Repairing compromised system data in a non-volatile memory

Information

  • Patent Grant
  • 9990255
  • Patent Number
    9,990,255
  • Date Filed
    Tuesday, April 23, 2013
    11 years ago
  • Date Issued
    Tuesday, June 5, 2018
    6 years ago
Abstract
A first non-volatile memory stores a redundant copy of system data that relates to a configuration of at least one physical component of a system, where the first non-volatile memory is accessible by a controller in the system and inaccessible to a processor in the system. It is determined whether system data in a second non-volatile memory accessible by the processor is compromised. In response to determining that the system data in the second non-volatile memory is compromised, the compromised system data in the second non-volatile memory is repaired.
Description
BACKGROUND

A computing system can include code to perform various startup functions of the computing system. This code can include Basic Input/Output System (BIOS) code or other code.





BRIEF DESCRIPTION OF THE DRAWINGS

Some implementations are described with respect to the following figures:



FIG. 1 is a flow diagram of a system data integrity verification process, according to some implementations;



FIGS. 2 and 3 are block diagrams example computing systems that incorporate some implementations; and



FIG. 4 is a flow diagram of a management engine region verification process, according to some implementations.





DETAILED DESCRIPTION

Various types of system data can be stored in a non-volatile memory of a computing system. The system data is accessed during operation of the computing system to ensure correct operation of the computing system. The system data can be stored in various data structures in the non-volatile memory, and can relate to a configuration of at least one component of the computing system. For example, the system data can relate to a configuration of the computing system, or alternatively, the system data can relate to a configuration of an individual component or multiple components of the computing system.


Examples of computing systems include desktop computers, notebook computers, tablet computers, personal digital assistants (PDAs), smartphones, game appliances, server computers, storage nodes, network communication nodes, and so forth.


The system data in the non-volatile memory may be compromised due to unauthorized access and operations in the computing system, such as by malware. Additionally, the system data in the non-volatile memory may be compromised inadvertently. Once system data is compromised, correct operation of the computing system may not be possible.


Although mechanisms are provided to protect system code stored in the non-volatile memory from being compromised, mechanisms may not exist for protecting system data stored in the non-volatile memory. Examples of system code that can be stored in the non-volatile memory include system firmware, which is used to perform startup or resume operations of a computing system. System firmware is in the form of machine-readable instructions executable on a processor (or processors) of the computing system.


System firmware can include Basic Input/Output System (BIOS) code, which can initialize various components of the computing system, and load an operating system (OS) of the computing system. The BIOS code can perform checking of hardware components to ensure that the hardware components are present and functioning properly. This can be part of a power-on self-test (POST) procedure, for example. After the POST procedure, the BIOS code can progress through the remainder of a booting sequence, after which the BIOS code can load and pass control to the OS. BIOS code can include legacy BIOS code or Unified Extensible Firmware Interface (UEFI) code. In some examples, the BIOS code can include a runtime portion that is executed after the OS loads.


Examples of system data that can be stored in the non-volatile memory include at least some of the following. Although reference is made to specific examples of system data, it is noted that techniques or mechanisms according to some implementations can be applied to other types of system data.


The system data can include machine unique data, which can refer to any configuration data or settings that are unique to each particular computing system. Examples of machine unique data can include any or some combination of the following: product name, product model, stock-keeping unit (SKU) number (for identifying the respective computing system for sale), a serial number of the computing system, a system or commodity tracking number (for identifying a system board of the computing system), a system configuration identifier (for identifying a configuration of the computing system), warranty data (for describing a warranty associated with the computing system), a universally unique identifier (UUID), a default setting of BIOS code, a unique cryptographic identifier (e.g. a cryptographic key) for protecting and binding information to the computing system, and so forth. The foregoing is provided as examples of machine unique data; in other examples, other or additional types of machine unique data can be provided. The machine unique data can be stored in corresponding data structure in the non-volatile memory, such as a machine unique data (MUD) region of the non-volatile memory.


