1. Technical Field
This invention relates to acoustics, and more particularly, to a system that enhances the quality of a conveyed voice signal.
2. Related Art
Communication devices may acquire, assimilate, and transfer voice signals. In some systems, the clarity of the voice signals depends on the quality of the communication system, communication medium, and the accompanying noise. When noise occurs near a source or a receiver, distortion may garble the signals and destroy information. In some instances, the noise masks the signals making them unrecognizable to a listener or a voice recognition system.
Noise originates from many sources. In a vehicle noise may be created by an engine or a movement of air or by tires moving across a road. Some noises are characterized by their short duration and repetition. The spectral shapes of these noises may be characterized by a gradual rise in signal intensity between a low and a mid frequency followed by a peak and a gradual tapering off at a higher frequency that is then repeated. Other repetitive transient noises have different spectral shapes. Although repetitive transient noises may have differing spectral shapes, each of these repetitive transient noises may mask speech. Therefore, there is a need for a system that detects and dampens repetitive transient noises.
A system improves the perceptual quality of a speech signal by dampening undesired repetitive transient noises. The system comprises a repetitive transient noise detector adapted to detect repetitive transient noise in a received signal that comprises a harmonic and a noise spectrum. A repetitive transient noise attenuator substantially removes or dampens repetitive transient noises from the received signal.
A method of dampening the repetitive transient noises comprises modeling characteristics of repetitive transient noises; detecting characteristics in a signal that correspond to the modeled characteristics of the repetitive transient noises; and substantially removing components of the repetitive transient noises from the signal that correspond to some or all of the modeled characteristics of the repetitive transient noises.
Other systems, methods, features, and advantages of the invention will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the invention, and be protected by the following claims.
The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.
A voice enhancement system improves the perceptual quality of a voice signal. The system analyzes aural signals to detect repetitive transient noises within a device or structure for transporting persons or things (e.g., a vehicle). These noises may occur naturally (e.g., wind passing across a surface) or may be man made (e.g., clicking sound of a turn signal, the swishing sounds of windshield wipers, etc.). When detected, the system substantially eliminates or dampens the repetitive transient noises. Repetitive transient noises may be attenuated in real-time, near real-time, or after a delay, such as a buffering delay (e.g., of about 300-500 ms). Some systems also dampen or substantially remove continuous noises, such as background noise, and/or noncontinuous noises that may be of short duration and of relatively high amplitude (e.g., such as an impulse noise). Some systems may also eliminate the “musical noise,” squeaks, squawks, clicks, drips, pops, tones, and other sound artifacts generated by some voice enhancement systems.
Some repetitive transient noises have temporal and frequency characteristics that may be analyzed or modeled. Some repetitive transient noise detectors 102 detect these noises by identifying attributes that are common to repetitive transient noises or by comparing the aural signals to modeled repetitive transient noises. When repetitive transient noises are detected, a noise attenuator 104 substantially removes or dampens the repetitive transient noises.
In
The repetitive transient noise detector 102 may separate the noise-like segments from the remaining signal in real-time, near real-time, or after a delay. The repetitive transient noise detector 102 may separate the periodic or near periodic (e.g., quasi-periodic) noise segments regardless of the amplitude or complexity of the received signal. When some repetitive transient noise detectors 102 detect a repetitive transient noise, the repetitive transient noise detectors 102 model the temporal and spectral characteristics of the detected repetitive transient noise. The repetitive transient noise detector 102 may retain the entire model of the repetitive transient noise, or may store selected attributes in an internal or remote memory. A plurality of repetitive transient noise models may create an average repetitive transient noise model, or a plurality of attributes may be combined to detect and/or remove the repetitive transient noise.
