The present invention relates to safety systems for power equipment, and more particularly to a replaceable brake mechanism for use in woodworking equipment and other power equipment.
Safety systems are often employed with power equipment such as table saws, miter saws, band saws, jointers, shapers, circular saws and other woodworking machinery, to minimize the risk of injury when using the equipment. Probably the most common safety feature is a guard that physically blocks an operator from making contact with dangerous components of machinery, such as belts, shafts or blades. In many cases, guards effectively reduce the risk of injury, however, there are many instances where the nature of the operations to be performed precludes using a guard that completely blocks access to hazardous machine parts.
The present invention discloses safety systems for use on power equipment. The disclosed safety systems include a replaceable brake mechanism adapted to engage a blade or other cutting tool to protect the user against serious injury if a dangerous, or triggering, condition occurs. The brake mechanism includes a one or more cartridges that may be selectively removed and replaced from the power equipment, such as after use and/or to adapt the brake mechanism for a particular use.
A machine is shown schematically in
Machine 10 also includes a suitable power source 20 to provide power to operative structure 12 and safety system 18. Power source 20 may be an external power source such as line current, or an internal power source such as a battery. Alternatively, power source 20 may include a combination of both external and internal power sources. Furthermore, power source 20 may include two or more separate power sources, each adapted to power different portions of machine 10.
It will be appreciated that operative structure 12 may take any one of many different forms, depending on the type of machine 10. For example, operative structure 12 may include a stationary housing configured to support motor assembly 16 in driving engagement with cutting tool 14. Alternatively, operative structure 12 may include a movable structure configured to carry cutting tool 14 between multiple operating positions. As a further alternative, operative structure 12 may include one or more transport mechanisms adapted to convey a workpiece toward and/or away from cutting tool 14.
Motor assembly 16 includes one or more motors adapted to drive cutting tool 14. The motors may be either directly or indirectly coupled to the cutting tool, and may also be adapted to drive workpiece transport mechanisms. Cutting tool 14 typically includes one or more blades or other suitable cutting implements that are adapted to cut or remove portions from the workpieces. The particular form of cutting tool 14 will vary depending upon the various embodiments of machine 10. For example, in table saws, miter saws, circular saws and radial arm saws, cutting tool 14 will typically include one or more circular rotating blades having a plurality of teeth disposed along the perimetrical edge of the blade. For a jointer or planer, the cutting tool typically includes a plurality of radially spaced-apart blades. For a band saw, the cutting tool includes an elongate, circuitous tooth-edged band.
Safety system 18 includes a detection subsystem 22, a reaction subsystem 24 and a control subsystem 26. Control subsystem 26 may be adapted to receive inputs from a variety of sources including detection subsystem 22, reaction subsystem 24, operative structure 12 and motor assembly 16. The control subsystem may also include one or more sensors adapted to monitor selected parameters of machine 10. In addition, control subsystem 26 typically includes one or more instruments operable by a user to control the machine. The control subsystem is configured to control machine 10 in response to the inputs it receives.
Detection subsystem 22 is configured to detect one or more dangerous, or triggering, conditions during use of machine 10. For example, the detection subsystem may be configured to detect that a portion of the user's body is dangerously close to, or in contact with, a portion of cutting tool 14. As another example, the detection subsystem may be configured to detect the rapid movement of a workpiece due to kickback by the cutting tool, as is described in U.S. Provisional Patent Application Ser. No. 60/182,866, the disclosure of which is herein incorporated by reference. In some embodiments, detection subsystem 22 may inform control subsystem 26 of the dangerous condition, which then activates reaction subsystem 24. In other embodiments, the detection subsystem may be adapted to activate the reaction subsystem directly.
Once activated in response to a dangerous condition, reaction subsystem 24 is configured to engage operative structure 12 quickly to prevent serious injury to the user. It will be appreciated that the particular action to be taken by reaction subsystem 24 will vary depending on the type of machine 10 and/or the dangerous condition that is detected. For example, reaction subsystem 24 may be configured to do one or more of the following: stop the movement of cutting tool 14, disconnect motor assembly 16 from power source 20, place a barrier between the cutting tool and the user, or retract the cutting tool from its operating position, etc. The reaction subsystem may be configured to take a combination of steps to protect the user from serious injury. Placement of a barrier between the cutting tool and teeth is described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,206, entitled “Cutting Tool Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference. Retraction of the cutting tool from its operating position is described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,089, entitled “Retraction System For Use In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference.
The configuration of reaction subsystem 24 typically will vary depending on which action(s) are taken. In the exemplary embodiment depicted in
It will be appreciated by those of skill in the art that the exemplary embodiment depicted in
In the exemplary implementation, detection subsystem 22 is adapted to detect the dangerous condition of the user coming into contact with blade 40. The detection subsystem includes a sensor assembly, such as contact detection plates 44 and 46, capacitively coupled to blade 40 to detect any contact between the user's body and the blade. Typically, the blade, or some larger portion of cutting tool 14 is electrically isolated from the remainder of machine 10. Alternatively, detection subsystem 22 may include a different sensor assembly configured to detect contact in other ways, such as optically, resistively, etc. In any event, the detection subsystem is adapted to transmit a signal to control subsystem 26 when contact between the user and the blade is detected. Various exemplary embodiments and implementations of detection subsystem 22 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,200, entitled “Contact Detection System For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC and U.S. Provisional Patent Application Ser. No. 60/225,211, entitled “Apparatus And Method For Detecting Dangerous Conditions In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.
