base layer 202, conductive layer 204, and insulating layer 206 may reduce in lateral width to an intermediate tail 228. Here, the conductive layer 204 may be formed to include an intermediate ground line 230, intermediate active electrode line 232, and intermediate sensor line 234, which may be respectively coextensive traces of the ground trace 210, active electrode trace 212, and sensor trace 214 of the distal electrode pad 208.


From the intermediate tail 228, the combined base layer 202, conductive layer 204, and insulating layer 206 may increase in lateral width to form a proximal electrode pad 236. The proximal electrode pad 236 may be constructed similarly to the distal electrode pad 208, with the electrode geometry and temperature sensor arrangement being essentially identical, although various differences may be present. However, as shown, the proximal electrode pad 236 may be laterally offset from the distal electrode pad 208 with respect to a central axis G-G extending along the intermediate ground line 230. The intermediate active electrode line 232 and intermediate sensor line 234 may be laterally coextensive with the proximal electrode pad 236 on parallel respective axes with respect to central axis G-G.


From the proximal electrode pad 236, the combined base layer 202, conductive layer 204, and insulating layer 206 may reduce in lateral width to form a proximal tail 238. The proximal tail 238 may include a proximal ground line 240, proximal active electrode line 242, and proximal sensor line 244, as well the intermediate active electrode line 232 and intermediate sensor line 234. The proximal tail 238 may include connectors (not shown) to enable coupling to one or more sub-wiring harnesses and/or connectors and ultimately to control unit 110. Each of these lines may be extended along parallel respective axes with respect to central axis G-G.


As shown, the electrode assembly 200 may have an asymmetric arrangement of the distal electrode pad 208 and proximal electrode pad 236, about axis G-G. Further, the ground electrodes of both electrode pads may be substantially aligned along axis G-G, along with the intermediate and proximal ground lines 230/240. It has been found that this arrangement may present certain advantages. For example, by essentially sharing the same ground trace, the width of the proximal tail may be only about one and a half times that of the intermediate tail 228, rather than being approximately twice as wide if each electrode pad had independent ground lines. Thus, the proximal tail 238 may be narrower than two of the intermediate tails 228.


Further, arranging the electrode pads to share a ground trace may allow control of which electrodes will interact with each other. This may not be immediately apparent when viewing a single electrode assembly, but may become evident when more than one electrode assembly 200 is assembled onto an expandable member, such as a balloon, for example as shown in FIG. 3. The various electrode pads may be fired and controlled using solid state relays and multiplexing with a firing time ranging from about 100 microseconds to about 200 milliseconds or about 10 milliseconds to about 50 milliseconds. For practical purposes, the electrode pads may appear to be simultaneously firing yet stray current between adjacent electrode pads of different electrode assemblies 200 may be prevented by rapid firing of electrodes in micro bursts. This may be performed such that adjacent electrode pads of different electrode pad assemblies 200 are fired out of phase with one another. Thus, the electrode pad arrangement of the electrode assembly may allow for short treatment times—about 10 minutes or less of total electrode firing time, with some approximate treatment times being as short as about 10 seconds, with an exemplary embodiment being about 30 seconds. Some benefits of short treatment times may include minimization of post-operative pain caused when nerve tissue is subject to energy treatment, shortened vessel occlusion times, reduced occlusion side effects, and quick cooling of collateral tissues by blood perfusion due to relatively minor heat input to luminal tissue.


In some embodiments, the common ground may typically carry 200 VAC at 500 kHz coming from the negative electrode pole, and a 1V signal from the temperature sensor 226 (in the case of a thermistor) that may require filtering of the RF circuit such that the thermistor signal may be sensed and used for generator control. In some embodiments, because of the common ground, the thermistor of the adjacent electrode pair may be used to monitor temperature even without firing the adjacent electrode pair. This may provide the possibility of sensing temperatures proximate to both the distal electrode pad 208 and the proximal electrode pad 236, while firing only one of them.


Referring again to FIG. 3, the electrode pad arrangement of each electrode assembly 140a-d may also enable efficient placement on the expandable member 130. As shown, the electrode assemblies 140a-d may “key” into one another to enable maximum use of the expandable member surface area. This may be accomplished in part by spacing the electrode pads apart by setting the longitudinal length of each intermediate tail. For example, the intermediate tail length electrode assembly 140a may be set to a distance that separates its distal and proximal electrode pads 150a, 170a such that the laterally adjacent proximal electrode pad 170b of the laterally adjacent electrode pad assembly 140b keys next to the intermediate tail 160a of electrode pad assembly 140a. Further, the distal electrode pad 150a of electrode assembly 140a may be keyed between the intermediate tail 160b of electrode assembly 140b and the intermediate tail 160d of electrode assembly 140d. Thus, the length of each intermediate tail 160a-d may also require each electrode pad of any one electrode assembly to be located in non-adjacent treatment zones.


Expandable member or balloon surface area maximization may also be enabled in part by laterally offsetting both electrode pads of each electrode assembly 140a-d. For example, the rightwards lateral offset of each distal electrode pad 150a-d and the leftwards lateral offset of the proximal electrode pad 170a-d allow adjacent electrode pad assemblies to key into one another such that some of the electrode pads may laterally overlap one another. For example, the distal electrode pad 150a of electrode assembly 140a may laterally overlap with proximal electrode pad 170b of electrode assembly 140b. Further, the distal electrode pad 150b of electrode assembly 140b may laterally overlap with the proximal electrode pad 170c of electrode assembly 140c. However, the length of each intermediate tail may prevent circumferential overlap (longitudinal overlap in this view) of the electrode pads, thus maintaining the non-contiguous nature of the treatment zones in the longitudinal direction L-L.


The arrangement and geometry of the electrode pads, as well as the arrangement and geometry of the tails of the flexible circuits may also facilitate folding or otherwise collapsing the balloon into a relatively compact un-expanded state. For instance, in embodiments with an expanded diameter of up to about 10 mm, the device in an un-expanded state may have as low as an about 1 mm diameter.


Some embodiments may utilize a standard electrode assembly having identical dimensions and construction, wherein the number and relative position of electrode assemblies on an outer surface of an expandable member or a balloon becomes a function of the expandable member or balloon diameter and/or length while electrode assembly geometries remain unchanged amongst various expandable member or balloon sizes. The relative positioning of electrode assemblies relative to the expandable member or balloon diameter and/or length may then be determined by the desired degree or avoidance of circumferential and/or axial overlap of adjacent electrode pads of neighboring electrode assemblies on an expandable member or a balloon of a given size. In other embodiments, however, all of the electrode assemblies on the expandable member or balloon may not necessarily be identical.


The system 100 may be used to perform a method of treatment in accordance with one non-limiting embodiment of the disclosure. For example, the control unit 110 may be operationally coupled to the ablation device 120, which may be inserted into a body passageway such that an expandable member 130 (having a plurality of electrode assemblies) may be placed adjacent to a first section of the body passageway where therapy is required. Placement of the ablation device 120 at the first section of the body passageway where therapy is required may be performed according to conventional methods, e.g., over a guidewire under fluoroscopic guidance. Once inserted, the expandable member 130 may be made to expand from a collapsed delivery configuration to an expanded configuration, for example by pressurizing fluid from about 2-10 atm in the case of a balloon. This may cause the electrodes and/or electrode assemblies of the expandable member 130 to come into contact with the first section of the body passageway.


In some embodiments, the control unit 110 may measure impedance at the electrode assemblies to confirm apposition of the electrodes with the body passageway. In at least some of these embodiments, the treatment may proceed even if apposition is not sensed for all of the electrodes. For instance, in some embodiments, the treatment may proceed if apposition is sensed for 50% or more of the electrodes, and may allow for less than complete uniformity of apposition circumferentially and/or axially. For example, in some instances the catheter may be positioned such that one or more of the proximal electrodes are in the aorta A and exposed to blood, and impedance sensed for such electrodes may not fall within a pre-designated range (such as, for example, 500-1600 ohms), indicating an absence of tissue apposition for those electrodes. In some instances, the system may allow for user authorization to proceed with the treatment even if there is less than uniform electrode/tissue apposition. Subsequently, the control unit 110 may activate the electrodes to create a corresponding number of lesions. During activation of the electrodes, the control unit 110 may use temperature sensors of the electrode pads to monitor heat of the electrode and/or the tissue. In this manner, more or less power may be supplied to each electrode pad as needed during treatment.


In some embodiments, the control unit 110 may apply a uniform standard for determining apposition to all the electrodes of the ablation device 120. For instance, the control unit 110 may utilize the same pre-designated range of resistance measurements to all of the electrodes. In other instances, however, including some, although not all, monopolar applications, different standards may be applied to different monopolar electrodes for determining apposition. For example, in some monopolar embodiments, each monopolar electrode may define a discrete electrical circuit through the tissue to the common/indifferent electrode (or electrodes), and the characteristics of those circuits (e.g. resistance) may vary significantly based on the distance between the monopolar electrode and common electrode, the tissue characteristics therebetween, and other geometries and characteristics of the device and surrounding tissue. As such, in at least some embodiments, it may be desirable to apply criteria for determining apposition that varies depending on, e.g., the distance between the monopolar electrode and a common ground electrode (e.g. the greater the distance between the two electrodes, the higher the impedance measurement required to determine good apposition). In other embodiments, however, the variance due to these differences in distance and other geometries may be minimal or non-substantive, and a uniform standard may be applied.


After the prescribed therapy in the first section of the body passageway is complete, the expandable member 130 may then be collapsed and moved to an untreated second section of the body passageway where therapy is required to repeat the therapy applied in the first section of the body passageway, and similarly to other sections as needed. The sections may be directly adjacent, or may be separated or spaced apart by some distance.


In some instances, alternative methods will be utilized. For instance, in some embodiments, the treatment may be performed at only a single location in the body passageway, and it may not be necessary to move the expandable member to multiple locations in the body passageway.


Referring to an example of renal hypertension involving the reduction of excessive nerve activity, the system 100 may be used to effect a non-piercing, non-ablating way to direct energy to affect nerve activity. Accordingly, the body passageway may be a renal artery surrounded by nervous tissue. Electrodes on the expandable member 130 may be powered to deliver energy in the known direction of a nerve to be affected, the depth of energy penetration being a function of energy dosage, electrode type (e.g. monopolar vs. bipolar) and electrode geometry. U.S. Patent Application Publication No. 2008/0188912 entitled “System for Inducing Desirable Temperature Effects on Body Tissue”, the full disclosure of which is incorporated herein by reference, describes some considerations for electrode geometry and the volume of tissue treatment zones that may be taken into account in some, although not necessarily all, embodiments. In some instances, empirical analysis may be used to determine the impedance characteristics of nervous tissue such that the ablation device 120 may be used to first characterize and then treat tissue in a targeted manner. The delivery and regulation of energy may further involve accumulated damage modeling, as well.


As shown, each lesion may be created in a corresponding treatment zone A-D of the expandable member 130. Accordingly, any lesion made in one particular treatment A-D zone may not circumferentially overlap with a lesion of an adjacent treatment zone A-D at any point along the operational axis O-O. In some embodiments, a treatment zone of the expandable member 130 may have more than one electrode pad, and thus in such cases, lesions created by those electrode pads may circumferentially overlap. In those cases, more lesions may be required for a particular anatomy or a pair of electrode pads may be required for performing a diagnostic routine before therapy is applied. Regardless, circumferential overlap of electrodes of adjacent treatment zones may not be present.


Depending on the particular remodeling effect required, the control unit may energize the electrodes with about 0.25 to about 5 Watts average power for about 1 to about 180 seconds, or with about 0.25 to about 900 Joules. Higher energy treatments may be done at lower powers and longer durations, such as 0.5 Watts for 90 seconds or 0.25 Watts for 180 seconds. In monopolar embodiments, the control unit may energize the electrodes with up to 30 Watts for up to 5 minutes, depending on electrode configuration and distance between the electrodes and the common ground. A shorter distance may provide for lower energy for a shorter period of time because energy travels over more localized area with fewer conductive losses. In an example embodiment for use in renal denervation, energy may be delivered for about 30 seconds at a treatment setting of about 5 Watts, such that treatment zones may be heated to about 68° C. during treatment. As stated above, power requirements may depend heavily on electrode type and configuration. Generally, with wider electrode spacing, more power may be required, in which case the average power could be higher than 5 Watts, and the total energy could exceed 45 Joules. Likewise, using a shorter or smaller electrode pair may require scaling the average power down, and the total energy could be less than 4 Joules. The power and duration may be, in some instances, calibrated to be less than enough to cause severe damage, and particularly less than enough to ablate diseased tissue within a blood vessel. The mechanisms of ablating atherosclerotic material within a blood vessel have been well described, including by Slager et al. in an article entitled, “Vaporization of Atherosclerotic Plaque by Spark Erosion” in J. of Amer. Cardiol. (June, 1985), on pp. 1382-6; and by Stephen M. Fry in “Thermal and Disruptive Angioplasty: a Physician's Guide”; Strategic Business Development, Inc., (1990), the full disclosure of which is incorporated herein by reference.


In some embodiments, energy treatments applied to one or both of the patient's renal arteries may be applied at higher levels than would be possible in other passageways of the body without deleterious effects. For instance, peripheral and coronary arteries of the body may be susceptible to a deleterious long-term occlusive response if subjected to heating above a certain thermal response limit. It has been discovered that renal arteries, however, can be subjected to heating above such a thermal response limit without deleterious effect.


In some embodiments, the electrode(s) described herein may be energized to assess and then selectively treat targeted tissue to achieve a desired therapeutic result by a remodeling of the treated tissue. For example, tissue signature may be used to identify tissue treatment regions with the use of impedance measurements. Impedance measurements utilizing circumferentially spaced electrodes within a body passage may be used to analyze tissue. Impedance measurements between pairs of adjacent electrodes may differ when the current path passes through diseased tissue, and when it passes through healthy tissues of a luminal wall, for example. Hence, impedance measurements between the electrodes on either side of diseased tissue may indicate a lesion or other type of targeted tissue, while measurements between other pairs of adjacent electrodes may indicate healthy tissue. Other characterization, such as intravascular ultrasound, optical coherence tomography, or the like, may be used to identify regions to be treated either in conjunction with, or as an alternative to, impedance measurements. In some instances, it may be desirable to obtain baseline measurements of the tissues to be treated to help differentiate adjacent tissues, as the tissue signatures and/or signature profiles may differ from person to person. Additionally, the tissue signatures and/or signature profile curves may be normalized to facilitate identification of the relevant slopes, offsets, and the like between different tissues. Impedance measurements may be achieved at one or more frequencies, ideally two different frequencies (low and high). Low frequency measurement may be done in range of about 1-10 kHz, or about 4-5 kHz and high frequency measurement may be done in range of about 300 kHz-1 MHz, or between about 750 kHz-1 MHz. Lower frequency measurement mainly represents the resistive component of impedance and may correlate closely with tissue temperature where higher frequency measurement may represent the capacitive component of impedance and may correlate with destruction and changes in cell composition.


Phase angle shift between the resistive and capacitive components of impedance may also occur due to peak changes between current and voltage as result of capacitive and resistive changes of impedance. The phase angle shift may also be monitored as means of assessing tissue contact and lesion formation during RF denervation.


In some embodiments, remodeling of a body lumen or passageway may be performed by gentle heating in combination with gentle or standard dilation. For example, an angioplasty balloon catheter structure having electrodes disposed thereon may apply electrical potentials to the vessel wall before, during, and/or after dilation, optionally in combination with dilation pressures which are at or significantly lower than standard, unheated angioplasty dilation pressures. Where balloon inflation pressures of 10-16 atmospheres may, for example, be appropriate for standard angioplasty dilation of a particular lesion, modified dilation treatments combined with appropriate electrical potentials (through flexible circuit electrodes on the balloon, electrodes deposited directly on the balloon structure, or the like) described herein may employ from about 10-16 atmospheres or may be effected with pressures of about 6 atmospheres or less, and possibly as low as about 1 to 2 atmospheres. Such moderate dilation pressures may (or may not) be combined with one or more aspects of the tissue characterization, tuned energy, eccentric treatments, and other treatment aspects described herein for treatment of body lumens, the circulatory system, and diseases of the peripheral vasculature.


In many embodiments, gentle heating energy added before, during, and/or after dilation of a body passageway may increase dilation effectiveness while lowering complications. In some embodiments, such controlled heating with a balloon may exhibit a reduction in recoil, providing at least some of the benefits of a stent-like expansion without the disadvantages of an implant. Benefits of the heating may be enhanced (and/or complications inhibited) by limiting heating of the adventitial layer below a deleterious response threshold. In many cases, such heating of the intima and/or media may be provided using heating times of less than about 10 seconds, often being less than 3 (or even 2) seconds. In other cases, very low power may be used for longer durations. Efficient coupling of the energy to the target tissue by matching the driving potential of the circuit to the target tissue phase angle may enhance desirable heating efficiency, effectively maximizing the area under the electrical power curve. The matching of the phase angle need not be absolute, and while complete phase matching to a characterized target tissue may have benefits, alternative systems may pre-set appropriate potentials to substantially match typical target tissues; though the actual phase angles may not be matched precisely, heating localization within the target tissues may be significantly better than using a standard power form.