Some repetitive transient noise detectors 102 identify noise events that are likely to be repetitive transient noises based on their temporal and spectral structures. Using a weighted average, leaky integrator, or some other adaptive modeling technique, the repetitive transient noise detector 102 may estimate or measures the temporal spacing of repetitive transient noises. The frequency response may also be estimated or measured. In
When repetitive transient noises are identified, they may be substantially removed, attenuated, or dampened by the repetitive transient noise attenuator 104. Many methods may be used to substantially remove, attenuate, or dampen the repetitive transient noises. One method adds a repetitive transient noise model to an estimated or measured background noise signal. In the power spectrum, repetitive transient noise and continuous background noise measurements or estimates may be subtracted from a received signal. If a portion of the underlying speech signal is masked by a repetitive transient noise, a conventional or modified stepwise interpolator may reconstruct the missing portion of the signal. An inverse Fast Fourier Transform (FFT) may then convert the reconstructed signal to the time domain.
There are multiple aspects to modeling repetitive transient noises in some voice enhancement systems. A first aspect may model one or many sound events that comprise the repetitive transient noise, and a second aspect may model the temporal space between the two sound events comprising a repetitive transient noise. A correlation between the spectral and/or temporal shape of a received signal and the modeled shape or between attributes of the received signal spectrum and the modeled attributes may identify a sound event as a repetitive transient noise. When a sound event is identified as a potential repetitive transient noise the repetitive transient noise modeler 808 may look back to previously analyzed time windows or forward to later received time windows, or forward and backward within the same time window, to determine whether a corresponding component of a repetitive transient noise was or will be received. If a corresponding sound event within an appropriate characteristic is received within an appropriate period of time, the sound event may be identified as a repetitive transient noise.
Alternatively or additionally, the repetitive transient noise modeler 808 may determine a probability that the signal includes repetitive transient noise, and may identify sound events as repetitive transient noise when a high correlation is found or when a probability exceeds a threshold. The correlation and probability thresholds may depend on varying factors, including the presence of other noises or speech within a received signal. When the repetitive transient noise detector 102 detects a repetitive transient noise, the characteristics of the detected repetitive transient noise may be sent to the repetitive transient noise attenuator 104 that may substantially remove or dampen the repetitive transient noise.
As more windows of sound are processed, the repetitive transient noise detector 102 may derive average noise models for repetitive transient noises and the temporal spacing between them. A time-smoothed or weighted average may be used to model repetitive transient noise events and the continuous noise sensed or estimated for each frequency bin. The average model may be updated when repetitive transient noises are detected in the absence of speech. Fully bounding a repetitive transient noise when updating the average model may increase accurate detections. A leaky integrator or a weighted average may model the interval between repetitive transient noise events.
To minimize the “music noise,” squeaks, squawks, chirps, clicks, drips, pops, or other sound artifacts, an optional residual attenuator may condition the voice signal before it is converted to the time domain. The residual attenuator may be combined with the repetitive transient noise attenuator 104, combined with one or more other elements, or comprise a separate element.
A residual attenuator may track the power spectrum within a low frequency range (e.g., from about 0 Hz up to about 2 kHz). When a large increase in signal power is detected an improvement may be obtained by limiting or dampening the transmitted power in the low frequency range to a predetermined or calculated threshold. A calculated threshold may be substantially equal to, or based on, the average spectral power of that same low frequency range at an earlier period in time.
Further changes in voice quality may be achieved by pre-conditioning the input signal before it is processed by the repetitive transient noise detector 102. One pre-processing system may exploit the lag time caused by a signal arriving at different times at different detectors that are positioned apart from on another as shown in
Alternatively, repetitive transient noise detection may be performed on each of the channels coupled to the multiple detectors or microphones 902. A mixing of one or more channels may occur by switching between the outputs of the microphones 902. Alternatively or additionally, the controller 904 may include a comparator that detects the direction based on the differences in the amplitude of the signals or the time in which a signal is received from the microphones 902. Direction detection may be improved by positioning the microphones 902 in different directions.
Detected signals may be evaluated at frequencies above or below a predetermined threshold frequency through a high-pass or low pass filter, for example. The threshold frequency may be updated over time as the average repetitive transient noise model learns the frequencies of repetitive transient noises. When a vehicle is traveling at a higher speed, the threshold frequency for repetitive transient noise detection may be set relatively high, because the highest frequency of repetitive transient noises may increase with vehicle speed. Alternatively, controller 904 may combine the output signals of multiple microphones 902 at a specific frequency or frequency range through a weighting function.