Control subsystem 26 includes one or more instruments 48 that are operable by a user to control the motion of blade 40. Instruments 48 may include start/stop switches, speed controls, direction controls, etc. Control subsystem 26 also includes a logic controller 50 connected to receive the user's inputs via instruments 48. Logic controller 50 is also connected to receive a contact detection signal from detection subsystem 22. Further, the logic controller may be configured to receive inputs from other sources (not shown) such as blade motion sensors, workpiece sensors, etc. In any event, the logic controller is configured to control operative structure 12 in response to the user's inputs through instruments 48. However, upon receipt of a contact detection signal from detection subsystem 22, the logic controller overrides the control inputs from the user and activates reaction subsystem 24 to stop the motion of the blade. Various exemplary embodiments and implementations of control subsystem 26 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,059, entitled “Logic Control For Fast Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC and U.S. Provisional Patent Application Ser. No. 60/225,094, entitled “Motion Detecting System For Use In Safety System For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.
In the exemplary implementation, brake mechanism 28 includes a pawl 60 mounted adjacent the edge of blade 40 and selectively moveable to engage and grip the teeth of the blade. Pawl 60 may be constructed of any suitable material adapted to engage and stop the blade. As one example, the pawl may be constructed of a relatively high strength thermoplastic material such as polycarbonate, ultrahigh molecular weight polyethylene (UHMW) or Acrylonitrile Butadiene Styrene (ABS), etc., or a metal such as aluminum, etc. It will be appreciated that the construction of pawl 60 will vary depending on the configuration of blade 40. In any event, the pawl is urged into the blade by a biasing mechanism in the form of a spring 66. In the illustrative embodiment shown in
The pawl is held away from the edge of the blade by a restraining mechanism in the form of a fusible member 70. The fusible member is constructed of a suitable material adapted to restrain the pawl against the bias of spring 66, and also adapted to melt under a determined electrical current density. Examples of suitable materials for fusible member 70 include NiChrome wire, stainless steel wire, etc. The fusible member is connected between the pawl and a contact mount 72. Preferably, fusible member 70 holds the pawl relatively close to the edge of the blade to reduce the distance the pawl must travel to engage the blade. Positioning the pawl relatively close to the edge of the blade reduces the time required for the pawl to engage and stop the blade. Typically, the pawl is held approximately 1/32-inch to ¼-inch from the edge of the blade by fusible member 70, however other pawl-to-blade spacings may also be used within the scope of the invention.
Pawl 60 is released from its unactuated, or cocked, position to engage blade 40 by a release mechanism in the form of a firing subsystem 76. The firing subsystem is coupled to contact mount 72, and is configured to melt fusible member 70 by passing a surge of electrical current through the fusible member. Firing subsystem 76 is coupled to logic controller 50 and activated by a signal from the logic controller. When the logic controller receives a contact detection signal from detection subsystem 22, the logic controller sends an activation signal to firing subsystem 76, which melts fusible member 70, thereby releasing the pawl to stop the blade. Various exemplary embodiments and implementations of reaction subsystem 24 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,056, entitled “Firing Subsystem For Use In Fast Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC, U.S. Provisional Patent Application Ser. No. 60/225,170, entitled “Spring-Biased Brake Mechanism for Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,169, entitled “Brake Mechanism For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.
It will be appreciated that activation of the brake mechanism will typically require the replacement of one or more portions of safety system 18. For example, pawl 60 and fusible member 70 typically must be replaced before the safety system is ready to be used again. Thus, it may be desirable to construct one or more portions of safety system 18 in a cartridge that can be easily replaced. For example, in the exemplary implementation depicted in
In
Examples of suitable brake mechanisms 28 and biasing mechanisms 30, including suitable pawls 60 that may be used with the cartridges described herein are disclosed in U.S. Provisional Patent Application Ser. No. 60/225,169, entitled “Brake Mechanism For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC and U.S. Provisional Patent Application Ser. No. 60/225,170, entitled “Spring-Biased Brake Mechanism for Power Equipment,” filed Aug. 14, 2000 by SD3, LLC. The disclosures of these provisional applications are hereby incorporated by reference.
Cartridge 80 should include or be in communication with the operative portions of release mechanism 34 that are required to cause restraining mechanism 32 to release pawl 60 to engage the blade or other cutting tool of the machine. For example, in
Cartridge 80 is removably installed in machine 10 so that brake mechanism 28, and more particularly pawl 60, is positioned near the blade or other cutting tool of the machine. Cartridge 80 may include a brake positioning system or other suitable mechanism for selectively adjusting the position of the pawl and/or cartridge relative to blade 40. For example, the position of the cartridge relative to the blade or other cutting tool may be adjustable such as by pivoting or sliding the cartridge relative to one or more mounting bolts. In which case, pawl-to-blade spacing may be determined indirectly by measuring the blade-to-cartridge spacing if desired. Alternatively, the cartridge may be stationary and the pawl may be adjustable within the cartridge. As a further alternative, both the cartridge and pawl are adjustable. Examples of suitable brake positioning system are disclosed in U.S. Provisional Patent Application Ser. No. 60/225,212, entitled “Brake Positioning System,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference.
As shown in
Examples of suitable support structures include one or more mounting brackets 704 to which the cartridge is attached by any suitable releasable fastening mechanism, such as bolts, pins or screws. Support structure 702 may additionally, or alternatively, include one or more axles 706 upon which the cartridge is mounted. For example, pawl 60 is shown in
Another cartridge according to the present invention is shown in
As shown, pawl 60 includes an aperture, or bore, 708 through which an axle or pin 706 may extend to support the pawl and cartridge within machine 10. Also shown is an aperture 710 in one or more of the cartridge's side walls 712 through which axle 706 extends. Alternatively, cartridge 80 may be supported by a support structure 702 that does not directly support pawl 60. For example, pawl 60 may pivot about an axle forming part of cartridge 80, which in turn is supported by support structure 702, such as pins, mounting brackets or the like. However, it may be preferable to support pawl 60 with at least one of support structures 702 to increase the supporting force provided other than by cartridge 80. Similarly, this reduces the strength required for cartridge 80 because support structures 702 absorb much of the force imparted on pawl 60 as the pawl engages the blade or other cutting tool of the machine.
