Replaceable brake mechanism for power equipment

Information

  • Patent Grant
  • 7610836
  • Patent Number
    7,610,836
  • Date Filed
    Monday, August 13, 2001
    23 years ago
  • Date Issued
    Tuesday, November 3, 2009
    15 years ago
Abstract
Woodworking machines are disclosed having cutting tools adapted to cut workpieces. The machines include a safety system adapted to detect one or more dangerous conditions between a person and the cutting tool, and to stop movement of the cutting tool upon detection of the dangerous condition. At least part of the safety system is housed in a removable cartridge.
Description
FIELD

The present invention relates to safety systems for power equipment, and more particularly to a replaceable brake mechanism for use in woodworking equipment and other power equipment.


BACKGROUND

Safety systems are often employed with power equipment such as table saws, miter saws, band saws, jointers, shapers, circular saws and other woodworking machinery, to minimize the risk of injury when using the equipment. Probably the most common safety feature is a guard that physically blocks an operator from making contact with dangerous components of machinery, such as belts, shafts or blades. In many cases, guards effectively reduce the risk of injury, however, there are many instances where the nature of the operations to be performed precludes using a guard that completely blocks access to hazardous machine parts.


The present invention discloses safety systems for use on power equipment. The disclosed safety systems include a replaceable brake mechanism adapted to engage a blade or other cutting tool to protect the user against serious injury if a dangerous, or triggering, condition occurs. The brake mechanism includes a one or more cartridges that may be selectively removed and replaced from the power equipment, such as after use and/or to adapt the brake mechanism for a particular use.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic block diagram of a machine with a fast-acting safety system according to the present invention.



FIG. 2 is a schematic diagram of an exemplary safety system in the context of a machine having a circular blade.



FIG. 3 is a fragmentary side elevation view of a safety system having a replaceable brake mechanism housed in a cartridge.



FIG. 4 is a side elevation view of the interior of another cartridge according to the present invention.



FIG. 5 is an isometric view of the cartridge of FIG. 4.



FIG. 6 is a side elevation view of the cartridge of FIG. 4 with the pawl in its blade-engaging position.



FIG. 7 is a side-elevation view of another cartridge according to the present invention.



FIG. 8 is an isometric view of the interior of another cartridge according to the present invention.



FIG. 9 is an isometric view of a variation of the cartridge of FIG. 8.



FIG. 10 is an isometric view showing the cartridge of FIG. 9 installed in a machine.



FIG. 11 is a fragmentary side elevation view of another cartridge according to the present invention.



FIG. 12 is a fragmentary side elevation view of another cartridge according to the present invention.





DETAILED DESCRIPTION

A machine is shown schematically in FIG. 1 and indicated generally at 10. Machine 10 may be any of a variety of different machines adapted for cutting workpieces, such as wood, including a table saw, miter saw (chop saw), radial arm saw, circular saw, band saw, jointer, planer, etc. Machine 10 includes an operative structure 12 having a cutting tool 14 and a motor assembly 16 adapted to drive the cutting tool. Machine 10 also includes a safety system 18 configured to minimize the potential of a serious injury to a person using machine 10. Safety system 18 is adapted to detect the occurrence of one or more dangerous, or triggering, conditions during use of machine 10. If such a dangerous condition is detected, safety system 18 is adapted to engage operative structure 12 to limit any injury to the user caused by the dangerous condition.


Machine 10 also includes a suitable power source 20 to provide power to operative structure 12 and safety system 18. Power source 20 may be an external power source such as line current, or an internal power source such as a battery. Alternatively, power source 20 may include a combination of both external and internal power sources. Furthermore, power source 20 may include two or more separate power sources, each adapted to power different portions of machine 10.


It will be appreciated that operative structure 12 may take any one of many different forms, depending on the type of machine 10. For example, operative structure 12 may include a stationary housing configured to support motor assembly 16 in driving engagement with cutting tool 14. Alternatively, operative structure 12 may include a movable structure configured to carry cutting tool 14 between multiple operating positions. As a further alternative, operative structure 12 may include one or more transport mechanisms adapted to convey a workpiece toward and/or away from cutting tool 14.


Motor assembly 16 includes one or more motors adapted to drive cutting tool 14. The motors may be either directly or indirectly coupled to the cutting tool, and may also be adapted to drive workpiece transport mechanisms. Cutting tool 14 typically includes one or more blades or other suitable cutting implements that are adapted to cut or remove portions from the workpieces. The particular form of cutting tool 14 will vary depending upon the various embodiments of machine 10. For example, in table saws, miter saws, circular saws and radial arm saws, cutting tool 14 will typically include one or more circular rotating blades having a plurality of teeth disposed along the perimetrical edge of the blade. For a jointer or planer, the cutting tool typically includes a plurality of radially spaced-apart blades. For a band saw, the cutting tool includes an elongate, circuitous tooth-edged band.


Safety system 18 includes a detection subsystem 22, a reaction subsystem 24 and a control subsystem 26. Control subsystem 26 may be adapted to receive inputs from a variety of sources including detection subsystem 22, reaction subsystem 24, operative structure 12 and motor assembly 16. The control subsystem may also include one or more sensors adapted to monitor selected parameters of machine 10. In addition, control subsystem 26 typically includes one or more instruments operable by a user to control the machine. The control subsystem is configured to control machine 10 in response to the inputs it receives.


Detection subsystem 22 is configured to detect one or more dangerous, or triggering, conditions during use of machine 10. For example, the detection subsystem may be configured to detect that a portion of the user's body is dangerously close to, or in contact with, a portion of cutting tool 14. As another example, the detection subsystem may be configured to detect the rapid movement of a workpiece due to kickback by the cutting tool, as is described in U.S. Provisional Patent Application Ser. No. 60/182,866, the disclosure of which is herein incorporated by reference. In some embodiments, detection subsystem 22 may inform control subsystem 26 of the dangerous condition, which then activates reaction subsystem 24. In other embodiments, the detection subsystem may be adapted to activate the reaction subsystem directly.


Once activated in response to a dangerous condition, reaction subsystem 24 is configured to engage operative structure 12 quickly to prevent serious injury to the user. It will be appreciated that the particular action to be taken by reaction subsystem 24 will vary depending on the type of machine 10 and/or the dangerous condition that is detected. For example, reaction subsystem 24 may be configured to do one or more of the following: stop the movement of cutting tool 14, disconnect motor assembly 16 from power source 20, place a barrier between the cutting tool and the user, or retract the cutting tool from its operating position, etc. The reaction subsystem may be configured to take a combination of steps to protect the user from serious injury. Placement of a barrier between the cutting tool and teeth is described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,206, entitled “Cutting Tool Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference. Retraction of the cutting tool from its operating position is described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,089, entitled “Retraction System For Use In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference.


The configuration of reaction subsystem 24 typically will vary depending on which action(s) are taken. In the exemplary embodiment depicted in FIG. 1, reaction subsystem 24 is configured to stop the movement of cutting tool 14 and includes a brake mechanism 28, a biasing mechanism 30, a restraining mechanism 32, and a release mechanism 34. Brake mechanism 28 is adapted to engage operative structure 12 under the urging of biasing mechanism 30. During normal operation of machine 10, restraining mechanism 32 holds the brake mechanism out of engagement with the operative structure. However, upon receipt of an activation signal by reaction subsystem 24, the brake mechanism is released from the restraining mechanism by release mechanism 34, whereupon, the brake mechanism quickly engages at least a portion of the operative structure to bring the cutting tool to a stop.