In some embodiments, monopolar (unipolar) RF energy application may be delivered between any of the electrodes on the expandable member and a common ground or return electrode positioned on the outside skin or on the device itself. Monoploar RF may be desirable in areas where deep lesions are required. For example, in a monopolar application, each electrode pair may be powered with positive polarity rather than having one positive pole and one negative pole per pair. In some embodiments, a combination of monopolar and bipolar RF energy application may be done where lesions of various depth/size can be selectively achieved by varying the polarity of the electrodes of the pair.


The application of RF energy may be controlled so as to limit a temperature of target and/or collateral tissues, for example, limiting the heating of target tissue such that neither the target tissue nor the collateral tissue sustains irreversible thermal damage. In some embodiments, the surface temperature range may be from about 50° C. to about 90° C. For gentle heating, the surface temperature may range from about 50° C. to about 70° C., while for more aggressive heating, the surface temperature may range from about 70° C. to about 90° C. Limiting heating so as to inhibit heating of collateral tissues to less than a surface temperature in a range from about 50° C. to about 70° C., such that the bulk tissue temperature remains mostly below about 50° C. to about 55° C., may inhibit an immune response that might otherwise lead to stenosis, thermal damage, or the like. Relatively mild surface temperatures between about 50° C. and about 70° C. may be sufficient to denature and break protein bonds during treatment, immediately after treatment, and/or more than one hour, more than one day, more than one week, or even more than one month after the treatment through a healing response of the tissue to the treatment so as to provide a bigger vessel lumen and improved blood flow.


In some embodiments, the target temperature may vary during the treatment, and may be, for instance, a function of treatment time. One possible target temperature profile may include a treatment with a duration of 30 seconds and a twelve second ramp up from nominal body temperature to a maximum target temperature of about 68° C. During the twelve second ramp up phase, the target temperature profile may be defined by a quadratic equation in which target temperature (T) is a function of time (t). The coefficients of the equation may be set such that the ramp from nominal body temperature to about 68° C. may follow a path analogous to the trajectory of a projectile reaching the maximum height of its arc of travel under the influence of gravity. In other words, the ramp may be set such that there may be a constant deceleration in the ramp of temperature (d2T/dt2) and a linearly decreasing slope (dT/dt) in the temperature increase as 12 seconds and 68° C. are reached. Such a profile, with its gradual decrease in slope as it approaches 68° C., may facilitate minimizing over and/or undershoot of the set target temperature for the remainder of the treatment. In some embodiments, the target temperature profile may be equally suitable for bipolar or monopolar treatments, although, in at least some monopolar embodiments, treatment time may be increased. Other target temperature profiles utilizing different durations of time (i.e., 3 seconds, 5 seconds, 8 seconds, 12 seconds, 17 seconds, etc.) and set target temperatures (55° C., 60° C., 65° C., 70° C., 75° C., etc.) in various combinations may be used as desired. For each of the target temperature profiles considered, a temperature ramp embodying or approximating a quadratic equation may be utilized, however, any function or other profile that efficiently heats tissue, optimizes treatment time, and avoids thermal damage to target tissue may be used. However, in still other embodiments, it will not be necessary to utilize a temperature profile that achieves all of these goals. For instance and without limitation, in at least some embodiments, optimization of treatment time may not be essential.


A control method may be executed using the processing functionality of the control unit 110 of FIG. 1 and/or control software, described in further detail above, or in other manners. In at least some instances, the control method may provide for fine regulation of temperature or other treatment parameter(s) at the various treatment sites of the device, while utilizing a relatively simple and robust energy generator to simultaneously energize several of the electrodes or other delivery sites at a single output setting (e.g. voltage), which may minimize cost, size and complexity of the system. The control method may minimize deviation from target temperature or other treatment parameter(s), and hence minimize variation in demand on the energy generator (e.g. voltage demand) during any time slice of the treatment.


In some embodiments, it may be desirable to regulate the application of RF or other energy based on target temperature profiles such as those described above to provide for a gentle, controlled, heating that avoids application of high instantaneous power and, at a microscopic level, associated tissue searing or other damage, which could undesirably result in heat block or otherwise cause a net reduction in thermal conduction heat transfer at the device/tissue interface. In other words, by avoiding higher swings in temperature and the resultant heavier instantaneous application of energy to reestablish temperature near the target temperature, tissue integrity at the immediate interface location may be preserved. Tissue desiccation may result in a net loss of thermal conductivity, resulting in reduced effective transfer of gentle, therapeutic delivery of energy to target tissues beyond the electrode/tissue interface.


Those of skill in the art will appreciate that although a particular control method may be presented for purposes of illustration in the context of the particular electrosurgical devices already described above, that these control methods and similar methods could be beneficially applied to other electro-surgical devices.


In general, the control method may seek to maintain the various treatment sites at a pre-defined target temperature, such as at one of the target temperature profiles discussed above. In some embodiments, the control method may maintain the treatment site(s) at the pre-defined target temperature primarily by regulating output voltage of the RF generator and determining which of the electrodes will by energized at a given time slice (e.g. by switching particular electrodes on or off for that cycle).


The output setting of the generator and switching of the electrodes may be determined by a feedback loop that takes into account measured temperature as well as previous desired output settings. During a particular treatment cycle (e.g. a 25 millisecond slice of the treatment), each of the electrodes may be identified for one of three states: off, energized, or measuring. In some embodiments, electrodes may only be in energized and/or measuring states (an electrode that is energized may also be measuring) if they meet certain criteria, with the default electrode state being off. Electrodes that have been identified as energized or measuring electrodes may have voltage applied or be detecting temperature signals for a portion of the cycle, or for the entire cycle.


In some embodiments, the control method may be designed to keep as many candidate electrodes as possible as close to target temperature as possible while minimizing variations in temperature and hence minimizing variations in voltage demand from treatment cycle to treatment cycle.


Each electrode may be initially set to off. At a next step, one of the electrodes may be designated as a primary electrode for that treatment cycle. As discussed in further detail below, during the treatment, the primary electrode designated may vary from treatment cycle to treatment cycle (e.g. cycle through all of the available electrodes). The determination of which electrode may be designated as the primary electrode may be done by accessing a look-up table or using any other suitable functionality for identifying a primary electrode and varying the choice of primary electrode from treatment cycle to treatment cycle.


Additionally, at the next step discussed above, additional electrodes may also be designated as candidate electrodes for energization and/or measuring during that treatment cycle. The additional electrodes designated may be candidates by virtue of being in a certain relationship or lacking a certain relationship relative to the designated primary electrode for that treatment cycle.


For instance, in some bipolar electrode embodiments, some of the electrodes on the ablation device may be arranged in a manner such that there may be a potential for current leakage between the primary electrode and those other electrodes if both the primary electrode and those additional electrodes are energized simultaneously in a treatment cycle, which may undesirably cause interference with the temperature measurement by the associated temperature sensor, imprecision in the amount of energy delivered at each electrode, or other undesirable consequences. For instance, in the embodiment illustrated in FIG. 3, if electrode pad 150c is designated as a primary electrode, electrode pads 150d and 170d, which have negative poles immediately adjacent or proximate the positive pole of electrode pad 150c, may be considered to be not candidates for measuring and/or energization for that particular treatment cycle, since they are leakage-inducingly proximate to the designated primary electrode. Additionally, in this embodiment, electrode pad 150b, which may have a positive pole immediately adjacent or proximate the negative pole of electrode pad 150c, may be considered to not be a candidate, since it may also be leakage-inducingly proximate to the designated primary electrode. Furthermore, in this particular embodiment, electrode pad 170b may also be considered a non-candidate because it may be on the same flex structure as the leakage-inducingly proximate electrode pad 150b. Finally, in this particular embodiment, electrode pads 150a and 170a may be considered candidates because they are adjacent non-candidates.


As another non-limiting example, in some monopolar electrode embodiments, the candidate electrodes may be the monopolar electrodes that have similar measured or estimated electrical circuit properties to one or more measured or estimated properties of the electrical circuit associated with the primary electrode. In other words, in some monopolar systems, it may be desirable to only simultaneously energize monopolar electrodes that define substantially similar electrical circuits to the electrical circuit defined by the primary monopolar electrode (e.g. the circuit defined by the monopolar electrode, the common electrode, and a pathway through the patient's tissue). In some instances, this may facilitate uniformity in current flow during energization. In other embodiments, a pre-defined table or other listing or association may determine which electrodes are candidate electrodes based on the current primary electrode.


In at least some embodiments, switches associated with non-candidates may be opened to isolate the non-candidates from the rest of the system's circuitry. This switching, in at least some embodiments, may also or alternatively be used to otherwise maximize the number of available electrode pairs available for energization provided that a common ground between pairs is not affected by the switching off.


In other embodiments, the ablation device may be configured to avoid the potential for leakage or otherwise take such leakage into account, and, accordingly, all the electrodes of the device may be candidates for energization and/or measuring during a treatment cycle.


In some embodiments, the assignment of an electrode as either the primary electrode, candidate, or non-candidate may be determined by a sequence matrix or look up table in an array that identifies the status of each of the electrodes and an order for the designation of primary electrodes. In one non-limiting embodiment, the primary electrode designation cycles circumferentially through the proximate electrodes and then circumferentially through the distal electrodes (e.g. in FIG. 3, the sequence may be 170a, b, c, d, 150a, b, c, d). However, any pattern or other methodology could be used including ones that optimize distance between the next in sequence, the nearness of next in sequence, or the evenness of distribution.


In some embodiments, additional conditions may result in a particular electrode being set to off for a particular treatment cycle and/or for the remainder of the treatment. For instance, as discussed below, during the course of treatment, as much as 4° C. temperature overshoot may be allowed (e.g., even if such overshoot results in the electrode not being energized, it may not necessarily be set to off and may still be available for measuring); however, in at least some embodiments, if eight consecutive treatment cycles measure temperature overshoot for a particular electrode, that electrode may be set to off for the remainder of the treatment, with the treatment otherwise continuing and without otherwise changing the control loop process discussed below.


At a next step, target voltages for each of the primary and other candidate electrodes may be determined. In some embodiments, a target voltage for a particular electrode may be determined based on a temperature error associated with the treatment site of that electrode as well as the last target voltage calculated (although not necessarily applied) for that electrode. Temperature error may be calculated by measuring the current temperature at the treatment site (e.g. utilizing the temperature sensor associated with the electrode proximate that treatment site) and determining the difference between the measured temperature and the target temperature for that instant of time in the treatment.


Those of skill in the art will appreciate that while some embodiments are described as using voltage as a control variable, power could be used as an alternative to voltage for the control variable, based on, for instance, a known relationship between power and voltage (i.e. power equaling voltage times current or impedance).


One embodiment may include a sub-routine for determining a target voltage for an electrode. For example, one step may include calculating a temperature error from target (Te) by subtracting the target temperature at that time (Tg) from the actual temperature (T) (e.g. as measured by a thermistor associated with that electrode). Subsequently, it may be determined whether the temperature error calculated at the calculating step is greater than 4° C. (i.e. if the target temperature is 68° C., determining if the temperature as measured by the thermistor is above 72° C.). If the temperature error is greater than 4° C., the sub-routine may assign that electrode a target voltage of zero for that treatment cycle. If the temperature error is not greater than 4° C., the subroutine may proceed to a next step and determine whether the temperature error is greater than 2° C. If the temperature error is greater than 2° C., the sub-routine may assign that electrode a target voltage of 75% (or another percentage) of the last assigned target voltage for that electrode. If the temperature error is not greater than 2° C., the sub-routine may assign a target voltage for that electrode based on the equation:

V=KLVL+KPTe+KItt-n secTe AVE

    • where:
      • V is the target voltage;
      • Te is a temperature error from target;
      • VL is the last assigned electrode voltage;
      • KL, KP, and KI are constants; and
      • n is a time value ranging from 0 to t seconds.


In some embodiments, the equation used may be:







V
=


0.75






V
L


+


K
p



T
e


+


K
I






t
-

n





sec


t



T

e





AVE
















    • where:
      • V is the target voltage;
      • Te is the temperature error from target;
      • VL is the last assigned electrode voltage;
      • KP is a constant from proportionate control; and
      • KI is a constant from integral control.





In some embodiments, it may be beneficial to use only the last assigned electrode voltage for determining a target voltage, rather than utilizing averages of voltages or voltages from earlier treatment cycles, as, in some cases, use of earlier voltages may be a source for computational error in embodiments that focus on fine control of the target temperature.


Once target voltages are determined for the primary electrode and other candidate electrodes, it may be determined whether the target voltage for the primary electrode is greater than zero. If not, the output voltage of the RF generator may be set for that treatment cycle to the lowest target voltage determined for the other candidate electrodes. If the target voltage determined for the primary electrode is greater than zero, the output voltage of the RF generator may be set for that treatment cycle to the target voltage of the primary electrode.


Next, the primary and other candidate electrodes with a target voltage greater than zero may be identified as electrodes to be energized. In alternative embodiments, candidate electrodes other than the primary may only be energized if the target voltages determined for those electrodes is 6V greater than the set voltage. In some embodiments, candidate electrodes other than the primary may only be energized if the target voltages determined for these electrodes are 1, 5 or 10V greater than the set voltage.


Lastly, it may be determined whether the electrodes to be energized are currently at temperatures greater than 68° C. Those electrodes that are at temperatures greater than 68° C. may be switched off or otherwise prevented from being energized in that treatment cycle, and those electrodes otherwise meeting the above criteria may be energized at the set voltage. Subsequently, another treatment cycle begins, and the control method may be repeated until the treatment is complete. In some embodiments, each treatment cycle will be non-overlapping with the previous and next cycles (e.g. the steps of the control method will be completely performed before the next cycle's steps begin), although, in other embodiments, the cycles may be overlapping at least to some extent.


Turning now to FIG. 7, a renal nerve ablation device 300 may include an expandable member 130 that may be disposed at, on, about, or near a distal region of the elongate tubular member or catheter shaft 122, as discussed above. In some embodiments, the proximal waist 136 of the expandable member 130 may be fixedly attached to the elongate tubular member or catheter shaft 122. In some embodiments, the renal nerve ablation device 300 includes a ride-along electrode support 305 with one or more electrodes. In some embodiments, the electrode support 305 may be fixedly attached to the elongate tubular member or catheter shaft 122. The electrode support 305 may be free from attachment to the body 135 of the expandable member 130. In some embodiments, the electrode support 305 may be expandable from a collapsed delivery state to an expanded state, such as a basket or a plurality of struts or elongate members, for example. The electrode support 305 may include one or more flexible elongate members 310 each having a proximal end 320 which may be fixedly attached to the catheter shaft 122. In some embodiments, a plurality of elongate members 310 have proximal ends 320 fixedly attached to the catheter shaft 122. In some embodiments, the distal ends 315 of the elongate members 310 are free of any attachment to the catheter shaft 122 and expandable member 130. In other embodiments, the distal ends 315 may be connected to each other, as shown in FIG. 7, and/or to a connection member or ring (not shown). In some embodiments, elongate members 310 are free from attachment to the catheter shaft 122 or to the expandable member 130 at least from a point distal of the proximal ends 320 and extending to the distal ends 315. The elongate members 310 may be connected to the catheter shaft 122 and unconnected to the expandable member 130. In some embodiments, proximal ends 320 of the elongate members 310 may be attached to the proximal waist 136 of the expandable member 130 in a region of connection between the proximal waist 136 and the catheter shaft 122.


In some embodiments, the electrode support 305 is a separate element from the expandable member 130 and is unconnected to the expandable member 130. As shown in FIG. 8, the electrode support 305 may be fixedly connected to a separate elongate element or catheter shaft 322. In some embodiments, the electrode support 305 may be deliverable separately from the expandable member 130. In this embodiment, the electrode support 305 may be delivered to a body lumen, followed by delivery of the expandable member 130 through catheter 322. Once the expandable member 130 is positioned within the electrode support 305, the expandable member 130 is expanded thereby expanding the electrode support 305 and placing the electrode assemblies 325 on the electrode support 305 in contact with the interior of the body lumen. Following treatment with the electrode assemblies 325, the expandable member 130 may be contracted. The lack of attachment between the electrode support 305 and the majority of the expandable member 130 allows the expandable member 130 to be deflated in any manner. For example, the expandable member 130 may be deflated via a vacuum source, re-folded or twisted by applying torque to at least a portion of the expandable member 130, or by being withdrawn back into a guide catheter 14. The contracted or deflated expandable member 130 may be withdrawn first followed by withdrawal of the electrode support 305. Alternatively, the contracted expandable member 130 and the electrode support 305 may be removed simultaneously. The separate electrode support 305 does not interfere with deflation, contraction, twisting, or re-folding of the expandable member 130. The elongate members 310 collapse into their pre-expansion state for withdrawal into a guide catheter 14.


