Not Applicable
Not Applicable
The present invention is generally directed to medical devices, systems, and methods, particularly for cooling-induced remodeling of tissues. Embodiments of the invention include devices, systems, and methods for applying cryogenic cooling to dermatological tissues so as to selectively remodel one or more target tissues along and/or below an exposed surface of the skin. Embodiments may be employed for a variety of cosmetic conditions, optionally by inhibiting undesirable and/or unsightly effects on the skin (such as lines, wrinkles, or cellulite dimples) or on other surrounding tissue. Other embodiments may find use for a wide range of medical indications. The remodeling of the target tissue may achieve a desired change in its behavior or composition.
The desire to reshape various features of the human body to either correct a deformity or merely to enhance one's appearance is common. This is evidenced by the growing volume of cosmetic surgery procedures that are performed annually.
Many procedures are intended to change the surface appearance of the skin by reducing lines and wrinkles Some of these procedures involve injecting fillers or stimulating collagen production. More recently, pharmacologically based therapies for wrinkle alleviation and other cosmetic applications have gained in popularity.
Botulinum toxin type A (BOTOX®) is an example of a pharmacologically based therapy used for cosmetic applications. It is typically injected into the facial muscles to block muscle contraction, resulting in temporary enervation or paralysis of the muscle. Once the muscle is disabled, the movement contributing to the formation of the undesirable wrinkle is temporarily eliminated. Another example of pharmaceutical cosmetic treatment is mesotherapy, where a cocktail of homeopathic medication, vitamins, and/or drugs approved for other indications is injected into the skin to deliver healing or corrective treatment to a specific area of the body. Various cocktails are intended to effect body sculpting and cellulite reduction by dissolving adipose tissue, or skin resurfacing via collagen enhancement. Development of non-pharmacologically based cosmetic treatments also continues. For example, endermology is a mechanical based therapy that utilizes vacuum suction to stretch or loosen fibrous connective tissues which are implicated in the dimpled appearance of cellulite.
While BOTOX® and/or mesotherapies may temporarily reduce lines and wrinkles, reduce fat, or provide other cosmetic benefits they are not without their drawbacks, particularly the dangers associated with injection of a known toxic substance into a patient, the potential dangers of injecting unknown and/or untested cocktails, and the like. Additionally, while the effects of endermology are not known to be potentially dangerous, they are brief and only mildly effective.
In light of the above, it would be desirable to provide improved medical devices, systems, and methods, particularly for treatment of wrinkles, fat, cellulite, and other cosmetic defects. It would be particularly desirable if these new techniques provided an alternative visual appearance improvement mechanism which could replace and/or compliment known bioactive and other cosmetic therapies, ideally allowing patients to decrease or eliminate the injection of toxins and harmful cocktails while providing similar or improved cosmetic results. It would also be desirable if such techniques were performed percutaneously using only local or no anesthetic with minimal or no cutting of the skin, no need for suturing or other closure methods, no extensive bandaging, and limited or no bruising or other factors contributing to extended recovery or patient “down time”. It would further be desirable to provide new devices, systems, and methods for treatment of other cosmetic and/or dermatological conditions (and potentially other target tissues), particularly where the treatments may be provided with greater accuracy and control, less collateral tissue injury and/or pain, and greater ease of use.
The present invention generally provides improved medical devices, systems, and methods. Embodiments may be particularly well suited for the treatment of dermatological and/or cosmetic defects, and alternative embodiments may be configured for treatment of a wide range of target tissues. Some embodiments of the present invention apply cooling with at least one small, tissue-penetrating probe, the probe often comprising a needle having a size suitable for inserting through an exposed surface of the skin of a patient without leaving a visible scar. The cooling may remodel one or more target tissue so as to effect a desired change in a composition of the target tissue and/or a change in its behavior. Unlike the large format cryogenic cooling systems of the past, small cryogenic cooling needle probes may dull or be damaged by insertion. Exemplary embodiments make use of replaceable needle probes supported by a probe body handle, with small needle probes often being replaced during treatment of a single patient. Careful control over the cryogenic cooling fluid introduced into a needle probe can allow the length of the active cooling to be controlled through depletion of evaporating cryogenic cooling liquid. Hence, even needles having similar external structures may provide differing lengths of effective remodeling along the needle axis. Surprisingly, small cryogenic cooling needles and/or other cryogenic cooling probes having a lubricious coating will allow safe removal of the probe from the treatment region while at a least a portion of the tissue remains frozen, significantly decreasing the overall time for a procedure involving many insertion/freeze/removal cycles.
In a first aspect, the invention provides a method for treating tissue of a patient. The method comprises inserting a first needle through a first insertion point and into a first target region of the tissue by manipulating handle. The handle supports the first needle via a needle interface. The first target region is cooled with the first needle and the first needle is removed from the patient. The first needle is replaced in the needle interface with a second needle. The second needle is inserted through the second insertion point and into a second target region of the tissue by manipulating the handle. The second target region is cooled with the second needle.
The second needle may optionally have size and/or cooling characteristics which are similar to those of the first needle. Such needle replacement may be particularly useful when using small needles that can become dull after a limited number of insertions into the patient. In other embodiments, the second needle may have size and/or cooling characteristics that differ from those of the first needle, such as having a different length, needle gauge size or diameter, active cooling length, or the like. In some embodiments, the first needle may be included in a first needle assembly that has only a single needle, while the second needle is included in a needle assembly having a plurality of needles. The needles of the second needle assembly may be simultaneously inserted into the target tissue, with the needles often being substantially parallel. A cooling fluid supply tube (and its associated lumen) may extend from a common cooling fluid supply of the needle interface, and cooling fluid vaporization lumens of each needle may flow to a common pressure-regulated exhaust path, also often via the needle interface. In many embodiments, cooling with the plurality of needles of the second needle assembly may be performed so that the cooled tissues are remodeled throughout a contiguous treatment zone. In other embodiments, the needle spacing and the like may result in a plurality of discrete remodeled zones.