Pawl 60 should be retained in its mounting position within cartridge 80 when the cartridge is not installed within the machine. An example of a suitable coupling 714 between the pawl and cartridge is shown in
Also shown in more detail in
Returning briefly to
In the embodiment of pawl 60 shown in
Fusible member 70 extends around contact mount 72 and at least a portion of one of the linkages to prevent pawl 60 from pivoting under the force of biasing mechanism 30. As shown, the ends of fusible member 70 are coupled to the linkages. Upon release of restraining mechanism 32, such as when a sufficient current is passed through fusible member 70 via contact mount 72, the fusible member no longer retains the linkages and pawl in the position shown, and the pawl pivots to its blade-engaging position, which is shown in
Firing subsystem 76 may alternatively be located within housing 80, such as schematically illustrated in
Another exemplary cartridge is shown in
Unlike support 726, which is shown in
In
Placing most of safety system 18 in the cartridge allows manufacturers to develop improved electronics, additional functions, etc., without requiring significant, if any, changes to the machine. As a further alternative, safety system 18 may include a plurality of cartridges, including at least one cartridge that contains pawl 60 and at least one cartridge that contains electronics, such as firing subsystem 76 and/or other electronic portions of the safety system. An example of such a cartridge assembly is shown in
Optionally, cartridge 80″, or any of the previously described cartridges, may be provided in different sizes or configurations to accommodate different blade sizes. For example, a longer version of the cartridge, such as shown in
While one particular implementation of safety system 18 has been described, it will be appreciated that many variations and modifications are possible within the scope of the invention. Many such variations and modifications are described in U.S. Provisional Patent Application Ser. Nos. 60/182,866 and 60/157,340, the disclosures of which are herein incorporated by reference. For example, while portions of safety system 18 have been described herein as being incorporated into a replaceable cartridge 80, other components of the safety system may also be included in the cartridge.
It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. No single feature, function, element or property of the disclosed embodiments is essential to all of the disclosed inventions. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.
This application claims the benefit of and priority from the following U.S. Provisional Patent Applications: Ser. No. 60/225,056, filed Aug. 14, 2000, Ser. No. 60/225,057, filed Aug. 14, 2000, Ser. No. 60/225,058, filed Aug. 14, 2000, Ser. No. 60/225,059, filed Aug. 14, 2000, Ser. No. 60/225,089, filed Aug. 14, 2000, Ser. No. 60/225,094, filed Aug. 14, 2000, Ser. No. 60/225,169, filed Aug. 14, 2000, Ser. No. 60/225,170, filed Aug. 14, 2000, Ser. No. 60/225,200, filed Aug. 14, 2000, Ser. No. 60/225,201, filed Aug. 14, 2000, Ser. No. 60/225,206, filed Aug. 14, 2000, Ser. No. 60/225,210, filed Aug. 14, 2000, Ser. No. 60/225,211, filed Aug. 14, 2000, and Ser. No. 60/225,212, filed Aug. 14, 2000.
Number | Name | Date | Kind |
---|---|---|---|
941726 | Pfalzgraf | Nov 1909 | A |
982312 | Swafford | Jan 1911 | A |
1205246 | Mowry | Nov 1916 | A |
RE15262 | Gurgel | Jan 1922 | E |
1450906 | Anderson | Apr 1923 | A |
1492145 | Talley | Apr 1924 | A |
1551900 | Morrow | Sep 1925 | A |
1582483 | Runyan | Apr 1926 | A |
1590988 | Campbell | Jun 1926 | A |
1668061 | Falkins | May 1928 | A |
1807120 | Lewis | May 1931 | A |
1811066 | Tannewitz | Jun 1931 | A |
1896924 | Ulrich | Feb 1933 | A |
1902270 | Tate | Mar 1933 | A |
1910651 | Tautz | May 1933 | A |
1938548 | Tautz | Dec 1933 | A |
1938549 | Tautz | Dec 1933 | A |
1963688 | Tautz | Jun 1934 | A |
2007887 | Tautz | Jul 1935 | A |
2020222 | Tautz | Nov 1935 | A |