In some embodiments, the electrode support 305 is disposed over the expandable member 130 and expands when the expandable member 130 is expanded. The elongate members 310 are not attached to the expandable member 130 and during expansion the elongate members 310 move farther apart from each other. In some embodiments, the electrode support 305 may be used with a variety of sizes of expandable member 130. The elongate members 310 move farther apart as the diameter of the expandable member 130 increases. Expansion of the expandable member 130 within a body lumen forces the elongate members into contact with the inner walls of the body lumen. Upon contraction of the expandable member 130, the electrode support 305 may remain in substantially the expanded configuration, allowing the expandable member 130 to contract, twist, fold, or otherwise attain a configuration suitable for retraction into a delivery sheath or catheter. The unattached electrode support 305 does not interfere with expansion and contraction of the expandable member. In some embodiments, the electrode support 305 collapses or folds onto the previously folded or collapsed expandable member 130 as the entire ablation device 300 is retracted into a delivery sheath or catheter when the catheter 122 is withdraw proximally. In other embodiments, the expandable member and electrode support 305 are withdrawn in order to collapse both elements substantially simultaneously. In other embodiments, the electrode support 305 may be biased in a collapsed configuration, such that when the expandable member 130 is contracted, the electrode support 305 automatically returns to a contracted configuration.


The electrode support 305 may include a plurality of electrode assemblies 325. In some embodiments, each elongate member 310 may contain one or more electrode assemblies 325. In some embodiments, each electrode assembly 325 may include a ground electrode 330, an active electrode 335, and a sensor element 340. In some embodiments, each elongate member 310 may have electrode assemblies 325 that extend from alternating sides, as shown in FIG. 7. In some embodiments, the electrodes and sensors of each electrode assembly 325 may be arranged as shown in FIG. 4. In some embodiments, the electrode support 305 may be made up of one or more elongate members 310 extending generally parallel to the longitudinal axis of the expandable member 130, as shown in FIG. 7. In other embodiments, the elongate members 310 may be twisted or canted at an angle from the longitudinal axis.


In some embodiments, the expandable member 132 has one or more channels 134 extending along a length of the expandable member 132. The channels 134 are configured to remain when the expandable member 132 is expanded. When the expandable member 132 is placed within a body lumen such as a blood vessel, and expanded, the channels 134 allow partial fluid flow across the expandable member 132. The channels 134 may be substantially parallel to a longitudinal axis of the expandable member 132, or the channels may be arranged in other configurations. In the embodiment illustrated in FIGS. 9-11, an expandable member 132 has three channels 134 extending in a spiral along the expandable member 132. Any number of channels 134 may be included in the expandable member 132. The channels 134 may be spaced apart in a manner that allows for the elongate members 360 of the electrode support 355 to be disposed between channels 134. In some embodiments, the elongate members 360 extend in a spiral matching the angle of the channels 134.


Turning now to FIG. 12, in some embodiments, a renal nerve ablation device 400 may include a ride-along electrode support 405 in which a plurality of flexible elongate members 410 extend around an expandable member 130 at an angle with respect to the longitudinal axis. As discussed above, the expandable member 130 may be disposed at, on, about, or near a distal end of the elongate tubular member or catheter shaft 122. In some embodiments, the electrode support 405 may be fixedly attached to the elongate tubular member or catheter shaft 122, and free from attachment to the body 135 of the expandable member 130. In some embodiments, the electrode support 405 may be expandable from a collapsed delivery state to an expanded state. The electrode support 405 may include one or more electrode assemblies 425. The electrode assembly 425 may include a plurality of flexible elongate members 410 with proximal ends 420 fixedly attached to the catheter shaft 122. In the embodiment illustrated in FIG. 12, the electrode assembly 425 has three elongate members 410 connected to each other only at their proximal ends 420. The distal ends 415 of the elongate members 410 may be free of any attachment to each other and to the expandable member 130. In some embodiments, proximal ends 420 of the elongate members 410 may be attached to the proximal waist 136 of the expandable member 130 in a region of connection between the proximal waist 136 and the catheter shaft 122.


In some embodiments, the electrode support 405 is disposed over the expandable member 130 and expands when the expandable member 130 is expanded. The elongate members 410 are not attached to the expandable member 130 and during expansion the elongate members 410 move farther apart from each other. The electrode support 405 may include a plurality of electrode assemblies 425. In some embodiments, each electrode assembly 425 includes a plurality of elongate members 410.


In some embodiments, each electrode assembly 425 may include three elongate members 410. A first elongate member 410 may carry a plurality of ground electrodes 430, a second elongate member 410 may carry a plurality of active electrodes 435, and a third elongate member 410 may carry a plurality of sensor elements 440. In some embodiments, the ground electrodes 430, active electrodes 435, and sensor elements 440 are grouped longitudinally on adjacent elongate members 410. In some embodiments, a single sensor element 440 may be disposed on an elongate member 410 between a first elongate member 410 with a plurality of ground electrodes 430 and a second elongate member 410 with a plurality of active electrodes 435. In some embodiments, such as that illustrated in FIG. 12, the elongate members 410 may be twisted or canted at an angle from the longitudinal axis. In some embodiments, the electrode support 405 includes two electrode assemblies 425, positioned on substantially opposite sides of the expandable member 130. In other embodiments, the electrode support 405 includes three electrode assemblies 425 positioned at substantially equal distances from each other around the expandable member 130. In some embodiments, the elongate members 410 are substantially parallel.


In some embodiments, the axial position of groups of ground 430 and active 435 electrodes and sensor elements 440 are offset on adjacent electrode assemblies 425. For example, as shown in FIG. 12, in some embodiments, the electrode assemblies may be arranged on the expandable member 130, shown here in an expanded state, according to a pair of generally cylindrical treatment zones A and B. In other embodiments, the expandable member 130 or other components of the treatment system may include additional electrode assemblies that are not in a treatment zone or are otherwise not used or configured to deliver a treatment energy.


The treatment zones A and B and associated electrode assemblies 425a-c are further illustrated in FIG. 13, which is an “unrolled” depiction of a portion of the electrode support 405 of FIG. 12. The treatment zones A and B may be longitudinally adjacent to one another along longitudinal axis L-L, and may be configured such that energy applied by the electrode assemblies create treatments that do not overlap. Treatments applied by the longitudinally adjacent bipolar electrode assemblies 425a-c may be circumferentially non-continuous along longitudinal axis L-L. For example, with reference to FIG. 13, lesions created in treatment zone A may in some embodiments minimize overlap about a circumference (laterally with respect to L-L in this view) with lesions created in treatment zone B. In other embodiments, however, the energy applied by the electrode assemblies, such as the electrode assemblies shown in FIG. 13, may overlap, longitudinally, circumferentially, and/or in other ways, to at least some extent.


In some embodiments, the sensor element 440 may be disposed adjacent to the ground electrode 430 and/or the active electrode 435. In some embodiments, the ground electrode 430, the active electrode 435, and/or the sensor element 440 may extend along a length of the expandable member 130. In some embodiments, the ground electrode 430, the active electrode 435, and/or the sensor element 440 may extend along substantially a full length of the expandable member 130.


Turning to FIG. 14, in some embodiments, a renal nerve ablation device 500 may include a ride-along electrode support 505 in which a plurality of flexible elongate members 510 are disposed in a helical or spiral pattern or orientation along an outer surface of the expandable member 130. As discussed above, the expandable member 130 may be disposed at, on, about, or near a distal end of the elongate tubular member or catheter shaft 122. In some embodiments, the electrode support 505 may be fixedly attached to the elongate tubular member or catheter shaft 122 and free from attachment to the body 135 of the expandable member 130. In some embodiments, the electrode support 505 may be expandable from a collapsed delivery state to an expanded state. The electrode support 505 may include an electrode assembly 525 which may include a plurality of flexible elongate members 510 with proximal ends 520 fixedly attached to the catheter shaft 122. In the embodiment illustrated in FIG. 14, the electrode assembly 525 has three elongate members 510 connected to each other only at their proximal ends 520 and distal ends 515. In some embodiments, proximal ends 520 of the elongate members 510 may be attached to the proximal waist 136 of the expandable member 130 in a region of connection between the proximal waist 136 and the catheter shaft 122.


In some embodiments, the electrode support 505 is disposed over the expandable member 130 and expands when the expandable member 130 is expanded. The elongate members 510 are free from attachment to the body 135 of the expandable member 130 and are free from attachment to each other except at their distal 515 and proximal ends 520, allowing the elongate members 510 to move farther apart from each other during expansion. The electrode support 505 may be used in combination with expandable members 130 of varying expanded sizes. The elongate members 510 may be attached to each other at their distal 515 and proximal 520 ends. In some embodiments, the distal ends 515 of the elongate members 510 may be attached to the distal waist 137 of the expandable member 130 and the proximal ends 520 of the elongate members 510 may be attached to proximal waist 136 of the expandable member 130. In other embodiments, the distal 515 and proximal 520 ends of the elongate members 510 may be attached to the catheter shaft 122. The electrode support 505 may include a plurality of electrode assemblies 525 spaced apart axially along the electrode support 505.


In some embodiments, the electrode assembly 525 may include three elongate members 510. A first elongate member 510 may carry a plurality of ground electrodes 530, a second elongate member 510 may carry a plurality of active electrodes 535, and a third elongate member 510 may carry a plurality of sensor elements 540. In some embodiments, the ground electrodes 530, active electrodes 535, and sensor elements 540 are grouped axially on adjacent elongate members 510, as illustrated in FIG. 14. In some embodiments, a single sensor element 540 may be disposed on an elongate member 510 between a first elongate member 510 with a plurality of ground electrodes 530 and a second elongate member 510 with a plurality of active electrodes 535. In some embodiments, such as that illustrated in FIG. 14, the elongate members 510 may be twisted or canted at an angle from the longitudinal axis, forming a helix. In some embodiments, the electrode support 505 includes one or more elongate support 511 disposed in a helical or spiral pattern or orientation along an outer surface of the expandable member 130. The elongate supports 511 may balance the electrode assembly 525. The elongate supports 511 may be free of electrodes or other elements. In some embodiments, two sets of three elongate supports 511 may be present. The elongate supports 511 may be connected to each other only at their proximal and distal ends and may be free of attachment to the body 135 of the expandable member 130. The distal ends 515 of the elongate members 510 may be connected to distal ends of the elongate supports 511.


In some embodiments, the electrode support 505 includes circuitry (not shown) connected to the ground electrodes 530, active electrodes 535, and sensor elements 540. In some embodiments, the circuitry extends from each electrode proximally to the catheter shaft 122. In some embodiments, a first portion of the circuitry extends proximally along the elongate members 510 to the catheter shaft 122, and a second portion of the circuitry extends distally along the elongate members 510 to the distal ends 515 of the elongate members 510. The second portion of the circuitry may then be shifted to one or more of the elongate supports 511 and extend proximally along the one or more elongate supports 511 to the catheter shaft 122. Such a split distribution of the circuitry may allow for narrower and more flexible elongate members 510.


The ground electrode 530, the active electrode 535, and the sensor element 540 may be oriented generally parallel to each other. The helical or spiral pattern or orientation may be arranged such that a plane placed normal or perpendicular to the longitudinal axis L-L of the expandable member 130 may intersect the electrode assembly 525, the ground electrode 530, the active electrode 535, and/or the sensor element 540 at a single location such that at no location along the length of the expandable member 130 does the electrode assembly 525, the ground electrode 530, the active electrode 535, and/or the sensor element 540 overlap itself longitudinally. Other arrangements, however, are contemplated.


The helical orientation along the length of the expandable member 130 forms at least one complete (360 degree) circumferential loop within the lumen or vessel that the expandable member 130 is positioned. The electrodes provide heating at a location within the tissue surrounding the body passageway without damaging the wall of the body passageway in order to disrupt the nerves located in the tissue surrounding the body passageway wall. A helical orientation is desirable to help avoid an increased risk of stenosis that may be present when electrodes are disposed within a single plane normal to a longitudinal axis of the body passageway (i.e., a circular electrode or group of electrodes).


In some embodiments, the renal nerve ablation device 300, 400, 500 may include a single ground electrode 330, 430, 530 and a single active electrode 335, 435, 535. Accordingly, the ground electrode 330, 430, 530 and the active electrode 335, 435, 535 may combine to form a bipolar electrode pair. When the renal nerve ablation device 300, 400, 500 is energized, such as in the manner(s) described above, RF energy or other suitable energy may pass from the active electrode 335, 435, 535 to the ground electrode 330, 430, 530, thereby creating a corresponding lesion or lesions along a body passageway within which the expandable member 130 has been positioned. The sensor element 340, 440, 540 may be positioned between the ground electrode 330, 430, 530 and the active electrode 335, 435, 535. The sensor element 340, 440, 540 may include at least one temperature sensor, such as a thermistor or thermocouple, positioned on the outer surface of the expandable member 130. The at least one temperature sensor may be positioned between the ground electrode 330, 430, 530 and the active electrode 335, 435, 535, and may be configured to monitor the temperature of the target tissue, the active and ground electrodes, or both, as discussed above. In some embodiments, the at least one temperature sensor may include a plurality of temperature sensors configured to monitor the temperature of the target tissue, the active electrodes, the ground electrodes, or any combination thereof, at a plurality of locations along the length of the expandable member 130.


Turning now to FIG. 15, in some embodiments, a renal nerve ablation device 600 may include an electrode support 605 similar to that discussed above with regard to the embodiment of FIG. 14, but in which the electrode assembly 625 may lack a ground electrode, or the ground electrode may not be connected to the control unit 110, such that the active electrode 635 may form a monopolar electrode. As discussed above, the electrode support 605 may include a plurality of flexible elongate members 610 disposed in a helical or spiral pattern or orientation along an outer surface of the expandable member 130. In some embodiments, the electrode support 605 may be fixedly attached to the elongate tubular member or catheter shaft 122. In some embodiments, the electrode support 605 may be expandable from a collapsed delivery state to an expanded state. The electrode support 605 may include an electrode assembly 625 which may include a plurality of flexible elongate members 610 with proximal ends 620 fixedly attached to the catheter shaft 122. In the embodiment illustrated in FIG. 15, the electrode assembly 625 has three elongate members 610 connected to each other only at their proximal ends 620 and distal ends 615. In some embodiments, proximal ends 620 of the elongate members 610 may be attached to the proximal waist 136 of the expandable member 130 in a region of connection between the proximal waist 136 and the catheter shaft 122.


In some embodiments, the electrode support 605 is disposed over the expandable member 130 and expands when the expandable member 130 is expanded. The elongate members 610 are free from attachment to the body 135 of the expandable member 130, allowing the elongate members 610 to move farther apart from each other during expansion. The elongate members 610 may be attached to each other at their distal 615 and proximal 620 ends. In some embodiments, the distal ends 615 of the elongate members 610 may be attached to the distal waist 137 of the expandable member 130 and the proximal ends 620 of the elongate members 610 may be attached to proximal waist 136 of the expandable member 130. In other embodiments, the distal 615 and proximal 620 ends of the elongate members 610 may be attached to the catheter shaft 122. The electrode support 605 may include a plurality of electrode assemblies 625 spaced apart axially along the electrode support 605.


In some embodiments, the electrode support 605 includes one or more additional elongate members 611 disposed in a helical or spiral pattern or orientation along an outer surface of the expandable member 130. The additional elongate members 611 may balance the electrode assembly 625. The additional elongate members 611 may be free of electrodes or other elements. In some embodiments, two sets of three additional elongate members 611 may be present. The additional elongate members 611 may be connected to each other only at their proximal and distal ends and may be free of connection to the body 135 of the expandable member 130.


In embodiments utilizing a monopolar electrode, a separate common ground electrode 632 may be used. The common ground electrode 632 may be capable of being a return electrical pathway for the active electrode 635. Thus, energy may be delivered to the active electrode 635 and the common ground electrode may be the return electrical pathway. As the name suggests, the common ground electrode may be utilized as a common ground for more than one active electrode. For example, the ablation device 600 may include a plurality of active electrodes, such as in FIG. 15, and a common ground electrode may be a common ground for at least some or, in at least some embodiments, all of the active electrodes. Various embodiments are contemplated that include any suitable number of active electrodes including one, two, three, four, five, six, seven, eight, nine, ten, or more active electrodes.


Because the common ground electrode may be utilized as the return electrode for a plurality of active electrodes, the active electrodes need not have a bipolar return electrode (i.e., ground trace) paired with each active electrode. This may allow active electrodes and/or the other structures associated therewith to be constructed with a smaller size or footprint. This may desirably impact the overall construction of device. For example, smaller active electrodes may be more flexible, allow for easier contracting or folding of the electrode support when proximally retracting the ablation device, reduce the profile of the ablation device, or the like.


In use, the ablation device 300, 400, 500, 600 may be advanced through a blood vessel to a position adjacent to a target tissue (e.g., within a renal artery). In some embodiments, the target tissue may be one or more renal nerves disposed about the renal artery. When suitably positioned, expandable member 130 may be expanded from a collapsed delivery configuration to an expanded configuration. This may place the active electrode 335, 435, 535, 635 against the wall of the blood vessel. The active electrode 335, 435, 535, 635 may be activated. Ablation energy may be transmitted from the active electrode 335, 435, 535, 635, through the target tissue (where renal nerves may be ablated, modulated, or otherwise impacted), and back through the ground electrode 330, 430, 530, 630, in a bipolar configuration, or back through the common ground electrode 632, in a monopolar configuration.