Typically, the first and second needles will each have a sharpened distal tip and a 20-gauge needle size or less. The needles may be disposed of after use to avoid inserting a dull needle into the patient, with the needles optionally being inserted a single time, or alternatively being inserted a plurality of times (often less than ten times, and in many cases, less than five times) through the patient's skin. The handle of the system may be included in a probe body, and a fluid supply cartridge and battery may be supported and/or housed by the probe body. The probe body may be disposed of so that one or all of these components are used to treat only a single patient. Such a structure also helps avoid any requirement for a tether, power port, flexible supply line, or the like, which might otherwise inhibit manipulation and use of the hand-held probe. Cooling will often be terminated by closing a cooling fluid shutoff valve disposed along a cooling fluid supply path between a cooling fluid source and the lumen. As cooling may be performed by evaporating liquid cooling fluid within a lumen of the needle, a volume of the supply path between the valve and the lumen will preferably be quite low (typically being less than 0.05 cubic inches, optionally being less than 0.005 cubic inches) so as to allow more accurate control of the treatment time. The supply path between the valve and the needle lumen is preferably vented when the valve is closed so as to avoid continuing cooling by any residual cryogenic liquid within that volume.
In another aspect, the invention provides a method for treating a target tissue of a patient. The method comprises inserting a cooling probe distally through a collateral tissue and into the target tissue. The cooling probe has a lumen with a distal portion adjacent the target tissue and a proximal portion adjacent the collateral tissue. Cooling fluid is introduced into the distal portion of the lumen, and evaporation of liquid from the cooling fluid into gas occurs as the cooling fluid flows proximally within the distal portion of the lumen. This evaporation occurs so that the evaporation cools the target tissue sufficiently for the desired remodeling treatment. Additionally, the evaporation occurs so that the liquid is depleted from the cooling fluid sufficiently when the gas passes through the proximal portion of the lumen to inhibit cooling of the collateral tissue.
The target tissue along the distal portion of the lumen can be cooled to a treatment temperature which is in a first temperature range. The collateral tissue along the proximal portion of the lumen will typically be cooled to a collateral tissue temperature in a second temperature range that is warmer than the first temperature range. Note that the differential in cooling effects between the distal and proximal lumen portions may occur despite the structure of the needle having a substantially uniform and/or consistent cross-section along the proximal and distal portions. Advantageously, a length of the distal, tissue remodeling portion may be selected from among a plurality of alternative lengths by selecting the probe for mounting to a probe body. Alternative probes may include differing cooling fluid supply paths so as to introduce differing cooling fluid supply flows with corresponding differing liquid depletion characteristics. More specifically, using otherwise similar probe structures having differing cooling fluid supply tubes with differing inner diameters and/or differing lengths may effectively vary the axial length of tissue that is remodeled, particularly where a significant portion of the metering of the cooling fluid flow is effected by the flow resistance of the cooling fluid supply lumen. Advantageously, the treatment temperatures along the distal portion may remain substantially uniform so long as there continues to be a sufficient mixture of cooling liquid and evaporated gas in the cooling fluid flow. As the cooling fluid liquid is depleted from that flow, temperatures of the flow may increase and/or the heat transfer from the surrounding probe structure (and tissue) may significantly decrease, with the change in cooling during a relatively short and predictable axial length of the probe.
In another aspect, the invention provides a method for remodeling a target tissue of a patient. The method comprises inserting a cooling probe distally into the target tissue. The target tissue is cooled sufficiently to freeze a region of the target tissue. The cooling probe is removed from the target tissue while the region remains frozen.
In many embodiments, the cooling probe may be removed less than 15 seconds after the termination of cooling, with the probe typically being removed less than 10 seconds after the cooling (or even less than 5 seconds after the cooling). Such counterintuitive removal of a cryogenic cooling probe from a still-frozen treatment region may be safely performed, for example, where the cooling is effected using a cooling probe having a cross-sectional size of a 20-gauge needle or less, the needle often being 25 gauge or less, and ideally being 30 gauge. A melted zone may be relatively quickly formed between such a probe and the surrounding frozen tissue to facilitate safe removal of the probe, despite the region remaining frozen. Hence, not all of the initially-frozen tissue may remain frozen during removal, although the majority of the tissue that has been frozen may remain frozen in many embodiments.
Many embodiments of the present invention may facilitate removal of a cryogenic treatment probe from a still-frozen tissue region by cooling the target tissue through a lubricious coating of the probe. Although the lubricious coating will often have a thermal conductivity which is significantly lower than that of the underlying probe material (the probe material typically comprising stainless steel hypotube or the like for small needle probes), the total thermal transfer from the target tissue can be facilitated by using a lubricious coating having a thickness which is significantly less than that of the probe material. Additionally, the internal temperature of a cryogenic fluid vaporization chamber or lumen may be selected to generate the desired cooling characteristics despite the thermal insulation of the lubricious coating. Nonetheless, overall treatment times will be significantly shorter, particularly where a large number of insertion/cooling/removal cycles are employed, and/or where the total cooling time is relatively short compared to the time for a total thaw of the frozen tissue.
In another aspect, the invention provides a system for treating tissue of a patient. The system comprises a first needle having a proximal end, a distal tissue-penetrating end, a lumen therebetween, and a cooling fluid supply lumen extending distally to a port within the needle lumen. The needle has a size of a 20-gauge needle or less. A second needle has a proximal end, a distal tissue-penetrating end and a lumen therebetween. A cooling fluid supply lumen extends distally to a port within the lumen of the second needle, the needle also having a size of a 20-gauge needle or less. A probe body has a handle supporting a cooling fluid source and a needle interface for sequentially receiving the first and second needles. Vaporization within the lumen of the received needle cools the tissue when the needle is inserted therein and cooling fluid is introduced from the cooling fluid supply through the port.
