This invention relates generally to replaceable components that are detachable mounted on the flyer bows of a group of machinery used for cabling referred to as twisting, bunching, cabling, twinning, or stranding machines.
Twisting machines, and more particularly bow twisting machines, are commonly employed to manufacture twisted wire or cables such as standard telephone twisted-pair wire. These machines wrap at least one wire around a core made up of one or more cables or conductors. Typical construction and operation of such machines use one or more bows. A bow is a part of the machine that guides the wire along the length of the bow as the bow rotates around the central portion of the bow-twisting machine. This rotation wraps the initially straight wire into a bunched configuration.
Bows for use on twisting machines are well known in the art. Prior art bows for bow-twisting machines (commonly referred to as “flyer bows”) are typically flat and have wire guides and/or wear strips, mounted on their inner surface. The wire guides position the wire to be twisted by the bow-twister machine and the wear strips serve to protect the bow from damage due to contact between the wire/cable and the bow during operation of the bow-twister machine. The bow is periodically removed from the bow-twister machine to replace worn or damaged parts or components. Numerous problems exist, however, with the mounting of components on prior bows.
One prior technique of mounting these components on bows is described in U.S. Pat. No. 5,809,763 (“the '763 patent”). The '763 patent mounts components to the bow using connectors such as bolts or rivets. Another prior technique is described in U.S. Pat. No. 6,289,661 (“the '661 patent”). The '661 patent employs a clamping system that involves splitting the components into two pieces. The pieces are assembled around the bow's cross-section and reattached to each other through the use of bolts, rivets or other suitable connection means.
A disadvantage of such apparatus is that numerous fasteners such as nuts, bolts or rivets are required to attach the components to the bow. This makes replacement of the components cumbersome and labor-intensive, as each bolt or rivet must be removed in order to remove the worn or damaged component from the bow. Another disadvantage is that, for the clamping system components, each side of the clamp must be separated by removing individual bolts and/or rivets, which makes replacing components labor and time intensive.
Another disadvantage of using such prior techniques is that fasteners occasionally break or come loose, resulting in an unsafe and dangerous situation. If the fasteners fail, or worse if multiple fasteners fail simultaneously, the fasteners and larger parts of the rotating machinery are thrown from the machinery at dangerous velocities. Another disadvantage is that the fasteners add weight to the bow assembly requiring greater horsepower to operate. Further, the fasteners may create wind resistance as the bow spins creating draw and increasing the horsepower needed to operate.
Thus, what is needed is an apparatus that attaches guides and wear strips to the bows with fewer fasteners. This reduces the labor and time involved in replacing these components when they need replacement, reduces the danger inherent with their breakage and increases the efficiency of the bow moving through the air.
To achieve the advantages of the invention, and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention comprises the following.
According to one aspect of the invention, there is an apparatus that is comprised of an elongated flyer bow having an inner and outer surface. One of these surfaces has at least one longitudinal recess extending within the surface. At least one of the recesses has an inner transverse dimension and an outer transverse dimension. The inner transverse dimension of the recess is greater than said outer transverse dimension. The apparatus further includes at least one wear component having a bow engagement portion disposed to slidably engage the longitudinal recess in the flyer bow. The wear component has a wear surface opposite the engagement portion, and engagement of that portion with the longitudinal recess in the flyer bow restrains significant radial movement of the wear component. The apparatus further includes at least one guide having a bow engagement portion disposed to slidably engage the longitudinal recess in the flyer bow. The guide includes a guide opening opposite the bow engagement portion of the guide. Engagement of the engagement portion of the guide with the longitudinal recess in the flyer bow restrains significant radial movement of the guide. The apparatus further includes at least one stop detachably affixed to the flyer bow such that the wear components and guides in the longitudinal recess are longitudinally confined therein.
Another aspect of the invention is a wear insert for a flyer bow having a longitudinal recess. The wear insert has a bow engagement portion disposed to slidably engage the longitudinal recess. The bow engagement portion has an inner transverse dimension and an outer transverse dimension, with the inner transverse dimension being greater than the outer transverse direction. The wear insert has a wear surface opposite the engagement portion.