2038810 | Tautz | Apr 1936 | A |
2044481 | Manley et al. | Jun 1936 | A |
2106288 | Tautz | Jan 1938 | A |
2121069 | Collins | Jun 1938 | A |
2163320 | Hammond | Jun 1939 | A |
2241556 | MacMillin et al. | May 1941 | A |
2286589 | Tannewitz | Jun 1942 | A |
2313686 | Uremovich | Mar 1943 | A |
2328244 | Woodward | Aug 1943 | A |
2352235 | Tautz | Jun 1944 | A |
2377265 | Rady | May 1945 | A |
2392486 | Larsen | Jan 1946 | A |
2402232 | Baker | Jun 1946 | A |
2425331 | Kramer | Aug 1947 | A |
2434174 | Morgan | Jan 1948 | A |
2452589 | McWhirter et al. | Nov 1948 | A |
2466325 | Ocenasek | Apr 1949 | A |
2496613 | Woodward | Feb 1950 | A |
2501134 | Meckoski et al. | Mar 1950 | A |
2509813 | Dineen | May 1950 | A |
2517649 | Frechtmann | Aug 1950 | A |
2562396 | Schutz | Jul 1951 | A |
2572326 | Evans | Oct 1951 | A |
2593596 | Olson | Apr 1952 | A |
2601878 | Anderson | Jul 1952 | A |
2623555 | Eschenburg | Dec 1952 | A |
2661780 | Morgan | Dec 1953 | A |
2675707 | Brown | Apr 1954 | A |
2690084 | Van Dam | Sep 1954 | A |
2719547 | Gjerde | Oct 1955 | A |
2722246 | Arnoldy | Nov 1955 | A |
2731049 | Akin | Jan 1956 | A |
2736348 | Nelson | Feb 1956 | A |
2737213 | Richards et al. | Mar 1956 | A |
2785710 | Mowery, Jr. | Mar 1957 | A |
2786496 | Eschenburg | Mar 1957 | A |
2804890 | Fink | Sep 1957 | A |
2839943 | Caldwell et al. | Jun 1958 | A |
2844173 | Gaskell | Jul 1958 | A |
2852047 | Odlum et al. | Sep 1958 | A |
2876809 | Rentsch et al. | Mar 1959 | A |
2883486 | Mason | Apr 1959 | A |
2913581 | Simonton et al. | Nov 1959 | A |
2937672 | Gjerde | May 1960 | A |
2954118 | Anderson | Sep 1960 | A |
2957166 | Gluck | Oct 1960 | A |
2978084 | Vilkaitis | Apr 1961 | A |
2984268 | Vuichard | May 1961 | A |
2991593 | Cohen | Jul 1961 | A |
3005477 | Sherwen | Oct 1961 | A |
3007501 | Mundell et al. | Nov 1961 | A |
3011610 | Stiebel et al. | Dec 1961 | A |
3035995 | Seeley et al | May 1962 | A |
3047116 | Stiebel et al. | Jul 1962 | A |
3129731 | Tyrrell | Apr 1964 | A |
3163732 | Abbott et al. | Dec 1964 | A |
3184001 | Reinsch et al. | May 1965 | A |
3186256 | Reznick | Jun 1965 | A |
3207273 | Jurin | Sep 1965 | A |
3213731 | Renard | Oct 1965 | A |
3224474 | Bloom | Dec 1965 | A |
3246205 | Miller | Apr 1966 | A |
3274876 | Debus | Sep 1966 | A |
3276497 | Heer | Oct 1966 | A |
3313185 | Drake et al | Apr 1967 | A |
3323814 | Phillips | Jun 1967 | A |
3337008 | Trachte | Aug 1967 | A |
3368596 | Comer | Feb 1968 | A |
3386322 | Stone et al. | Jun 1968 | A |
3439183 | Hurst, Jr | Apr 1969 | A |
3445835 | Fudaley | May 1969 | A |
3454286 | Anderson et al. | Jul 1969 | A |
3456696 | Gregory et al. | Jul 1969 | A |
3512440 | Frydmann | May 1970 | A |
3540338 | McEwan et al. | Nov 1970 | A |
3554067 | Scutella | Jan 1971 | A |
3566934 | Thrasher | Mar 1971 | A |
3566996 | Crossman | Mar 1971 | A |
3580376 | Loshbough | May 1971 | A |
3581784 | Warrick | Jun 1971 | A |
3593266 | Van Sickle | Jul 1971 | A |
3613748 | De Pue | Oct 1971 | A |
3621894 | Niksich | Nov 1971 | A |
3648126 | Boos et al. | Mar 1972 | A |
3675444 | Whipple | Jul 1972 | A |
3680609 | Menge | Aug 1972 | A |
3688815 | Ridenour | Sep 1972 | A |
3695116 | Baur | Oct 1972 | A |
3696844 | Bernatschek | Oct 1972 | A |
3716113 | Kobayashi et al. | Feb 1973 | A |
3719103 | Streander | Mar 1973 | A |
3740000 | Takada | Jun 1973 | A |
3745546 | Struger et al. | Jul 1973 | A |
3749933 | Davidson | Jul 1973 | A |
3772590 | Mikulecky et al. | Nov 1973 | A |
3785230 | Lokey | Jan 1974 | A |
3793915 | Hujer | Feb 1974 | A |
3829850 | Guetersloh | Aug 1974 | A |
3829970 | Anderson | Aug 1974 | A |
3858095 | Friemann et al. | Dec 1974 | A |
3861016 | Johnson et al. | Jan 1975 | A |
3863208 | Balban | Jan 1975 | A |
3874747 | Case et al. | Apr 1975 | A |
3882744 | McCarroll | May 1975 | A |
3886413 | Dow et al. | May 1975 | A |
3905263 | Smith | Sep 1975 | A |
3922785 | Fushiya | Dec 1975 | A |
3924688 | Cooper et al. | Dec 1975 | A |
3931727 | Luenser | Jan 1976 | A |