The materials that can be used for the various components of the ablation device 300, 400, 500, 600 (and/or other devices disclosed herein) may include those commonly associated with medical devices. For simplicity purposes, the following discussion makes reference to the ablation device 300, 400, 500, 600. However, this is not intended to limit the devices and methods described herein, as the discussion may be applied to other similar tubular members and/or expandable members and/or components of tubular members and/or expandable members disclosed herein.


The ablation device 300, 400, 500, 600 and the various components thereof may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the sheath can be blended with a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.


Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®, other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like); platinum enriched stainless steel; titanium; combinations thereof; and the like; or any other suitable material.


As alluded to herein, within the family of commercially available nickel-titanium or nitinol alloys, is a category designated “linear elastic” or “non-super-elastic” which, although may be similar in chemistry to conventional shape memory and super elastic varieties, may exhibit distinct and useful mechanical properties. Linear elastic and/or non-super-elastic nitinol may be distinguished from super elastic nitinol in that the linear elastic and/or non-super-elastic nitinol does not display a substantial “superelastic plateau” or “flag region” in its stress/strain curve like super elastic nitinol does. Instead, in the linear elastic and/or non-super-elastic nitinol, as recoverable strain increases, the stress continues to increase in a substantially linear, or a somewhat, but not necessarily entirely linear relationship until plastic deformation begins or at least in a relationship that is more linear that the super elastic plateau and/or flag region that may be seen with super elastic nitinol. Thus, for the purposes of this disclosure linear elastic and/or non-super-elastic nitinol may also be termed “substantially” linear elastic and/or non-super-elastic nitinol.


In some cases, linear elastic and/or non-super-elastic nitinol may also be distinguishable from super elastic nitinol in that linear elastic and/or non-super-elastic nitinol may accept up to about 2-5% strain while remaining substantially elastic (e.g., before plastically deforming) whereas super elastic nitinol may accept up to about 8% strain before plastically deforming. Both of these materials can be distinguished from other linear elastic materials such as stainless steel (that can also can be distinguished based on its composition), which may accept only about 0.2 to 0.44 percent strain before plastically deforming.


In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy is an alloy that does not show any martensite/austenite phase changes that are detectable by differential scanning calorimetry (DSC) and dynamic metal thermal analysis (DMTA) analysis over a large temperature range. For example, in some embodiments, there may be no martensite/austenite phase changes detectable by DSC and DMTA analysis in the range of about −60 degrees Celsius (° C.) to about 120° C. in the linear elastic and/or non-super-elastic nickel-titanium alloy. The mechanical bending properties of such material may therefore be generally inert to the effect of temperature over this very broad range of temperature. In some embodiments, the mechanical bending properties of the linear elastic and/or non-super-elastic nickel-titanium alloy at ambient or room temperature are substantially the same as the mechanical properties at body temperature, for example, in that they do not display a super-elastic plateau and/or flag region. In other words, across a broad temperature range, the linear elastic and/or non-super-elastic nickel-titanium alloy maintains its linear elastic and/or non-super-elastic characteristics and/or properties.


In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy may be in the range of about 50 to about 60 weight percent nickel, with the remainder being essentially titanium. In some embodiments, the composition is in the range of about 54 to about 57 weight percent nickel. One example of a suitable nickel-titanium alloy is FHP-NT alloy commercially available from Furukawa Techno Material Co. of Kanagawa, Japan. Some examples of nickel titanium alloys are disclosed in U.S. Pat. Nos. 5,238,004 and 6,508,803, which are incorporated herein by reference. Other suitable materials may include ULTANIUM™ (available from Neo-Metrics) and GUM METAL™ (available from Toyota). In some other embodiments, a superelastic alloy, for example a superelastic nitinol can be used to achieve desired properties.


In at least some embodiments, portions of the ablation device 120 may also be doped with, made of, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of the ablation device 120 in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of the ablation device 120 to achieve the same result.


In some embodiments, a degree of Magnetic Resonance Imaging (MRI) compatibility may be imparted into the ablation device 120. For example, portions of device, may be made of a material that does not substantially distort the image and create substantial artifacts (i.e., gaps in the image). Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image. In some of these and in other embodiments, portions of the ablation device 120 may also be made from a material that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.


The entire disclosures of the following documents are herein incorporated by reference in their entirety:


U.S. patent application Ser. No. 13/750,879, filed on Jan. 25, 2013, and entitled “METHODS AND APPARATUSES FOR REMODELING TISSUE OF OR ADJACENT TO A BODY PASSAGE”.


It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The invention's scope is, of course, defined in the language in which the appended claims are expressed.

Claims
  • 1. A medical device for nerve ablation, comprising: a catheter shaft;an expandable member coupled to the catheter shaft, the expandable member having a proximal region, a distal region, and a body extending therebetween, the expandable member being a balloon; andan electrode support coupled to the catheter shaft and positioned over the body of the expandable member, the electrode support including a plurality of spaced apart flexible elongate members, each having a distal end, a proximal end, and a body extending therebetween, and a plurality of electrode assemblies disposed on the electrode support, the electrode support capable of expanding with the expandable member, wherein the electrode support is free from attachment with the body of the expandable member and wherein the plurality of spaced apart flexible elongate members are connected to each other at their proximal and distal ends,wherein the plurality of spaced apart flexible elongate members extend in a helix over the body of the expandable member.
  • 2. The medical device of claim 1, wherein each of the plurality of spaced apart flexible elongate members includes at least two of the electrode assemblies in a spaced apart arrangement.
  • 3. The medical device of claim 1, wherein the electrode support includes a proximal section, wherein the electrode support and the expandable member are attached to each other only at the proximal section of the electrode support and the proximal region of the expandable member.
  • 4. The medical device of claim 1, wherein the electrode support includes two or more spaced apart sets of three of the plurality of spaced apart flexible elongate members, wherein each of the spaced apart sets includes a first spaced apart flexible elongate member carrying active electrodes, a second spaced apart flexible elongate member including one or more temperature sensors, and a third spaced apart flexible elongate member carrying ground electrodes.
  • 5. The medical device of claim 1, wherein at least some of the plurality of electrode assemblies include a pair of bipolar electrodes.
  • 6. The medical device of claim 1, wherein at least some of the plurality of electrode assemblies include a temperature sensor.
  • 7. The medical device of claim 6, wherein the temperature sensor is positioned between a bottom surface of one of the plurality of electrode assemblies and an outer surface of the expandable member.
  • 8. The medical device of claim 1, wherein the expandable member includes one or more channels in an outer surface extending from a distal region to a proximal region of the expandable member.
  • 9. The medical device of claim 1, wherein the expandable member is a compliant balloon.
  • 10. The medical device of claim 1, wherein the expandable member is a non-compliant balloon.
  • 11. The medical device of claim 1, wherein the expandable member has one or more channels extending along the body, the one or more channels positioned between the plurality of spaced apart flexible elongate members.
  • 12. A medical device, comprising: a catheter shaft;an expandable balloon having a distal waist, proximal waist, and a body extending therebetween, the proximal waist being coupled to the catheter shaft;a flexible elongate electrode assembly coupled to the catheter shaft and extending in a helix over the body of the expandable balloon, the electrode assembly being free from attachment to the body of the expandable balloon, the elongate electrode assembly comprising a plurality of spaced apart elongate members each having a distal region, a proximal region, and a body extending therebetween;a plurality of electrodes disposed on at least a first one of the plurality of spaced apart elongate members; andone or more elongate supports having a distal region, a proximal region, and a body extending therebetween, the one or more elongate supports extending in a helix over the body of the expandable balloon and spaced apart from the plurality of spaced apart elongate members.
  • 13. The medical device of claim 12, wherein the plurality of spaced apart elongate members include three spaced apart elongate members and wherein the three elongate members are free from attachment to each other along their respective bodies.
  • 14. The medical device of claim 12, wherein the one or more elongate supports are connected to the plurality of spaced apart elongate members only at their distal and proximal regions.
  • 15. The medical device of claim 14, further comprising a first circuitry and a second circuitry connected to the electrode elements, wherein the first circuitry extends proximally along the first one of the plurality of spaced apart elongate members, wherein the second circuitry extends distally along the first one of the plurality of spaced apart elongate members to a first one of the one or more elongate supports, the second circuitry then extending proximally along the first one of the one or more elongate supports.
  • 16. A medical device, comprising: a catheter shaft;an expandable balloon having a distal waist, proximal waist, and a body extending therebetween, the proximal waist being coupled to the catheter shaft;a flexible elongate electrode assembly coupled to the catheter shaft and extending in a helix over the body of the expandable balloon, the electrode assembly free from attachment to the body of the expandable balloon, wherein the elongate electrode assembly includes three spaced apart elongate members each having a distal region, a proximal region, and a body extending therebetween, and wherein the three spaced apart elongate members are free from attachment to each other along their respective bodies;a plurality of electrode elements disposed on the flexible elongate electrode assembly; andone or more elongate supports each having a distal region, a proximal region, and a body extending therebetween, the one or more elongate supports extending in a helix over the body of the expandable balloon and spaced apart from the three spaced apart elongate members, the one or more elongate supports connected to the three spaced apart elongate members only at their distal and proximal regions.
  • 17. The medical device of claim 16, further comprising a first circuitry and a second circuitry connected to the electrode elements, wherein the first circuitry extends proximally along a first one of the three spaced apart elongate members on which at least a portion of the plurality of electrode elements reside, wherein the second circuitry extends distally along the first one of the three spaced apart elongate members on which at least a portion of the plurality of electrode elements reside to a first one of the one or more elongate supports, the second circuitry then extending proximally along the first one of the one or more elongate supports.
  • 18. A method for treating hypertension, the method comprising: advancing a medical device in accordance with claim 1 through a blood vessel to a position within a renal artery;expanding the expandable member, thereby expanding the electrode support;energizing the electrode assemblies;collapsing the expandable member, and thereafter, withdrawing the expandable member and the electrode support into a delivery sheath, thereby collapsing the electrode support.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119 to U.S. Provisional Application Ser. No. 61/838,086, filed Jun. 21, 2013, the entirety of which is incorporated herein by reference.