It will be appreciated by those of skill in the art that the exemplary embodiment depicted in FIG. 1 and described above may be implemented in a variety of ways depending on the type and configuration of operative structure 12. Turning attention to FIG. 2, one example of the many possible implementations of safety system 18 is shown. System 18 is configured to engage an operative structure having a cutting tool in the form of a circular blade 40 mounted on a rotating shaft or arbor 42. Blade 40 includes a plurality of cutting teeth (not shown) disposed around the outer edge of the blade. As described in more detail below, braking mechanism 28 is adapted to engage the teeth of blade 40 and stop the rotation of the blade. U.S. Provisional Patent Application Ser. No. 60/225,210, entitled “Translation Stop For Use In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference, describes other systems for stopping the movement of the cutting tool. U.S. Provisional Patent Application Ser. No. 60/225,058, entitled “Table Saw With Improved Safety System,” filed Aug. 14, 2000 by SD3, LLC and U.S. Provisional Patent Application Ser. No. 60/225,057, entitled “Miter Saw With Improved Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference, describe safety system 18 in the context of particular types of machines 10.


In the exemplary implementation, detection subsystem 22 is adapted to detect the dangerous condition of the user coming into contact with blade 40. The detection subsystem includes a sensor assembly, such as contact detection plates 44 and 46, capacitively coupled to blade 40 to detect any contact between the user's body and the blade. Typically, the blade, or some larger portion of cutting tool 14 is electrically isolated from the remainder of machine 10. Alternatively, detection subsystem 22 may include a different sensor assembly configured to detect contact in other ways, such as optically, resistively, etc. In any event, the detection subsystem is adapted to transmit a signal to control subsystem 26 when contact between the user and the blade is detected. Various exemplary embodiments and implementations of detection subsystem 22 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,200, entitled “Contact Detection System For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC and U.S. Provisional Patent Application Ser. No. 60/225,211, entitled “Apparatus And Method For Detecting Dangerous Conditions In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.


Control subsystem 26 includes one or more instruments 48 that are operable by a user to control the motion of blade 40. Instruments 48 may include start/stop switches, speed controls, direction controls, etc. Control subsystem 26 also includes a logic controller 50 connected to receive the user's inputs via instruments 48. Logic controller 50 is also connected to receive a contact detection signal from detection subsystem 22. Further, the logic controller may be configured to receive inputs from other sources (not shown) such as blade motion sensors, workpiece sensors, etc. In any event, the logic controller is configured to control operative structure 12 in response to the user's inputs through instruments 48. However, upon receipt of a contact detection signal from detection subsystem 22, the logic controller overrides the control inputs from the user and activates reaction subsystem 24 to stop the motion of the blade. Various exemplary embodiments and implementations of control subsystem 26 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,059, entitled “Logic Control For Fast Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC and U.S. Provisional Patent Application Ser. No. 60/225,094, entitled “Motion Detecting System For Use In Safety System For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.


In the exemplary implementation, brake mechanism 28 includes a pawl 60 mounted adjacent the edge of blade 40 and selectively moveable to engage and grip the teeth of the blade. Pawl 60 may be constructed of any suitable material adapted to engage and stop the blade. As one example, the pawl may be constructed of a relatively high strength thermoplastic material such as polycarbonate, ultrahigh molecular weight polyethylene (UHMW) or Acrylonitrile Butadiene Styrene (ABS), etc., or a metal such as aluminum, etc. It will be appreciated that the construction of pawl 60 will vary depending on the configuration of blade 40. In any event, the pawl is urged into the blade by a biasing mechanism in the form of a spring 66. In the illustrative embodiment shown in FIG. 2, pawl 60 is pivoted into the teeth of blade 40. It should be understood that sliding or rotary movement of pawl 60 may also be used. The spring is adapted to urge pawl 60 into the teeth of the blade with sufficient force to grip the blade and quickly bring it to a stop.


The pawl is held away from the edge of the blade by a restraining mechanism in the form of a fusible member 70. The fusible member is constructed of a suitable material adapted to restrain the pawl against the bias of spring 66, and also adapted to melt under a determined electrical current density. Examples of suitable materials for fusible member 70 include NiChrome wire, stainless steel wire, etc. The fusible member is connected between the pawl and a contact mount 72. Preferably, fusible member 70 holds the pawl relatively close to the edge of the blade to reduce the distance the pawl must travel to engage the blade. Positioning the pawl relatively close to the edge of the blade reduces the time required for the pawl to engage and stop the blade. Typically, the pawl is held approximately 1/32-inch to ¼-inch from the edge of the blade by fusible member 70, however other pawl-to-blade spacings may also be used within the scope of the invention.


Pawl 60 is released from its unactuated, or cocked, position to engage blade 40 by a release mechanism in the form of a firing subsystem 76. The firing subsystem is coupled to contact mount 72, and is configured to melt fusible member 70 by passing a surge of electrical current through the fusible member. Firing subsystem 76 is coupled to logic controller 50 and activated by a signal from the logic controller. When the logic controller receives a contact detection signal from detection subsystem 22, the logic controller sends an activation signal to firing subsystem 76, which melts fusible member 70, thereby releasing the pawl to stop the blade. Various exemplary embodiments and implementations of reaction subsystem 24 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,056, entitled “Firing Subsystem For Use In Fast Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC, U.S. Provisional Patent Application Ser. No. 60/225,170, entitled “Spring-Biased Brake Mechanism for Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,169, entitled “Brake Mechanism For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.


It will be appreciated that activation of the brake mechanism will typically require the replacement of one or more portions of safety system 18. For example, pawl 60 and fusible member 70 typically must be replaced before the safety system is ready to be used again. Thus, it may be desirable to construct one or more portions of safety system 18 in a cartridge that can be easily replaced. For example, in the exemplary implementation depicted in FIG. 2, safety system 18 includes a replaceable cartridge 80 having a housing 82. Housing 82 may be formed of any suitable material or combination of materials, such as plastic, fiber-reinforced plastic, metal, etc. Pawl 60, spring 66, fusible member 70 and contact mount 72 are all mounted within housing 82. Alternatively, other portions of safety system 18 may be mounted within the housing. In any event, after the reaction system has been activated, the safety system can be reset by replacing cartridge 80.


In FIG. 2 and the subsequent figures, various embodiments of cartridges 80 are shown and described and include various elements, subelements and possible variations. It should be understood that cartridges according to the present invention may include any one or more of these elements, subelements and variations, regardless of whether those elements, subelements and variations are shown in the same or different figures or descriptions.


Examples of suitable brake mechanisms 28 and biasing mechanisms 30, including suitable pawls 60 that may be used with the cartridges described herein are disclosed in U.S. Provisional Patent Application Ser. No. 60/225,169, entitled “Brake Mechanism For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC and U.S. Provisional Patent Application Ser. No. 60/225,170, entitled “Spring-Biased Brake Mechanism for Power Equipment,” filed Aug. 14, 2000 by SD3, LLC. The disclosures of these provisional applications are hereby incorporated by reference.