3935777 | Bassett | Feb 1976 | A |
3945286 | Smith | Mar 1976 | A |
3946631 | Malm | Mar 1976 | A |
3947734 | Fyler | Mar 1976 | A |
3953770 | Hayashi | Apr 1976 | A |
3960310 | Nussbaum | Jun 1976 | A |
3967161 | Lichtblau | Jun 1976 | A |
3970178 | Densow | Jul 1976 | A |
3974565 | Ellis | Aug 1976 | A |
3975600 | Marston | Aug 1976 | A |
3978624 | Merkel et al. | Sep 1976 | A |
3994192 | Faig | Nov 1976 | A |
4007679 | Edwards | Feb 1977 | A |
4016490 | Weckenmann et al. | Apr 1977 | A |
4026177 | Lokey | May 1977 | A |
4029159 | Nymann | Jun 1977 | A |
4047156 | Atkins | Sep 1977 | A |
4060160 | Lieber | Nov 1977 | A |
4063777 | Takada | Dec 1977 | A |
4070940 | McDaniel et al. | Jan 1978 | A |
4075961 | Harris | Feb 1978 | A |
4077161 | Wyle et al. | Mar 1978 | A |
4085303 | McIntyre et al. | Apr 1978 | A |
4090345 | Harkness | May 1978 | A |
4091698 | Obear et al. | May 1978 | A |
4106378 | Kaiser | Aug 1978 | A |
4117752 | Yoneda | Oct 1978 | A |
4138905 | Konishi | Feb 1979 | A |
4145940 | Woloveke et al. | Mar 1979 | A |
4152833 | Phillips | May 1979 | A |
4161649 | Klos et al. | Jul 1979 | A |
4175452 | Idel | Nov 1979 | A |
4184394 | Gjerde | Jan 1980 | A |
4190000 | Shaull et al. | Feb 1980 | A |
4195722 | Anderson et al. | Apr 1980 | A |
4199930 | Lebet et al. | Apr 1980 | A |
4200002 | Takahashi | Apr 1980 | A |
4206666 | Ashton | Jun 1980 | A |
4206910 | Biesemeyer | Jun 1980 | A |
4249117 | Leukhardt et al. | Feb 1981 | A |
4249442 | Fittery | Feb 1981 | A |
4251599 | McCormick | Feb 1981 | A |
4255995 | Connor | Mar 1981 | A |
4262278 | Howard et al. | Apr 1981 | A |
4267914 | Saar | May 1981 | A |
4270427 | Colberg et al. | Jun 1981 | A |
4276459 | Willett et al. | Jun 1981 | A |
4276799 | Muehling | Jul 1981 | A |
4288048 | Sieben | Sep 1981 | A |
4291794 | Bauer | Sep 1981 | A |
4302879 | Murray | Dec 1981 | A |
4305442 | Currie | Dec 1981 | A |
4319146 | Wires, Sr. | Mar 1982 | A |
4321841 | Felix | Mar 1982 | A |
4334450 | Benuzzi | Jun 1982 | A |
4370810 | Schurr et al. | Feb 1983 | A |
4372202 | Cameron | Feb 1983 | A |
4374552 | Dayen | Feb 1983 | A |
4385539 | Meyerhoefer et al. | May 1983 | A |
4391358 | Haeger | Jul 1983 | A |
4427042 | Mitchell et al. | Jan 1984 | A |
4466170 | Davis | Aug 1984 | A |
4466233 | Thesman | Aug 1984 | A |
4470046 | Betsill | Sep 1984 | A |
4492291 | Chometon et al. | Jan 1985 | A |
4503739 | Konieczka | Mar 1985 | A |
4510489 | Anderson, III et al. | Apr 1985 | A |
4512224 | Terauchi | Apr 1985 | A |
4518043 | Anderson et al. | May 1985 | A |
4532501 | Hoffman | Jul 1985 | A |
4532844 | Chang et al. | Aug 1985 | A |
4559858 | Laskowski et al. | Dec 1985 | A |
4560033 | DeWoody et al. | Dec 1985 | A |
4566512 | Wilson | Jan 1986 | A |
4573556 | Andreasson | Mar 1986 | A |
4589047 | Gaus et al. | May 1986 | A |
4589860 | Brandenstein et al. | May 1986 | A |
4599597 | Rotbart | Jul 1986 | A |
4599927 | Eccardt et al. | Jul 1986 | A |
4606251 | Boileau | Aug 1986 | A |
4617544 | Mooz et al. | Oct 1986 | A |
4621300 | Summerer | Nov 1986 | A |
4625406 | Fushiya et al. | Dec 1986 | A |
4635364 | Noll et al. | Jan 1987 | A |
4637188 | Crothers | Jan 1987 | A |
4637289 | Ramsden | Jan 1987 | A |
4638393 | Oishi et al. | Jan 1987 | A |
4653189 | Andreasson | Mar 1987 | A |
4657428 | Wiley | Apr 1987 | A |
4661797 | Schmall | Apr 1987 | A |
4672500 | Tholome et al. | Jun 1987 | A |
4675664 | Cloutier et al. | Jun 1987 | A |
4679719 | Kramer | Jul 1987 | A |
4683660 | Schurr | Aug 1987 | A |
4694721 | Brickner, Jr. | Sep 1987 | A |
4718229 | Riley | Jan 1988 | A |
4721023 | Bartlett et al. | Jan 1988 | A |
4722021 | Hornung et al. | Jan 1988 | A |
4751603 | Kwan | Jun 1988 | A |
4756220 | Olsen et al. | Jul 1988 | A |
4757881 | Jonsson et al. | Jul 1988 | A |
4774866 | Dehari et al. | Oct 1988 | A |
4792965 | Morgan | Dec 1988 | A |
4805504 | Fushiya et al. | Feb 1989 | A |
4805505 | Cantlin | Feb 1989 | A |
4819501 | Kraus et al. | Apr 1989 | A |
4831279 | Ingraham | May 1989 | A |