In another aspect, the invention provides a system for treatment of the target tissue of a patient. The patient has a collateral tissue adjacent the target tissue, and the system comprises a probe having a proximal end and a distal end. The distal end is insertable through the collateral tissue and into the target tissue. The inserted probe has a lumen with a proximal portion adjacent the target tissue and a distal portion adjacent the collateral tissue when the distal end is inserted. A cooling fluid source is in fluid communication with the distal portion of the lumen. The source is configured so that, when cooling fluid flows from the source into (and proximally along) the lumen of the inserted probe, liquid of the cooling fluid evaporates into gas within the distal portion of the lumen such that the evaporation cools the target tissue sufficiently for the treatment. Additionally, the liquid is depleted sufficiently when the cooling fluid passes through the proximal portion of the lumen to inhibit cooling of the collateral tissue.
In yet another aspect, the invention provides a system for remodeling a target tissue of the patient. The system comprises a cooling probe insertable distally into the target tissue. The cooling probe has a cooling surface for cooling the target tissue sufficiently to freeze a region of the target tissue. A lubricious coating is disposed over the cooling surface of the probe to facilitate removing the cooling probe from the target tissue while the region remains frozen.
Exemplary lubricious and/or hydrophobic coatings include polymers, such as a PTFE Teflon™ polymers, a silicone, or the like. Typical thicknesses of the coating may be from about 0.00005 inches to about 0.001 inches, with an exemplary PTFE polymer coating having a thickness of about 0.0005 inches and exemplary silicone coatings being thinner. In some embodiments, a portion of the probe (such as a distal end or small region near the distal end) may be free of the coating so as to allow use of the coating-free region as an electrode or the like.
The present invention provides improved medical devices, system, and methods. Embodiments of the invention will facilitate remodeling of tissues disposed at and below the skin, optionally to treat a cosmetic defect, a lesion, a disease state, and/or so as to alter a shape of the overlying skin surface.
Among the most immediate applications of the present invention may be the amelioration of lines and wrinkles, particularly by inhibiting muscular contractions which are associated with these cosmetic defects so as so improve an appearance of the patient. Rather than relying entirely on a pharmacological toxin or the like to disable muscles so as to induce temporary paralysis, many embodiments of the invention will at least in part employ cold to immobilize muscles. Advantageously, nerves, muscles, and associated tissues may be temporarily immobilized using moderately cold temperatures of 10° C. to −5° C. without permanently disabling the tissue structures. Using an approach similar to that employed for identifying structures associated with atrial fibrillation, a needle probe or other treatment device can be used to identify a target tissue structure in a diagnostic mode with these moderate temperatures, and the same probe (or a different probe) can also be used to provide a longer term or permanent treatment, optionally by ablating the target tissue zone and/or inducing apoptosis at temperatures from about −5° C. to about −50° C. In some embodiments, apoptosis may be induced using treatment temperatures from about −1° C. to about −15° C., or from about −1° C. to about −19° C., optionally so as to provide a permanent treatment that limits or avoids inflammation and mobilization of skeletal muscle satellite repair cells. Hence, the duration of the treatment efficacy of such subdermal cryogenic treatments may be selected and controlled, with colder temperatures, longer treatment times, and/or larger volumes or selected patterns of target tissue determining the longevity of the treatment. Additional description of cryogenic cooling for treatment of cosmetic and other defects may be found in co-pending U.S. patent application Ser. No. 11/295,204, filed on Dec. 5, 2005 and entitled “Subdermal Cryogenic Remodeling of Muscle, Nerves, Connective Tissue, and/or Adipose Tissue (Fat),” the full disclosure of which is incorporated herein by reference.
In addition to cosmetic treatments of lines, wrinkles, and the like, embodiments of the invention may also find applications for treatments of subdermal adipose tissues, benign, pre-malignant lesions, malignant lesions, acne and a wide range of other dermatological conditions (including dermatological conditions for which cryogenic treatments have been proposed and additional dermatological conditions), and the like. Embodiments of the invention may also find applications for alleviation of pain, including those associated with muscle spasms. Hence, a variety of embodiments may be provided.
Referring now to
Extending distally from distal end 14 of housing 16 is a tissue-penetrating cryogenic cooling probe 26. Probe 26 is thermally coupled to a cooling fluid path extending from cooling fluid source 18, with the exemplary probe comprising a tubular body receiving at least a portion of the cooling fluid from the cooling fluid source therein. The exemplary probe 26 comprises a 30 g needle having a sharpened distal end that is axially sealed. Probe 26 may have an axial length between distal end 14 of housing 16 and the distal end of the needle of between about ½ mm and 5 cm, preferably having a length from about 1 cm to about 3 cm. Such needles may comprise a stainless steel tube with an inner diameter of about 0.006 inches and an outer diameter of about 0.012 inches, while alternative probes may comprise structures having outer diameters (or other lateral cross-sectional dimensions) from about 0.006 inches to about 0.100 inches. Generally, needle probe 26 will comprise a 16 g or smaller size needle, often comprising a 20 g needle or smaller, typically comprising a 25 g or smaller needle.
Addressing some of the components within housing 16, the exemplary cooling fluid supply 18 comprises a cartridge containing a liquid under pressure, with the liquid preferably having a boiling temperature of the less than 37° C. When the fluid is thermally coupled to the tissue-penetrating probe 26, and the probe is positioned within the patient so that an outer surface of the probe is adjacent to a target tissue, the heat from the target tissue evaporates at least a portion of the liquid and the enthalpy of vaporization cools the target tissue. A valve (not shown) may be disposed along the cooling fluid flow path between cartridge 18 and probe 26, or along the cooling fluid path after the probe so as to limit the temperature, time, rate of temperature change, or other cooling characteristics. The valve will often be powered electrically via power source 20, per the direction of processor 22, but may at least in part be manually powered. The exemplary power source 20 comprises a rechargeable or single-use battery.
The exemplary cooling fluid supply 18 comprises a single-use cartridge. Advantageously, the cartridge and cooling fluid therein may be stored and/or used at (or even above) room temperature. The cartridges may have a frangible seal or may be refillable, with the exemplary cartridge containing liquid N2O. A variety of alternative cooling fluids might also be used, with exemplary cooling fluids including fluorocarbon refrigerants and/or carbon dioxide. The quantity of cooling fluid contained by cartridge 18 will typically be sufficient to treat at least a significant region of a patient, but will often be less than sufficient to treat two or more patients. An exemplary liquid N2O cartridge might contain, for example, a quantity in a range from about 7 g to about 30 g of liquid.