B(f,i)>B(f)Ave+c Equation 1
Alternatively or additionally, the average background noise may be updated depending on the signal to noise ratio (SNR). An example closed algorithm is one which adapts a leaky integrator depending on the SNR:
B(f)Ave′=aB(f)Ave+(1−a)S Equation 2
where a is a function of the SNR and S is the instantaneous signal. In this example, the higher the SNR, the slower the average background noise is adapted.
To detect a sound event that may correspond to a repetitive transient noise, the repetitive transient noise detector 1008 may fit a function to a selected portion of the signal in the time-frequency domain. A correlation between a function and the signal envelope in the time domain over one or more frequency bands may identify a sound event corresponding to a repetitive transient noise event. The correlation threshold at which a portion of the signal is identified as a sound event potentially corresponding to a repetitive transient noise may depend on a desired clarity of a processed voice and the variations in width and sharpness of the repetitive transient noise. Alternatively or additionally, the system may determine a probability that the signal includes a repetitive transient noise, and may identify a repetitive transient noise when that probability exceeds a probability threshold. The correlation and probability thresholds may depend on various factors, including the presence of other noises or speech in the input signal. When the noise detector 1008 detects a repetitive transient noise, the characteristics of the detected repetitive transient noise may be provided to the repetitive transient noise attenuator 1012 through the optional signal discriminator 1010 for substantially removing or dampening the repetitive transient noise.
A signal discriminator 1010 may mark the voice and noise of the spectrum in real, near real or delayed time. Any method may be used to distinguish voice from noise. Spoken signals may be identified by one or more of the following attributes: the narrow widths of their bands or peaks; the broad resonances, which are known as formants and are created by the vocal tract shape of the person speaking; the rate at which certain characteristics change with time (e.g., a time-frequency model may be developed to identify spoken signals based on how they change with time); and when multiple detectors or microphones are used, the correlation, differences, or similarities of the output signals of the detectors or microphones.
At 1106, a continuous, ambient, and/or background noise estimate occurs. The background noise estimate may comprise an average of the acoustic power in each frequency bin. To prevent biased noise estimates at transients, the noise estimate process may be disabled during abnormal or unpredictable increases in power. The transient detection 1108 disables the background noise estimate when an instantaneous background noise exceeds an average background noise by more than a predetermined decibel level. At 1110 a repetitive transient noise may be detected when sound events consistent with a repetitive transient noise model are detected. The sound events may be identified by characteristics of their spectral shape or other attributes.
The detection of repetitive transient noises may be constrained in varying ways. For example, if a vowel or another harmonic structure is detected, the transient noise detection method may limit the transient noise correction to values less than or equal to average values. An alternate or additional method may allow the average repetitive transient noise model or attributes of the repetitive transient noise model, such as the spectral shape of the modeled sound events or the temporal spacing of the repetitive transient noises to be updated only during unvoiced speech segments. If a speech or speech mixed with noise segment is detected, the average repetitive transient noise model or attributes of the repetitive transient noise model may not be updated. If no speech is detected, the repetitive transient noise model may be updated through varying methods, such as through a weighted average or a leaky integrator.
If a repetitive transient noise is detected at 1110, a signal analysis may be performed at 1114 to discriminate or mark the spoken signal from the noise-like segments. Spoken signals may be identified by the narrow widths of their bands or peaks; the broad resonances, which are also known as formants and are created by the vocal tract shape of the person speaking; the rate at which certain characteristics change with time (e.g., a time-frequency model may be developed to identify spoken signals based on how they change with time); and when multiple detectors or microphones are used, the correlation, differences, or similarities of the output signals of the detectors or microphones.
To overcome the effects of repetitive transient noises, a repetitive noise is substantially removed or dampened from the noisy spectrum at 1116. One method adds a repetitive transient noise model to a monitored or modeled continuous noise. In the power spectrum, the modeled noise may then be substantially removed from the unmodified spectrum. If an underlying speech signal is masked by a repetitive transient noise, or masked by a continuous noise, a conventional or modified interpolation method may be used to reconstruct the speech signal at 1118. A time series synthesis may then be used to convert the signal power to the time domain at 1120. The result is a reconstructed speech signal from which the repetitive transient noise has been substantially removed or dampened. If no repetitive transient noise is detected at 1110, the signal may be converted directly into the time domain at 1120.