Cartridge 80 should include or be in communication with the operative portions of release mechanism 34 that are required to cause restraining mechanism 32 to release pawl 60 to engage the blade or other cutting tool of the machine. For example, in FIG. 2, it can be seen the mounts 72 are in electrical communication with firing subsystem 76. Upon activation of detection subsystem 22, such as upon detection of a dangerous or triggering condition, firing subsystem 76 actuates release mechanism 32, such as by melting fusible member 70 with a surge of current stored by subsystem 76. Examples of suitable restraining mechanisms 32 and firing subsystems 76 for use in cartridges 80 are disclosed in U.S. Provisional Patent Application Ser. No. 60/225,056, entitled “Firing Subsystem for Use in a Fast-Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference. The communication between the firing subsystem and mounts 72 may be by any suitable electrical linkage. Preferably, the electrical connection between mounts 72 and subsystem 76 is automatically established when cartridge 80 is installed within machine 10. For example, housing 82 may include contacts that engage corresponding contacts associated with the firing subsystem when the cartridge is installed in its mounting position within the machine. Alternatively, a plug and socket assembly may be used to electrically interconnect the mounts 72 and firing subsystem 76.


Cartridge 80 is removably installed in machine 10 so that brake mechanism 28, and more particularly pawl 60, is positioned near the blade or other cutting tool of the machine. Cartridge 80 may include a brake positioning system or other suitable mechanism for selectively adjusting the position of the pawl and/or cartridge relative to blade 40. For example, the position of the cartridge relative to the blade or other cutting tool may be adjustable such as by pivoting or sliding the cartridge relative to one or more mounting bolts. In which case, pawl-to-blade spacing may be determined indirectly by measuring the blade-to-cartridge spacing if desired. Alternatively, the cartridge may be stationary and the pawl may be adjustable within the cartridge. As a further alternative, both the cartridge and pawl are adjustable. Examples of suitable brake positioning system are disclosed in U.S. Provisional Patent Application Ser. No. 60/225,212, entitled “Brake Positioning System,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference.


As shown in FIG. 3, machine 10 includes a support structure 702 adapted to receive cartridge 80 and operatively position the cartridge for use in safety system 18. Support structure 702 may extend from or be mounted on any suitable structure forming part of machine 10. When the position of blade 40 is adjustable, it may be preferable for cartridge 80 and/or support structure 702 to move with the blade so that the desired positioning of pawl 60 relative to blade 40 is maintained. Alternatively the cartridge may include a pawl 60 sized to accommodate adjustments to the position of the blade without requiring corresponding adjustments to the cartridge and/or mounting structure.


Examples of suitable support structures include one or more mounting brackets 704 to which the cartridge is attached by any suitable releasable fastening mechanism, such as bolts, pins or screws. Support structure 702 may additionally, or alternatively, include one or more axles 706 upon which the cartridge is mounted. For example, pawl 60 is shown in FIG. 3 pivotally mounted on an axle 706 that passes through pawl 60 and at least a portion of cartridge 80. Also shown in FIG. 3, is mounting bracket 704 that supports and positions cartridge 80 relative to blade 40. Another example of a suitable support structure is a socket or other receiver within machine 10. Typically, cartridge 80 will be supported in sufficient directions and/or positions to retain the cartridge in its intended mounting position and orientation. Cartridge 80 and support structure 702 preferably include key structure 703 that prevents the cartridge from being installed within machine 10 other than in its intended mounting position. An example of a suitable key structure 703 is shown in FIG. 3, in which housing 82 of cartridge 80 includes a bevel 705 that mates with mounting bracket 704. It should be understood that key structure 703 may include any suitable mechanism, including the relative size, shape and positioning of cartridge 80 and support structure 702, that prevents the cartridge from being installed in a position other than its intended mounting position.


Another cartridge according to the present invention is shown in FIG. 4. Similar to the cartridge shown in FIGS. 2 and 3, the cartridge shown in FIG. 4 includes a housing 82, a brake mechanism 28 having a pawl 60, a biasing mechanism 30 such as spring 66, and a restraining mechanism 32 such as fusible member 70. Also shown is another example of a suitable key structure 703, namely, the irregular shape of housing 82 and mounting bracket 704 against which the housing is supported.


As shown, pawl 60 includes an aperture, or bore, 708 through which an axle or pin 706 may extend to support the pawl and cartridge within machine 10. Also shown is an aperture 710 in one or more of the cartridge's side walls 712 through which axle 706 extends. Alternatively, cartridge 80 may be supported by a support structure 702 that does not directly support pawl 60. For example, pawl 60 may pivot about an axle forming part of cartridge 80, which in turn is supported by support structure 702, such as pins, mounting brackets or the like. However, it may be preferable to support pawl 60 with at least one of support structures 702 to increase the supporting force provided other than by cartridge 80. Similarly, this reduces the strength required for cartridge 80 because support structures 702 absorb much of the force imparted on pawl 60 as the pawl engages the blade or other cutting tool of the machine.


Pawl 60 should be retained in its mounting position within cartridge 80 when the cartridge is not installed within the machine. An example of a suitable coupling 714 between the pawl and cartridge is shown in FIG. 5, in which the aperture 710 through cartridge 80 is larger than the corresponding aperture 708 through pawl 60. Pawl 60 includes an outwardly extending bushing, or carrier, 716 that extends at least partially through the sidewalls of the cartridge to position the pawl relative to the cartridge. It should be understood that it is within the scope of the invention that this configuration could be reversed, with pawl 60 having a larger aperture than cartridge 80 and with the cartridge having an inwardly extending bushing or carrier that passes at least partially through the aperture in pawl 60.


Also shown in more detail in FIG. 5 is the cartridge's opening 718 through which at least a portion of pawl 60 projects upon release of restraining mechanism 32. Although pawl 60 is shown completely within housing 82 in FIG. 5, it should be understood that at least a portion of pawl 60 may project from housing 82 when the pawl is in its cocked, or restrained, position. Opening 718 may include a cover 720 that seals the opening and thereby prevents contaminants such as dust, particulate, water, grease and the like from entering the cartridge and possibly interfering with the operation thereof. Although only a portion of cover 720 is shown in FIG. 5, it should be understood that the cover preferably covers the entire opening 718. Cover 720 may be formed of any suitable material to prevent contaminants from entering the cartridge through opening 718, while not interfering with the operation of brake mechanism 28. Examples of suitable materials for cover 720 include tape and thin metal, paper or plastic films. When a cover 720 is used that completely closes opening 718, the entire cartridge is preferably, but not necessarily, sealed against the entry of contaminants. Cover 720 may be attached to cartridge 80 through any suitable mechanism, such as with an adhesive. In embodiments of the cartridge in which the pawl is not prevented from pivoting or otherwise moving by restraining mechanism 32, cover 720 may also function as a pawl-restraining mechanism that prevents the pawl from extending through opening 718 until release of biasing mechanism 30 by the restraining mechanism.


Returning briefly to FIG. 4, it can be seen that biasing mechanism 30 includes spring 66, which is compressed between a spring-receiving portion 724 of the pawl and a support 726 forming part of cartridge 80. As shown, support 726 extends from the housing of the cartridge, although any suitable support may be used, including the end wall 728 of the cartridge, a support that extends from the end wall, and a support that extends from at least one of the cartridge's side walls 712.