Processor 22 will typically comprise a programmable electronic microprocessor embodying machine readable computer code or programming instructions for implementing one or more of the treatment methods described herein. The microprocessor will typically include or be coupled to a memory (such as a non-volatile memory, a flash memory, a read-only memory (“ROM”), a random access memory (“RAM”), or the like) storing the computer code and data to be used thereby, and/or a recording media (including a magnetic recording media such as a hard disk, a floppy disk, or the like; or an optical recording media such as a CD or DVD) may be provided. Suitable interface devices (such as digital-to-analog or analog-to-digital converters, or the like) and input/output devices (such as USB or serial I/O ports, wireless communication cards, graphical display cards, and the like) may also be provided. A wide variety of commercially available or specialized processor structures may be used in different embodiments, and suitable processors may make use of a wide variety of combinations of hardware and/or hardware/software combinations. For example, processor 22 may be integrated on a single processor board and may run a single program or may make use of a plurality of boards running a number of different program modules in a wide variety of alternative distributed data processing or code architectures.
Referring now to
The cooling fluid from valve 32 flows through a lumen 34 of a cooling fluid supply tube 36. Supply tube 36 is, at least in part, disposed within a lumen 38 of needle 26, with the supply tube extending distally from a proximal end 40 of the needle toward a distal end 42. The exemplary supply tube 36 comprises a fused silica tubular structure 36a having a polymer coating 36b (see
Though supply tubes 36 having outer jackets of polyimide (or other suitable polymer materials) may bend within the surrounding needle lumen 38, the supply tube should have sufficient strength to avoid collapsing or excessive blow back during injection of cooling fluid into the needle. Polyimide coatings may also provide durability during assembly and use, and the fused silica/polymer structures can handle pressures of up to 100 kpsi. The relatively thin tubing wall and small outer size of the preferred supply tubes allows adequate space for vaporization of the nitrous oxide or other cooling fluid within the annular space between the supply tube 36 and surrounding needle lumen 38. Inadequate space for vaporization might otherwise cause a buildup of liquid in that annular space and inconsistent temperatures, as illustrated in
Referring now to
During initiation of a cooling cycle, a large volume along the cooling fluid pathway between the exit from the supply tube and exit from the pressure relief valve 46 may cause excessive transients. In particular, a large volume in this area may result in initial temperatures that are significantly colder than a target and/or steady state temperature, as can be seen in
Alternative methods to inhibit excessively low transient temperatures at the beginning of a refrigeration cycle might be employed instead of or together with the limiting of the exhaust volume. For example, the supply valve might be cycled on and off, typically by controller 22, with a timing sequence that would limit the cooling fluid flowing so that only vaporized gas reached the needle lumen (or a sufficiently limited amount of liquid to avoid excessive dropping of the needle lumen temperature). This cycling might be ended once the exhaust volume pressure was sufficient so that the refrigeration temperature would be within desired limits during steady state flow.
Additional aspects of the exemplary supply valves 32 can be understood with reference to
Venting of the cooling fluid from the cooling fluid supply tube 36 when the cooling fluid flow is halted by supply valve 32, 32′ is advantageous to provide a rapid halt to the cooling of needle 16. For example, a 2.5 cm long 30 g needle cooled to an outside temperature of −15° C. might use only about 0.003 g/sec of nitrous oxide after the system approaches or reaches steady state (for example, 10 seconds after initiation of cooling). If the total volume along the cooling fluid path from supply valve to the distal end or release port of supply tube 36 is about 0.1 cc, the minimum time to flow all the vaporizing liquid through the supply tube might be calculated as follows:
0.1 cc*(0.7 g/cc)=0.07g of liquid nitrous oxide,
0.07 g/(0.003 g/sec)=23 sec.
These calculation assume a fused silica supply tube sized to allow the minimum flow of nitrous oxide when fluid supply has a pressure of about 900 psi. When the supply valve is shut off, the pressure on the needle side of the supply valve would decay, causing the actual residual run time to be longer, with only a partial cooling near the distal tip of needle 16. Regardless, it is desirable to limit the flow of cooling fluid into the needle to or near that which will vaporize in the needle so as to facilitate use of a simple disposable cooling fluid supply cartridge 18. Analytical models that may be used to derive these cooling flows include that illustrated in
Referring now to
Very fine needles will typically be used to deliver to cooling at and/or below the surface of the skin. These needles can be damaged relatively easily if they strike a bone, or may otherwise be damaged or deformed before or during use. Fine needles well help inhibit damage to the skin during insertion, but may not be suitable for repeated insertion for treatment of numerous treatment sites or lesions of a particular patient, or for sequential treatment of a large area of the patient. Hence, the structures shown in
It may be advantageous to increase the volume of tissue treated by a single treatment cycle. As it is often desirable to avoid increasing the needle size excessively, along with selecting needles of different lengths, needle assemblies having differing numbers of needles in a needle array may also be selected and mounted to the probe body. Other embodiments may employ a single needle array fixedly mounted to the probe body, or a plurality of replaceable needle assemblies which all include the same number of needles. Regardless, cooling fluid flow to a plurality of needles may be provided, for example, by inserting and bonding a plurality of fused silica supply tubes into a 0.010 polyimide tubing 58 or header within the needle assembly, and by advancing the distal end of each supply tube into a lumen of an associated needle 16. The needles might vent into a common exhaust space coaxially around polyimide tubing 58 in a manner similar to the single needle design shown. This can increase the quantity of tissue treated adjacent and/or between needles, as can be seen by comparing the theoretical 15 second exposures to one and two needles having a −15° C. probe surface, as shown in
Referring now to
Referring now to
Referring now to
Still further alternatives may also be provided, including systems that generate a high rate of cooling to promote necrosis of malignant lesions or the like. High cooling rates limit osmotic effects in the target tissue. Slow cooling may tend to promote ice formation between cells rather than within cells due to the osmotic effect. While such slow cooling can be provided where necrosis is not desired (such as through the use of a proportion supply valve to modulate flow, a processor generated on/off cycle during initial cooling, or the like), the needle probes described herein will often be well suited to induce rapid cooling rates of the target tissue by vaporizing the cooling fluid in close thermal and spatial proximity to that target tissue. Hence, where necrosis of cells by intracellular ice formation is desired, cooling rates of about 25° C./sec or more, or even about 50° C./sec or more can be provided.