The method of
A “computer-readable medium,” “machine readable medium,” “propagated-signal” medium, and/or “signal-bearing medium” may comprise any means that contains, stores, communicates, propagates, or transports software for use by or in connection with an instruction executable system, apparatus, or device. The machine-readable medium may selectively be, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. A non-exhaustive list of examples of a machine-readable medium would include: an electrical connection “electronic” having one or more wires, a portable magnetic or optical disk, a volatile memory such as a Random Access Memory “RAM” (electronic), a Read-Only Memory “ROM” (electronic), an Erasable Programmable Read-Only Memory (EPROM or Flash memory) (electronic), or an optical fiber (optical). A machine-readable medium may also include a tangible medium upon which software is printed, as the software may be electronically stored as an image or in another format (e.g., through an optical scan), then compiled, and/or interpreted or otherwise processed. The processed medium may then be stored in a computer and/or machine memory.
The above-described systems may condition signals received from only one or more than one microphone or detector. Many combinations of systems may be used to identify and track repetitive transient noises. Besides the fitting of a function to a sound suspected of being part of a repetitive transient noise, a system may detect and isolate any parts of a signal having energy greater than the modeled events. One or more of the systems described above may also interface or may be a unitary part of alternative voice enhancement logic.
Other alternative voice enhancement systems comprise combinations of the structure and functions described above. These voice enhancement systems are formed from any combination of structure and function described above or illustrated within the figures. The system may be implemented in software or hardware. The hardware may include a processor or a controller having volatile and/or non-volatile memory and may also comprise interfaces to peripheral devices through wireless and/or hardwire mediums.
The voice enhancement system is easily adaptable to any technology or devices. Some voice enhancement systems or components interface or couple vehicles as shown in
The voice enhancement system improves the perceptual quality of a processed voice. The software and/or hardware logic may automatically learn and encode the shape and form of the noise associated with repetitive transient noise in real time, near real time or after a delay. By tracking selected attributes, the system may eliminate, substantially eliminate, or dampen repetitive transient noise using a limited memory that temporarily or permanently stores selected attributes of the repetitive transient noise. Some voice enhancement system may also dampen a continuous noise and/or the squeaks, squawks, chirps, clicks, drips, pops, tones, or other sound artifacts that may be generated within some voice enhancement systems and may reconstruct voice when needed.
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