In the embodiment of pawl 60 shown in FIG. 4, the pawl includes a blade-engaging surface 730 and a distal portion 732 that is coupled to linkages 734 and 736. Linkage 734 is pivotally coupled to housing 82, and linkage 736 interconnects distal portion 732 of pawl 60 to linkage 734. As shown, both linkages are in compression when pawl 60 is in its cocked, or restrained, position. It should be understood, however, that any suitable number and type of linkages may be used. Alternatively, restraining mechanism 32 may restrain the pawl directly, such as shown in FIGS. 2 and 3. As a further alternative, restraining mechanism 32 may restrain a support positioned intermediate spring 66 and pawl 60 and upon which restraining mechanism 32 acts, thereby leaving pawl completely or relatively free from the bias of spring 66 until the release of restraining mechanism 32.


Fusible member 70 extends around contact mount 72 and at least a portion of one of the linkages to prevent pawl 60 from pivoting under the force of biasing mechanism 30. As shown, the ends of fusible member 70 are coupled to the linkages. Upon release of restraining mechanism 32, such as when a sufficient current is passed through fusible member 70 via contact mount 72, the fusible member no longer retains the linkages and pawl in the position shown, and the pawl pivots to its blade-engaging position, which is shown in FIG. 6.


Firing subsystem 76 may alternatively be located within housing 80, such as schematically illustrated in FIG. 7. An advantage of locating firing subsystem 76 within cartridge 80 is that the firing subsystem may be replaced with the rest of the cartridge. It also enables the capacitor or other current-storing or current-generating device 742 used to release fusible member 70 to be housed near contact mounts 72 and connected thereto by a direct linkage 744, instead of by wires. Also shown in FIG. 7 is plug 746 that extends through a port 748 in housing 82 and which is adapted to electrically connect firing subsystem 76 with controller 50 or another suitable portion of control subsystem 26. Alternatively, contacts 750 are shown extending from or forming a portion of housing 82.


Another exemplary cartridge is shown in FIG. 8. As shown, cartridge 80 includes firing subsystem 76 of release mechanism 34. Also shown in FIG. 8 is another version of linkages 734 and 736, in which linkage 734 is in tension instead of compression. The linkage assemblies shown in FIGS. 4 and 8 may both be referred to as over-center linkages. In FIG. 8, fusible member 70 is shown having a fixed length defined by end portions 752 that are adapted to be coupled to contact mount 72 and linkages 734 and 736, respectively. An advantage of a fixed length fusible member is that it facilitates easier assembly of cartridges with uniform pawl positions.


Unlike support 726, which is shown in FIG. 4 supporting the end of spring 66 distal pawl 60, in FIG. 8, cartridge 80 includes a removable support 754. Support 754 may be selectively removed from cartridge 80 to release, or at least substantially reduce, the biasing force exerted by spring 66 upon pawl 60. For example, support 754 may be removed after actuation of brake mechanism 28 to remove the spring force so that it is easier to remove and replace the cartridge. An example of a suitable support 754 is a clip 756 that extends through at least one of the cartridge's side walls 712. Clip 756 may be supported between both of the cartridges side walls. Alternatively, cartridge 80 may include an internal support 758 adapted to support the ends 760 of clip 756, such as shown in FIG. 9, in which the pawl is shown in its blade-engaging positions. Preferably clip 756 or other support 754 may be removed from the cartridge without having to first remove the cartridge from machine 10. For example, clip 756 may include a portion 762 that extends external to cartridge 80 and which may be grasped by a tool to withdraw the clip from the cartridge, such as shown in FIG. 10. A benefit of the embodiment shown in FIG. 9 is that pulling clip 756 releases spring 66, which in turn breaks fusible member 70. The safety system's controller may be configured to detect this break in fusible member 70, and respond accordingly to the fault in the system.


In FIGS. 7-9, firing subsystem 76 is shown housed within cartridge 80. It should be understood that other components of the safety system's electronics may also be housed within cartridge 80. For example, the cartridge may include a sensing assembly to determine if the cartridge is properly installed within machine 10, with operation of the machine being prevented until the safety system receives a signal that the cartridge is properly installed.


Placing most of safety system 18 in the cartridge allows manufacturers to develop improved electronics, additional functions, etc., without requiring significant, if any, changes to the machine. As a further alternative, safety system 18 may include a plurality of cartridges, including at least one cartridge that contains pawl 60 and at least one cartridge that contains electronics, such as firing subsystem 76 and/or other electronic portions of the safety system. An example of such a cartridge assembly is shown in FIG. 11. As shown, a pair of cartridges 80 are shown and indicated generally at 80′ and 80″. Cartridges 80′ and 80″ may also be described as subcartridges or modules that are united to form cartridge 80. Cartridge 80′ includes an electronics unit 764, such as firing subsystem 76 or control subsystem 26, and an electrical connector 766 configured to operably engage plug 768, attached to cable 770. The cable includes conductors for supplying electrical power to the electronics unit. The cable may also conduct output signals from the electronics unit, such as a cutoff signal to stop motor assembly 16, or a signal to control subsystem 26, depending upon the particular electronics housed in cartridge 80′. Although plug 768 and cable 770 are shown as being freely movable, it will be appreciated that plug 768 may be rigidly mounted to the support surface upon which cartridge 80 is mounted. Further, plug 768 may be rigidly positioned to ensure that the cartridge is properly aligned and oriented when the connector is engaged with the plug. Cartridge 80″, on the other hand, includes pawl 60 and the biasing and restraining mechanisms, which are collectively indicated as module 772 to indicate that the biasing and restraining mechanisms may also form a cartridge or module that may be selectively removed and replaced. Preferably, the cartridges are in communication with each other, such as to release the restraining mechanism responsive to a signal from electronics unit 764.


Optionally, cartridge 80″, or any of the previously described cartridges, may be provided in different sizes or configurations to accommodate different blade sizes. For example, a longer version of the cartridge, such as shown in FIG. 12, may be used for a smaller diameter blade 40. Furthermore, different cartridges may be provided for different applications that use different types of blades (e.g., dado, cross-cutting, ripping, plywood, etc.). For example, a first cartridge having a first type pawl may be provided for a first type blade, while a second cartridge having a second, different pawl may be provided for a second, different blade. Alternatively, the electronics of one cartridge may be different from those of another cartridge to allow for different applications (e.g., cutting plastic rather than wood). Additionally, plural cartridges may be used simultaneously to ensure the safety system responds optimally for each material.


While one particular implementation of safety system 18 has been described, it will be appreciated that many variations and modifications are possible within the scope of the invention. Many such variations and modifications are described in U.S. Provisional Patent Application Ser. Nos. 60/182,866 and 60/157,340, the disclosures of which are herein incorporated by reference. For example, while portions of safety system 18 have been described herein as being incorporated into a replaceable cartridge 80, other components of the safety system may also be included in the cartridge.


It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. No single feature, function, element or property of the disclosed embodiments is essential to all of the disclosed inventions. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.


It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.