Another aspect of the invention is guide for a flyer bow having a longitudinal recess. The guide has a bow engagement portion disposed to slidably engage the longitudinal recess in the flyer bow. The bow engagement portion has an inner transverse dimension and an outer transverse dimension, with the inner transverse dimension being greater than the outer transverse direction. The guide has a guide opening opposite the engagement portion.
The apparatus described above provides replaceable components of a flyer bow that are readily replaced, that are securely restrained without fasteners that can come off the flyer bow at dangerous velocities and can be readily manufactured from wear-resistant materials.
Further objects, features and advantages of the present invention will become apparent upon review of the following detailed description of the preferred embodiments of the invention, taking into consideration the drawings and ensuing description. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The accompanying drawings illustrate several preferred embodiments and, together with the description, serve to explain the principles of the invention. In the drawings,
a is a cross-sectional view of the bow embodiment shown in
b is a cross-sectional view of another embodiment of a flyer bow having a longitudinal recess with a “T”-type cross-sectional shape;
c is a cross-sectional view of still another embodiment of a flyer bow having a longitudinal recess with a compound cross-sectional shape of multiple “dove-tail” recesses within the main longitudinal recess;
a is a cross-sectional view of the wear insert embodiment shown in
b is a cross-sectional view of another wear insert embodiment having an engagement portion disposed to fit within the “T”-type longitudinal recess of the flyer bow shown in
c is a cross-sectional view of still another embodiment of a insert having an engagement portion disposed to fit within the compound cross-sectional shape of multiple “dove-tail” recesses within the main longitudinal of the flyer bow of
a is a cross-sectional view of the guide embodiment shown in
b is a cross-sectional view of another guide embodiment having an engagement portion disposed to fit within the “T”-type longitudinal recess of the flyer bow shown in
c is a cross-sectional view of still another embodiment of a guide having an engagement portion disposed to fit within the compound cross-sectional shape of multiple “dove-tail” recesses within the main longitudinal of the flyer bow of
Reference will now be made to several preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like parts.
In accordance with one aspect of the invention, there is provided an apparatus having an elongated flyer bow with an inner and outer surface, one of said surfaces having at least one longitudinal recess extending within said that surface. The flyer bow can be made of any material known to those skilled in the art to be operable as a flyer bow. Typically, flyer bows are metals, or fiber reinforced composites having either a metal or polymer matrix. The material used for the flyer bow of the present invention should have sufficient mechanical properties to restrain components within the longitudinal recess from moving in a radial direction as the invention is designed to operate without the fasteners that conventional flyer bows use to restrain components mounted thereon from moving in the radial direction.
As here embodied, and most clearly depicted in
In this disclosure, the direction along the length of the flyer bow is the “longitudinal direction,” the “transverse direction” is the direction across the width of the flyer bow from one edge to the opposite edge. As here embodied, and shown in
In accordance with this aspect of the invention, the flyer bow has a longitudinal recess with at least one recess with an inner transverse dimension and an outer transverse dimension, the inner transverse dimension being greater than the outer transverse dimension. As here embodied, and shown in
Although it is feasible to have the longitudinal recess have a cross sectional shape that varies along its length, that would require components having portions fitting therein to either not fit the recess exactly or have such components have portions that engage the recess have different shapes to fit at particular locations along the length of the flyer bow. While such an embodiment is operable, and would provide some longitudinal restraint to such components, the difficulty in matching the correct sized component with the proper location along the flyer bow with a non-uniform longitudinal recess would not be advantageous. For that reason, it is preferred that the longitudinal recess has a uniform cross-sectional shape in the longitudinal direction.
In accordance with this aspect of the invention, there is at least one wear insert having a bow engagement portion disposed to slidably engage the longitudinal recess in the flyer bow, engagement with the longitudinal recess restraining significant radial movement of the wear insert within the longitudinal recess. As here embodied, and depicted in
The function of the wear insert in this aspect of the invention is to prevent sliding contact of the elongated material being wound by means of the flyer bow with the surface of the flyer bow. In accordance with this aspect of the invention, the wear insert has a wear surface on the face of the wear insert opposite the engagement portion.