Referring now to
Referring now to
As described above, pressure, cooling, or both may be applied 118 to the skin surface adjacent the needle insertion site before, during, and/or after insertion 120 and cryogenic cooling 122 of the needle and associated target tissue. The needle can then be retracted 124 from the target tissue. If the treatment is not complete 126 and the needle is not yet dull 128, pressure and/or cooling can be applied to the next needle insertion location site 118, and the additional target tissue treated. However, as small gauge needles may dull after being inserted only a few times into the skin, any needles that are dulled (or otherwise determined to be sufficiently used to warrant replacement, regardless of whether it is after a single insertion, 5 insertions, or the like) during the treatment may be replaced with a new needle 116 before the next application of pressure/cooling 118, needle insertion 120, and/or the like. Once the target tissues have been completely treated, or once the cooling supply cartridge included in the self-contained handpiece is depleted, the used handpiece and needles can be disposed of 130.
A variety of target treatment temperatures, times, and cycles may be applied to differing target tissues to as to achieve the desired remodeling. For example, (as more fully described in patent application Ser. No. 11/295204, previously incorporated herein by reference) desired temperature ranges to temporarily and/or permanently disable muscle, as well as protect the skin and surrounding tissues, may be indicated by Table II as follows:
To provide tissue remodeling with a desired or selected efficacy duration, tissue treatment temperatures may be employed per Table III as follows:
There is a window of temperatures where apoptosis can be induced. An apoptotic effect may be temporary, long-term (lasting at least weeks, months, or years) or even permanent. While necrotic effects may be long term or even permanent, apoptosis may actually provide more long-lasting cosmetic benefits than necrosis. Apoptosis may exhibit a non-inflammatory cell death. Without inflammation, normal muscular healing processes may be inhibited. Following many muscular injuries (including many injuries involving necrosis), skeletal muscle satellite cells may be mobilized by inflammation. Without inflammation, such mobilization may be limited or avoided. Apoptotic cell death may reduce muscle mass and/or may interrupt the collagen and elastin connective chain. Temperature ranges that generate a mixture of these apoptosis and necrosis may also provide long-lasting or permanent benefits. For the reduction of adipose tissue, a permanent effect may be advantageous. Surprisingly, both apoptosis and necrosis may produce long-term or even permanent results in adipose tissues, since fat cells regenerate differently than muscle cells.
Referring now to
Referring now to
Note that a small surface 206 of probe 196 may be free of lubricious coating 202. Where the underlying probe structure 204 comprises an electrical conductor such as stainless steel or some alternative metal, the uncovered surface portion 206 may be used as an electrode for neurostimulation during positioning of probe 196 or the like.
In the embodiment of
These small diameter microneedle probes have little thermal mass and can be warmed relatively quickly by conduction from adjacent tissues and/or by any warm fluids flowing therein. As a result, while a major portion 208 of the target tissue remains frozen a layer 210 disposed between the still-frozen region and probe 198 may facilitate safe removal of the probe from the patient. Thawed layer 210 may comprise thawed target tissue, thawed extracellular fluids, or the like. Small needles also have small probe/tissue interface surface areas which may limit the total stiction between the probe and frozen tissue. Regardless of any particular mechanism of action, the use of small diameter cryogenic microneedles may allow safe removal of the probe from a treated tissue in a time which is significantly less than that associated with complete thaw of the iceball that has been formed. Exemplary embodiments using a lubricious coating and/or small diameter probe may allow the probe to be removed within about 10 seconds of the cooling, optionally allowing safe removal within about 5 seconds of cooling or even within about 3 seconds of cooling.
Referring now to
While the proximal portion 234 of probes 220, 222 may be cooled somewhat (via conduction from the distal portion 232 of the probe, from the passage of gas vaporized from the gas of the cooling fluid, or the like), a temperature of collateral tissue CT may remain above the remodeling treatment temperature of a treatment zone 238 within the target tissue. Hence, the collateral tissue may avoid injury despite the absence of any additional insulation on the proximal portion of the probe. This also facilitates the use of differing treatment zones 238 at different locations for a particular patient through the selection of needle assemblies having appropriate cooling fluid supply paths with the desired differing cooling fluid flow characteristics.
While the exemplary embodiments have been described in some detail for clarity of understanding and by way of example, a number of modifications, changes, and adaptations may be implemented and/or will be obvious to those as skilled in the art. For example, one or more temperature feedback loops may be used to control the treatments, with the tissue temperature optionally being taken using a temperature sensing needle having a temperature sensor disposed adjacent an outer cooled skin engaging surface of the needle. Hence, the scope of the present invention is limited solely by the independent claims.