US Referenced Citations (1503)
Number Name Date Kind
164184 Kiddee Jun 1875 A
852787 Hoerner May 1907 A
921973 Gillett et al. May 1909 A
976733 Gilliland Nov 1910 A
1167014 O'Brien Jan 1916 A
2505358 Gusberg et al. Apr 1950 A
2701559 Cooper Feb 1955 A
3108593 Glassman Oct 1963 A
3108594 Glassman Oct 1963 A
3540431 Mobin Nov 1970 A
3952747 Kimmell Apr 1976 A
3996938 Clark, III Dec 1976 A
4046150 Schwartz et al. Sep 1977 A
4290427 Chin Sep 1981 A
4402686 Medel Sep 1983 A
4483341 Witteles et al. Nov 1984 A
4531943 Van Tassel et al. Jul 1985 A
4574804 Kurwa Mar 1986 A
4587975 Salo et al. May 1986 A
4649936 Ungar et al. Mar 1987 A
4682596 Bales et al. Jul 1987 A
4709698 Johnston et al. Dec 1987 A
4765331 Petruzzi et al. Aug 1988 A
4770653 Shturman Sep 1988 A
4784132 Fox et al. Nov 1988 A
4784162 Ricks et al. Nov 1988 A
4785806 Deckelbaum et al. Nov 1988 A
4788975 Shturman et al. Dec 1988 A
4790310 Ginsburg et al. Dec 1988 A
4799479 Spears Jan 1989 A
4823791 D'Amelio et al. Apr 1989 A
4830003 Wolff et al. May 1989 A
4849484 Heard Jul 1989 A
4862886 Clarke et al. Sep 1989 A
4887605 Angelsen et al. Dec 1989 A
4890623 Cook et al. Jan 1990 A
4920979 Bullara et al. May 1990 A
4938766 Jarvik Jul 1990 A
4955377 Lennox et al. Sep 1990 A
4976711 Parins et al. Dec 1990 A
5034010 Kittrell et al. Jul 1991 A
5052402 Bencini et al. Oct 1991 A
5053033 Clarke et al. Oct 1991 A
5071424 Reger et al. Dec 1991 A
5074871 Groshong et al. Dec 1991 A
5098429 Sterzer et al. Mar 1992 A
5098431 Rydell Mar 1992 A
5109859 Jenkins May 1992 A
5125928 Parins et al. Jun 1992 A
5129396 Rosen et al. Jul 1992 A
5139496 Hed Aug 1992 A
5143836 Hartman et al. Sep 1992 A
5156610 Reger et al. Oct 1992 A
5158564 Schnepp-Pesch Oct 1992 A
5170802 Mehra Dec 1992 A
5178620 Eggers et al. Jan 1993 A
5178625 Groshong et al. Jan 1993 A
5190540 Lee Mar 1993 A
5211651 Reger et al. May 1993 A
5234407 Teirstein et al. Aug 1993 A
5238004 Sahatjian et al. Aug 1993 A
5242441 Avitall Sep 1993 A
5251634 Weinberg et al. Oct 1993 A
5255679 Imran Oct 1993 A
5263493 Avitall Nov 1993 A
5267954 Nita et al. Dec 1993 A
5277201 Stern et al. Jan 1994 A
5282484 Reger et al. Feb 1994 A
5286254 Shapland et al. Feb 1994 A
5290306 Trotta et al. Mar 1994 A
5295484 Marcus Mar 1994 A
5297564 Love et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5301683 Durkan Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
5304121 Sahatjian Apr 1994 A
5304171 Gregory et al. Apr 1994 A
5304173 Kittrell et al. Apr 1994 A
5306250 March et al. Apr 1994 A
5312328 Nita et al. May 1994 A
5314466 Stern et al. May 1994 A
5322064 Lundquist Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5326341 Lew et al. Jul 1994 A
5326342 Plueger et al. Jul 1994 A
5330518 Neilson et al. Jul 1994 A
5333614 Feiring Aug 1994 A
5342292 Nita et al. Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5364392 Warner et al. Nov 1994 A
5365172 Hrovat et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5368558 Nita et al. Nov 1994 A
5380274 Nita et al. Jan 1995 A
5380319 Saito et al. Jan 1995 A
5382228 Nita et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5397301 Pflueger et al. Mar 1995 A
5397339 Desai Mar 1995 A
5401272 Perkins et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5405318 Nita et al. Apr 1995 A
5405346 Grundy et al. Apr 1995 A
5409000 Imran Apr 1995 A
5417672 Nita et al. May 1995 A
5419767 Eggers et al. May 1995 A
5427118 Nita et al. Jun 1995 A
5432876 Appeldorn et al. Jul 1995 A
5441498 Perkins et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5451207 Yock et al. Sep 1995 A
5453091 Taylor et al. Sep 1995 A
5454788 Walker et al. Oct 1995 A
5454809 Janssen Oct 1995 A
5455029 Hartman et al. Oct 1995 A
5456682 Edwards et al. Oct 1995 A
5457042 Hartman et al. Oct 1995 A
5471982 Edwards et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5496311 Abele et al. Mar 1996 A
5496312 Klicek et al. Mar 1996 A
5498261 Strul Mar 1996 A
5505201 Grill et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5507744 Tay et al. Apr 1996 A
5512051 Wang et al. Apr 1996 A
5522873 Jackman et al. Jun 1996 A
5531520 Grimson et al. Jul 1996 A
5540656 Pflueger et al. Jul 1996 A
5540679 Fram et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542917 Nita et al. Aug 1996 A
5545161 Imran Aug 1996 A
5562100 Kittrell et al. Oct 1996 A
5571122 Kelly et al. Nov 1996 A
5571151 Gregory Nov 1996 A
5573531 Gregory et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584831 McKay Dec 1996 A
5584872 Lafontaine et al. Dec 1996 A
5588962 Nicholas et al. Dec 1996 A
5599346 Edwards et al. Feb 1997 A
5601526 Chapelon et al. Feb 1997 A
5609606 O'Boyle et al. Mar 1997 A
5613979 Trotta et al. Mar 1997 A
5626576 Janssen May 1997 A
5630837 Crowley May 1997 A
5637090 McGee et al. Jun 1997 A
5643255 Organ Jul 1997 A
5643297 Nordgren et al. Jul 1997 A
5647847 Lafontaine et al. Jul 1997 A
5649923 Gregory et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653684 Laptewicz et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5665062 Houser Sep 1997 A
5665098 Kelly et al. Sep 1997 A
5666964 Meilus Sep 1997 A
5667490 Keith et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5676693 Lafontaine Oct 1997 A
5678296 Fleischhacker et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
RE35656 Feinberg Nov 1997 E
5687737 Branham et al. Nov 1997 A
5688266 Edwards et al. Nov 1997 A
5693015 Walker et al. Dec 1997 A
5693029 Leonhardt et al. Dec 1997 A
5693043 Kittrell et al. Dec 1997 A
5693082 Warner et al. Dec 1997 A
5695504 Gifford et al. Dec 1997 A
5697369 Long, Jr. et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702433 Taylor et al. Dec 1997 A
5706809 Littmann et al. Jan 1998 A
5713942 Stern et al. Feb 1998 A
5715819 Svenson et al. Feb 1998 A
5735846 Panescu et al. Apr 1998 A
5741214 Ouchi et al. Apr 1998 A
5741248 Stern et al. Apr 1998 A
5741249 Moss et al. Apr 1998 A
5743903 Stern et al. Apr 1998 A
5748347 Erickson May 1998 A
5749914 Janssen May 1998 A
5755682 Knudson et al. May 1998 A
5755715 Stern et al. May 1998 A
5755753 Knowlton et al. May 1998 A
5769847 Panescu et al. Jun 1998 A
5769880 Truckai et al. Jun 1998 A
5775338 Hastings Jul 1998 A
5776174 Van Tassel Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5782760 Schaer Jul 1998 A
5785702 Murphy et al. Jul 1998 A
5797849 Vesely et al. Aug 1998 A
5797903 Swanson et al. Aug 1998 A
5800484 Gough et al. Sep 1998 A
5800494 Campbell et al. Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5810803 Moss et al. Sep 1998 A
5810810 Tay et al. Sep 1998 A
5817092 Behl Oct 1998 A
5817113 Gifford et al. Oct 1998 A
5817144 Gregory et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5827203 Nita et al. Oct 1998 A
5827268 Laufer Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5830213 Panescu et al. Nov 1998 A
5830222 Makower Nov 1998 A
5832228 Holden et al. Nov 1998 A
5833593 Liprie Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5840076 Swanson et al. Nov 1998 A
5843016 Lugnani et al. Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5846239 Swanson et al. Dec 1998 A
5846245 McCarthy et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5853411 Whayne et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860974 Abele Jan 1999 A
5865801 Houser Feb 1999 A
5868735 Lafontaine et al. Feb 1999 A
5868736 Swanson et al. Feb 1999 A
5871483 Jackson et al. Feb 1999 A
5871524 Knowlton et al. Feb 1999 A
5875782 Ferrari et al. Mar 1999 A
5876369 Houser Mar 1999 A
5876374 Alba et al. Mar 1999 A
5876397 Edelman et al. Mar 1999 A
5879348 Owens et al. Mar 1999 A
5891114 Chien et al. Apr 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5891138 Tu et al. Apr 1999 A
5895378 Nita Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5902328 Lafontaine et al. May 1999 A
5904651 Swanson et al. May 1999 A
5904667 Falwell et al. May 1999 A
5904697 Gifford et al. May 1999 A
5904709 Arndt et al. May 1999 A
5906614 Stern et al. May 1999 A
5906623 Peterson May 1999 A
5906636 Casscells et al. May 1999 A
5916192 Nita et al. Jun 1999 A
5916227 Keith et al. Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5919219 Knowlton et al. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5925038 Panescu et al. Jul 1999 A
5934284 Plaia et al. Aug 1999 A
5935063 Nguyen Aug 1999 A
5938670 Keith et al. Aug 1999 A
5947977 Slepian et al. Sep 1999 A
5948011 Knowlton et al. Sep 1999 A
5951494 Wang et al. Sep 1999 A
5951539 Nita et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957941 Ream et al. Sep 1999 A
5957969 Warner et al. Sep 1999 A
5961513 Swanson et al. Oct 1999 A
5964757 Ponzi et al. Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5967978 Littmann et al. Oct 1999 A
5967984 Chu et al. Oct 1999 A
5971975 Mills et al. Oct 1999 A
5972026 Laufer et al. Oct 1999 A
5980563 Tu et al. Nov 1999 A
5989208 Nita et al. Nov 1999 A
5989284 Laufer Nov 1999 A
5993462 Pomeranz et al. Nov 1999 A
5997497 Nita et al. Dec 1999 A
5999678 Murphy et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004316 Laufer et al. Dec 1999 A
6007514 Nita Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013033 Berger et al. Jan 2000 A
6014590 Whayne et al. Jan 2000 A
6022309 Celliers et al. Feb 2000 A
6024740 Lesh Feb 2000 A
6030611 Gorecki et al. Feb 2000 A
6032675 Rubinsky et al. Mar 2000 A
6033397 Laufer et al. Mar 2000 A
6033398 Farley et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6041260 Stern et al. Mar 2000 A
6050994 Sherman et al. Apr 2000 A
6056744 Edwards May 2000 A
6056746 Goble et al. May 2000 A
6063085 Tay et al. May 2000 A
6066096 Smith et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068638 Makower May 2000 A
6068653 Lafontaine May 2000 A
6071277 Farley et al. Jun 2000 A
6071278 Panescu et al. Jun 2000 A
6078839 Carson Jun 2000 A
6079414 Roth Jun 2000 A
6080171 Keith et al. Jun 2000 A
6081749 Ingle et al. Jun 2000 A
6086581 Reynolds et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6093166 Knudson et al. Jul 2000 A
6096021 Helm et al. Aug 2000 A
6099526 Whayne et al. Aug 2000 A
6102908 Tu et al. Aug 2000 A
6106477 Miesel et al. Aug 2000 A
6110187 Donlon et al. Aug 2000 A
6110192 Ravenscroft et al. Aug 2000 A
6114311 Parmacek et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6117128 Gregory Sep 2000 A
6120476 Fung et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6121775 Pearlman Sep 2000 A
6123679 Lafaut et al. Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6129725 Tu et al. Oct 2000 A
6135997 Laufer et al. Oct 2000 A
6142991 Schatzberger et al. Nov 2000 A
6142993 Whayne et al. Nov 2000 A
6149647 Tu et al. Nov 2000 A
6152899 Farley et al. Nov 2000 A
6152912 Jansen et al. Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6158250 Tibbals et al. Dec 2000 A
6159187 Park et al. Dec 2000 A
6159225 Makower Dec 2000 A
6161048 Sluijter et al. Dec 2000 A
6162184 Swanson et al. Dec 2000 A
6165163 Chien et al. Dec 2000 A
6165172 Farley et al. Dec 2000 A
6165187 Reger et al. Dec 2000 A
6168594 Lafontaine et al. Jan 2001 B1
6171321 Gifford, III et al. Jan 2001 B1
6179832 Jones et al. Jan 2001 B1
6179835 Panescu et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6183486 Snow et al. Feb 2001 B1
6190379 Heuser et al. Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6197021 Panescu et al. Mar 2001 B1
6200266 Shokrollahi et al. Mar 2001 B1
6203537 Adrian Mar 2001 B1
6203561 Ramee et al. Mar 2001 B1
6210406 Webster Apr 2001 B1
6211247 Goodman Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6219577 Brown, III et al. Apr 2001 B1
6228076 Winston et al. May 2001 B1
6228109 Tu et al. May 2001 B1
6231516 Keilman et al. May 2001 B1
6231587 Makower May 2001 B1
6235044 Root et al. May 2001 B1
6236883 Ciaccio et al. May 2001 B1
6237605 Vaska et al. May 2001 B1
6238389 Paddock et al. May 2001 B1
6238392 Long May 2001 B1
6241666 Pomeranz et al. Jun 2001 B1
6241753 Knowlton Jun 2001 B1
6245020 Moore et al. Jun 2001 B1
6245045 Stratienko Jun 2001 B1
6248126 Lesser et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6273886 Edwards et al. Aug 2001 B1
6280466 Kugler et al. Aug 2001 B1
6283935 Laufer et al. Sep 2001 B1
6283959 Lalonde et al. Sep 2001 B1
6284743 Parmacek et al. Sep 2001 B1
6287323 Hammerslag Sep 2001 B1
6290696 Lafontaine Sep 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6298256 Meyer Oct 2001 B1
6299379 Lewis Oct 2001 B1
6299623 Wulfman Oct 2001 B1
6309379 Willard et al. Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6311090 Knowlton Oct 2001 B1
6317615 KenKnight et al. Nov 2001 B1
6319242 Patterson et al. Nov 2001 B1
6319251 Tu et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6328699 Eigler et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6346104 Daly et al. Feb 2002 B2
6350248 Knudson et al. Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6353751 Swanson et al. Mar 2002 B1
6355029 Joye et al. Mar 2002 B1
6357447 Swanson et al. Mar 2002 B1
6361519 Knudson et al. Mar 2002 B1
6364840 Crowley Apr 2002 B1
6371965 Gifford, III et al. Apr 2002 B2
6375668 Gifford et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6383151 Diederich et al. May 2002 B1
6387105 Gifford, III et al. May 2002 B1
6387380 Knowlton May 2002 B1
6389311 Whayne et al. May 2002 B1
6389314 Feiring May 2002 B2
6391024 Sun et al. May 2002 B1
6394096 Constantz May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6398780 Farley et al. Jun 2002 B1
6398782 Pecor et al. Jun 2002 B1
6398792 O'Connor Jun 2002 B1
6401720 Stevens et al. Jun 2002 B1
6402719 Ponzi et al. Jun 2002 B1
6405090 Knowlton Jun 2002 B1
6409723 Edwards Jun 2002 B1
6413255 Stern Jul 2002 B1
6421559 Pearlman Jul 2002 B1
6423057 He et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6427118 Suzuki Jul 2002 B1
6428534 Joye et al. Aug 2002 B1
6428536 Panescu et al. Aug 2002 B2
6430446 Knowlton Aug 2002 B1
6432102 Joye et al. Aug 2002 B2
6436056 Wang et al. Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6440125 Rentrop Aug 2002 B1
6442413 Silver Aug 2002 B1
6443965 Gifford, III et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6447505 McGovern et al. Sep 2002 B2
6447509 Bonnet et al. Sep 2002 B1
6451034 Gifford, III et al. Sep 2002 B1
6451044 Naghavi et al. Sep 2002 B1
6453202 Knowlton Sep 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454775 Demarais et al. Sep 2002 B1
6458098 Kanesaka Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6468276 McKay Oct 2002 B1
6468297 Williams et al. Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6470219 Edwards et al. Oct 2002 B1
6471696 Berube et al. Oct 2002 B1
6475213 Whayne et al. Nov 2002 B1
6475215 Tanrisever Nov 2002 B1
6475238 Fedida et al. Nov 2002 B1
6477426 Fenn et al. Nov 2002 B1
6480745 Nelson et al. Nov 2002 B2
6481704 Koster et al. Nov 2002 B1
6482202 Goble et al. Nov 2002 B1
6484052 Visuri et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6488679 Swanson et al. Dec 2002 B1
6489307 Phillips et al. Dec 2002 B1
6491705 Gifford, III et al. Dec 2002 B2
6494891 Cornish et al. Dec 2002 B1
6497711 Plaia et al. Dec 2002 B1
6500172 Panescu et al. Dec 2002 B1
6500174 Maguire et al. Dec 2002 B1
6508765 Suorsa et al. Jan 2003 B2
6508803 Horikawa et al. Jan 2003 B1
6508804 Sarge et al. Jan 2003 B2
6508815 Strul et al. Jan 2003 B1