The system data can also include configuration data of a network controller of the computing system. The network controller can be used to communicate over a network according to a network protocol, such as an Ethernet protocol (e.g. Gigabit Ethernet protocol or other type of Ethernet protocol), or another type of protocol. In examples where the network protocol supported by the network controller is the Gigabit Ethernet (GbE) protocol, the configuration data of the network controller can include data in a GbE region of the non-volatile memory. The GbE region is a data structure containing configuration data (e.g. programmable settings) for the network controller that can be part of the computing system. The programmable settings are read by the network controller upon deassertion of a bus reset signal on a bus to which the network controller is connected.


In other examples, the system data can include data in a Descriptor region in the non-volatile memory. The Descriptor region is a data structure containing information that describes a layout of the non-volatile memory that stores system firmware, and configuration parameters for an input/output (I/O) controller, such as the Platform Controller Hub (PCH) from Intel Corporation, or another type of I/O controller. The PCH can include various functions, including a display interface to a graphics subsystem, a system bus interface to a system bus to which various I/O devices can be connected, and so forth. The I/O controller can read the data in the Descriptor region upon exit of the I/O controller from reset.


In accordance with some implementations, to perform verification of the integrity of system data in the non-volatile memory, a redundant copy of the system data can be provided. In some implementations, the system data used by the computing system is stored in a primary non-volatile memory. The redundant copy of the system data is stored in a secondary non-volatile memory. The redundant copy of the system data can be identical to the system data in the primary non-volatile memory, or be of a different version (earlier version or later version) of the system data in the primary non-volatile memory.



FIG. 1 is a flow diagram of a system data verification process according to some implementations. Some of the tasks of FIG. 1 can be performed by a controller, such as an embedded controller, that is separate from the processor(s) of the computing system that is (are) used to execute the system firmware. The embedded controller can be used to perform certain designated tasks, as discussed further below. Some of the tasks of FIG. 1 can also be performed by system firmware.


The process of FIG. 1 stores (at 102) a redundant copy of system data in the secondary non-volatile memory, where the system data relates to a configuration of at least one physical component of the computing system. For example, the system data can include the machine unique data, configuration data of a network controller, and Descriptor region data. The secondary non-volatile memory is accessible by the embedded controller, but inaccessible to the processor(s) in the computing system. The process can also store check value(s) in the secondary non-volatile memory, where the check value(s) can be a hash value, checksum, or other value computed based on the content of respective piece(s) of the system data.


The process of FIG. 1 determines (at 104) whether system data in the primary non-volatile memory that is accessible to the processor(s) is compromised, based on either the redundant copy of the system data or based on the check value(s) in the secondary non-volatile memory


In response to determining that the system data in the primary non-volatile memory is compromised, the embedded controller and/or system firmware can repair (at 106) the compromised system data in the primary non-volatile memory by using the redundant copy of system data in the secondary non-volatile memory.



FIG. 2 is a block diagram of an example computing system 200 that includes an embedded controller 202, a primary non-volatile memory 204, a processor 206, and a secondary non-volatile memory 216. The primary non-volatile memory 204 is a shared non-volatile memory that it is accessible by multiple entities, including the embedded controller 202 and at least one other entity (including the processor 206). The secondary non-volatile memory 216 is accessible by the embedded controller 202, but is inaccessible to the processor 206 or to other components in the computing system 200 (effectively, the secondary non-volatile memory 216 is electrically isolated from entities other than the embedded controller 202). Making the secondary non-volatile memory 216 inaccessible to the processor 206 and other components protects the content of the secondary non-volatile memory 216 from unauthorized tampering. The secondary non-volatile memory 216 can be accessible by the embedded controller 202 at all times.


Although not shown in FIG. 2, an input/output (I/O) controller may be provided between the processor 206 and the primary non-volatile memory 204.


The secondary non-volatile memory 216 can be physically separate from the primary non-volatile memory 204 (such as implemented in different physical memory devices). Alternatively, the secondary non-volatile memory 216 and the primary non-volatile memory 204 can physically reside on a common memory device, but the primary non-volatile memory 204 and the secondary non-volatile memory 216 are in different segments of the physical memory device, where the segment of the physical memory device that contains the secondary non-volatile memory 216 is accessible by only the embedded controller 202. In other words, the segment that contains the secondary non-volatile memory 216 is under exclusive control of the embedded controller 202, and this segment is locked from access by the processor 206 or another entity.