Claims
  • 1. A woodworking machine comprising: a support frame including a work surface for supporting workpieces;a cutting tool supported by the frame and movable relative to the work surface to cut the workpieces supported by the work surface; anda safety system configured to detect a dangerous condition between a person and the cutting tool and to perform a predetermined action upon detection of the dangerous condition to mitigate the dangerous condition, wherein the safety system includes a cartridge removably coupled to the support frame, wherein the cartridge is adapted to perform the predetermined action a single time and then to be replaced, and wherein the cartridge has one or more single-use components configured to be expended when the cartridge performs the predetermined action.
  • 2. The machine of claim 1, where the one or more single-use components include a brake pawl selectively movable to engage the cutting tool upon detection of the dangerous condition.
  • 3. The machine of claim 2, where the safety system includes a spring mounted in the cartridge and arranged to urge the brake pawl into contact with the cutting tool.
  • 4. The machine of claim 2, wherein the brake pawl and the cartridge include concentric bores adapted to couple the cartridge and the brake pawl to the support frame for pivotal movement relative to each other after the dangerous condition is detected.
  • 5. The machine of claim 1, further comprising at least one motor configured to drive the cutting tool, and a control system configured to determine if at least one of the single-use components has been used, end where the control system is configured to prevent operation of the at least one motor if one of the single-use components has been used.
  • 6. The machine of claim 1, where the cartridge includes key structure, and where the support frame includes corresponding key structure configured to engage the cartridge key structure to prevent incorrect installation of the cartridge.
  • 7. The machine of claim 1, wherein the cartridge includes at least two single-use components.
  • 8. The machine of claim 7, wherein at least one of the single-use components is an electrical component.
  • 9. The machine of claim 7, wherein at least one of the single-use components is adapted to engage and stop the cutting tool after detection of the dangerous condition.
  • 10. The machine of claim 1, wherein the cutting tool includes a cutting surface and at least one single-use components is adapted to engage the cutting surface of the cutting tool to stop the cutting tool after detection of the dangerous condition.
  • 11. The machine of claim 1, wherein the cartridge includes a brake pawl and a housing defining an internal compartment having an opening, and further wherein the cartridge includes a biasing mechanism within the compartment and adapted to urge the brake pawl in a direction generally away from the opening.
  • 12. The machine of claim 11, wherein the biasing mechanism is a spring positioned to extend at least partially through the opening when urging the brake pawl in a direction generally away from the opening.
  • 13. The machine of claim 11, wherein the brake pawl is adapted to move relative to the cartridge upon detection of the dangerous condition and urging of the brake pawl in the direction generally away from the opening.
  • 14. The machine of claim 1, where the predetermined action is moving a brake into contact with the cutting tool.
  • 15. The machine of claim 1, where the predetermined action is stopping the cutting tool.
  • 16. The machine of claim 1, where the dangerous condition is contact between a person and the cutting tool.
  • 17. The machine of claim 1, where the dangerous condition is proximity between a person and the cutting tool.
  • 18. A woodworking machine comprising: a support frame including a work surface for supporting workpieces;a cutting tool supported by the frame and movable relative to the work surface to cut the workpieces supported by the work surface; anda safety brake means for detecting a dangerous condition between a person and the cutting tool, and for stopping the movement of the cutting tool upon detection of the dangerous condition, wherein the safety brake means comprises a cartridge removably coupled to the support frame and one or more single-use components associated with the cartridge and adapted to be used upon detection of the dangerous condition.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority from the following U.S. Provisional Patent Applications: Ser. No. 60/225,056, filed Aug. 14, 2000, Ser. No. 60/225,057, filed Aug. 14, 2000, Ser. No. 60/225,058, filed Aug. 14, 2000, Ser. No. 60/225,059, filed Aug. 14, 2000, Ser. No. 60/225,089, filed Aug. 14, 2000, Ser. No. 60/225,094, filed Aug. 14, 2000, Ser. No. 60/225,169, filed Aug. 14, 2000, Ser. No. 60/225,170, filed Aug. 14, 2000, Ser. No. 60/225,200, filed Aug. 14, 2000, Ser. No. 60/225,201, filed Aug. 14, 2000, Ser. No. 60/225,206, filed Aug. 14, 2000, Ser. No. 60/225,210, filed Aug. 14, 2000, Ser. No. 60/225,211, filed Aug. 14, 2000, and Ser. No. 60/225,212, filed Aug. 14, 2000.

