This invention relates to the art of ink jet cartridges and, more particularly, to preparing a used ink jet cartridge for renovation to promote the extended life and reuse thereof.
It is known that the life of an ink jet cartridge can be extended beyond the time it takes to deplete the cartridge of its initial supply of ink. For example, refill kits are provided for replenishing a cartridge's ink supply, and continuous refill systems have been developed for providing a continuous flow of ink to a cartridge from a remotely located ink supply bag or the like. In connection with extending the life of a cartridge, the latter needs to be periodically cleaned or renovated to avoid the buildup of dried ink inside the cartridge and in areas such as the nozzle plate where the buildup can preclude or seriously impair quality printing. The renovating or cleaning process includes soaking the cartridge in a cleaning solution and then flushing the cartridge to force the cleaning fluid through the nozzles or jets in the nozzle plate. Further, a vacuum is pulled across the nozzle jets in the nozzle plate and the internal pressure and/or the vacuum create a force on the nozzle plate tending to lift it from the snout portion of the cartridge to which it is initially bonded during the manufacture of the cartridge. Still further, a centrifuge process is used to remove the cleaning fluid inside the cartridge by expulsion thereof through the nozzle jets, and this centrifugal force will also lift the nozzle plate from its attachment to the cartridge. If the cartridge is then refilled with ink and placed back into service, the loose nozzle plate can result in poor print quality, such as fuzzy print, and can result in cross-contamination of colors in a color printing cartridge. Furthermore, if a cartridge being renovated already has a loose nozzle plate, the renovating or remanufacturing process tends to further loosen or remove the plate. In any event, loose nozzle plates cause a considerable loss in the yield of reusable cartridges in connection with a renovating or remanufacturing process.
In accordance with the present invention, the attachment of a nozzle plate to an ink jet cartridge is reinforced prior to the renovating or remanufacturing process so as to reduce the occurrence of the plate being loose following the renovation process. More particularly in this respect, the nozzle plate of a cartridge which is adhesively bonded to the snout portion of a cartridge at the time of manufacture is provided with a supplemental bead or beads of an adhesive material to reinforce the attachment of the nozzle plate to the cartridge against loosening of the plate during renovation. The supplemental beads of adhesive material are applied in areas of the nozzle plate other than those in which the initial beads of adhesive are located. While the supplemental beads of adhesive can be applied by hand, it is preferred, in accordance with another aspect of the invention, to apply the adhesive through the use of programmable apparatus in that the latter provides optimal control of bead location and height as well as consistency with respect to these parameters which, in turn, promotes improved process efficiency and minimal material waste. Moreover, the supplemental beads of adhesive promote a higher yield of reusable cartridges at a reduced production cost.
It is accordingly an outstanding object of the present invention to provide an ink jet cartridge in which the attachment of the nozzle plate to the cartridge is reinforced prior to renovation or remanufacturing of the cartridge for continued use.
Another object is the provision of a method of reinforcing the original attachment of a nozzle plate to an ink jet cartridge by supplemental beads of an adhesive material.
Yet another object is the provision of apparatus for applying supplemental beads of an adhesive material to the nozzle plate of a used ink jet cartridge to provide consistency with respect to glue bead location and height.
Still another object is the provision of a method and apparatus for preparing a used ink jet cartridge for remanufacturing which provides improved efficiency with respect to the preparation, minimal material waste, reduced production costs and increased yield of reusable cartridges.
The foregoing objects, and others, will in part be obvious and in part pointed out more fully hereinafter in conjunction with the written description of preferred embodiments of the invention illustrated in the accompanying drawings in which:
Referring now in greater detail to the drawings, wherein the showings are for the purpose of illustrating preferred embodiments of the invention only and not for the purpose of limiting the invention,
As best seen in
While the invention is illustrated in connection with the cartridge HP 1823 it is applicable to other cartridges including, by way of example only, Hewllet-Packard cartridges HP 6626, HP 6578 and HP 1649A.
In accordance with one aspect of the present invention, prior to the renovating process the nozzle plate is wiped with a suitable cleaning solution to remove any dried ink therefrom, and reinforcing beads 46 of adhesive material are applied along side edges 32 of the nozzle plate. Beads 46 have a width w and a thickness t, and the beads are applied to have an overlap o inwardly of the corresponding side edge 30 of the nozzle plate. In the embodiment illustrated in
In the embodiment illustrated in
In the embodiments disclosed herein, a preferred adhesive material for the reinforcing beads is available from Henkel Technologies under the latter's product designation Loctite 3321. The latter adhesive is a UV cured acryoated urethane. With respect to beads 46, the adhesive preferably has a viscosity of from 500 to 6,000 cP, and with respect to beads 48, the adhesive preferably has a viscosity of from 1 to 150 cP. With respect to adhesive beads 46, width w is 1.400 mm, thickness t is 0.250 mm, and overlap o is 0.250 mm. With regard to adhesive beads 48, width w is 0.900 mm, and thickness t is 0.250 mm.
Preferably, with regard to the beads of adhesive applied along side edges 30 and over slots S of the nozzle plate, the glue is deposited at a pressure of between 12 and 15 psi. This pressure promotes dispensing of the glue into the area between the recess and plate edge and downwardly through the slots so as to adhere to the silicon chip therebelow.
While it is possible to manually apply the adhesive in the patterns described hereinabove, it is preferred to apply the glue through the use of robotic apparatus which is programmable to deposit the various patterns at the desired pressure and with the preferred dimensions. In particular in this respect, the use of such apparatus provides accuracy with respect to bead location and height and consistency of deposit from one cartridge to the next. Accordingly, process efficiency is realized with minimal material waste and product costs are advantageously reduced.
Robotic glue dispensing apparatus for the foregoing purpose is illustrated in
In accordance with another aspect of the present invention, table 66 is provided with a cartridge clamping assembly 74 which, as shown in
In accordance with yet another aspect of the invention, as shown in
While considerable emphasis has been placed herein on preferred embodiments of the invention, it will be appreciated that other embodiments can be made and that many changes can be made in the preferred embodiments without departing from the principles of the invention. Accordingly, it is to be distinctly understood that the foregoing descriptive matter is to be interpreted merely as illustrative of the invention and not as a limitation and that it is intended to include other embodiments and all modifications of the preferred embodiments insofar as they come within the scope of the appended claims or the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
5388326 | Beeson et al. | Feb 1995 | A |
5736998 | Caren et al. | Apr 1998 | A |
6501527 | Hirose et al. | Dec 2002 | B1 |