The primary non-volatile memory 204 is accessible over a shared bus 220 by the embedded controller 202 or by another entity. Note that the secondary non-volatile memory 216 is electrically isolated from the shared bus 220. In some implementations, just one entity can have access to the shared bus 220 at any given time, such that just one entity can access the primary non-volatile memory 204 at a time. In some examples, the shared bus 220 is a shared Serial Peripheral Interface (SPI) bus. An SPI bus is a synchronous serial data link in which devices on the SPI bus operate in a master-slave mode. In other examples, another type of shared bus 220 can be used. In alternative examples, an arbitration mechanism can be provided to allow for shared access of the bus 220 in various states of the computing system, including a low power state and a normal runtime state.


The primary non-volatile memory 204 can store system firmware 207, which can include BIOS code. The system firmware 207 can include EC firmware 208 that is for execution by the embedded controller 202, and a boot block 210 that is to be executed by the processor 206. Although reference is made to “EC firmware,” it is noted that techniques or mechanisms can be applied to other forms of the controller code that can be executed by the embedded controller 202. The embedded controller code includes machine-readable instructions executable on the embedded controller.


In examples according to FIG. 2, the EC firmware 208 is included in the boot block 210 of the system firmware 207. Including the EC firmware 208 inside the boot block 210 can provide an indication that the EC firmware 208 has been signed by the entity that provided the system firmware 207, which can be the vendor of the computing system 200, or another entity. In other examples, the EC firmware 208 can be separate from the boot block 210.


The boot block 210 is a part of the BIOS code, and is first executed when the computing system 200 starts up. The boot block 210 is executed first before the rest of the BIOS code is allowed to execute on the processor 206. The boot block 210 can be used to check the integrity of the BIOS code as well as to perform other initial functions. If the boot block 210 confirms the integrity of the BIOS code, then the boot block 210 can pass control to the main portion of the BIOS code for initiating the remaining operations associated with the BIOS code.


In some implementations, the boot block 210 can include core root of trust for measurement (CRTM) logic, which is logic specified by the Trusted Computing Group (TCG), an industry standard work group. During a power on procedure of the computing system 200, the CRTM logic can perform certain initialization tasks and can make a number of measurements that are stored for later use. The CRTM logic can then check the BIOS code before passing control to the main portion of the BIOS code. Once the BIOS code completes execution and passes control to the OS, the OS can verify the trustworthiness of the computing system 200 based on measurements taken by the CRTM logic.


The embedded controller 202 is physically separate from the processor 206 of the computing system 200. The processor 206 is used for executing the OS, application code, and other code in the system 200. The embedded controller 202, on the other hand, can be used to perform specific predefined tasks, as programmed into the EC firmware 208. Examples of tasks that can be performed by the embedded controller 202 include any one or some combination of the following: power supply control in the computing system 200 (for controlling a power supply that supplies power supply voltages to various components in the computing system 200), charging and control of a battery in the computing system 200, thermal monitoring to monitor a temperature in the computing system 200), fan control (to control a fan in the computing system 200), and interaction with a user input device (such as performing a scan of a keyboard of the computing system 200 or interaction with a pointing device such as a mouse, touchpad, touchscreen, and so forth). The embedded controller 202 can be implemented with a microcontroller, an application-specific integrated circuit (ASIC), a programmable gate array (PGA), or any other type of programmable circuit.


The secondary non-volatile memory 216 stores a redundant copy 214 of system firmware, where the system firmware redundant copy 214 includes a boot block 232 and an EC firmware 230. The system firmware redundant copy 214 in the secondary non-volatile memory 216 can be a duplicate of the system firmware 207 in the primary non-volatile memory 204. Alternatively, the system firmware redundant copy 214 may be a different version (later version or earlier version) than the system firmware 207.


In some implementations, the system firmware redundant copy 214 includes just the boot block 232, but does not include the main portion of the system firmware 207. In other implementations, the system firmware redundant copy 214 can include the entirety of the system firmware 207.


The primary non-volatile memory 204 also stores system data 240, such as the system data discussed further above. The system data 240 is accessible by the computing system 200 during system operation.