4840135 | Yamauchi | Jun 1989 | A |
4845476 | Rangeard et al. | Jul 1989 | A |
4864455 | Shimomura et al. | Sep 1989 | A |
4888869 | Leatherman | Dec 1989 | A |
4896607 | Hall et al. | Jan 1990 | A |
4906962 | Duimstra | Mar 1990 | A |
4907679 | Menke | Mar 1990 | A |
4934233 | Brundage et al. | Jun 1990 | A |
4936876 | Reyes | Jun 1990 | A |
4937554 | Herman | Jun 1990 | A |
4962685 | Hagstrom | Oct 1990 | A |
4964450 | Hughes et al. | Oct 1990 | A |
4965909 | McCullough et al. | Oct 1990 | A |
4969063 | Scott et al. | Nov 1990 | A |
4975798 | Edwards et al. | Dec 1990 | A |
5020406 | Sasaki et al. | Jun 1991 | A |
5025175 | Dubois, III | Jun 1991 | A |
5042348 | Brundage et al. | Aug 1991 | A |
5046426 | Julien et al. | Sep 1991 | A |
5052255 | Gaines | Oct 1991 | A |
5067366 | Gandiglio | Nov 1991 | A |
5074047 | King | Dec 1991 | A |
5081406 | Hughes et al. | Jan 1992 | A |
5082316 | Wardlaw | Jan 1992 | A |
5083973 | Townsend | Jan 1992 | A |
5086890 | Turczyn et al. | Feb 1992 | A |
5094000 | Becht et al. | Mar 1992 | A |
5116249 | Shiotani et al. | May 1992 | A |
5119555 | Johnson | Jun 1992 | A |
5122091 | Townsend | Jun 1992 | A |
5123317 | Barnes, Jr. et al. | Jun 1992 | A |
5125160 | Gassen | Jun 1992 | A |
5146714 | Liiber | Sep 1992 | A |
5156508 | Grisley | Oct 1992 | A |
5184403 | Schliemann | Feb 1993 | A |
5184534 | Lee | Feb 1993 | A |
5198702 | McCullough et al. | Mar 1993 | A |
5199343 | OBanion | Apr 1993 | A |
5201110 | Bane | Apr 1993 | A |
5201684 | DeBois, III | Apr 1993 | A |
5201863 | Peot | Apr 1993 | A |
5206625 | Davis | Apr 1993 | A |
5207253 | Hoshino et al. | May 1993 | A |
5212621 | Panter | May 1993 | A |
5218189 | Hutchison | Jun 1993 | A |
5230269 | Shiotani et al. | Jul 1993 | A |
5231359 | Masuda et al. | Jul 1993 | A |
5231906 | Kogej | Aug 1993 | A |
5239978 | Plangetis | Aug 1993 | A |
5245879 | McKeon | Sep 1993 | A |
5257570 | Shiotani et al. | Nov 1993 | A |
5265510 | Hoyer-Ellefsen | Nov 1993 | A |
5272946 | McCullough et al. | Dec 1993 | A |
5276431 | Piccoli et al. | Jan 1994 | A |
5285708 | Bosten et al. | Feb 1994 | A |
5293802 | Shiotani et al. | Mar 1994 | A |
5320382 | Goldstein et al. | Jun 1994 | A |
5321230 | Shanklin et al. | Jun 1994 | A |
5331875 | Mayfield | Jul 1994 | A |
5353670 | Metzger, Jr. | Oct 1994 | A |
5377554 | Reulein et al. | Jan 1995 | A |
5377571 | Josephs | Jan 1995 | A |
5392568 | Howard, Jr. et al. | Feb 1995 | A |
5392678 | Sasaki et al. | Feb 1995 | A |
5401928 | Kelley | Mar 1995 | A |
5411221 | Collins et al. | May 1995 | A |
5423232 | Miller et al. | Jun 1995 | A |
5436613 | Ghosh et al. | Jul 1995 | A |
5447085 | Gochnauer | Sep 1995 | A |
5451750 | An | Sep 1995 | A |
5453903 | Chow | Sep 1995 | A |
5471888 | McCormick | Dec 1995 | A |
5480009 | Wieland et al. | Jan 1996 | A |
5503059 | Pacholok | Apr 1996 | A |
5510587 | Reiter | Apr 1996 | A |
5510685 | Grasselli | Apr 1996 | A |
5531147 | Serban | Jul 1996 | A |
5534836 | Schenkel et al. | Jul 1996 | A |
5592353 | Shinohara et al. | Jan 1997 | A |
5606889 | Bielinski et al. | Mar 1997 | A |
5619896 | Chen | Apr 1997 | A |
5623860 | Schoene et al. | Apr 1997 | A |
5647258 | Brazell et al. | Jul 1997 | A |
5648644 | Nagel | Jul 1997 | A |
5659454 | Vermesse | Aug 1997 | A |
5667152 | Mooring | Sep 1997 | A |
5671633 | Wagner | Sep 1997 | A |
5695306 | Nygren, Jr. | Dec 1997 | A |
5700165 | Harris et al. | Dec 1997 | A |
5720213 | Sberveglieri | Feb 1998 | A |
5722308 | Ceroll et al. | Mar 1998 | A |
5724875 | Meredith et al. | Mar 1998 | A |
5730165 | Philipp | Mar 1998 | A |
5741048 | Eccleston | Apr 1998 | A |
5755148 | Stumpf et al. | May 1998 | A |
5768786 | Kane et al. | Jun 1998 | A |
5771742 | Bokaie et al. | Jun 1998 | A |
5782001 | Gray | Jul 1998 | A |
5787779 | Garuglieri | Aug 1998 | A |
5791057 | Nakamura et al. | Aug 1998 | A |
5791223 | Lanzer | Aug 1998 | A |
5791224 | Suzuki et al. | Aug 1998 | A |
5791441 | Matos et al. | Aug 1998 | A |
5797307 | Horton | Aug 1998 | A |
