Exemplary embodiments of the invention relate to a blade fold assembly for a rotary wing aircraft, and more particularly, to an actuator pin movable between an extended and a retracted position during operation of a blade fold system.
The flight capabilities of rotary-wing aircrafts make them effective for a wide variety of missions; however, operation of rotary-wing aircraft in certain environments may be limited by the overall structural envelopes thereof. The radial dimensions of a rotary-wing aircraft main rotor assembly results in a rotary-wing aircraft having relatively large structural envelopes which may impact its utility in some environments. For example, space on a ship or vessel is generally at a premium and the structural envelope of a rotary wing aircraft may require a significant allocation of such limited space. Furthermore, strategic and tactical considerations in the military utilization of rotary-wing aircrafts has led to a requirement for rotary-wing aircrafts having main rotor assemblies that may be readily reconfigured for rapid deployment, routine transport, and/or stowage by reducing the structural envelope.
One way to reduce the structural envelope of rotary-wing aircraft to facilitate rapid deployment, routine transport, stowage, and reduce the vulnerability thereof to environmental conditions is to design the main rotor assembly so that the main rotor blades fold relative to the main rotor hub. Typically a portion of the rotor blade is pivotally mounted to an adjacent rotor hub with one or more pins for example. The high contact loads applied to the pin when the pin retains the rotor blade in an extended position may cause damage during use. For example, offsets between the bushings through which the pin extends cause high frictional loads that wear the material as well as gall and gouge the pin.
According to one embodiment of the invention, a pin of a hinge system movable between a first position and a second position is provided, wherein in the first position, the pin is received within a first component and a second component. The pin includes a cylindrical body coupled to an actuator for movement along an axis between the first position and the second position. A tip is removably attached to an end of the cylindrical body. The tip is configured to contact at least one of the first component and the second component when the pin is in the first position.
In addition to one or more of the features described above, or as an alternative, in further embodiments the actuator is a linear actuator having a piston arranged coaxially with the pin.
In addition to one or more of the features described above, or as an alternative, in further embodiments the actuator is a rotary actuator.
In addition to one or more of the features described above, or as an alternative, in further embodiments the first end of the cylindrical body is connected to the actuator.
In addition to one or more of the features described above, or as an alternative, in further embodiments the tip is formed from a sacrificial metallic material.
In addition to one or more of the features described above, or as an alternative, in further embodiments the tip is threadably attached to the cylindrical body.
In addition to one or more of the features described above, or as an alternative, in further embodiments the tip is configured to receive and couple to a post extending from the end of the cylindrical body.
According to one embodiment of the invention, a hinge assembly is provided including a first component and a second component. The second component is coupled to and movable relative to the first component about a hinge axis between a first position and a second position. A hinge system is configured to selectively couple and decouple the first component and the second component. The hinge system includes an actuator and a pin having a cylindrical body coupled to the actuator for movement along an axis between an extended position and a retracted position. When the pin is in the extended position, the first and second component are coupled, and when the pin is in the retracted position, the second component is decoupled from the first component. A tip is removably attached to an end of the cylindrical body. The tip is configured to contact at least one of the first component and the second component when the pin is in the extended position.
In addition to one or more of the features described above, or as an alternative, in further embodiments the actuator is a linear actuator having a piston arranged coaxially with the pin
In addition to one or more of the features described above, or as an alternative, in further embodiments the actuator is a rotary actuator.
In addition to one or more of the features described above, or as an alternative, in further embodiments the tip is formed from a sacrificial metallic material.
In addition to one or more of the features described above, or as an alternative, in further embodiments the tip is threadably attached to the cylindrical body.
In addition to one or more of the features described above, or as an alternative, in further embodiments the tip is configured to receive and couple to a post extending from the end of the cylindrical body.
In addition to one or more of the features described above, or as an alternative, in further embodiments the hinge assembly includes a blade fold system such that the first component is a sleeve and the second component is a blade cuff.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Referring now to
As illustrated in
An example of a rotor blade fold system 44 for a rotor blade assembly 24 is illustrated in more detail. The illustrated, non-limiting blade fold system 44 generally includes the blade lock assembly 42, the actuator 32, a retractable blade retaining pin 46, and a blade fold controller (illustrated schematically at C) to selectively position each rotor blade assembly 24 in a particular folded position to minimize the envelope of the aircraft for stowage (
The blade lock assembly 42 is mounted to the rotor hub 26 and selectively engages the yoke 36. The blade lock assembly 42 positions each blade assembly 24 in its blade fold position which includes positioning each yoke 36 in a predetermined lead/lag and pitch position and a predetermined rotor blade fold angle. Once the pitch lock assembly 42 engages the yoke 36, the blade retaining pin 46 is moved to a retracted position and the actuator 32 rotates each rotor blade 28 about the hinge assembly 30 to a predetermined blade fold angle.
With reference now to
A tip 60 is arranged at a second, opposite end 58 of the cylindrical body 52. As shown, the tip 60 has a generally frustoconical shape; however, tips 60 having other shapes, such as a conical or semispherical shapes for example, are within the scope of the invention. The tip 60 is generally formed as a sacrificial part of the pin 50, and therefore may be formed from any number of materials, including, but not limited to, beryllium copper, nickel aluminum bronze, ToughMet®, or other suitable metallic materials.
The tip 60 of the pin 50 may be removably attached to the pin body 52, as shown in
Because a portion of the pin 50 is connected to an adjacent actuator 56, the pin 50 is movable between a first, extended position (
The pin 50 is movable to selectively couple and decouple two or more adjacent components of the rotor blade assembly 24. In one embodiment, the pin 50 is configured to couple a blade cuff 39 (
When the pin 50 is extended, the tip 60 of the pin 50 is at least partially in contact with a surface of one of the plurality of openings, such as the third opening 68 for example. As a result, the tip 60 is configured to experience significant contact pressure. For example, when the openings 64, 66, 68 of the adjacent components are slightly misaligned, the frictional forces applied to the pin 50 significantly increase. By adequately designing the contour of the tip 60, the galling and gouging caused by the high friction loads may be directed towards the tip 60, such that only the tip 60, and not the pin 50 and actuator 56, need replacing.
Inclusion of a pin 50 having a removable tip 60 in a blade fold system 42 reduces the overall maintenance required for an aircraft 10 by limiting the area where damage occurs to the easily replaceable tip 60 of the pin 50. In addition, the remainder of the blade fold system have improved durability, by reducing the galling and wear that may occur between the extended pin 50 and the components through which the pin 50 extends.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This application is a divisional application of U.S. application Ser. No. 15/549,038, filed Aug. 4, 2017, which is a National Stage application of PCT/US2015/065160, filed Dec. 11, 2015, which claims the benefit of U.S. Provisional Application No.: 62/116,024, filed Feb. 13, 2015, all of which are incorporated by reference in their entirety herein.
This invention was made with Government support under Contract No. N00019-06-C-0081 with the United States Navy. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62116024 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15549038 | Aug 2017 | US |
Child | 16272766 | US |