US Referenced Citations (513)
Number Name Date Kind
941726 Pfalzgraf Nov 1909 A
982312 Swafford Jan 1911 A
1205246 Mowry Nov 1916 A
RE15262 Gurgel Jan 1922 E
1450906 Anderson Apr 1923 A
1492145 Talley Apr 1924 A
1551900 Morrow Sep 1925 A
1582483 Runyan Apr 1926 A
1590988 Campbell Jun 1926 A
1668061 Falkins May 1928 A
1807120 Lewis May 1931 A
1811066 Tannewitz Jun 1931 A
1896924 Ulrich Feb 1933 A
1902270 Tate Mar 1933 A
1910651 Tautz May 1933 A
1938548 Tautz Dec 1933 A
1938549 Tautz Dec 1933 A
1963688 Tautz Jun 1934 A
2007887 Tautz Jul 1935 A
2020222 Tautz Nov 1935 A
2038810 Tautz Apr 1936 A
2044481 Manley et al. Jun 1936 A
2106288 Tautz Jan 1938 A
2121069 Collins Jun 1938 A
2163320 Hammond Jun 1939 A
2241556 MacMillin et al. May 1941 A
2286589 Tannewitz Jun 1942 A
2313686 Uremovich Mar 1943 A
2328244 Woodward Aug 1943 A
2352235 Tautz Jun 1944 A
2377265 Rady May 1945 A
2392486 Larsen Jan 1946 A
2402232 Baker Jun 1946 A
2425331 Kramer Aug 1947 A
2434174 Morgan Jan 1948 A
2452589 McWhirter et al. Nov 1948 A
2466325 Ocenasek Apr 1949 A
2496613 Woodward Feb 1950 A
2501134 Meckoski et al. Mar 1950 A
2509813 Dineen May 1950 A
2517649 Frechtmann Aug 1950 A
2562396 Schutz Jul 1951 A
2572326 Evans Oct 1951 A
2593596 Olson Apr 1952 A
2601878 Anderson Jul 1952 A
2623555 Eschenburg Dec 1952 A
2661780 Morgan Dec 1953 A
2675707 Brown Apr 1954 A
2690084 Van Dam Sep 1954 A
2719547 Gjerde Oct 1955 A
2722246 Arnoldy Nov 1955 A
2731049 Akin Jan 1956 A
2736348 Nelson Feb 1956 A
2737213 Richards et al. Mar 1956 A
2785710 Mowery, Jr. Mar 1957 A
2786496 Eschenburg Mar 1957 A
2804890 Fink Sep 1957 A
2839943 Caldwell et al. Jun 1958 A
2844173 Gaskell Jul 1958 A
2852047 Odlum et al. Sep 1958 A
2876809 Rentsch et al. Mar 1959 A
2883486 Mason Apr 1959 A
2913581 Simonton et al. Nov 1959 A
2937672 Gjerde May 1960 A
2954118 Anderson Sep 1960 A
2957166 Gluck Oct 1960 A
2978084 Vilkaitis Apr 1961 A
2984268 Vuichard May 1961 A
2991593 Cohen Jul 1961 A
3005477 Sherwen Oct 1961 A
3007501 Mundell et al. Nov 1961 A
3011610 Stiebel et al. Dec 1961 A
3035995 Seeley et al May 1962 A
3047116 Stiebel et al. Jul 1962 A
3129731 Tyrrell Apr 1964 A
3163732 Abbott et al. Dec 1964 A
3184001 Reinsch et al. May 1965 A
3186256 Reznick Jun 1965 A
3207273 Jurin Sep 1965 A
3213731 Renard Oct 1965 A
3224474 Bloom Dec 1965 A
3246205 Miller Apr 1966 A
3274876 Debus Sep 1966 A
3276497 Heer Oct 1966 A
3313185 Drake et al Apr 1967 A
3323814 Phillips Jun 1967 A
3337008 Trachte Aug 1967 A
3368596 Comer Feb 1968 A
3386322 Stone et al. Jun 1968 A
3439183 Hurst, Jr Apr 1969 A
3445835 Fudaley May 1969 A
3454286 Anderson et al. Jul 1969 A
3456696 Gregory et al. Jul 1969 A
3512440 Frydmann May 1970 A
3540338 McEwan et al. Nov 1970 A
3554067 Scutella Jan 1971 A
3566934 Thrasher Mar 1971 A
3566996 Crossman Mar 1971 A
3580376 Loshbough May 1971 A
3581784 Warrick Jun 1971 A
3593266 Van Sickle Jul 1971 A
3613748 De Pue Oct 1971 A
3621894 Niksich Nov 1971 A
3648126 Boos et al. Mar 1972 A
3675444 Whipple Jul 1972 A
3680609 Menge Aug 1972 A
3688815 Ridenour Sep 1972 A
3695116 Baur Oct 1972 A
3696844 Bernatschek Oct 1972 A
3716113 Kobayashi et al. Feb 1973 A
3719103 Streander Mar 1973 A
3740000 Takada Jun 1973 A
3745546 Struger et al. Jul 1973 A
3749933 Davidson Jul 1973 A
3772590 Mikulecky et al. Nov 1973 A
3785230 Lokey Jan 1974 A
3793915 Hujer Feb 1974 A
3829850 Guetersloh Aug 1974 A
3829970 Anderson Aug 1974 A
3858095 Friemann et al. Dec 1974 A
3861016 Johnson et al. Jan 1975 A
3863208 Balban Jan 1975 A
3874747 Case et al. Apr 1975 A
3882744 McCarroll May 1975 A
3886413 Dow et al. May 1975 A
3905263 Smith Sep 1975 A
3922785 Fushiya Dec 1975 A
3924688 Cooper et al. Dec 1975 A
3931727 Luenser Jan 1976 A
3935777 Bassett Feb 1976 A
3945286 Smith Mar 1976 A
3946631 Malm Mar 1976 A
3947734 Fyler Mar 1976 A
3953770 Hayashi Apr 1976 A
3960310 Nussbaum Jun 1976 A
3967161 Lichtblau Jun 1976 A
3970178 Densow Jul 1976 A
3974565 Ellis Aug 1976 A
3975600 Marston Aug 1976 A
3978624 Merkel et al. Sep 1976 A
3994192 Faig Nov 1976 A
4007679 Edwards Feb 1977 A
4016490 Weckenmann et al. Apr 1977 A
4026177 Lokey May 1977 A
4029159 Nymann Jun 1977 A
4047156 Atkins Sep 1977 A
4060160 Lieber Nov 1977 A
4063777 Takada Dec 1977 A
4070940 McDaniel et al. Jan 1978 A
4075961 Harris Feb 1978 A
4077161 Wyle et al. Mar 1978 A
4085303 McIntyre et al. Apr 1978 A
4090345 Harkness May 1978 A
4091698 Obear et al. May 1978 A
4106378 Kaiser Aug 1978 A
4117752 Yoneda Oct 1978 A
4138905 Konishi Feb 1979 A
4145940 Woloveke et al. Mar 1979 A
4152833 Phillips May 1979 A
4161649 Klos et al. Jul 1979 A
4175452 Idel Nov 1979 A
4184394 Gjerde Jan 1980 A
4190000 Shaull et al. Feb 1980 A
4195722 Anderson et al. Apr 1980 A
4199930 Lebet et al. Apr 1980 A
4200002 Takahashi Apr 1980 A
4206666 Ashton Jun 1980 A
4206910 Biesemeyer Jun 1980 A
4249117 Leukhardt et al. Feb 1981 A
4249442 Fittery Feb 1981 A
4251599 McCormick Feb 1981 A
4255995 Connor Mar 1981 A
4262278 Howard et al. Apr 1981 A
4267914 Saar May 1981 A
4270427 Colberg et al. Jun 1981 A
4276459 Willett et al. Jun 1981 A
4276799 Muehling Jul 1981 A
4288048 Sieben Sep 1981 A
4291794 Bauer Sep 1981 A
4302879 Murray Dec 1981 A
4305442 Currie Dec 1981 A
4319146 Wires, Sr. Mar 1982 A
4321841 Felix Mar 1982 A
4334450 Benuzzi Jun 1982 A
4370810 Schurr et al. Feb 1983 A
4372202 Cameron Feb 1983 A
4374552 Dayen Feb 1983 A
4385539 Meyerhoefer et al. May 1983 A
4391358 Haeger Jul 1983 A
4427042 Mitchell et al. Jan 1984 A
4466170 Davis Aug 1984 A