This application is a continuation of U.S. patent application Ser. No. 11/675,886, filed Feb. 16, 2007, the entire content of which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2319542 | Hall | May 1943 | A |
2672032 | Towse | Mar 1964 | A |
3266492 | Steinberg | Aug 1966 | A |
3289424 | Lee | Dec 1966 | A |
3343544 | Dunn et al. | Sep 1967 | A |
3351063 | Malaker et al. | Nov 1967 | A |
3439680 | Thomas, Jr. | Apr 1969 | A |
3483869 | Hayhurst | Dec 1969 | A |
3507283 | Thomas, Jr. | Apr 1970 | A |
3532094 | Stahl | Oct 1970 | A |
3664344 | Bryne | May 1972 | A |
3702114 | Zacarian | Nov 1972 | A |
3795245 | Allen, Jr. et al. | Mar 1974 | A |
3814095 | Lubens | Jun 1974 | A |
3830239 | Stumpf et al. | Aug 1974 | A |
3886945 | Stumpf et al. | Jun 1975 | A |
3889681 | Waller et al. | Jun 1975 | A |
3951152 | Crandell et al. | Apr 1976 | A |
3993075 | Lisenbee et al. | Nov 1976 | A |
4140109 | Savic et al. | Feb 1979 | A |
4207897 | Lloyd et al. | Jun 1980 | A |
4236518 | Floyd | Dec 1980 | A |
4306568 | Torre | Dec 1981 | A |
4376376 | Gregory | Mar 1983 | A |
4404862 | Harris, Sr. | Sep 1983 | A |
4524771 | McGregor et al. | Jun 1985 | A |
4758217 | Gueret | Jul 1988 | A |
4802475 | Weshahy | Feb 1989 | A |
4946460 | Merry et al. | Aug 1990 | A |
5059197 | Urie et al. | Oct 1991 | A |
5200170 | McDow | Apr 1993 | A |
5294325 | Liu | Mar 1994 | A |
5334181 | Rubinsky et al. | Aug 1994 | A |
5520681 | Fuller et al. | May 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5647868 | Chinn | Jul 1997 | A |
5747777 | Matsuoka | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5814040 | Nelson et al. | Sep 1998 | A |
5860970 | Goddard et al. | Jan 1999 | A |
5879378 | Usui | Mar 1999 | A |
5899897 | Rabin et al. | May 1999 | A |
5916212 | Baust et al. | Jun 1999 | A |
5976505 | Henderson | Nov 1999 | A |
6003539 | Yoshihara | Dec 1999 | A |
6032675 | Rubinsky | Mar 2000 | A |
6039730 | Rabin et al. | Mar 2000 | A |
6041787 | Rubinsky | Mar 2000 | A |
6139545 | Utley et al. | Oct 2000 | A |
6141985 | Cluzeau et al. | Nov 2000 | A |
6142991 | Schatzberger | Nov 2000 | A |
6182666 | Dobak, III | Feb 2001 | B1 |
6196839 | Ross | Mar 2001 | B1 |
6238386 | Mueller et al. | May 2001 | B1 |
6277099 | Strowe et al. | Aug 2001 | B1 |
6277116 | Utely et al. | Aug 2001 | B1 |
6363730 | Thomas et al. | Apr 2002 | B1 |
6371943 | Racz et al. | Apr 2002 | B1 |
6432102 | Joye et al. | Aug 2002 | B2 |
6494844 | Van Bladel et al. | Dec 2002 | B1 |
6503246 | Har-Shai et al. | Jan 2003 | B1 |
6506796 | Fesus et al. | Jan 2003 | B1 |
6546935 | Hooven | Apr 2003 | B2 |
6551309 | LePivert | Apr 2003 | B1 |
6562030 | Abboud et al. | May 2003 | B1 |
6629951 | Laufer et al. | Oct 2003 | B2 |
6648880 | Chauvet et al. | Nov 2003 | B2 |
6669688 | Svaasand et al. | Dec 2003 | B2 |
6672095 | Luo | Jan 2004 | B1 |
6682501 | Nelson et al. | Jan 2004 | B1 |
6706037 | Zvuloni et al. | Mar 2004 | B2 |
6723092 | Brown et al. | Apr 2004 | B2 |
6749624 | Knowlton | Jun 2004 | B2 |
6761715 | Carroll | Jul 2004 | B2 |
6764493 | Weber et al. | Jul 2004 | B1 |
6786901 | Joye et al. | Sep 2004 | B2 |
6786902 | Rabin et al. | Sep 2004 | B1 |
6789545 | Littrup et al. | Sep 2004 | B2 |
6840935 | Lee | Jan 2005 | B2 |
6858025 | Maurice | Feb 2005 | B2 |
6902554 | Huttner | Jun 2005 | B2 |
6905492 | Zvuloni et al. | Jun 2005 | B2 |
6960208 | Bourne et al. | Nov 2005 | B2 |
7001400 | Modesitt et al. | Feb 2006 | B1 |
7081111 | Svaasand et al. | Jul 2006 | B2 |
7081112 | Joye et al. | Jul 2006 | B2 |
7083612 | Littrup et al. | Aug 2006 | B2 |
7195616 | Diller et al. | Mar 2007 | B2 |
7217939 | Johansson et al. | May 2007 | B2 |
7250046 | Fallat | Jul 2007 | B1 |
7311672 | Van Bladel et al. | Dec 2007 | B2 |
7367341 | Anderson et al. | May 2008 | B2 |
7402140 | Spero et al. | Jul 2008 | B2 |
7422586 | Morris et al. | Sep 2008 | B2 |
7578819 | Bleich et al. | Aug 2009 | B2 |
7641679 | Joye et al. | Jan 2010 | B2 |
7713266 | Elkins et al. | May 2010 | B2 |
7850683 | Elkins et al. | Dec 2010 | B2 |
7862558 | Elkins et al. | Jan 2011 | B2 |
7998137 | Elkins et al. | Aug 2011 | B2 |
8298216 | Burger et al. | Oct 2012 | B2 |
8409185 | Burger et al. | Apr 2013 | B2 |
8715275 | Burger et al. | May 2014 | B2 |
20020010460 | Joye et al. | Jan 2002 | A1 |
20020013602 | Huttner | Jan 2002 | A1 |
20020045434 | Masoian et al. | Apr 2002 | A1 |
20020049436 | Zvuloni et al. | Apr 2002 | A1 |
20020068929 | Zvuloni | Jun 2002 | A1 |
20020120260 | Morris et al. | Aug 2002 | A1 |
20020120261 | Morris et al. | Aug 2002 | A1 |
20020120263 | Brown et al. | Aug 2002 | A1 |
20020128638 | Chauvet et al. | Sep 2002 | A1 |
20020156469 | Yon et al. | Oct 2002 | A1 |