The embedded controller 202 can be instructed, such as by the system firmware 207 executing on the processor 206, to copy the system data 240 in the primary non-volatile memory 204 to the secondary non-volatile memory 216. Such copying creates the system data copy 242 in the secondary non-volatile memory 216. The instruction to perform the copying of the system data 240 from the primary non-volatile memory 204 to the secondary non-volatile memory 216 can be performed in a secure environment, such as during the manufacturing process of the computing system at a factory. Alternatively, the copying of the system data 240 from the primary non-volatile memory 204 to the secondary non-volatile memory 216 can be performed in another context, such as at a product service facility that is used to service products.


In some examples, upon saving the system data copy 242 to the secondary non-volatile memory 216, the embedded controller 202 can calculate hash, checksum, or other value (generally referred to as a “check value”) based on the content of the system data. This check value can be saved to the secondary non-volatile memory 216 and associated with the system data copy 242.


Note that a separate check value can be calculated for each type of system data 240 (e.g. machine unique data, GbE region data, Descriptor region data, etc.) copied to the secondary non-volatile memory 216. The check values associated with the various types of system data in the secondary non-volatile memory 216 can be used later to verify the integrity of the content of each respective type of system data in the primary non-volatile memory 204, to ensure that the content has not been compromised due to malware, a code bug, or other cause.


The check value associated with the machine unique data copy stored in the secondary non-volatile memory 216 can be used by the system firmware 207 executing on the processor 206 to verify the integrity of the machine unique data in the primary non-volatile memory 204. The system firmware 207 can calculate the check value based on the machine unique data in the primary non-volatile memory 204, and can compare the calculated check value with the check value stored in the non-volatile memory 216. If the check values match, then the system firmware 207 determines that the machine unique data in the primary non-volatile memory 204 is valid. On the other hand, if the check values do not match, then the system firmware 207 determines that the machine unique data has been compromise.


If the machine unique data in the primary non-volatile memory 204 is determined to be compromised, then the copy of the machine unique data in the secondary non-volatile memory 216 can be used to repair the compromised machine unique data, by replacing the compromised machine unique data with the copy of the machine unique data from the secondary non-volatile memory 216.


The verification of the GbE region data or Descriptor region data in the primary non-volatile memory 204 may be performed by the embedded controller 202, instead of by the system firmware 207. Similar with verifying the integrity of the machine unique data, the embedded controller 202 can compare a calculated check value to a stored check value in the secondary non-volatile memory 216 to determine whether or not the GbE region data or Descriptor region data has been compromised.


In other implementations, instead of using the check values stored in the secondary non-volatile memory 216, each specific piece of the system data 240 in the primary non-volatile memory 204 can be verified by comparing the respective piece of system data copy 242 in the secondary non-volatile memory 216. For example, the machine unique data, GbE region data, or Descriptor region data in the primary non-volatile memory 204 can be compared to the respective copy of the machine unique data, GbE region data, or Descriptor region data, to determine whether the respective piece of data has changed, which indicates that the respective piece of data has been compromised.


In further implementations, the system firmware 207 and/or embedded controller 202 is able to monitor writes to the system data 240 in the primary non-volatile memory 204. The system firmware 207 and/or embedded controller 202 can be notified of any such writes, such that the system firmware 207 and/or embedded controller 202 can perform the verification of the written system data 240 to protect against unauthorized updating of the system data 240.


As noted above, the system data copy 242 can be captured in the secondary non-volatile memory 216 in a secure environment, such as at a factory or repair facility. The system data copy 242 stored in the secondary non-volatile memory 216 can be treated as read-only to protect the system data copy 242 from compromise.


In alternative implementations, signatures can be associated with the system data 240 stored in the primary non-volatile memory 204. Such signatures can include digital signatures produced using asymmetric or symmetric cryptography. Alternatively, the signatures can be hash values computed based on the content of the system data 240. For example, a signature can be associated with each of the machine unique data, GbE region data, and Descriptor region data stored in the primary non-volatile memory 204. A signature can be based on an encryption of a hash, check, or other value computed based on the content of the respective piece of system data 240. The encryption can be performed using an encryption key (e.g. public key or private key). To verify the integrity of the respective piece of system data 240 and its source, the signature can be decrypted using an encryption key (e.g. private key or public key). The decrypted value can then be compared to a hash value to verify the integrity of the piece of the system data 240 and its source.