4466233 Thesman Aug 1984 A
4470046 Betsill Sep 1984 A
4492291 Chometon et al. Jan 1985 A
4503739 Konieczka Mar 1985 A
4510489 Anderson, III et al. Apr 1985 A
4512224 Terauchi Apr 1985 A
4518043 Anderson et al. May 1985 A
4532501 Hoffman Jul 1985 A
4532844 Chang et al. Aug 1985 A
4559858 Laskowski et al. Dec 1985 A
4560033 DeWoody et al. Dec 1985 A
4566512 Wilson Jan 1986 A
4573556 Andreasson Mar 1986 A
4589047 Gaus et al. May 1986 A
4589860 Brandenstein et al. May 1986 A
4599597 Rotbart Jul 1986 A
4599927 Eccardt et al. Jul 1986 A
4606251 Boileau Aug 1986 A
4617544 Mooz et al. Oct 1986 A
4621300 Summerer Nov 1986 A
4625406 Fushiya et al. Dec 1986 A
4635364 Noll et al. Jan 1987 A
4637188 Crothers Jan 1987 A
4637289 Ramsden Jan 1987 A
4638393 Oishi et al. Jan 1987 A
4653189 Andreasson Mar 1987 A
4657428 Wiley Apr 1987 A
4661797 Schmall Apr 1987 A
4672500 Tholome et al. Jun 1987 A
4675664 Cloutier et al. Jun 1987 A
4679719 Kramer Jul 1987 A
4683660 Schurr Aug 1987 A
4694721 Brickner, Jr. Sep 1987 A
4718229 Riley Jan 1988 A
4721023 Bartlett et al. Jan 1988 A
4722021 Hornung et al. Jan 1988 A
4751603 Kwan Jun 1988 A
4756220 Olsen et al. Jul 1988 A
4757881 Jonsson et al. Jul 1988 A
4774866 Dehari et al. Oct 1988 A
4792965 Morgan Dec 1988 A
4805504 Fushiya et al. Feb 1989 A
4805505 Cantlin Feb 1989 A
4819501 Kraus et al. Apr 1989 A
4831279 Ingraham May 1989 A
4840135 Yamauchi Jun 1989 A
4845476 Rangeard et al. Jul 1989 A
4864455 Shimomura et al. Sep 1989 A
4888869 Leatherman Dec 1989 A
4896607 Hall et al. Jan 1990 A
4906962 Duimstra Mar 1990 A
4907679 Menke Mar 1990 A
4934233 Brundage et al. Jun 1990 A
4936876 Reyes Jun 1990 A
4937554 Herman Jun 1990 A
4962685 Hagstrom Oct 1990 A
4964450 Hughes et al. Oct 1990 A
4965909 McCullough et al. Oct 1990 A
4969063 Scott et al. Nov 1990 A
4975798 Edwards et al. Dec 1990 A
5020406 Sasaki et al. Jun 1991 A
5025175 Dubois, III Jun 1991 A
5042348 Brundage et al. Aug 1991 A
5046426 Julien et al. Sep 1991 A
5052255 Gaines Oct 1991 A
5067366 Gandiglio Nov 1991 A
5074047 King Dec 1991 A
5081406 Hughes et al. Jan 1992 A
5082316 Wardlaw Jan 1992 A
5083973 Townsend Jan 1992 A
5086890 Turczyn et al. Feb 1992 A
5094000 Becht et al. Mar 1992 A
5116249 Shiotani et al. May 1992 A
5119555 Johnson Jun 1992 A
5122091 Townsend Jun 1992 A
5123317 Barnes, Jr. et al. Jun 1992 A
5125160 Gassen Jun 1992 A
5146714 Liiber Sep 1992 A
5156508 Grisley Oct 1992 A
5184403 Schliemann Feb 1993 A
5184534 Lee Feb 1993 A
5198702 McCullough et al. Mar 1993 A
5199343 OBanion Apr 1993 A
5201110 Bane Apr 1993 A
5201684 DeBois, III Apr 1993 A
5201863 Peot Apr 1993 A
5206625 Davis Apr 1993 A
5207253 Hoshino et al. May 1993 A
5212621 Panter May 1993 A
5218189 Hutchison Jun 1993 A
5230269 Shiotani et al. Jul 1993 A
5231359 Masuda et al. Jul 1993 A
5231906 Kogej Aug 1993 A
5239978 Plangetis Aug 1993 A
5245879 McKeon Sep 1993 A
5257570 Shiotani et al. Nov 1993 A
5265510 Hoyer-Ellefsen Nov 1993 A
5272946 McCullough et al. Dec 1993 A
5276431 Piccoli et al. Jan 1994 A
5285708 Bosten et al. Feb 1994 A
5293802 Shiotani et al. Mar 1994 A
5320382 Goldstein et al. Jun 1994 A
5321230 Shanklin et al. Jun 1994 A
5331875 Mayfield Jul 1994 A
5353670 Metzger, Jr. Oct 1994 A
5377554 Reulein et al. Jan 1995 A
5377571 Josephs Jan 1995 A
5392568 Howard, Jr. et al. Feb 1995 A
5392678 Sasaki et al. Feb 1995 A
5401928 Kelley Mar 1995 A
5411221 Collins et al. May 1995 A
5423232 Miller et al. Jun 1995 A
5436613 Ghosh et al. Jul 1995 A
5447085 Gochnauer Sep 1995 A
5451750 An Sep 1995 A
5453903 Chow Sep 1995 A
5471888 McCormick Dec 1995 A
5480009 Wieland et al. Jan 1996 A
5503059 Pacholok Apr 1996 A
5510587 Reiter Apr 1996 A
5510685 Grasselli Apr 1996 A
5531147 Serban Jul 1996 A
5534836 Schenkel et al. Jul 1996 A
5592353 Shinohara et al. Jan 1997 A
5606889 Bielinski et al. Mar 1997 A
5619896 Chen Apr 1997 A
5623860 Schoene et al. Apr 1997 A
5647258 Brazell et al. Jul 1997 A
5648644 Nagel Jul 1997 A
5659454 Vermesse Aug 1997 A
5667152 Mooring Sep 1997 A
5671633 Wagner Sep 1997 A
5695306 Nygren, Jr. Dec 1997 A
5700165 Harris et al. Dec 1997 A
5720213 Sberveglieri Feb 1998 A
5722308 Ceroll et al. Mar 1998 A
5724875 Meredith et al. Mar 1998 A
5730165 Philipp Mar 1998 A
5741048 Eccleston Apr 1998 A
5755148 Stumpf et al. May 1998 A
5768786 Kane et al. Jun 1998 A
5771742 Bokaie et al. Jun 1998 A
5782001 Gray Jul 1998 A
5787779 Garuglieri Aug 1998 A
5791057 Nakamura et al. Aug 1998 A
5791223 Lanzer Aug 1998 A
5791224 Suzuki et al. Aug 1998 A
5791441 Matos et al. Aug 1998 A
5797307 Horton Aug 1998 A
5819619 Miller et al. Oct 1998 A
5819625 Sberveglieri Oct 1998 A
5852951 Santi Dec 1998 A
5857507 Puzio et al. Jan 1999 A
5861809 Eckstein et al. Jan 1999 A
5875698 Ceroll et al. Mar 1999 A
5880954 Thomson et al. Mar 1999 A
5921367 Kashioka et al. Jul 1999 A
5927857 Ceroll et al. Jul 1999 A
5930096 Kim Jul 1999 A
5937720 Itzov Aug 1999 A
5942975 Sorensen Aug 1999 A
5943932 Sberveglieri Aug 1999 A
5950514 Benedict et al. Sep 1999 A
5963173 Lian et al. Oct 1999 A
5974927 Tsune Nov 1999 A
6009782 Tajima et al. Jan 2000 A
6018284 Rival et al. Jan 2000 A
6037729 Woods et al. Mar 2000 A
6052884 Steckler et al. Apr 2000 A
6062121 Ceroll et al. May 2000 A
6070484 Sakamaki Jun 2000 A
6095092 Chou Aug 2000 A
6109157 Talesky Aug 2000 A
6112785 Yu Sep 2000 A
6119984 Devine Sep 2000 A
6133818 Hsieh et al. Oct 2000 A
6141192 Garzon Oct 2000 A
6148504 Schmidt et al. Nov 2000 A
6148526 Kirn et al. Nov 2000 A
6148703 Ceroll et al. Nov 2000 A