20020183731 | Holland et al. | Dec 2002 | A1 |
20020193778 | Alchas et al. | Dec 2002 | A1 |
20030036752 | Joye et al. | Feb 2003 | A1 |
20030109912 | Joye et al. | Jun 2003 | A1 |
20030130575 | Desai | Jul 2003 | A1 |
20030181896 | Zvuloni et al. | Sep 2003 | A1 |
20030195436 | Van Bladel et al. | Oct 2003 | A1 |
20030220635 | Knowlton et al. | Nov 2003 | A1 |
20030220674 | Anderson et al. | Nov 2003 | A1 |
20040024391 | Cytron et al. | Feb 2004 | A1 |
20040082943 | Littrup et al. | Apr 2004 | A1 |
20040092875 | Kochamba | May 2004 | A1 |
20040122482 | Tung et al. | Jun 2004 | A1 |
20040143252 | Hurst | Jul 2004 | A1 |
20040162551 | Brown et al. | Aug 2004 | A1 |
20040167505 | Joye et al. | Aug 2004 | A1 |
20040191229 | Link et al. | Sep 2004 | A1 |
20040204705 | Lafontaine | Oct 2004 | A1 |
20040210212 | Maurice | Oct 2004 | A1 |
20040215178 | Maurice | Oct 2004 | A1 |
20040215294 | Littrup et al. | Oct 2004 | A1 |
20040215295 | Littrup et al. | Oct 2004 | A1 |
20040220497 | Findlay et al. | Nov 2004 | A1 |
20040220648 | Carroll | Nov 2004 | A1 |
20040225276 | Burgess | Nov 2004 | A1 |
20040243116 | Joye et al. | Dec 2004 | A1 |
20040267248 | Duong et al. | Dec 2004 | A1 |
20040267257 | Bourne et al. | Dec 2004 | A1 |
20050004563 | Racz et al. | Jan 2005 | A1 |
20050177147 | Vancelette et al. | Aug 2005 | A1 |
20050177148 | van der Walt et al. | Aug 2005 | A1 |
20050182394 | Spero et al. | Aug 2005 | A1 |
20050203505 | Megerman et al. | Sep 2005 | A1 |
20050203593 | Shanks et al. | Sep 2005 | A1 |
20050209565 | Yuzhakov et al. | Sep 2005 | A1 |
20050209587 | Joye et al. | Sep 2005 | A1 |
20050224086 | Nahon | Oct 2005 | A1 |
20050228288 | Hurst | Oct 2005 | A1 |
20050251103 | Steffen et al. | Nov 2005 | A1 |
20050261753 | Littrup et al. | Nov 2005 | A1 |
20050276759 | Roser et al. | Dec 2005 | A1 |
20050281530 | Rizoiu et al. | Dec 2005 | A1 |
20050283148 | Janssen et al. | Dec 2005 | A1 |
20060009712 | Van Bladel et al. | Jan 2006 | A1 |
20060015092 | Joye et al. | Jan 2006 | A1 |
20060069385 | Lafontaine et al. | Mar 2006 | A1 |
20060079914 | Modesitt et al. | Apr 2006 | A1 |
20060084962 | Joye et al. | Apr 2006 | A1 |
20060089688 | Panescu | Apr 2006 | A1 |
20060111732 | Gibbens et al. | May 2006 | A1 |
20060129142 | Reynolds | Jun 2006 | A1 |
20060142785 | Modesitt et al. | Jun 2006 | A1 |
20060173469 | Klein et al. | Aug 2006 | A1 |
20060189968 | Howlett et al. | Aug 2006 | A1 |
20060190035 | Hushka et al. | Aug 2006 | A1 |
20060200117 | Hermans | Sep 2006 | A1 |
20060212028 | Joye et al. | Sep 2006 | A1 |
20060212048 | Crainich | Sep 2006 | A1 |
20060223052 | MacDonald et al. | Oct 2006 | A1 |
20060224149 | Hillely | Oct 2006 | A1 |
20060258951 | Bleich et al. | Nov 2006 | A1 |
20070060921 | Janssen et al. | Mar 2007 | A1 |
20070088217 | Babaev | Apr 2007 | A1 |
20070129714 | Elkins et al. | Jun 2007 | A1 |
20070156125 | DeLonzor | Jul 2007 | A1 |
20070161975 | Goulko | Jul 2007 | A1 |
20070167943 | Janssen et al. | Jul 2007 | A1 |
20070167959 | Modesitt et al. | Jul 2007 | A1 |
20070179509 | Nagata et al. | Aug 2007 | A1 |
20070198071 | Ting et al. | Aug 2007 | A1 |
20070255362 | Levinson et al. | Nov 2007 | A1 |
20070270925 | Levinson | Nov 2007 | A1 |
20080051775 | Evans | Feb 2008 | A1 |
20080051776 | Bliweis et al. | Feb 2008 | A1 |
20080077201 | Levinson et al. | Mar 2008 | A1 |
20080077202 | Levinson | Mar 2008 | A1 |
20080077211 | Levinson et al. | Mar 2008 | A1 |
20080154254 | Burger et al. | Jun 2008 | A1 |
20080183164 | Elkins et al. | Jul 2008 | A1 |
20080200910 | Burger et al. | Aug 2008 | A1 |
20080287839 | Rosen et al. | Nov 2008 | A1 |
20090018623 | Levinson et al. | Jan 2009 | A1 |
20090018624 | Levinson et al. | Jan 2009 | A1 |
20090018625 | Levinson et al. | Jan 2009 | A1 |
20090018626 | Levinson et al. | Jan 2009 | A1 |
20090018627 | Levinson et al. | Jan 2009 | A1 |
20090118722 | Ebbers et al. | May 2009 | A1 |
20090171334 | Elkins et al. | Jul 2009 | A1 |
20090248001 | Burger et al. | Oct 2009 | A1 |
20090264876 | Roy et al. | Oct 2009 | A1 |
20090299357 | Zhou | Dec 2009 | A1 |
20110144631 | Elkins et al. | Jun 2011 | A1 |
20120065629 | Elkins et al. | Mar 2012 | A1 |
20120089211 | Curtis et al. | Apr 2012 | A1 |
20140249519 | Burger et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2643474 | Sep 2007 | CA |
0043447 | Jun 1981 | EP |
0777123 | Jun 1997 | EP |
0955012 | Nov 1999 | EP |
1074273 | Feb 2001 | EP |
1377327 | Sep 2007 | EP |
1862125 | Dec 2007 | EP |
1360353 | Jul 1974 | GB |
1402632 | Aug 1975 | GB |
60-013111 | Jan 1985 | JP |
H04-357945 | Dec 1992 | JP |
05-038347 | Feb 1993 | JP |
10-014656 | Jan 1998 | JP |
2001-178737 | Jul 2001 | JP |