6511478 Burnside et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511500 Rahme Jan 2003 B1
6514236 Stratienko Feb 2003 B1
6514245 Williams et al. Feb 2003 B1
6514248 Eggers et al. Feb 2003 B1
6517534 McGovern et al. Feb 2003 B1
6517572 Kugler et al. Feb 2003 B2
6522913 Swanson et al. Feb 2003 B2
6522926 Kieval et al. Feb 2003 B1
6524299 Tran et al. Feb 2003 B1
6527765 Kelman et al. Mar 2003 B2
6527769 Langberg et al. Mar 2003 B2
6540761 Houser Apr 2003 B2
6542781 Koblish et al. Apr 2003 B1
6544780 Wang Apr 2003 B1
6546272 MacKinnon et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6549800 Atalar et al. Apr 2003 B1
6552796 Magnin et al. Apr 2003 B2
6554780 Sampson et al. Apr 2003 B1
6558381 Ingle et al. May 2003 B2
6558382 Jahns et al. May 2003 B2
6564096 Mest May 2003 B2
6565582 Gifford, III et al. May 2003 B2
6569109 Sakurai et al. May 2003 B2
6569177 Dillard et al. May 2003 B1
6570659 Schmitt May 2003 B2
6572551 Smith et al. Jun 2003 B1
6572612 Stewart et al. Jun 2003 B2
6577902 Laufer et al. Jun 2003 B1
6579308 Jansen et al. Jun 2003 B1
6579311 Makower Jun 2003 B1
6582423 Thapliyal et al. Jun 2003 B1
6589238 Edwards et al. Jul 2003 B2
6592526 Lenker Jul 2003 B1
6592567 Levin et al. Jul 2003 B1
6595959 Stratienko Jul 2003 B1
6600956 Maschino et al. Jul 2003 B2
6602242 Fung Aug 2003 B1
6602246 Joye et al. Aug 2003 B1
6605056 Eidenschink et al. Aug 2003 B2
6605084 Acker et al. Aug 2003 B2
6623452 Chien et al. Sep 2003 B2
6623453 Guibert et al. Sep 2003 B1
6632193 Davison et al. Oct 2003 B1
6632196 Houser Oct 2003 B1
6645223 Boyle et al. Nov 2003 B2
6648854 Patterson et al. Nov 2003 B1
6648878 Lafontaine Nov 2003 B2
6648879 Joye et al. Nov 2003 B2
6651672 Roth Nov 2003 B2
6652513 Panescu et al. Nov 2003 B2
6652515 Maguire et al. Nov 2003 B1
6656136 Weng et al. Dec 2003 B1
6658279 Swanson et al. Dec 2003 B2
6659981 Stewart et al. Dec 2003 B2
6666858 Lafontaine Dec 2003 B2
6666863 Wentzel et al. Dec 2003 B2
6669655 Acker et al. Dec 2003 B1
6669692 Nelson et al. Dec 2003 B1
6673040 Samson et al. Jan 2004 B1
6673064 Rentrop Jan 2004 B1
6673066 Werneth Jan 2004 B2
6673090 Root et al. Jan 2004 B2
6673101 Fitzgerald et al. Jan 2004 B1
6673290 Whayne et al. Jan 2004 B1
6676678 Gifford, III et al. Jan 2004 B2
6679268 Stevens et al. Jan 2004 B2
6681773 Murphy et al. Jan 2004 B2
6682541 Gifford, III et al. Jan 2004 B1
6684098 Oshio et al. Jan 2004 B2
6685732 Kramer Feb 2004 B2
6685733 Dae et al. Feb 2004 B1
6689086 Nita et al. Feb 2004 B1
6689148 Sawhney et al. Feb 2004 B2
6690181 Dowdeswell et al. Feb 2004 B1
6692490 Edwards Feb 2004 B1
6695830 Vigil et al. Feb 2004 B2
6695857 Gifford, III et al. Feb 2004 B2
6699241 Rappaport et al. Mar 2004 B2
6699257 Gifford, III et al. Mar 2004 B2
6702748 Nita et al. Mar 2004 B1
6702811 Stewart et al. Mar 2004 B2
6706010 Miki et al. Mar 2004 B1
6706011 Murphy-Chutorian et al. Mar 2004 B1
6706037 Zvuloni et al. Mar 2004 B2
6709431 Lafontaine Mar 2004 B2
6711429 Gilboa et al. Mar 2004 B1
6712815 Sampson et al. Mar 2004 B2
6714822 King et al. Mar 2004 B2
6716184 Vaezy et al. Apr 2004 B2
6720350 Kunz et al. Apr 2004 B2
6723043 Kleeman et al. Apr 2004 B2
6723064 Babaev Apr 2004 B2
6736811 Panescu et al. May 2004 B2
6743184 Sampson et al. Jun 2004 B2
6746401 Panescu Jun 2004 B2
6746464 Makower Jun 2004 B1
6746474 Saadat Jun 2004 B2
6748953 Sherry et al. Jun 2004 B2
6749607 Edwards et al. Jun 2004 B2
6752805 Maguire et al. Jun 2004 B2
6760616 Hoey et al. Jul 2004 B2
6763261 Casscells, III et al. Jul 2004 B2
6764501 Ganz Jul 2004 B2
6769433 Zikorus et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6771996 Bowe et al. Aug 2004 B2
6773433 Stewart et al. Aug 2004 B2
6786900 Joye et al. Sep 2004 B2
6786901 Joye et al. Sep 2004 B2
6786904 Döscher et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6790222 Kugler et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
6797933 Mendis et al. Sep 2004 B1
6797960 Spartiotis et al. Sep 2004 B1
6800075 Mische et al. Oct 2004 B2
6802857 Walsh et al. Oct 2004 B1
6807444 Tu et al. Oct 2004 B2
6811550 Holland et al. Nov 2004 B2
6813520 Truckai et al. Nov 2004 B2
6814730 Li Nov 2004 B2
6814733 Schwartz et al. Nov 2004 B2
6823205 Jara Nov 2004 B1
6824516 Batten et al. Nov 2004 B2
6827726 Parodi Dec 2004 B2
6827926 Robinson et al. Dec 2004 B2
6829497 Mogul Dec 2004 B2
6830568 Kesten et al. Dec 2004 B1
6837886 Collins et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6845267 Harrison et al. Jan 2005 B2
6847848 Sterzer Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6853425 Kim et al. Feb 2005 B2
6855123 Nita Feb 2005 B2
6855143 Davison Feb 2005 B2
6869431 Maguire et al. Mar 2005 B2
6872183 Sampson et al. Mar 2005 B2
6884260 Kugler et al. Apr 2005 B2
6889694 Hooven May 2005 B2
6893436 Woodard et al. May 2005 B2
6895077 Karellas et al. May 2005 B2
6895265 Silver May 2005 B2
6898454 Atalar et al. May 2005 B2
6899711 Stewart et al. May 2005 B2
6899718 Gifford, III et al. May 2005 B2
6905494 Yon et al. Jun 2005 B2
6908462 Joye et al. Jun 2005 B2
6909009 Koridze Jun 2005 B2
6911026 Hall et al. Jun 2005 B1
6915806 Pacek et al. Jul 2005 B2
6923805 LaFontaine et al. Aug 2005 B1
6923808 Taimisto Aug 2005 B2
6926246 Ginggen Aug 2005 B2
6926713 Rioux et al. Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6929009 Makower et al. Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929639 Lafontaine Aug 2005 B2
6932776 Carr Aug 2005 B2
6936047 Nasab et al. Aug 2005 B2
6942620 Nita et al. Sep 2005 B2
6942657 Sinofsky et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6942692 Landau et al. Sep 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949121 Laguna Sep 2005 B1
6952615 Satake Oct 2005 B2
6953425 Brister Oct 2005 B2
6955174 Joye et al. Oct 2005 B2
6955175 Stevens et al. Oct 2005 B2
6959711 Murphy et al. Nov 2005 B2
6960207 Vanney et al. Nov 2005 B2
6962584 Stone et al. Nov 2005 B1
6964660 Maguire et al. Nov 2005 B2
6966908 Maguire et al. Nov 2005 B2
6972015 Joye et al. Dec 2005 B2
6972024 Kilpatrick et al. Dec 2005 B1
6974456 Edwards et al. Dec 2005 B2
6978174 Gelfand et al. Dec 2005 B2
6979329 Burnside et al. Dec 2005 B2
6979420 Weber Dec 2005 B2
6984238 Gifford, III et al. Jan 2006 B2
6985774 Kieval et al. Jan 2006 B2
6986739 Warren et al. Jan 2006 B2
6989009 Lafontaine Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6991617 Hektner et al. Jan 2006 B2
7001378 Yon et al. Feb 2006 B2
7006858 Silver et al. Feb 2006 B2
7022105 Edwards Apr 2006 B1
7022120 Lafontaine Apr 2006 B2
7025767 Schaefer et al. Apr 2006 B2
7033322 Silver Apr 2006 B2
7033372 Cahalan Apr 2006 B1
7041098 Farley et al. May 2006 B2
7050848 Hoey et al. May 2006 B2
7063670 Sampson et al. Jun 2006 B2
7063679 Maguire et al. Jun 2006 B2
7063719 Jansen et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066900 Botto et al. Jun 2006 B2
7066904 Rosenthal et al. Jun 2006 B2
7072720 Puskas Jul 2006 B2
7074217 Strul et al. Jul 2006 B2
7081112 Joye et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083614 Fjield et al. Aug 2006 B2
7084276 Vu et al. Aug 2006 B2
7087026 Callister et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087052 Sampson et al. Aug 2006 B2
7087053 Vanney Aug 2006 B2
7089065 Westlund et al. Aug 2006 B2
7097641 Arless et al. Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101368 Lafontaine Sep 2006 B2
7104983 Grasso, III et al. Sep 2006 B2
7104987 Biggs et al. Sep 2006 B2
7108715 Lawrence-Brown et al. Sep 2006 B2
7112196 Brosch et al. Sep 2006 B2
7112198 Satake Sep 2006 B2
7112211 Gifford, III et al. Sep 2006 B2
7122019 Kesten et al. Oct 2006 B1
7122033 Wood Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7137963 Nita et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7153315 Miller Dec 2006 B2
7155271 Halperin et al. Dec 2006 B2
7157491 Mewshaw et al. Jan 2007 B2
7157492 Mewshaw et al. Jan 2007 B2
7158832 Kieval et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7162303 Levin et al. Jan 2007 B2
7165551 Edwards et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7172589 Lafontaine Feb 2007 B2
7172610 Heitzmann et al. Feb 2007 B2
7181261 Silver et al. Feb 2007 B2
7184811 Phan et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7189227 Lafontaine Mar 2007 B2
7192427 Chapelon et al. Mar 2007 B2
7192586 Bander Mar 2007 B2
7197354 Sobe Mar 2007 B2
7198632 Lim et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7201749 Govari et al. Apr 2007 B2
7203537 Mower Apr 2007 B2
7214234 Rapacki et al. May 2007 B2
7220233 Nita et al. May 2007 B2
7220239 Wilson et al. May 2007 B2
7220257 Lafontaine May 2007 B1
7220270 Sawhney et al. May 2007 B2
7232458 Saadat Jun 2007 B2
7232459 Greenberg et al. Jun 2007 B2
7238184 Megerman et al. Jul 2007 B2
7241273 Maguire et al. Jul 2007 B2
7241736 Hunter et al. Jul 2007 B2
7247141 Makin et al. Jul 2007 B2
7250041 Chiu et al. Jul 2007 B2
7250440 Mewshaw et al. Jul 2007 B2
7252664 Nasab et al. Aug 2007 B2
7252679 Fischell et al. Aug 2007 B2
7264619 Venturelli Sep 2007 B2
7279600 Mewshaw et al. Oct 2007 B2
7280863 Shachar Oct 2007 B2
7282213 Schroeder et al. Oct 2007 B2
7285119 Stewart et al. Oct 2007 B2
7285120 Im et al. Oct 2007 B2
7288089 Yon et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7293562 Malecki et al. Nov 2007 B2
7294125 Phalen et al. Nov 2007 B2
7294126 Sampson et al. Nov 2007 B2
7294127 Leung et al. Nov 2007 B2
7297131 Nita Nov 2007 B2
7297475 Koiwai et al. Nov 2007 B2
7300433 Lane et al. Nov 2007 B2
7301108 Egitto et al. Nov 2007 B2
7310150 Guillermo et al. Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7314480 Eidenschink et al. Jan 2008 B2
7314483 Landau et al. Jan 2008 B2
7317077 Averback et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7326206 Paul et al. Feb 2008 B2
7326226 Root et al. Feb 2008 B2
7326235 Edwards Feb 2008 B2
7326237 DePalma et al. Feb 2008 B2
7329236 Kesten et al. Feb 2008 B2
7335180 Nita et al. Feb 2008 B2
7335192 Keren et al. Feb 2008 B2
7338467 Lutter Mar 2008 B2
7341570 Keren et al. Mar 2008 B2
7343195 Strommer et al. Mar 2008 B2
7347857 Anderson et al. Mar 2008 B2
7348003 Salcedo et al. Mar 2008 B2
7352593 Zeng et al. Apr 2008 B2
7354927 Vu Apr 2008 B2
7359732 Kim et al. Apr 2008 B2
7361341 Salcedo et al. Apr 2008 B2
7364566 Elkins et al. Apr 2008 B2
7367970 Govari et al. May 2008 B2
7367975 Malecki et al. May 2008 B2
7371231 Rioux et al. May 2008 B2
7387126 Cox et al. Jun 2008 B2
7393338 Nita Jul 2008 B2
7396355 Goldman et al. Jul 2008 B2
7402151 Rosenman et al. Jul 2008 B2
7402312 Rosen et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7406970 Zikorus et al. Aug 2008 B2
7407502 Strul et al. Aug 2008 B2
7407506 Makower Aug 2008 B2
7407671 McBride et al. Aug 2008 B2
7408021 Averback et al. Aug 2008 B2
7410486 Fuimaono et al. Aug 2008 B2
7413556 Zhang et al. Aug 2008 B2
7425212 Danek et al. Sep 2008 B1
7426409 Casscells, III et al. Sep 2008 B2
7435248 Taimisto et al. Oct 2008 B2
7447453 Kim et al. Nov 2008 B2
7449018 Kramer Nov 2008 B2
7452538 Ni et al. Nov 2008 B2
7473890 Grier et al. Jan 2009 B2
7476384 Ni et al. Jan 2009 B2
7479157 Weber et al. Jan 2009 B2
7481803 Kesten et al. Jan 2009 B2
7485104 Kieval Feb 2009 B2
7486805 Krattiger Feb 2009 B2
7487780 Hooven Feb 2009 B2
7493154 Bonner et al. Feb 2009 B2
7494485 Beck et al. Feb 2009 B2
7494486 Mische et al. Feb 2009 B2
7494488 Weber Feb 2009 B2
7494661 Sanders Feb 2009 B2
7495439 Wiggins Feb 2009 B2
7497858 Chapelon et al. Mar 2009 B2
7499745 Littrup et al. Mar 2009 B2
7500985 Saadat Mar 2009 B2
7505812 Eggers et al. Mar 2009 B1
7505816 Schmeling et al. Mar 2009 B2
7507233 Littrup et al. Mar 2009 B2
7507235 Keogh et al. Mar 2009 B2
7511494 Wedeen Mar 2009 B2
7512445 Truckai et al. Mar 2009 B2
7527643 Case et al. May 2009 B2
7529589 Williams et al. May 2009 B2
7540852 Nita et al. Jun 2009 B2
7540870 Babaev Jun 2009 B2
RE40863 Tay et al. Jul 2009 E
7556624 Laufer et al. Jul 2009 B2
7558625 Levin et al. Jul 2009 B2
7563247 Maguire et al. Jul 2009 B2
7566319 McAuley et al. Jul 2009 B2
7569052 Phan et al. Aug 2009 B2
7582111 Krolik et al. Sep 2009 B2
7584004 Caparso et al. Sep 2009 B2
7585835 Hill et al. Sep 2009 B2
7591996 Hwang et al. Sep 2009 B2
7597704 Frazier et al. Oct 2009 B2
7598228 Hattori et al. Oct 2009 B2
7599730 Hunter et al. Oct 2009 B2
7603166 Casscells, III et al. Oct 2009 B2
7604608 Nita et al. Oct 2009 B2
7604633 Truckai et al. Oct 2009 B2
7615015 Coleman Nov 2009 B2
7615072 Rust et al. Nov 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7621902 Nita et al. Nov 2009 B2
7621929 Nita et al. Nov 2009 B2
7626015 Feinstein et al. Dec 2009 B2
7626235 Kinoshita Dec 2009 B2
7632268 Edwards et al. Dec 2009 B2
7632845 Vu et al. Dec 2009 B2
7635383 Gumm Dec 2009 B2
7640046 Pastore et al. Dec 2009 B2
7641633 Laufer et al. Jan 2010 B2
7641679 Joye et al. Jan 2010 B2
7646544 Batchko et al. Jan 2010 B2
7647115 Levin et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7655006 Sauvageau et al. Feb 2010 B2
7662114 Seip et al. Feb 2010 B2
7664548 Amurthur et al. Feb 2010 B2
7670279 Gertner Mar 2010 B2
7670335 Keidar Mar 2010 B2
7671084 Mewshaw et al. Mar 2010 B2
7678104 Keidar Mar 2010 B2
7678106 Lee Mar 2010 B2
7678108 Chrisitian et al. Mar 2010 B2
7686841 Eidenschink et al. Mar 2010 B2
7691080 Seward et al. Apr 2010 B2
7699809 Urmey Apr 2010 B2
7706882 Francischelli et al. Apr 2010 B2
7715912 Rezai et al. May 2010 B2
7717853 Nita May 2010 B2
7717909 Strul et al. May 2010 B2
7717948 Demarais et al. May 2010 B2
7722539 Carter et al. May 2010 B2
7725157 Dumoulin et al. May 2010 B2
7727178 Wilson et al. Jun 2010 B2
7736317 Stephens et al. Jun 2010 B2
7736360 Mody et al. Jun 2010 B2
7736362 Eberl et al. Jun 2010 B2
7738952 Yun et al. Jun 2010 B2
7740629 Anderson et al. Jun 2010 B2
7741299 Feinstein et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7744594 Yamazaki et al. Jun 2010 B2
7753907 DiMatteo et al. Jul 2010 B2
7756583 Demarais et al. Jul 2010 B2
7758510 Nita et al. Jul 2010 B2
7758520 Griffin et al. Jul 2010 B2
7759315 Cuzzocrea et al. Jul 2010 B2
7766833 Lee et al. Aug 2010 B2
7766878 Tremaglio, Jr. et al. Aug 2010 B2
7766892 Keren et al. Aug 2010 B2
7767844 Lee et al. Aug 2010 B2
7769427 Shachar Aug 2010 B2
7771372 Wilson Aug 2010 B2
7771421 Stewart et al. Aug 2010 B2
7776967 Perry et al. Aug 2010 B2
7777486 Hargreaves et al. Aug 2010 B2
7780660 Bourne et al. Aug 2010 B2
7789876 Zikorus et al. Sep 2010 B2
7792568 Zhong et al. Sep 2010 B2
7799021 Leung et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806871 Li et al. Oct 2010 B2
7811265 Hering et al. Oct 2010 B2
7811281 Rentrop Oct 2010 B1
7811313 Mon et al. Oct 2010 B2
7816511 Kawashima et al. Oct 2010 B2
7818053 Kassab Oct 2010 B2
7819866 Bednarek Oct 2010 B2
7822460 Halperin et al. Oct 2010 B2
7828837 Khoury Nov 2010 B2
7832407 Gertner Nov 2010 B2
7833220 Mon et al. Nov 2010 B2
7837676 Sinelnikov et al. Nov 2010 B2
7837720 Mon Nov 2010 B2
7841978 Gertner Nov 2010 B2
7846157 Kozel Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846172 Makower Dec 2010 B2
7849860 Makower et al. Dec 2010 B2
7850685 Kunis et al. Dec 2010 B2
7853333 Demarais Dec 2010 B2
7854734 Biggs et al. Dec 2010 B2
7857756 Warren et al. Dec 2010 B2
7862565 Eder et al. Jan 2011 B2
7863897 Slocum, Jr. et al. Jan 2011 B2
7869854 Shachar et al. Jan 2011 B2