Associating signatures with each of the different pieces of system data 240 allows for a secure update mechanism outside of a factory or service environment. For example, in the event that an update of the machine unique data, GbE region data, or Descriptor region data in the primary non-volatile memory 204 is to be performed, the respective signature can be used to ensure that the update data is from a trusted source.


Also, the embedded controller 202 can authenticate the machine unique data, GbE region data, or Descriptor region data in the primary non-volatile memory 204, to use for updating the respective piece of the system data copy 242 in the secondary non-volatile memory 216, in the event that the corresponding piece of the system data copy 242 becomes compromised.


By also storing signatures with each piece of the system data copy 242 in the secondary non-volatile memory 216, the system data copy 242 can be protected from tampering, such as by malware or even by a physical attack in which the secondary non-volatile memory 216 is removed and reprogrammed with different content.


In further implementations, as further shown in FIG. 3, the primary non-volatile memory 204 can further store a Management Engine (ME) region 302, which is another data structure in the primary non-volatile memory 204. The ME region 302 includes code (e.g. firmware or other machine-readable instructions) of an ME 304, which is part of a chipset from Intel Corporation. The ME region 302 can also include data associated with the ME code. For example, the ME 304 can be included in an I/O controller 306 connected to the shared bus 220. The I/O controller 306 can include a PCH or another type of I/O controller. The ME 304 provides functionalities to allow for monitoring, maintenance, updating, upgrading, and repairing of a computing system, for example. Another example of such an entity includes a Platform Security Processor (PSP) from Advanced Micro Devices (AMD), Inc.


Traditionally, the ME region data 302 is not recoverable in the field in the event of a compromise. In accordance with some implementations, the ME 304 can monitor the content of the ME region 302. For example, a hash, check, or other value can be computed based on the content of the ME region 302, and compared to a pre-stored hash, check, or other value.


The secondary non-volatile memory 216 can store ME personality information 308, The ME personality information 308 provides an indication of which feature(s) of the ME 304 has (have) been enabled or disabled. The feature(s) of the ME 304 may have been enabled/disabled at the factory or at another site. The ME personality information 308 is based on the enabling/disabling of the feature(s) of the ME 304 set at the factory or at another site.



FIG. 4 shows a verification process relating to the ME region 302. If it is detected (at 402) that the ME region 302 is compromised, the ME 304 (or embedded controller 202) can inform (at 404) the system firmware 207 (executing on the processor 206) that the ME region 302 is compromised. In response, the system firmware 207 can send (at 406) a command to boot the computing system 200 with the ME region 302 unlocked. The Descriptor region in the primary non-volatile memory 204 can include access restrictions that specify that the ME region 302 is to be blocked from access by any machine-readable instructions executing on the processor 206. The command to boot the computing system 200 with the ME region 302 unlocked informs the I/O controller 306 to disregard the read/write restrictions in the Descriptor region pertaining to the ME region 302.


The computing system 200 is booted (at 408) with the ME region 302 unlocked. During the boot procedure, the system firmware 207 can repair (at 410) the ME region 302, by copying a recovery image from an external storage device or from the secondary non-volatile memory 216 to the primary non-volatile memory 204.


In addition, the system firmware 207 can request (at 412) that the embedded controller 202 copy ME personality information 308 stored in the secondary non-volatile memory 216 to the ME region 302 of the primary non-volatile memory 204. The ME personality information 308 provides an indication of which feature(s) of the ME 304 has (have) been enabled or disabled. The feature(s) of the ME 304 may have been enabled/disabled at the factory or at another site. Copying the ME personality information 308 to the ME region 302 in the primary non-volatile memory 204 causes the appropriate feature(s) of the ME 304 to be enabled or disabled.


In the foregoing process of FIG. 4, instead of performing various tasks using the system firmware 207, the embedded controller 202 can be used instead.


Machine-readable instructions of various modules, described above are loaded for execution on a processing circuit (e.g. embedded controller 102 or processor 106). A processing circuit can include a microprocessor, microcontroller, processor module or subsystem programmable integrated circuit, programmable gate array, or another control or computing device.