This application is a continuation-in-part of U.S. application Ser. No. 11/252,160 “Minimization of Transient Noises in a Voice Signal,” filed Oct. 17, 2005, which is a continuation-in-part of U.S. application Ser. No. 11/006,935 “System for Suppressing Rain Noise,” filed Dec. 8, 2004, which is a continuation-in-part of U.S. application Ser. No. 10/688,802 “System for Suppressing Wind Noise,” filed Oct. 16, 2003, which is a continuation-in-part of U.S. application Ser. No. 10/410,736, “Method and Apparatus for Suppressing Wind Noise,” filed Apr. 10, 2003, which claims priority to U.S. Application No. 60/449,511, “Method for Suppressing Wind Noise” filed on Feb. 21, 2003, each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4486900 | Cox et al. | Dec 1984 | A |
4531228 | Noso et al. | Jul 1985 | A |
4630304 | Borth et al. | Dec 1986 | A |
4630305 | Borth et al. | Dec 1986 | A |
4811404 | Vilmur et al. | Mar 1989 | A |
4843562 | Kenyon et al. | Jun 1989 | A |
4845466 | Hariton et al. | Jul 1989 | A |
5012519 | Adlersberg et al. | Apr 1991 | A |
5027410 | Williamson et al. | Jun 1991 | A |
5056150 | Yu et al. | Oct 1991 | A |
5146539 | Doddington et al. | Sep 1992 | A |
5251263 | Andrea et al. | Oct 1993 | A |
5313555 | Kamiya | May 1994 | A |
5400409 | Linhard | Mar 1995 | A |
5426703 | Hamabe et al. | Jun 1995 | A |
5426704 | Tamamura et al. | Jun 1995 | A |
5442712 | Kawamura et al. | Aug 1995 | A |
5479517 | Linhard | Dec 1995 | A |
5485522 | Solve et al. | Jan 1996 | A |
5495415 | Ribbens et al. | Feb 1996 | A |
5499189 | Seitz | Mar 1996 | A |
5502688 | Recchione et al. | Mar 1996 | A |
5526466 | Takizawa | Jun 1996 | A |
5550924 | Helf et al. | Aug 1996 | A |
5568559 | Makino | Oct 1996 | A |
5584295 | Muller et al. | Dec 1996 | A |
5586028 | Sekine et al. | Dec 1996 | A |
5617508 | Reaves | Apr 1997 | A |
5651071 | Lindemann et al. | Jul 1997 | A |
5677987 | Seki et al. | Oct 1997 | A |
5680508 | Liu | Oct 1997 | A |
5692104 | Chow et al. | Nov 1997 | A |
5701344 | Wakui | Dec 1997 | A |
5727072 | Raman | Mar 1998 | A |
5752226 | Chan et al. | May 1998 | A |
5757937 | Itoh et al. | May 1998 | A |
5809152 | Nakamura et al. | Sep 1998 | A |
5839101 | Vahatalo et al. | Nov 1998 | A |
5859420 | Borza | Jan 1999 | A |
5878389 | Hermansky et al. | Mar 1999 | A |
5920834 | Sih et al. | Jul 1999 | A |
5933495 | Oh | Aug 1999 | A |
5933801 | Fink et al. | Aug 1999 | A |
5949888 | Gupta et al. | Sep 1999 | A |
5950154 | Medaugh et al. | Sep 1999 | A |
5982901 | Kane et al. | Nov 1999 | A |
6011853 | Koski et al. | Jan 2000 | A |
6108610 | Winn | Aug 2000 | A |
6122384 | Mauro | Sep 2000 | A |
6130949 | Aoki et al. | Oct 2000 | A |
6163608 | Romesburg et al. | Dec 2000 | A |
6167375 | Miseki et al. | Dec 2000 | A |
6173074 | Russo | Jan 2001 | B1 |
6175602 | Gustafsson et al. | Jan 2001 | B1 |
6192134 | White et al. | Feb 2001 | B1 |
6199035 | Lakaniemi et al. | Mar 2001 | B1 |
6208268 | Scarzello et al. | Mar 2001 | B1 |
6230123 | Mekuria et al. | May 2001 | B1 |
6252969 | Ando | Jun 2001 | B1 |
6289309 | deVries | Sep 2001 | B1 |
6405168 | Bayya et al. | Jun 2002 | B1 |
6415253 | Johnson | Jul 2002 | B1 |
6434246 | Kates et al. | Aug 2002 | B1 |
6453285 | Anderson et al. | Sep 2002 | B1 |
6507814 | Gao | Jan 2003 | B1 |
6510408 | Hermansen | Jan 2003 | B1 |
6587816 | Chazan et al. | Jul 2003 | B1 |
6615170 | Liu et al. | Sep 2003 | B1 |
6643619 | Linhard et al. | Nov 2003 | B1 |