7873417 Demarais et al. Jan 2011 B2
7887538 Bleich et al. Feb 2011 B2
7894905 Pless et al. Feb 2011 B2
7896873 Hiller et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901402 Jones et al. Mar 2011 B2
7901420 Dunn Mar 2011 B2
7905862 Sampson Mar 2011 B2
7918850 Govari et al. Apr 2011 B2
7927370 Webler et al. Apr 2011 B2
7937143 Demarais et al. May 2011 B2
7938830 Saadat et al. May 2011 B2
7942874 Eder et al. May 2011 B2
7942928 Webler et al. May 2011 B2
7946976 Gertner May 2011 B2
7950397 Thapliyal et al. May 2011 B2
7955293 Nita et al. Jun 2011 B2
7956613 Wald Jun 2011 B2
7959627 Utley et al. Jun 2011 B2
7962854 Vance et al. Jun 2011 B2
7967782 Laufer et al. Jun 2011 B2
7967808 Fitzgerald et al. Jun 2011 B2
7972327 Eberl et al. Jul 2011 B2
7972330 Alejandro et al. Jul 2011 B2
7983751 Zdeblick et al. Jul 2011 B2
8001976 Gertner Aug 2011 B2
8007440 Magnin et al. Aug 2011 B2
8012147 Lafontaine Sep 2011 B2
8019435 Hastings et al. Sep 2011 B2
8021362 Deem et al. Sep 2011 B2
8021413 Dierking et al. Sep 2011 B2
8025661 Arnold et al. Sep 2011 B2
8027718 Spinner et al. Sep 2011 B2
8031927 Karl et al. Oct 2011 B2
8033284 Porter et al. Oct 2011 B2
8043673 Lee et al. Oct 2011 B2
8048144 Thistle et al. Nov 2011 B2
8052636 Moll et al. Nov 2011 B2
8052700 Dunn Nov 2011 B2
8062289 Babaev Nov 2011 B2
8075580 Makower Dec 2011 B2
8080006 Lafontaine et al. Dec 2011 B2
8088127 Mayse et al. Jan 2012 B2
8116883 Williams et al. Feb 2012 B2
8119183 O'Donoghue et al. Feb 2012 B2
8120518 Jang et al. Feb 2012 B2
8123741 Marrouche et al. Feb 2012 B2
8128617 Bencini et al. Mar 2012 B2
8131371 Demarals et al. Mar 2012 B2
8131372 Levin et al. Mar 2012 B2
8131382 Asada Mar 2012 B2
8137274 Weng et al. Mar 2012 B2
8140170 Rezai et al. Mar 2012 B2
8143316 Ueno Mar 2012 B2
8145316 Deem et al. Mar 2012 B2
8145317 Demarais et al. Mar 2012 B2
8150518 Levin et al. Apr 2012 B2
8150519 Demarais et al. Apr 2012 B2
8150520 Demarais et al. Apr 2012 B2
8152830 Gumm Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8168275 Lee et al. May 2012 B2
8175711 Demarais et al. May 2012 B2
8187261 Watson May 2012 B2
8190238 Moll et al. May 2012 B2
8192053 Owen et al. Jun 2012 B2
8198611 LaFontaine et al. Jun 2012 B2
8214056 Hoffer et al. Jul 2012 B2
8221407 Phan et al. Jul 2012 B2
8226637 Satake Jul 2012 B2
8231617 Satake Jul 2012 B2
8241217 Chiang et al. Aug 2012 B2
8257724 Cromack et al. Sep 2012 B2
8257725 Cromack et al. Sep 2012 B2
8260397 Ruff et al. Sep 2012 B2
8263104 Ho et al. Sep 2012 B2
8273023 Razavi Sep 2012 B2
8277379 Lau et al. Oct 2012 B2
8287524 Siegel Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292881 Brannan et al. Oct 2012 B2
8293703 Averback et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8295912 Gertner Oct 2012 B2
8308722 Ormsby et al. Nov 2012 B2
8317776 Ferren et al. Nov 2012 B2
8317810 Stangenes et al. Nov 2012 B2
8329179 Ni et al. Dec 2012 B2
8336705 Okahisa Dec 2012 B2
8343031 Gertner Jan 2013 B2
8343145 Brannan Jan 2013 B2
8347891 Demarais et al. Jan 2013 B2
8353945 Andreas et al. Jan 2013 B2
8364237 Stone et al. Jan 2013 B2
8366615 Razavi Feb 2013 B2
8382697 Brenneman et al. Feb 2013 B2
8388680 Starksen et al. Mar 2013 B2
8396548 Perry et al. Mar 2013 B2
8398629 Thistle Mar 2013 B2
8401667 Gustus et al. Mar 2013 B2
8403881 Ferren et al. Mar 2013 B2
8406877 Smith et al. Mar 2013 B2
8409172 Moll et al. Apr 2013 B2
8409193 Young et al. Apr 2013 B2
8409195 Young Apr 2013 B2
8418362 Zerfas et al. Apr 2013 B2
8452988 Wang May 2013 B2
8454594 Demarais et al. Jun 2013 B2
8460358 Andreas et al. Jun 2013 B2
8465452 Kassab Jun 2013 B2
8469919 Ingle et al. Jun 2013 B2
8473067 Hastings et al. Jun 2013 B2
8480663 Ingle et al. Jul 2013 B2
8485992 Griffin et al. Jul 2013 B2
8486060 Kotmel et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8488591 Miali et al. Jul 2013 B2
20010007070 Stewart et al. Jul 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020022864 Mahvi et al. Feb 2002 A1
20020042639 Murphy-Chutorian et al. Apr 2002 A1
20020045811 Kittrell et al. Apr 2002 A1
20020045890 Celliers et al. Apr 2002 A1
20020062146 Makower et al. May 2002 A1
20020065542 Lax et al. May 2002 A1
20020087151 Mody et al. Jul 2002 A1
20020095197 Lardo et al. Jul 2002 A1
20020107536 Hussein Aug 2002 A1
20020147480 Mamayek Oct 2002 A1
20020169444 Mest et al. Nov 2002 A1
20020198520 Coen et al. Dec 2002 A1
20030050635 Truckai et al. Mar 2003 A1
20030065317 Rudie et al. Apr 2003 A1
20030092995 Thompson May 2003 A1
20030139689 Shturman et al. Jul 2003 A1
20030195501 Sherman et al. Oct 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20030229340 Sherry et al. Dec 2003 A1
20030233099 Danaek et al. Dec 2003 A1
20040010118 Zerhusen et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040024371 Plicchi et al. Feb 2004 A1
20040043030 Griffiths et al. Mar 2004 A1
20040064090 Keren et al. Apr 2004 A1
20040073206 Foley et al. Apr 2004 A1
20040088002 Boyle et al. May 2004 A1
20040093055 Bartorelli et al. May 2004 A1
20040106871 Hunyor et al. Jun 2004 A1
20040117032 Roth Jun 2004 A1
20040147915 Hasebe Jul 2004 A1
20040162555 Farley et al. Aug 2004 A1
20040167506 Chen Aug 2004 A1
20040186356 O'Malley et al. Sep 2004 A1
20040187875 He et al. Sep 2004 A1
20040193211 Voegele et al. Sep 2004 A1
20040220556 Cooper et al. Nov 2004 A1
20040243022 Carney et al. Dec 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040267250 Yon et al. Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050015125 Mioduski et al. Jan 2005 A1
20050080374 Esch et al. Apr 2005 A1
20050096647 Steinke et al. May 2005 A1
20050129616 Salcedo et al. Jun 2005 A1
20050137180 Robinson et al. Jun 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050148842 Wang et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050149080 Hunter et al. Jul 2005 A1
20050149158 Hunter et al. Jul 2005 A1
20050149173 Hunter et al. Jul 2005 A1
20050149175 Hunter et al. Jul 2005 A1
20050154277 Tang et al. Jul 2005 A1
20050154445 Hunter et al. Jul 2005 A1
20050154453 Hunter et al. Jul 2005 A1
20050154454 Hunter et al. Jul 2005 A1
20050165389 Swain et al. Jul 2005 A1
20050165391 Maguire et al. Jul 2005 A1
20050165467 Hunter et al. Jul 2005 A1
20050165488 Hunter et al. Jul 2005 A1
20050175661 Hunter et al. Aug 2005 A1
20050175662 Hunter et al. Aug 2005 A1
20050175663 Hunter et al. Aug 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050177225 Hunter et al. Aug 2005 A1
20050181004 Hunter et al. Aug 2005 A1
20050181008 Hunter et al. Aug 2005 A1
20050181011 Hunter et al. Aug 2005 A1
20050181977 Hunter et al. Aug 2005 A1
20050182479 Bonsignore et al. Aug 2005 A1
20050183728 Hunter et al. Aug 2005 A1
20050186242 Hunter et al. Aug 2005 A1
20050186243 Hunter et al. Aug 2005 A1
20050191331 Hunter et al. Sep 2005 A1
20050203410 Jenkins Sep 2005 A1
20050209587 Joye et al. Sep 2005 A1
20050214205 Salcedo et al. Sep 2005 A1
20050214207 Salcedo et al. Sep 2005 A1
20050214208 Salcedo et al. Sep 2005 A1
20050214209 Salcedo et al. Sep 2005 A1
20050214210 Salcedo et al. Sep 2005 A1
20050214268 Cavanagh et al. Sep 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20050228415 Gertner Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050232921 Rosen et al. Oct 2005 A1
20050234312 Suzuki et al. Oct 2005 A1
20050245862 Seward Nov 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050252553 Ginggen Nov 2005 A1
20050256398 Hastings et al. Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050273149 Tran et al. Dec 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060018949 Ammon et al. Jan 2006 A1
20060024564 Manclaw Feb 2006 A1
20060025765 Landman et al. Feb 2006 A1
20060062786 Salcedo et al. Mar 2006 A1
20060083194 Dhrimaj et al. Apr 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060089638 Carmel et al. Apr 2006 A1
20060095096 DeBenedictis et al. May 2006 A1
20060106375 Werneth et al. May 2006 A1
20060142790 Gertner Jun 2006 A1
20060147492 Hunter et al. Jul 2006 A1
20060167106 Zhang et al. Jul 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060171895 Bucay-Couto Aug 2006 A1
20060182873 Klisch et al. Aug 2006 A1
20060184221 Stewart et al. Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060224153 Fischell et al. Oct 2006 A1
20060239921 Mangat et al. Oct 2006 A1
20060240070 Cromack et al. Oct 2006 A1
20060247266 Yamada et al. Nov 2006 A1
20060247760 Ganesan et al. Nov 2006 A1
20060263393 Demopulos et al. Nov 2006 A1
20060269555 Salcedo et al. Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20070016184 Cropper et al. Jan 2007 A1
20070016274 Boveja et al. Jan 2007 A1
20070027390 Maschke et al. Feb 2007 A1
20070043077 Mewshaw et al. Feb 2007 A1
20070043409 Brian et al. Feb 2007 A1
20070049924 Rahn Mar 2007 A1
20070066972 Ormsby et al. Mar 2007 A1
20070067883 Sretavan Mar 2007 A1
20070073151 Lee Mar 2007 A1
20070093710 Maschke Apr 2007 A1
20070100405 Thompson et al. May 2007 A1
20070106247 Burnett et al. May 2007 A1
20070112327 Yun et al. May 2007 A1
20070118107 Francischelli et al. May 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070129761 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070149963 Matsukuma et al. Jun 2007 A1
20070162109 Davila et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070179496 Swoyer et al. Aug 2007 A1
20070203480 Mody et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070208210 Gelfand et al. Sep 2007 A1
20070208256 Marilla Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070219576 Cangialosi Sep 2007 A1
20070225781 Saadat et al. Sep 2007 A1
20070233170 Gertner Oct 2007 A1
20070239062 Chopra et al. Oct 2007 A1
20070248639 Demopulos et al. Oct 2007 A1
20070249703 Mewshaw et al. Oct 2007 A1
20070254833 Hunter et al. Nov 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070278103 Hoerr et al. Dec 2007 A1
20070282302 Wachsman et al. Dec 2007 A1
20070292411 Salcedo et al. Dec 2007 A1
20070293782 Marino Dec 2007 A1
20070299043 Hunter et al. Dec 2007 A1
20080004673 Rossing et al. Jan 2008 A1
20080009927 Vilims Jan 2008 A1
20080015501 Gertner Jan 2008 A1
20080021408 Jacobsen et al. Jan 2008 A1
20080033049 Mewshaw Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080039830 Munger et al. Feb 2008 A1
20080051454 Wang Feb 2008 A1
20080064957 Spence Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080071306 Gertner Mar 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080086072 Bonutti et al. Apr 2008 A1
20080091193 Kauphusman et al. Apr 2008 A1
20080097251 Babaev Apr 2008 A1
20080097426 Root et al. Apr 2008 A1
20080108867 Zhou May 2008 A1
20080119879 Brenneman et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080132450 Lee et al. Jun 2008 A1
20080140002 Ramzipoor et al. Jun 2008 A1
20080147002 Gertner Jun 2008 A1
20080161662 Golijanin et al. Jul 2008 A1
20080161717 Gertner Jul 2008 A1
20080161801 Steinke et al. Jul 2008 A1
20080171974 Lafontaine et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080172104 Kieval et al. Jul 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080188913 Stone et al. Aug 2008 A1
20080208162 Joshi Aug 2008 A1
20080208169 Boyle et al. Aug 2008 A1
20080213331 Gelfand et al. Sep 2008 A1
20080215117 Gross Sep 2008 A1
20080221448 Khuri-Yakub et al. Sep 2008 A1
20080234790 Bayer et al. Sep 2008 A1
20080243091 Humphreys et al. Oct 2008 A1
20080245371 Gruber Oct 2008 A1
20080249525 Lee et al. Oct 2008 A1
20080249547 Dunn Oct 2008 A1
20080255550 Bell Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080275484 Gertner Nov 2008 A1
20080281312 Werneth et al. Nov 2008 A1
20080281347 Gertner Nov 2008 A1
20080287918 Rosenman et al. Nov 2008 A1
20080294037 Richter Nov 2008 A1
20080300618 Gertner Dec 2008 A1
20080312644 Fourkas et al. Dec 2008 A1
20080312673 Viswanathan et al. Dec 2008 A1
20080317818 Griffith et al. Dec 2008 A1
20090018486 Goren et al. Jan 2009 A1
20090018609 DiLorenzo Jan 2009 A1
20090024194 Arcot-Krishnamurthy et al. Jan 2009 A1
20090030312 Hadjicostis Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090043372 Northrop et al. Feb 2009 A1
20090054082 Kim et al. Feb 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090069671 Anderson Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090088735 Abboud et al. Apr 2009 A1
20090105631 Kieval Apr 2009 A1
20090112202 Young Apr 2009 A1
20090118620 Tgavalekos et al. May 2009 A1
20090118726 Auth et al. May 2009 A1
20090125099 Weber et al. May 2009 A1
20090131798 Minar May 2009 A1
20090143640 Saadat et al. Jun 2009 A1
20090156988 Ferren et al. Jun 2009 A1
20090157057 Ferren et al. Jun 2009 A1
20090157161 Desai et al. Jun 2009 A1
20090171333 Hon Jul 2009 A1
20090192558 Whitehurst et al. Jul 2009 A1
20090198223 Thilwind et al. Aug 2009 A1
20090203962 Miller et al. Aug 2009 A1
20090203993 Mangat et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210953 Moyer et al. Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090221955 Babaev Sep 2009 A1
20090226429 Salcedo et al. Sep 2009 A1
20090240249 Chan et al. Sep 2009 A1
20090247933 Maor et al. Oct 2009 A1
20090247966 Gunn et al. Oct 2009 A1
20090248012 Maor et al. Oct 2009 A1
20090253974 Rahme Oct 2009 A1
20090264755 Chen et al. Oct 2009 A1
20090270850 Zhou et al. Oct 2009 A1
20090281533 Ingle et al. Nov 2009 A1
20090287137 Crowley Nov 2009 A1
20090318749 Stolen et al. Dec 2009 A1
20100009267 Chase et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100048983 Ball et al. Feb 2010 A1
20100049099 Thapliyal et al. Feb 2010 A1
20100049186 Ingle et al. Feb 2010 A1
20100049188 Nelson et al. Feb 2010 A1
20100049191 Habib et al. Feb 2010 A1
20100049283 Johnson Feb 2010 A1
20100069837 Rassat et al. Mar 2010 A1
20100076299 Gustus et al. Mar 2010 A1
20100076425 Carroux Mar 2010 A1
20100087782 Ghaffari et al. Apr 2010 A1
20100106005 Karczmar et al. Apr 2010 A1
20100114244 Manda et al. May 2010 A1
20100130836 Malchano et al. May 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100137952 Demarais Jun 2010 A1
20100160903 Krespi Jun 2010 A1
20100160906 Jarrard Jun 2010 A1
20100168624 Sliwa Jul 2010 A1
20100168731 Wu et al. Jul 2010 A1
20100168739 Wu et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100191232 Boveda Jul 2010 A1
20100217162 Hissong et al. Aug 2010 A1
20100222786 Kassab Sep 2010 A1
20100222851 Deem et al. Sep 2010 A1
20100222854 Demarais et al. Sep 2010 A1
20100228122 Keenan et al. Sep 2010 A1
20100249604 Hastings et al. Sep 2010 A1
20100249773 Clark et al. Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100268217 Habib Oct 2010 A1
20100268307 Demarais et al. Oct 2010 A1
20100284927 Lu et al. Nov 2010 A1
20100286684 Hata et al. Nov 2010 A1
20100298821 Garbagnati Nov 2010 A1
20100305036 Barnes et al. Dec 2010 A1
20100312141 Keast et al. Dec 2010 A1
20100324472 Wulfman Dec 2010 A1
20110009750 Taylor et al. Jan 2011 A1
20110021976 Li et al. Jan 2011 A1
20110034832 Cioanta et al. Feb 2011 A1
20110040324 McCarthy et al. Feb 2011 A1
20110044942 Puri et al. Feb 2011 A1
20110060324 Wu et al. Mar 2011 A1
20110071400 Hastings et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110077498 McDaniel Mar 2011 A1
20110092781 Gertner Apr 2011 A1
20110092880 Gertner Apr 2011 A1
20110104061 Seward May 2011 A1
20110112400 Emery et al. May 2011 A1
20110118600 Gertner May 2011 A1