2005-080988 | Mar 2005 | JP |
2006-130055 | May 2006 | JP |
2008-515469 | May 2008 | JP |
2254060 | Jun 2005 | RU |
9749344 | Dec 1997 | WO |
0197702 | Dec 2001 | WO |
0202026 | Jan 2002 | WO |
02092153 | Nov 2002 | WO |
2004039440 | May 2004 | WO |
2004045434 | Jun 2004 | WO |
2004089460 | Oct 2004 | WO |
2005000106 | Jan 2005 | WO |
2005079321 | Sep 2005 | WO |
2005096979 | Oct 2005 | WO |
2006012128 | Feb 2006 | WO |
2006023348 | Mar 2006 | WO |
2006044727 | Apr 2006 | WO |
2006062788 | Jun 2006 | WO |
2006125835 | Nov 2006 | WO |
2006127467 | Nov 2006 | WO |
2007025106 | Mar 2007 | WO |
2007037326 | Apr 2007 | WO |
2007089603 | Aug 2007 | WO |
2007129121 | Nov 2007 | WO |
2007135629 | Nov 2007 | WO |
2009026471 | Feb 2009 | WO |
Entry |
---|
Sigma-Aldrich Co. LLC, “Syringe needle gauge chart”, http://www.sigmaaldrich.com/chemistry/stockroom-reagents/learning-center/technical-library/needle-gauge-chart.html. (2015). |
Advanced Cosmetic Intervention, Inc. [webpage], retrieved from the Internet: <<http://www.acisurgery.com>>, copyright 2007, 1 page. |
CryoPen, LLC [Press Release], “CyroPen, LLC Launches Revolutionary, State-of-the-Art Medical Device—The Dure of Cryosurgery in a Pend,” dated Apr. 27, 2007, retrieved from the Internet: <<http://cryopen.com/press.htm>>, 3 pages total. |
CryoPen, LLC., [webpage], retrieved from the Internet: <<http://cryopen.com/>>, copyright 2006-2008, 2 pages total. |
Cryosurgical Concepts, Inc., [webpage] “CryoProbe™”, retrieved from the Internet: <<http://www.cryo-surgical.com//>> on Feb. 8, 2008, 2 pages total. |
Dasiou-Plankida, “Fat injections for facial rejuvenation: 17 years experience in 1720 patients,” Journal of Cosmetic Dermatology, Oct. 22, 2004; 2(3-4): 119-125. |
European Examination Report for European Patent Application No. 08729785.9, mailed Feb. 13, 2012, 5 pages. |
European Examination Report for European Patent Application No. 08729785.9, mailed Sep. 10, 2012, 5 pages. |
European Extended Search Report for European Patent Application No. 08729785.9, mailed Jun. 8, 2011, 9 pages. |
Extended European Search Report of EP Application No. 13179642.7, mailed Mar. 4, 2014. (6 pages). |
Foster et al., “Radiofrequency Ablation of Facial Nerve Branches Controlling Glabellar Frowning”, Dermatol Surg. Dec. 2009; 35(12):1908-1917. |
Har-Shai et al., “Effect of skin surface temperature on skin pigmentation during contact and intralesional cryosurgery of hypertrophic scars and Kleoids,” Journal of the European Academy of Dermatology and Venereology, Feb. 2007, vol. 21, issue 2, pp. 191-198. |
International Search Report and Written Opinion of PCT Application No. PCT/US08/53876, dated Aug. 15, 2008, 16 pages total. |
Japanese Office Action for Japanese Patent Application No. 2009-549704 mailed May 1, 2013, 4 pages. |
Japanese Office Action for Japanese Patent Application No. 2009-549704 mailed Oct. 3, 2012, 7 pages. |
Magalov et al., “Isothermal volume contours generated in a freezing gel by embedded cryo-needles with applications to cryo-surgery,” Cryobiology Oct. 2007, 55(2):127-137. |
Metrum CryoFlex, Cryoablation in pain management brochure, 2012, 5 pages. |
Metrum CryoFlex, Cryosurgery probes and accessories catalogue, 2009, 25 pages. |
One Med Group, LLC., [webpage] “CryoProbe™”, retrieved from the Internet: <<http://www.onemedgroup.com/>> on Feb. 4, 2008, 2 pages total. |
Rewcastle et al., “A model for the time dependent three-dimensional thermal distribution within iceballs surrounding multiple cryoprobes,” Med Phys. Jun. 2001;28(6):1125-1137. |
Rutkove, “Effects of Temperature on Neuromuscular Electrophysiology,” Muscles and Nerves, Jun. 12, 2001; 24(7):867-882; retrieved from http://www3.interscience.wiley.com/cgi-bin/fulltext/83502418/PDFSTART. |
Utley et al., “Radiofrequency Ablation of the Nerve to the Corrugator Muscle for the Elimination of Glabellar Furrowing,” Arch. Facial Plastic Surgery 1: 46-48, 1999. |
Yang et al., “Apoptosis induced by cryo-injury in human colorectal cancer cells is associated with mitochondrial dysfunction.,” International Journal of Cancer, 2002, vol. 103, No. 3, pp. 360-369. |
Notice of Reasons for Rejection mailed Dec. 17, 2014, from Japanese Application No. 2013-249148 (8 pages). |
Non-Final Office Action mailed on Apr. 13, 2012 for U.S. Appl. No. 11/675,886, 12 pages. |
Final Office Action mailed on Aug. 10, 2012 for U.S. Appl. No. 11/675,886, 11 pages. |
Notice of Allowance mailed on Nov. 28, 2012 for U.S. Appl. No. 11/675,886, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20130324990 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11675886 | Feb 2007 | US |
Child | 13786407 | US |