6647365 | Faller | Nov 2003 | B1 |
6687669 | Schrögmeier et al. | Feb 2004 | B1 |
6711536 | Rees | Mar 2004 | B2 |
6741873 | Doran et al. | May 2004 | B1 |
6766292 | Chandran et al. | Jul 2004 | B1 |
6768979 | Menendez-Pidal et al. | Jul 2004 | B1 |
6782363 | Lee et al. | Aug 2004 | B2 |
6822507 | Buchele | Nov 2004 | B2 |
6859420 | Coney et al. | Feb 2005 | B1 |
6882736 | Dickel et al. | Apr 2005 | B2 |
6910011 | Zakarauskas | Jun 2005 | B1 |
6937980 | Krasny et al. | Aug 2005 | B2 |
6959276 | Droppo et al. | Oct 2005 | B2 |
7043030 | Furuta | May 2006 | B1 |
7047047 | Acero et al. | May 2006 | B2 |
7062049 | Inoue et al. | Jun 2006 | B1 |
7072831 | Etter | Jul 2006 | B1 |
7092877 | Ribic | Aug 2006 | B2 |
7117145 | Venkatesh et al. | Oct 2006 | B1 |
7117149 | Zakarauskas | Oct 2006 | B1 |
7158932 | Furuta | Jan 2007 | B1 |
7165027 | Kellner et al. | Jan 2007 | B2 |
7313518 | Scalart et al. | Dec 2007 | B2 |
7373296 | Van Der Par et al. | May 2008 | B2 |
7386217 | Zhang | Jun 2008 | B2 |
20010028713 | Walker | Oct 2001 | A1 |
20020037088 | Dickel et al. | Mar 2002 | A1 |
20020071573 | Finn | Jun 2002 | A1 |
20020094100 | Kates et al. | Jul 2002 | A1 |
20020094101 | De Roo et al. | Jul 2002 | A1 |
20020176589 | Buck et al. | Nov 2002 | A1 |
20030040908 | Yang et al. | Feb 2003 | A1 |
20030147538 | Elko | Aug 2003 | A1 |
20030151454 | Buchele | Aug 2003 | A1 |
20030216907 | Thomas | Nov 2003 | A1 |
20040078200 | Alves | Apr 2004 | A1 |
20040093181 | Lee | May 2004 | A1 |
20040138882 | Miyazawa | Jul 2004 | A1 |
20040161120 | Petersen et al. | Aug 2004 | A1 |
20040165736 | Hetherington et al. | Aug 2004 | A1 |
20040167777 | Hetherington et al. | Aug 2004 | A1 |
20050114128 | Hetherington et al. | May 2005 | A1 |
20050238283 | Faure et al. | Oct 2005 | A1 |
20050240401 | Ebenezer | Oct 2005 | A1 |
20060034447 | Alves et al. | Feb 2006 | A1 |
20060074646 | Alves et al. | Apr 2006 | A1 |
20060100868 | Hetherington et al. | May 2006 | A1 |
20060115095 | Glesbrecht et al. | Jun 2006 | A1 |
20060136199 | Nongpiur et al. | Jun 2006 | A1 |
20060251268 | Hetherington et al. | Nov 2006 | A1 |
20060287859 | Hetherington et al. | Dec 2006 | A1 |
20070019835 | Ivo de Roo et al. | Jan 2007 | A1 |
20070033031 | Zakarauskas | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
2158847 | Sep 1994 | CA |
2157496 | Oct 1994 | CA |
2158064 | Oct 1994 | CA |
1325222 | Dec 2001 | CN |
0 076 687 | Apr 1983 | EP |
0 629 996 | Dec 1994 | EP |
0 629 996 | Dec 1994 | EP |
0 750 291 | Dec 1996 | EP |
1 450 353 | Aug 2004 | EP |
1 450 354 | Aug 2004 | EP |
1 669 983 | Jun 2006 | EP |
64-039195 | Feb 1989 | JP |
06269084 | Sep 1994 | JP |
6 282 297 | Oct 1994 | JP |
06-319193 | Nov 1994 | JP |
06319193 | Nov 1994 | JP |
6 349 208 | Dec 1994 | JP |
2001-215992 | Aug 2001 | JP |
WO 00-41169 | Jul 2000 | WO |
WO 0156255 | Aug 2001 | WO |
WO 01-73761 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060116873 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
60449511 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11252160 | Oct 2005 | US |
Child | 11331806 | US | |
Parent | 11006935 | Dec 2004 | US |
Child | 11252160 | US | |
Parent | 10688802 | Oct 2003 | US |
Child | 11006935 | US | |
Parent | 10410736 | Apr 2003 | US |
Child | 10688802 | US |