5819619 | Miller et al. | Oct 1998 | A |
5819625 | Sberveglieri | Oct 1998 | A |
5852951 | Santi | Dec 1998 | A |
5857507 | Puzio et al. | Jan 1999 | A |
5861809 | Eckstein et al. | Jan 1999 | A |
5875698 | Ceroll et al. | Mar 1999 | A |
5880954 | Thomson et al. | Mar 1999 | A |
5921367 | Kashioka et al. | Jul 1999 | A |
5927857 | Ceroll et al. | Jul 1999 | A |
5930096 | Kim | Jul 1999 | A |
5937720 | Itzov | Aug 1999 | A |
5942975 | Sorensen | Aug 1999 | A |
5943932 | Sberveglieri | Aug 1999 | A |
5950514 | Benedict et al. | Sep 1999 | A |
5963173 | Lian et al. | Oct 1999 | A |
5974927 | Tsune | Nov 1999 | A |
6009782 | Tajima et al. | Jan 2000 | A |
6018284 | Rival et al. | Jan 2000 | A |
6037729 | Woods et al. | Mar 2000 | A |
6052884 | Steckler et al. | Apr 2000 | A |
6062121 | Ceroll et al. | May 2000 | A |
6070484 | Sakamaki | Jun 2000 | A |
6095092 | Chou | Aug 2000 | A |
6109157 | Talesky | Aug 2000 | A |
6112785 | Yu | Sep 2000 | A |
6119984 | Devine | Sep 2000 | A |
6133818 | Hsieh et al. | Oct 2000 | A |
6141192 | Garzon | Oct 2000 | A |
6148504 | Schmidt et al. | Nov 2000 | A |
6148526 | Kirn et al. | Nov 2000 | A |
6148703 | Ceroll et al. | Nov 2000 | A |
6150826 | Hokodate et al. | Nov 2000 | A |
6161459 | Ceroll et al. | Dec 2000 | A |
6244149 | Ceroll et al. | Jun 2001 | B1 |
6250190 | Ceroll et al. | Jun 2001 | B1 |
6257061 | Nonoyama et al. | Jul 2001 | B1 |
6283002 | Chiang | Sep 2001 | B1 |
6295910 | Childs et al. | Oct 2001 | B1 |
6312028 | Wilkosz | Nov 2001 | B1 |
6325195 | Doherty | Dec 2001 | B1 |
6330848 | Nishio et al. | Dec 2001 | B1 |
6336273 | Nilsson et al. | Jan 2002 | B1 |
6352137 | Stegall et al. | Mar 2002 | B1 |
6357328 | Ceroll et al. | Mar 2002 | B1 |
6361092 | Eagle et al. | Mar 2002 | B1 |
6366099 | Reddi | Apr 2002 | B1 |
6376939 | Suzuki et al. | Apr 2002 | B1 |
6404098 | Kayama et al. | Jun 2002 | B1 |
6418829 | Pilchowski | Jul 2002 | B1 |
6420814 | Bobbio | Jul 2002 | B1 |
6427570 | Miller et al. | Aug 2002 | B1 |
6430007 | Jabbari | Aug 2002 | B1 |
6431425 | Moorman et al. | Aug 2002 | B1 |
6450077 | Ceroll et al. | Sep 2002 | B1 |
6453786 | Ceroll et al. | Sep 2002 | B1 |
6460442 | Talesky et al. | Oct 2002 | B2 |
6471106 | Reining | Oct 2002 | B1 |
6479958 | Thompson et al. | Nov 2002 | B1 |
6484614 | Huang | Nov 2002 | B1 |
D466913 | Ceroll et al. | Dec 2002 | S |
6492802 | Bielski | Dec 2002 | B1 |
D469354 | Curtsinger | Jan 2003 | S |
6530303 | Parks et al. | Mar 2003 | B1 |
6536536 | Gass et al. | Mar 2003 | B1 |
6543324 | Dils | Apr 2003 | B2 |
6546835 | Wang | Apr 2003 | B2 |
6564909 | Razzano | May 2003 | B1 |
6575067 | Parks et al. | Jun 2003 | B2 |
6578856 | Kahle | Jun 2003 | B2 |
6581655 | Huang | Jun 2003 | B2 |
6595096 | Ceroll et al. | Jul 2003 | B2 |
D478917 | Ceroll et al. | Aug 2003 | S |
6601493 | Crofutt | Aug 2003 | B1 |
6607015 | Chen | Aug 2003 | B1 |
D479538 | Welsh et al. | Sep 2003 | S |
6617720 | Egan, III et al. | Sep 2003 | B1 |
6619348 | Wang | Sep 2003 | B2 |
6640683 | Lee | Nov 2003 | B2 |
6644157 | Huang | Nov 2003 | B2 |
6647847 | Hewitt et al. | Nov 2003 | B2 |
6659233 | DeVlieg | Dec 2003 | B2 |
6684750 | Yu | Feb 2004 | B2 |
6722242 | Chuang | Apr 2004 | B2 |
6734581 | Griffis | May 2004 | B1 |
6736042 | Behne et al. | May 2004 | B2 |
6742430 | Chen | Jun 2004 | B2 |
6796208 | Jorgensen | Sep 2004 | B1 |
6800819 | Sato et al. | Oct 2004 | B2 |
6826988 | Gass et al. | Dec 2004 | B2 |
6826992 | Huang | Dec 2004 | B1 |
6840144 | Huang | Jan 2005 | B2 |
6854371 | Yu | Feb 2005 | B2 |
6857345 | Gass et al. | Feb 2005 | B2 |
6874397 | Chang | Apr 2005 | B2 |
6874399 | Lee | Apr 2005 | B2 |
6880440 | Gass et al. | Apr 2005 | B2 |
6889585 | Harris et al. | May 2005 | B1 |
6920814 | Gass et al. | Jul 2005 | B2 |
6922153 | Pierga et al. | Jul 2005 | B2 |
6945148 | Gass et al. | Sep 2005 | B2 |
6945149 | Gass et al. | Sep 2005 | B2 |
6957601 | Gass et al. | Oct 2005 | B2 |
6968767 | Yu | Nov 2005 | B2 |
6986370 | Schoene et al. | Jan 2006 | B1 |