Data and instructions are stored in respective storage devices, which are implemented as one or multiple computer-readable or machine-readable storage media. The storage media include different forms of memory including semiconductor memory devices such as dynamic or static random access memories (DRAMs or SRAMs), erasable and programmable read-only memories (EPROMs), electrically erasable and programmable read-only memories (EEPROMs) and flash memories; magnetic disks such as fixed, floppy and removable disks: other magnetic media including tape: optical media such as compact disks (CDs) or digital video disks (DVDs); or other types of storage devices. Note that the instructions discussed above can be provided on one computer-readable or machine-readable storage medium, or alternatively, can be provided on multiple computer-readable or machine-readable storage media distributed in a large system having possibly plural nodes. Such computer-readable or machine-readable storage medium or media is (are) considered to be part of an article (or article of manufacture). An article or article of manufacture can refer to any manufactured single component or multiple components. The storage medium or media can be located either in the machine running the machine-readable instructions, or located at a remote site from which machine-readable instructions can be downloaded over a network for execution.


In the foregoing description, numerous details are set forth to provide an understanding of the subject disclosed herein. However, implementations may be practiced without some or all of these details. Other implementations may include modifications and variations from the details discussed above. It is intended that the appended claims cover such modifications and variations.

Claims
  • 1. A method comprising: storing, in a first non-volatile memory, a redundant copy of system data that relates to a configuration of at least one physical component of a system, wherein the first non-volatile memory is accessible by a controller in the system and inaccessible to a processor in the system, wherein an operating system of the system is executable on the processor;determining whether system data in a second non-volatile memory accessible by the processor is compromised, wherein the system data in the second non-volatile memory includes data describing a layout of the second non-volatile memory; andin response to determining that the system data in the second non-volatile memory is compromised, repairing the compromised system data including the data describing the layout of the second non-volatile memory.
  • 2. The method of claim 1, wherein the system data in the second non-volatile memory further includes machine unique data.
  • 3. The method of claim 1, wherein the system data in the second non-volatile memory further includes data relating to a configuration of a network controller.
  • 4. The method of claim 1, further comprising: storing, in the first non-volatile memory, personality information relating to a management entity; andusing the personality information to recover from an error of machine-readable instructions of the management entity.
  • 5. The method of claim 4, further comprising: recovering the machine-readable instructions of the management entity using code from an external storage device or from the first non-volatile memory.
  • 6. The method of claim 1, further comprising: storing a signature associated with the system data in the second non-volatile memory.
  • 7. The method of claim 6, further comprising updating the redundant copy of system data using the system data in the second non-volatile memory, in response to verification of the system data in the second non-volatile memory using the signature.
  • 8. The method of claim 6, further comprising performing a secure update of the system data in the second non-volatile memory.
  • 9. The method of claim 1, wherein the processor is a hardware processor.