As here embodied, the wear inserts 402, 404, and 406 are comprised of a hard, wear-resistant material. The composition of the wear-resistant material is not known to be critical. It must have sufficient fracture toughness to be fabricated into components having some stress raisers, of sufficient strength to withstand the loads applied to it, and be resistant to wear from sliding contact. The wear inserts could also be comprised of different parts, with the portion that engages the flyer bow being strong but not necessarily wear-resistant, with a wear-resistant layer or coating on the portion of the wear insert in sliding contact with the elongated article being wound by the flyer bow. For example, the wear insert could be a metal with a wear-resistant coating, a composite with a wear-resistant metal or ceramic insert bonded or affixed thereto, or a homogeneous, wear-resistant material. Preferably, the wear-resistant material consists essentially of a ceramic material selected from the group consisting of alumina, zirconia, silicon nitride, and tungsten carbide.
Another embodiment of a wear inert is depicted in
Another embodiment of a wear insert is depicted in
In the embodiments of
In accordance with this aspect of the invention, there is at least one guide having a bow engagement portion disposed to slidably engage the longitudinal recess in the flyer bow, engagement with the longitudinal recess restraining significant radial movement of the wear insert within the longitudinal recess. As here embodied, and depicted in
The function of the guide in this aspect of the invention is to confine the elongated material being wound by the flyer bow, and prevent sliding contact of that material with the surface of the flyer bow. In accordance with this aspect of the invention, the guide has an opening in the guide opposite the engagement portion.
As here embodied, the guides 502, 504, and 506 are comprised of a hard, wear-resistant material. The composition of the wear-resistant material is not known to be critical. It must have sufficient fracture toughness to be fabricated into components having relatively thin sections, some stress raisers, of sufficient strength to withstand the loads applied to it, and be resistant to wear from sliding contact. The guides could also be comprised of different parts, with the portion that engages the flyer bow being strong but not necessarily wear-resistant, with a wear-resistant layer or coating on interior of the opening in the guide that is in sliding contact with the elongated article being wound by the flyer bow. For example, the wear insert could be a metal with a wear-resistant coating, a composite with a wear-resistant metal or ceramic insert bonded or affixed thereto, or a homogeneous, wear-resistant material. Preferably, the wear-resistant material consists essentially of a ceramic material selected from the group consisting of alumina, zirconia, silicon nitride, and tungsten carbide.
Another embodiment of a guide is depicted in
Another embodiment of a wear inert is depicted in
In accordance with this aspect of the invention, the guide has a guide opening opposite the engagement portion of the guide. As here embodied, and clearly depicted in
In accordance with this aspect of the invention the apparatus includes at least one stop detachably affixed to the flyer bow such that said wear inserts and guides in said longitudinal recess are longitudinally confined therein. The function of the stop is to prevent longitudinal movement of the components (wear insert and guides) within the longitudinal recess in the flyer bow. As here embodied and depicted in
It is further preferred that the stop include a bow engagement portion disposed to slidably engage the longitudinal recess. The engagement of the stop with the longitudinal recess restrains significant radial movement of the stop when it is placed in the longitudinal recess. Moreover, the fasteners (not shown) would affix the stop 112 to the flyer bow 100 would restrain significant movement of the stop and all components within the longitudinal recess 102 in the longitudinal direction. As here embodied, and depicted in
It will be apparent to those skilled in the art that various modifications and variations can be made in the above-described embodiments of the present invention without departing from the scope and spirit of the invention. Thus, it is intended that the present invention include such modifications and variations provided they come within the scope of the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
1371261 | Price | Mar 1921 | A |
3793819 | Madalozzo et al. | Feb 1974 | A |
4256268 | Fahrbach | Mar 1981 | A |
5509260 | Derdeyn | Apr 1996 | A |
5671878 | Kawasaki | Sep 1997 | A |
5809763 | Rowlands et al. | Sep 1998 | A |
6289661 | Boland | Sep 2001 | B1 |
20020112462 | Bock | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
05247861 | Sep 1993 | JP |
06346388 | Dec 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20040172932 A1 | Sep 2004 | US |