6994004 | Gass et al. | Feb 2006 | B2 |
6997090 | Gass et al. | Feb 2006 | B2 |
7000514 | Gass et al. | Feb 2006 | B2 |
7024975 | Gass et al. | Apr 2006 | B2 |
7098800 | Gass | Aug 2006 | B2 |
7137326 | Gass et al. | Nov 2006 | B2 |
7171879 | Gass et al. | Feb 2007 | B2 |
7197969 | Gass et al. | Apr 2007 | B2 |
7210383 | Gass et al | May 2007 | B2 |
7225712 | Gass et al. | Jun 2007 | B2 |
7228772 | Gass | Jun 2007 | B2 |
7231856 | Gass et al. | Jun 2007 | B2 |
20010032534 | Cerroll et al. | Oct 2001 | A1 |
20020020262 | Gass et al. | Feb 2002 | A1 |
20020020263 | Gass et al. | Feb 2002 | A1 |
20020043776 | Chuang | Apr 2002 | A1 |
20020050201 | Lane et al. | May 2002 | A1 |
20020050714 | Imai et al. | May 2002 | A1 |
20020096591 | Tanji | Jul 2002 | A1 |
20020109036 | Denen et al. | Aug 2002 | A1 |
20020170400 | Gass | Nov 2002 | A1 |
20030000359 | Eccardt et al. | Jan 2003 | A1 |
20030037651 | Gass et al. | Feb 2003 | A1 |
20030037655 | Chin-Chin | Feb 2003 | A1 |
20030074873 | Freiberg et al. | Apr 2003 | A1 |
20030089212 | Parks et al. | May 2003 | A1 |
20030109798 | Kermani | Jun 2003 | A1 |
20040011177 | Huang | Jan 2004 | A1 |
20040060404 | Metzger, Jr. | Apr 2004 | A1 |
20040103544 | Hartmann | Jun 2004 | A1 |
20040104085 | Lang et al. | Jun 2004 | A1 |
20040118261 | Garcia et al. | Jun 2004 | A1 |
20040159198 | Peot et al. | Aug 2004 | A1 |
20040194594 | Dils et al. | Oct 2004 | A1 |
20040200329 | Sako | Oct 2004 | A1 |
20040226424 | O'Banion et al. | Nov 2004 | A1 |
20040226800 | Pierga et al. | Nov 2004 | A1 |
20040255745 | Peot et al. | Dec 2004 | A1 |
20050057206 | Uneyama | Mar 2005 | A1 |
20050087049 | Miller | Apr 2005 | A1 |
20050092149 | Hartmann | May 2005 | A1 |
20050139051 | Gass et al. | Jun 2005 | A1 |
20050139056 | Gass et al. | Jun 2005 | A1 |
20050139057 | Gass et al. | Jun 2005 | A1 |
20050139058 | Gass et al. | Jun 2005 | A1 |
20050139459 | Gass et al. | Jun 2005 | A1 |
20050145080 | Voigtlaender | Jul 2005 | A1 |
20050155473 | Gass | Jul 2005 | A1 |
20050166736 | Gass et al. | Aug 2005 | A1 |
20050178259 | Gass et al. | Aug 2005 | A1 |
20050204885 | Gass et al. | Sep 2005 | A1 |
20050211034 | Sasaki et al. | Sep 2005 | A1 |
20050235793 | O'Banion et al. | Oct 2005 | A1 |
20050268767 | Pierga et al. | Dec 2005 | A1 |
20050274432 | Gass et al. | Dec 2005 | A1 |
20060000337 | Gass | Jan 2006 | A1 |
20060032352 | Gass et al. | Feb 2006 | A1 |
20060123960 | Gass et al. | Jun 2006 | A1 |
20060123964 | Gass et al. | Jun 2006 | A1 |
20060179983 | Gass et al. | Aug 2006 | A1 |
20060219076 | Gass et al. | Oct 2006 | A1 |
20060225551 | Gass | Oct 2006 | A1 |
20060230896 | Gass | Oct 2006 | A1 |
20060247795 | Gass et al. | Nov 2006 | A1 |
20060254401 | Gass et al. | Nov 2006 | A1 |
20060272463 | Gass | Dec 2006 | A1 |
20070028733 | Gass | Feb 2007 | A1 |
20070101842 | Gass | May 2007 | A1 |
20070131071 | Gass et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
2140991 | Jan 1995 | CA |
297525 | Jun 1954 | CH |
76186 | Aug 1921 | DE |
2917497 | Apr 1979 | DE |
2800403 | Jul 1979 | DE |
3427733 | Jan 1986 | DE |
4205965 | Feb 1992 | DE |
4235161 | May 1993 | DE |
4326313 | Feb 1995 | DE |
19609771 | Jun 1998 | DE |
20102704 | Feb 2001 | DE |
146460 | Nov 1988 | EP |
0362937 | Apr 1990 | EP |
2152184 | Jan 2001 | ES |
2556643 | Jun 1985 | FR |
2570017 | Mar 1986 | FR |
598204 | Feb 1948 | GB |
1132708 | Nov 1968 | GB |
2096844 | Oct 1982 | GB |
2142571 | Jan 1985 | GB |
06328359 | Nov 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20020020261 A1 | Feb 2002 | US |
Number | Date | Country | |
---|---|---|---|
60225056 | Aug 2000 | US | |
60225057 | Aug 2000 | US | |
60225058 | Aug 2000 | US | |
60225059 | Aug 2000 | US | |
60225089 | Aug 2000 | US | |
60225094 | Aug 2000 | US | |
60225169 | Aug 2000 | US | |
60225170 | Aug 2000 | US | |
60225200 | Aug 2000 | US | |
60225201 | Aug 2000 | US | |
60225206 | Aug 2000 | US | |
60225210 | Aug 2000 | US | |
60225211 | Aug 2000 | US | |
60225212 | Aug 2000 | US |