  • 10. A system comprising: a processor;an operating system executable on the processor;an embedded controller;a first non-volatile memory storing a redundant copy of system data relating to a configuration of at least one physical component in the system, wherein the first non-volatile memory is accessible by the embedded controller and inaccessible by the processor; anda second non-volatile memory storing the system data including data describing a layout of the second non-volatile memory, wherein the second non-volatile memory is accessible by the embedded controller and the processor,wherein the embedded controller is to detect compromise of a first portion of the system data in the second non-volatile memory using information stored in the first non-volatile memory, and to repair the compromised first portion of the system data including the data describing the layout of the second non-volatile memory.
  • 11. The system of claim 10, further comprising system boot code, wherein the system boot code is executable on the processor to detect compromise of a second portion of the system data in the second non-volatile memory using information stored in the first non-volatile memory, and to repair the compromised second portion of the system data in the second non-volatile memory.
  • 12. The system of claim 10, wherein the information used by the embedded controller to detect compromise of the first portion of the system data includes a check value computed based on content of the first portion of the system data.
  • 13. The system of claim 10, wherein the information used by the embedded controller to detect compromise of the first portion of the system data includes the redundant copy of the system data.
  • 14. The system of claim 10, wherein the processor is a hardware processor.
  • 15. An article comprising at least one non-transitory machine-readable storage medium storing instructions that upon execution cause a system to: store, in a first non-volatile memory, a redundant copy of system data that relates to a configuration of at least one physical component of a system, wherein the first non-volatile memory is accessible by a controller in the system and inaccessible to a processor in the system, wherein an operating system of the system is executable on the processor;determine, by the controller, whether a first portion of system data in a second non-volatile memory accessible by the processor is compromised, based on information stored in the first non-volatile memory, wherein the system data in the second non-volatile memory includes data describing a layout of the second non-volatile memory; andin response to determining that the first portion of the system data in the second non-volatile memory is compromised, repair, by the controller, the compromised first portion of the system data including the data describing the layout of the second non-volatile memory.
  • 16. The article of claim 15, wherein the repairing comprises repairing the compromised first portion of the system data by replacing the compromised first portion of the system data in the second non-volatile memory with the redundant copy of the first portion of the system data from the first non-volatile memory.
  • 17. The article of claim 15, wherein the processor is a hardware processor.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/037729 4/23/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/175865 10/30/2014 WO A
US Referenced Citations (108)
Number Name Date Kind
5269022 Shinjo Dec 1993 A
5327531 Bealkowski et al. Jul 1994 A
5432927 Grote Jul 1995 A
5469573 McGill, III Nov 1995 A
5564054 Bramnick Oct 1996 A
5713024 Halladay Jan 1998 A
5745669 Hugard Apr 1998 A
5822581 Christeson Oct 1998 A
5828888 Kozaki Oct 1998 A
5918047 Leavitt Jun 1999 A
5987605 Hill Nov 1999 A
6205527 Goshey Mar 2001 B1
6275930 Bonamico Aug 2001 B1
6539473 Hubacher Mar 2003 B1
6651188 Harding Nov 2003 B2
6934881 Gold Aug 2005 B2
7069445 Cheston Jun 2006 B2
7100087 Yang Aug 2006 B2
7136994 Zimmer Nov 2006 B2
7193895 Jin et al. Mar 2007 B2
7340595 Blinick Mar 2008 B2
7383431 Takamizawa Jun 2008 B2
7409539 Arnez Aug 2008 B2
7613872 Dayan Nov 2009 B2
7734945 Levidow Jun 2010 B1
7818622 Burks, III Oct 2010 B2
8006125 Meng Aug 2011 B1
8341386 Lee Dec 2012 B2
8392762 Aralakuppe Mar 2013 B2
8429391 Galbo Apr 2013 B2
8489922 Matthew Jul 2013 B2
9063836 Swanson Jun 2015 B2
9411688 Poolla Aug 2016 B1
9417967 Huang Aug 2016 B2
9542195 Astarabadi Jan 2017 B1
9575768 Kim Feb 2017 B1
9852298 Jeansonne Dec 2017 B2
20010008011 Oba Jul 2001 A1