20110118726 De La Rama et al. May 2011 A1
20110130708 Perry et al. Jun 2011 A1
20110137155 Weber et al. Jun 2011 A1
20110144479 Hastings et al. Jun 2011 A1
20110146673 Keast et al. Jun 2011 A1
20110166499 Demarais et al. Jul 2011 A1
20110178570 Demarais Jul 2011 A1
20110200171 Beetel et al. Aug 2011 A1
20110202098 Demarais et al. Aug 2011 A1
20110207758 Sobotka et al. Aug 2011 A1
20110208096 Demarais et al. Aug 2011 A1
20110257523 Hastings et al. Oct 2011 A1
20110257564 Demarais et al. Oct 2011 A1
20110257622 Salahieh et al. Oct 2011 A1
20110257641 Hastings et al. Oct 2011 A1
20110257642 Griggs, III Oct 2011 A1
20110263921 Vrba et al. Oct 2011 A1
20110264011 Wu et al. Oct 2011 A1
20110264075 Leung et al. Oct 2011 A1
20110264086 Ingle Oct 2011 A1
20110264116 Kocur et al. Oct 2011 A1
20110270238 Rizq et al. Nov 2011 A1
20110306851 Wang Dec 2011 A1
20110319809 Smith Dec 2011 A1
20120029496 Smith Feb 2012 A1
20120029500 Jenson Feb 2012 A1
20120029505 Jenson Feb 2012 A1
20120029509 Smith Feb 2012 A1
20120029510 Haverkost Feb 2012 A1
20120029511 Smith et al. Feb 2012 A1
20120029512 Willard et al. Feb 2012 A1
20120029513 Smith et al. Feb 2012 A1
20120059241 Hastings et al. Mar 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120065506 Smith Mar 2012 A1
20120065554 Pikus Mar 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120101490 Smith Apr 2012 A1
20120101538 Ballakur et al. Apr 2012 A1
20120109021 Hastings et al. May 2012 A1
20120116382 Ku et al. May 2012 A1
20120116383 Mauch et al. May 2012 A1
20120116392 Willard May 2012 A1
20120116438 Salahieh et al. May 2012 A1
20120116486 Naga et al. May 2012 A1
20120123243 Hastings May 2012 A1
20120123258 Willard May 2012 A1
20120123261 Jenson et al. May 2012 A1
20120123303 Sogard et al. May 2012 A1
20120123406 Edmunds et al. May 2012 A1
20120130289 Demarais et al. May 2012 A1
20120130345 Levin et al. May 2012 A1
20120130359 Turovskiy May 2012 A1
20120130360 Buckley et al. May 2012 A1
20120130362 Hastings et al. May 2012 A1
20120130368 Jenson May 2012 A1
20120130458 Ryba et al. May 2012 A1
20120136344 Buckley et al. May 2012 A1
20120136349 Hastings May 2012 A1
20120136350 Goshgarian et al. May 2012 A1
20120136417 Buckley et al. May 2012 A1
20120136418 Buckley et al. May 2012 A1
20120143181 Demarais et al. Jun 2012 A1
20120143293 Mauch et al. Jun 2012 A1
20120143294 Clark et al. Jun 2012 A1
20120150267 Buckley et al. Jun 2012 A1
20120157986 Stone et al. Jun 2012 A1
20120157987 Steinke et al. Jun 2012 A1
20120157988 Stone et al. Jun 2012 A1
20120157989 Stone et al. Jun 2012 A1
20120157992 Smith et al. Jun 2012 A1
20120157993 Jenson et al. Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120158104 Huynh et al. Jun 2012 A1
20120172837 Demarais et al. Jul 2012 A1
20120172870 Jenson et al. Jul 2012 A1
20120184952 Jenson et al. Jul 2012 A1
20120197198 Demarais et al. Aug 2012 A1
20120197252 Deem et al. Aug 2012 A1
20120232409 Stahmann et al. Sep 2012 A1
20120265066 Crow et al. Oct 2012 A1
20120265198 Crow et al. Oct 2012 A1
20120296329 Ng Nov 2012 A1
20130012844 Demarais et al. Jan 2013 A1
20130012866 Deem et al. Jan 2013 A1
20130012867 Demarais et al. Jan 2013 A1
20130013024 Levin et al. Jan 2013 A1
20130023865 Steinke et al. Jan 2013 A1
20130035681 Subramanaim et al. Feb 2013 A1
20130066316 Steinke et al. Mar 2013 A1
20130085489 Fain et al. Apr 2013 A1
20130090563 Weber Apr 2013 A1
20130090578 Smith et al. Apr 2013 A1
20130090647 Smith Apr 2013 A1
20130090649 Smith et al. Apr 2013 A1
20130090650 Jenson et al. Apr 2013 A1
20130090651 Smith Apr 2013 A1
20130090652 Jenson Apr 2013 A1
20130096550 Hill Apr 2013 A1
20130096553 Hill et al. Apr 2013 A1
20130096554 Groff et al. Apr 2013 A1
20130096604 Hanson et al. Apr 2013 A1
20130110106 Richardson May 2013 A1
20130116687 Willard May 2013 A1
20130158536 Bloom Jun 2013 A1
20130165764 Scheuermann et al. Jun 2013 A1
20130165844 Shuros et al. Jun 2013 A1
20130165916 Mathur et al. Jun 2013 A1
20130165917 Mathur et al. Jun 2013 A1
20130165920 Weber et al. Jun 2013 A1
20130165923 Mathur et al. Jun 2013 A1
20130165924 Mathur et al. Jun 2013 A1
20130165925 Mathur et al. Jun 2013 A1
20130165926 Mathur et al. Jun 2013 A1
20130165990 Mathur et al. Jun 2013 A1
20130172815 Perry et al. Jul 2013 A1
20130172872 Subramaniam et al. Jul 2013 A1
20130172877 Subramaniam et al. Jul 2013 A1
20130172878 Smith Jul 2013 A1
20130172879 Sutermeister Jul 2013 A1
20130172880 Willard Jul 2013 A1
20130172881 Hill et al. Jul 2013 A1
20140074083 Horn et al. Mar 2014 A1
Foreign Referenced Citations (44)
Number Date Country
10038737 Feb 2002 DE
1053720 Nov 2000 EP
1180004 Feb 2002 EP
1335677 Aug 2003 EP
1874211 Jan 2008 EP
1906853 Apr 2008 EP
1961394 Aug 2008 EP
1620156 Jul 2009 EP
2076193 Jul 2009 EP
2091455 Aug 2009 EP
2197533 Jun 2010 EP
2208506 Jul 2010 EP
1579889 Aug 2010 EP
2092957 Jan 2011 EP
2349044 Aug 2011 EP
2027882 Oct 2011 EP
2378956 Oct 2011 EP
2037840 Dec 2011 EP
2204134 Apr 2012 EP
2320821 Oct 2012 EP
2456301 Jul 2009 GB
9858588 Dec 1998 WO
9900060 Jan 1999 WO
9935986 Jul 1999 WO
0047118 Aug 2000 WO
0066021 Nov 2000 WO
0195820 Dec 2001 WO
03026525 Apr 2003 WO
2004100813 Nov 2004 WO
2004110258 Dec 2004 WO
2005041810 May 2005 WO
2006105121 Oct 2006 WO
2008014465 Jan 2008 WO
2009121017 Oct 2009 WO
2010067360 Jun 2010 WO
2010102310 Sep 2010 WO
2010132703 Nov 2010 WO
2011005901 Jan 2011 WO
2011053757 May 2011 WO
2011053772 May 2011 WO
2011091069 Jul 2011 WO
2011130534 Oct 2011 WO
2012019156 Feb 2012 WO
2013049601 Apr 2013 WO
Non-Patent Literature Citations (69)
Entry
US 8,398,630, 03/2013, Demarais et al. (withdrawn)
Van Den Berg, “Light echoes image the human body,” OLE, Oct. 2001, p. 35-37.
“IntraLuminal: Products,” IntraLuminal Therapeutics, Inc., 2003, p. 1-9.
“Laser Catheter to Aid Coronary Surgery,” TechTalk: MIT, Jan. 9, 1991, p. 1-4.
“Optical Coherence Tomography: LightLab Imaging Starts US Cardiology Clinical Investigations,” LightLab Imaging Technology, 2002.
“Optical Coherence Tomography: LightLab Sees Bright Prospects for Cardiac Application of OCT Technology,” LightLab Imaging Technology, 2001, vol. 27, No. 35.
“Products—Functional Measurement,” VOLCANO Functional Measurement Products US, Mar. 24, 2003, p. 1-2.
Brown et al., “Radiofrequency capacitive heaters: the effect of coupling medium resistivity on power absorption along a mouse leg,” Physics in Medicine and Biology, 1993, p. 1-12, vol. 38.
Carrington, “Future of CVI: It's all about plaque: Identification of vulnerable lesions, not ‘rusty pipes,’ could become cornerstone of preventive cardiology,” Diagnostic Imaging, 2001, p. 1-8.
Chen et al., “Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo,” EuroIntervention, 2013, p. 1-8.
Cimino, “Preventing plaque attack,” Mass High Tech, 2001, p. 1-2.
Dahm et al., “Relation of Degree of Laser Debulking of In-Stent Restenosis as a Predictor of Restenosis Rate,” The American Journal of Cardiology, 2002, p. 68-70, vol. 90.
De Korte et al., “Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro,” Circulation, Aug. 8, 2000, p. 617-623.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook,” Oct. 1986, p. 1-2, Fourth Edition.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook: Contents,” Oct. 1986, p. 1-5, Fourth Edition.
Fournier-Desseux et al., “Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography,” Physiological Measurement, 2005, p. 337-349. Vo. 26, Institute of Physics Publishing.
Fram et al., “Feasibility of Radiofrequency Powered, Thermal Balloon Ablation of Atrioventricular Bypass Tracts via the Coronary Sinus: In Vivo Canine Studies,” PACE, Aug. 1995, p. 1518-1530, vol. 18.
Fram et al., “Low Pressure Radiofrequency Balloon Angioplasty: Evaluation in Porcine Peripheral Arteries,” JACC, 1993, p. 1512-1521, vol. 21, No. 6, American College of Cardiology.
Fujimori et al., “Significant Prevention of In-Stent Restenosis by Evans Blue in Patients with Acute Myocardial Infarction,” American Heart Association, 2002.
Fujita et al., “Sarpogrelate, An Antagonist of 5-HT(2A) Receptor, Treatment Reduces Restenosis After Coronary Stenting,” American Heart Association, 2002.
Gabriel, “Appendix A: Experimental Data,” 1999, p. 1-21.
Gabriel, “Appendix C: Modeling the frequency dependence of the dielectric properties to a 4 dispersions spectrum,” p. 1-49, Nov. 6, 1997.
Gregory et al., “Liquid Core Light Guide for Laser Angioplasty,” The Journal of Quantum Electronics, Dec. 1990, p. 2289-2296, vol. 26, No. 12.
Kaplan et al., “Healing after Arterial Dilatation with Radiofrequency Thermal and Nonthermal Balloon Angioplasty Sytems,” Journal of Investigative Surgery, 1993, p. 33-52, vol. 6.
Kolata, “New Studies Question Value of Opening Arteries,” The New York Times, Mar. 21, 2004, p. 1-5.
Konings et al., “Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries,” IEEE Transactions on Medical Imaging, Aug. 1997, p. 439-446, vol. 16, No. 4.
Kurtz et al., “Lamellar Refractive Surgery with Scanned Intrastromal Picosecond and Femtosecond Laser Pulses in Animal Eyes,” Journal of Refractive Surgery, Sep./Oct. 1998, p. 541-548.
Lee et al., “Thermal Compression and Molding of Atherosclerotic Vascular Tissue With Use of Radiofrequency Energy: Implications for Radiofrequency Balloon Angioplasty,” JACC, 1989, p. 1167-1175, vol. 13, No. 5, American College of Cardiology.
Lima et al., “Efficacy and Safety of Oral Sirolimus to Treat and Prevent In-Stent Restenosis: A Pilot Study Results,” American Heart Association, 2002, p. 2929.
Lima et al., “Systemic Immunosuppression Inhibits In-Stent Coronary Intimal Proliferation in Renal Transplant Patients,” American Heart Association, 2002, p. 2928.
Morice et al., “A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization,” The New England Journal of Medicine, Jun. 6, 2012, p. 1773-1780, vol. 346, No. 23.
Muller-Leisse et al., “Effectiveness and Safety of Ultrasonic Atherosclerotic Plaque Ablation: In Vitro Investigation,” CardioVascular and Interventional Radiology, 1993, p. 303-307, vol. 16.
Nair et al., “Regularized Autoregressive Analysis of Intravascular Ultrasound Backscatter: Improvement in Spatial Accuracy of Tissue Maps,” IEEE Transactions on Ultrasonics, Apr. 2004, p. 420-431, vol. 51, No. 4.
Popma et al., “Percutaneous Coronary and Valvular Intervention,” Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 7th edition, p. 1364-1405, 2005.
Resar et al., “Endoluminal Sealing of Vascular Wall Disruptions With Radiofrequency-Heated Balloon Angioplasty,” Catheterization and Cardiovascular Diagnosis, 1993, p. 161-167, vol. 29.
Romer et al., “Histopathology of Human Coronary Atherosclerosis by Quantifying Its Chemical Composition With Raman Spectroscopy,” Circulation, 1998, p. 878-885, vol. 97.
Schauerte et al., “Catheter Ablation of Cardiac Autonomic Nerves for Prevention of Vagal Atrial Fibrillation,” Circulation, 2000, p. 2774-2780, vol. 102.
Scheller et al., “Intracoronary Paclitaxel Added to Contrast Media Inhibits In-Stent Restenosis of Porcine Coronary Arteries,” American Heart Association, 2002, p. 2227.
Scheller et al., “Potential solutions to the current problem: coated balloon,” EuroIntervention, 2008, p. C63-C66, vol. 4 (Supplement C).
Shaffer, “Scientific basis of laser energy,” Clinics in Sports Medicine, 2002, p. 585-598, vol. 21.
Shmatukha et al., “MRI temperature mapping during thermal balloon angioplasty,” Physics in Medicine and Biology, 2006, p. N163-N171, vol. 51.
Slager et al., “Vaporization of Atherosclerotic Plaques by Spark Erosion,” J Am Coll Cardiol, 1985, p. 21-25.
Stiles et al., “Simulated Characterization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance,” IEEE Transactions on Biomedical Engineering, Jul. 2003, p. 916-921, vol. 50, No. 7.
Suselbeck et al., “In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes,” Basic Res Cardiol, 2005, p. 28-34, vol. 100.
Suselbeck et al., “Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system,” Basic Res Cardiol, 2005, p. 446-452, vol. 100.
Tepe et al., “Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg,” The New England Journal of Medicine, 2008, p. 689-699, vol. 358.
“Optical Coherence Tomography: Advantages of OCT,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: Image Gallery Cardiovascular Procedures,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: What is OCT?,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: Why Use OCT?,” LightLab Imaging Technology, printed Sep. 3, 2003.
Pieper et al. “Design and implementation of a new computerized system for intraoperative cardiac mapping”, J. Appl. Physiol. 71(4): 1529-1539, 1991.
CardioVascular Technologies Inc., “Heated Balloon Device Technology,” 11 pages, 2008.
Strategic Business Development, Inc., “Thermal and Disruptive Angioplasty: A Physician's Guide,” 8 pages, 1990.
Zhang et al., “Non-contact Radio-Frequency Ablation for Obtaining Deeper Lesions,” IEEE Transaction on Biomedical Engineering, vol. 50, No. 2, 6 pages, Feb. 2003.
Lazebnik et al., “Tissue Strain Analytics Virtual Touch Tissue Imaging and Qualification,” Siemens Whitepaper, Oct. 2008, 7 pages.
Han et al., “Third-Generation Cryosurgery for Primary and Recurrent Prostate Caner,” BJU International, vol. 93, pp. 14-18, 2004.
Zhou et al., “Mechanism Research of Cryoanalgesia,” Forefront Publishing Group, 1995.
Florete, “Cryoblative Procedure for Back Pain,” Jacksonville Medicine, Oct. 1998, 10 pages.
Stevenson, “Irrigated RF Ablation: Power Titration and Fluid Management for Optimal Safety Efficacy,” 2005, 4 pages.
Giliatt et al., “The Cause of Nerve Damage in Acute Compression,” Trans Am Neurol Assoc, 1974: 99; 71-4.
Omura et al., “A Mild Acute Compression Induces Neurapraxia in Rat Sciatic Nerve,” The International Journal of Neuroscience, vol. 114 (12), pp. 1561-1572, Dec. 2004.
Baun, “Interaction with Soft Tissue,” Principles of General & Vascular Sonography, Chapter 2, pp. 23-24, Before Mar. 2012.
Blue Cross Blue Shield Medical Policy, “Surgery Section—MRI-Guided Focused Ultrasound (MRgFUS) for the Treatment of Uterine Fibroids and Other Tumors,” 2005, 5 pages.
Gentry et al., “Combines 3D Intracardiac Echo and Ultrasound Ablation,” Medical Imaging 2003: Ultrasonic and Signal Processing, vol. 5035, 2003, pp. 166-173.
Lafon et al., “Optmizing the Shape of Ultrasound Transducers for Interstitial Thermal Ablations,” MEd Phys. Mar. 2002; 29(3): 290-7 (abstract only).
G. Ter Haar, “Ultrasound Focal Beam Surgery,” Ultrasound in Med. & Biol., 1995, vol. 21, No. 9, pp. 1089-1100.
Seip et al., “Transurethral High Intensity Focused Ultrasound: Catheter Based Prototypes and Experimental Results,” IEEE Ultrasonics Symposium Proceeding, 2000, 4 pages.
Toytman et al., “Tissue Dissection with Ultrafast Laser Using Extended and Multiple Foci,” SPIE Proceeding, Optical Interactions with Tissues and Cells XXI, vol. 7562, 2010, 10 pages.
Zhou et al., “Non-Thermal Ablation of Rabbit Liver VX2 Tumore by Pulsed High Intensity Focused Ultrasound Contrast Agent: Pathological Characteristics,” World Journal of Gastroenterology, vol. 14(43), Nov. 21, 2008, pp. 6743-6747.
Related Publications (1)
Number Date Country
20140378966 A1 Dec 2014 US
Provisional Applications (1)
Number Date Country
61838086 Jun 2013 US