6150826 Hokodate et al. Nov 2000 A
6161459 Ceroll et al. Dec 2000 A
6244149 Ceroll et al. Jun 2001 B1
6250190 Ceroll et al. Jun 2001 B1
6257061 Nonoyama et al. Jul 2001 B1
6283002 Chiang Sep 2001 B1
6295910 Childs et al. Oct 2001 B1
6312028 Wilkosz Nov 2001 B1
6325195 Doherty Dec 2001 B1
6330848 Nishio et al. Dec 2001 B1
6336273 Nilsson et al. Jan 2002 B1
6352137 Stegall et al. Mar 2002 B1
6357328 Ceroll et al. Mar 2002 B1
6361092 Eagle et al. Mar 2002 B1
6366099 Reddi Apr 2002 B1
6376939 Suzuki et al. Apr 2002 B1
6404098 Kayama et al. Jun 2002 B1
6418829 Pilchowski Jul 2002 B1
6420814 Bobbio Jul 2002 B1
6427570 Miller et al. Aug 2002 B1
6430007 Jabbari Aug 2002 B1
6431425 Moorman et al. Aug 2002 B1
6450077 Ceroll et al. Sep 2002 B1
6453786 Ceroll et al. Sep 2002 B1
6460442 Talesky et al. Oct 2002 B2
6471106 Reining Oct 2002 B1
6479958 Thompson et al. Nov 2002 B1
6484614 Huang Nov 2002 B1
D466913 Ceroll et al. Dec 2002 S
6492802 Bielski Dec 2002 B1
D469354 Curtsinger Jan 2003 S
6530303 Parks et al. Mar 2003 B1
6536536 Gass et al. Mar 2003 B1
6543324 Dils Apr 2003 B2
6546835 Wang Apr 2003 B2
6564909 Razzano May 2003 B1
6575067 Parks et al. Jun 2003 B2
6578856 Kahle Jun 2003 B2
6581655 Huang Jun 2003 B2
6595096 Ceroll et al. Jul 2003 B2
D478917 Ceroll et al. Aug 2003 S
6601493 Crofutt Aug 2003 B1
6607015 Chen Aug 2003 B1
D479538 Welsh et al. Sep 2003 S
6617720 Egan, III et al. Sep 2003 B1
6619348 Wang Sep 2003 B2
6640683 Lee Nov 2003 B2
6644157 Huang Nov 2003 B2
6647847 Hewitt et al. Nov 2003 B2
6659233 DeVlieg Dec 2003 B2
6684750 Yu Feb 2004 B2
6722242 Chuang Apr 2004 B2
6734581 Griffis May 2004 B1
6736042 Behne et al. May 2004 B2
6742430 Chen Jun 2004 B2
6796208 Jorgensen Sep 2004 B1
6800819 Sato et al. Oct 2004 B2
6826988 Gass et al. Dec 2004 B2
6826992 Huang Dec 2004 B1
6840144 Huang Jan 2005 B2
6854371 Yu Feb 2005 B2
6857345 Gass et al. Feb 2005 B2
6874397 Chang Apr 2005 B2
6874399 Lee Apr 2005 B2
6880440 Gass et al. Apr 2005 B2
6889585 Harris et al. May 2005 B1
6920814 Gass et al. Jul 2005 B2
6922153 Pierga et al. Jul 2005 B2
6945148 Gass et al. Sep 2005 B2
6945149 Gass et al. Sep 2005 B2
6957601 Gass et al. Oct 2005 B2
6968767 Yu Nov 2005 B2
6986370 Schoene et al. Jan 2006 B1
6994004 Gass et al. Feb 2006 B2
6997090 Gass et al. Feb 2006 B2
7000514 Gass et al. Feb 2006 B2
7024975 Gass et al. Apr 2006 B2
7098800 Gass Aug 2006 B2
7137326 Gass et al. Nov 2006 B2
7171879 Gass et al. Feb 2007 B2
7197969 Gass et al. Apr 2007 B2
7210383 Gass et al May 2007 B2
7225712 Gass et al. Jun 2007 B2
7228772 Gass Jun 2007 B2
7231856 Gass et al. Jun 2007 B2
20010032534 Cerroll et al. Oct 2001 A1
20020020262 Gass et al. Feb 2002 A1
20020020263 Gass et al. Feb 2002 A1
20020043776 Chuang Apr 2002 A1
20020050201 Lane et al. May 2002 A1
20020050714 Imai et al. May 2002 A1
20020096591 Tanji Jul 2002 A1
20020109036 Denen et al. Aug 2002 A1
20020170400 Gass Nov 2002 A1
20030000359 Eccardt et al. Jan 2003 A1
20030037651 Gass et al. Feb 2003 A1
20030037655 Chin-Chin Feb 2003 A1
20030074873 Freiberg et al. Apr 2003 A1
20030089212 Parks et al. May 2003 A1
20030109798 Kermani Jun 2003 A1
20040011177 Huang Jan 2004 A1
20040060404 Metzger, Jr. Apr 2004 A1
20040103544 Hartmann Jun 2004 A1
20040104085 Lang et al. Jun 2004 A1
20040118261 Garcia et al. Jun 2004 A1
20040159198 Peot et al. Aug 2004 A1
20040194594 Dils et al. Oct 2004 A1
20040200329 Sako Oct 2004 A1
20040226424 O'Banion et al. Nov 2004 A1
20040226800 Pierga et al. Nov 2004 A1
20040255745 Peot et al. Dec 2004 A1
20050057206 Uneyama Mar 2005 A1
20050087049 Miller Apr 2005 A1
20050092149 Hartmann May 2005 A1
20050139051 Gass et al. Jun 2005 A1
20050139056 Gass et al. Jun 2005 A1
20050139057 Gass et al. Jun 2005 A1
20050139058 Gass et al. Jun 2005 A1
20050139459 Gass et al. Jun 2005 A1
20050145080 Voigtlaender Jul 2005 A1
20050155473 Gass Jul 2005 A1
20050166736 Gass et al. Aug 2005 A1
20050178259 Gass et al. Aug 2005 A1
20050204885 Gass et al. Sep 2005 A1
20050211034 Sasaki et al. Sep 2005 A1
20050235793 O'Banion et al. Oct 2005 A1
20050268767 Pierga et al. Dec 2005 A1
20050274432 Gass et al. Dec 2005 A1
20060000337 Gass Jan 2006 A1
20060032352 Gass et al. Feb 2006 A1
20060123960 Gass et al. Jun 2006 A1
20060123964 Gass et al. Jun 2006 A1
20060179983 Gass et al. Aug 2006 A1
20060219076 Gass et al. Oct 2006 A1
20060225551 Gass Oct 2006 A1
20060230896 Gass Oct 2006 A1
20060247795 Gass et al. Nov 2006 A1
20060254401 Gass et al. Nov 2006 A1
20060272463 Gass Dec 2006 A1
20070028733 Gass Feb 2007 A1
20070101842 Gass May 2007 A1
20070131071 Gass et al. Jun 2007 A1
Foreign Referenced Citations (21)
Number Date Country
2140991 Jan 1995 CA
297525 Jun 1954 CH
76186 Aug 1921 DE
2917497 Apr 1979 DE
2800403 Jul 1979 DE
3427733 Jan 1986 DE
4205965 Feb 1992 DE
4235161 May 1993 DE
4326313 Feb 1995 DE
19609771 Jun 1998 DE
20102704 Feb 2001 DE
146460 Nov 1988 EP
0362937 Apr 1990 EP
2152184 Jan 2001 ES
2556643 Jun 1985 FR
2570017 Mar 1986 FR
598204 Feb 1948 GB
1132708 Nov 1968 GB
2096844 Oct 1982 GB
2142571 Jan 1985 GB
06328359 Nov 1994 JP
Related Publications (1)
Number Date Country
20020020261 A1 Feb 2002 US
Provisional Applications (14)
Number Date Country
60225056 Aug 2000 US
60225057 Aug 2000 US
60225058 Aug 2000 US
60225059 Aug 2000 US
60225089 Aug 2000 US
60225094 Aug 2000 US
60225169 Aug 2000 US
60225170 Aug 2000 US
60225200 Aug 2000 US
60225201 Aug 2000 US
60225206 Aug 2000 US
60225210 Aug 2000 US
60225211 Aug 2000 US
60225212 Aug 2000 US