20020002652 Takahashi Jan 2002 A1
20020078338 Lay Jun 2002 A1
20030126511 Yang Jul 2003 A1
20030221114 Hino Nov 2003 A1
20040025002 Cepulis Feb 2004 A1
20040030877 Frid Feb 2004 A1
20040133790 Hensley Jul 2004 A1
20040193862 Lin Sep 2004 A1
20040268079 Riedle et al. Dec 2004 A1
20050081090 Lin Apr 2005 A1
20050108564 Freeman May 2005 A1
20050190699 Smith Sep 2005 A1
20050251673 Bosley Nov 2005 A1
20050273588 Ong Dec 2005 A1
20060020844 Gibbons Jan 2006 A1
20060075395 Lee Apr 2006 A1
20060143431 Rothman Jun 2006 A1
20060161784 Hunter Jul 2006 A1
20060225067 Yang Oct 2006 A1
20060236198 Lintz, Jr. Oct 2006 A1
20070260866 Wang Nov 2007 A1
20080040596 Mai Feb 2008 A1
20080086631 Chow Apr 2008 A1
20080098381 Lin Apr 2008 A1
20080126782 Dayan May 2008 A1
20080141016 Chang Jun 2008 A1
20080155331 Rothman Jun 2008 A1
20080172558 Stakutis Jul 2008 A1
20080195750 Sadovsky Aug 2008 A1
20080209553 Lu Aug 2008 A1
20080289954 Lev Oct 2008 A1
20090063834 Huang Mar 2009 A1
20090089570 Andrianov Apr 2009 A1
20090100287 Chu Apr 2009 A1
20090158020 Chen et al. Jun 2009 A1
20090158024 Hung Jun 2009 A1
20090172639 Natu Jul 2009 A1
20090249113 Chou Oct 2009 A1
20090271602 Burks, III Oct 2009 A1
20090327684 Zimmer Dec 2009 A1
20100017589 Reed Jan 2010 A1
20100064127 Lee Mar 2010 A1
20100082960 Grobman Apr 2010 A1
20100100720 Wu Apr 2010 A1
20100235617 Chen Sep 2010 A1
20110066837 Lee Mar 2011 A1
20110087872 Shah Apr 2011 A1
20110093675 Lu Apr 2011 A1
20110093741 Liang Apr 2011 A1
20120011393 Roberts Jan 2012 A1
20120072710 Gupta Mar 2012 A1
20120072897 Selvam Mar 2012 A1
20120239920 Yang Sep 2012 A1
20120303944 Peng et al. Nov 2012 A1
20120324150 Moshayedi et al. Dec 2012 A1
20130159690 Tsukamoto Jun 2013 A1
20130232325 Jang Sep 2013 A1
20140115314 Huang Apr 2014 A1
20140237223 Chudgar Aug 2014 A1
20140281455 Kochar Sep 2014 A1
20140325203 Roche Oct 2014 A1
20150095632 Huang Apr 2015 A1
20150242656 Dasari Aug 2015 A1
20150301880 Allu Oct 2015 A1
20150324588 Locke Nov 2015 A1
20160055113 Hodge Feb 2016 A1
20160055338 Jeansonne Feb 2016 A1
20160063255 Jeansonne Mar 2016 A1
20160364570 Stern Dec 2016 A1
20170249002 Costa Aug 2017 A1
Foreign Referenced Citations (3)
Number Date Country
101038567 Jun 2011 KR
200842567 Nov 2008 TW
201007465 Feb 2010 TW
Non-Patent Literature Citations (16)
Entry
Hodge et al., International Application No. PCT/US13/37725 entitled Redundant System Boot Code in a Secondary Non-Volatile Memory filed Apr. 23, 2013 (25 pages).
Jeansonne et al., International Application No. PCT/US13/37724 entitled Recovering From Compromised System Boot Code filed Apr. 23, 2013 (29 pages).
Jeansonne et al., International Application No, PCT/US13/37727 entitled Configuring a System filed Apr. 23, 2013 (35 pages).
Jeansonne et al., International Appiication No. PCT/US13/37728 entitled Event Data Structure to Store Event Data filed Apr. 23, 2013 (36 pages).
Jeansonne et al., International Application No. PCT/US13/37733 entitled Retrieving System Boot Code From a Non-Volatile Memory filed Apr. 23, 2013 (26 pages).
Jeansonne el al., International Appiication No. PCT/US13/37735 entitled Verifying Controller Code and System Boot Code filed Apr. 23, 2013 (36 pages).
Yin, et al; “Verification-based Multi-backup Firmware Architecture, an Assurance of Trusted Boot Process for the Embedded Systems”, < : http://ieexplore.ieee.org/document/6120953/.
European Patent Office, Extended European Search Report for Appl. No. 13883286.0 dated Dec. 16, 2016 (16 pages).
U.S. Appl. No, 14/780,892, Non-Final Office Action dated Jun. 16, 2017, pp. 1-23 and attachments.
U.S. Appl. No, 14/780,967, Final Rejection dated Jun. 28, 2017, pp. 1-12 and attachments.
U.S. Appl. No. 14/780,967, Non-Final Office Action dated Oct. 14, 2017 pp. 1-10 and attachments.
U.S. Appl. No. 14/780,989, Non-Final Rejection dated May 10, 2017, pp. 1-8 and attachments.
U.S. Appl. No. 14/780,989, Notice of Allowance dated Sep. 13, 2017, pp. 1-3 and attachments.
U.S. Appl. No. 14/780,892, Final Rejection dated Dec. 21, 2017, pp. 1-17 and attachments.
U.S. Appl, No. 14/780,967, Final Rejection dated Sep. 29, 2017, pp. 1-10 and attachments.
U.S. Appl. No. 14/780,967, Notice of Allowance dated Nov. 17, 2017, pp. 1-4 and attachments.
Related Publications (1)
Number Date Country
20160055069 A1 Feb 2016 US