1. Technical Field
The present disclosure in some embodiments generally relates to a roller assembly, and more specifically to a roller assembly having replaceable flute inserts.
2. Description of the Related Art
Debarker apparatuses often have upper and lower spaced pairs of fluted rolls for moving logs along a processing line. These fluted rolls are commonly at the infeed and/or outfeed sections of the processing line. Flutes on the rolls are often arranged and shaped to grip and propel the logs forward as the rolls rotate. This is often accomplished by having sets of right and left complementing metal flutes meeting at the center of each roll. Each flute has an inner end displaced circumferentially along the roll from an outer end so that, when viewed in elevation, the complementing flutes have a generally “V” shaped configuration.
Central portions of the flutes often provide most of the traction for advancing the log and are commonly provided with a serrated configuration or spikes to better grip the log. Accordingly, the central portions are subject to most of the wear and must be replaced from time to time. Unfortunately, to accomplish this repair the roll typically must be removed from the debarker apparatus. The worn flutes are then removed, which is a relatively difficult task because the flutes are often welded to a cylindrical body of the roll.
The flutes (e.g., serrated metal flutes) may also damage logs thereby reducing the amount of material suitable for making lumber or other wood products. When the logs impact the flutes, for example, the ends of the logs may be damaged. The metal flutes can often remove chucks of wood from the logs, thus reducing the amount of useable wood. Thus, traditional fluted rolls may be unsuitable for processing logs.
Some embodiments disclosed herein include the realization that rollers of debarkers can have one or more replaceable flute inserts. The flute inserts can be positioned between flutes fixedly coupled to a roller and can minimize, limit, or substantially prevent damage to log ends. If the flute inserts are not performing properly, the inserts can be quickly replaced. After the inserts have been worn a predetermined amount, for example, the inserts can be quickly replaced resulting in less machine downtime. The inserts can provide suitable high wear surfaces, edges, or other contact regions for engaging logs.
The inserts can cushion the logs when the logs engage the rollers. In some embodiments, a buffer of the insert receives the log upon initial impact. The buffer then guides the log along the roller. During this process, the buffer can protect the log from the rigid underlying flutes on the roller that would otherwise damage (e.g., chew up) the log. Even though the buffer may be somewhat compressible, the buffer may effectively limit slipping between the roller and the log.
In one embodiment, a roller assembly of a log debarker system includes a rotatable roller having a first roller end, a second roller end opposing the first roller end, and an outer surface extending longitudinally between the first roller end and the second roller end. Two complementing series of flutes are spaced longitudinally apart from each other and coupled to the outer surface of the roller. Two complementing series of flute anchor members are coupled to the outer surface and positioned between the two series of flutes. Each flute anchor member has a first anchor section, a second anchor section, and a central anchor section interposed between the first anchor section and the second anchor section. The central anchor section is advanced circumferentially of the first anchor section and the second anchor section. A series of replaceable flute inserts each having a base and a buffer is provided. The base is coupled to at least one of the first and second flute anchor members such that the buffer extends outwardly beyond adjacent flute anchor members. The buffer comprises a non-metal material that is sufficiently compressible to accommodate a periphery of a log when the flute insert contacts a log.
In some embodiments, a roller assembly for a debarker system includes a roller having a rotary axis and a plurality of flute assemblies circumferentially spaced about and fixedly coupled to the roller. Each adjacent pair of flute assemblies defines a receiving gap. A plurality of replaceable flute inserts is configured to engage logs and positioned within corresponding receiving gaps. Each flute insert extends circumferentially between adjacent flute assemblies and longitudinally along at least a portion of the receiving gap. A compressible portion of the flute insert extends radially outward beyond adjacent flute assemblies such that the compressible portion can first accommodate a periphery of the log.
In yet another embodiment, a replaceable insert for use on a debarker roll having a plurality of flute elements is configured to couple to the roll and includes a first elongate arm having a first outer end and a first inner end. The first elongate arm extends along a first longitudinal axis between the first outer end and the first inner end. A second elongate arm has a second outer end and a second inner end. The second elongate arm extends along a second longitudinal axis between the second outer end and the second inner end. The second longitudinal axis is not parallel to the first longitudinal axis. A central portion is interposed between the first inner end and the second inner end. The first elongate arm, second elongate arm, and central portion cooperate to define an outer engagement face that faces outwardly when the insert is installed in the debarker roll.
In still another embodiment, a replaceable insert for use on a fluted roller having a plurality of anchoring elements includes a base coupleable to the fluted roller. A buffer is coupleable to the base and defines an outer face for engaging a log. At least a portion of the outer face is formed of a compressible material such that the at least a portion of the outer face is conformable to an outer surface of log when the base is coupled to the fluted roller.
In yet another embodiment, an insert for use on a fluted roller is provided. The insert includes a base member coupleable to the fluted roller. A cover is coupleable to the base. At least a portion of the cover is formed of a compressible material such that the at least a portion of the cover can conform to an outer surface of log when the base is coupled to the fluted roller. The cover can be a buffer or other suitable engagement device.
The present detailed description is generally directed to a debarker apparatus with one or more pairs of roller assemblies, each having a rotatable fluted roller carrying a plurality of replaceable flute inserts. Many specific details of certain exemplary embodiments are set forth in the following description and in
It should be noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise. For purposes of this description and for clarity, a debarker apparatus will be described, and then a description of a roller assembly and its components will follow.
With reference to
With continued reference to
The illustrated inserts 170 of
With continued reference to
The debarker apparatus 100 of
As shown in
The flute assemblies 160 can likewise have a one-piece or multi-piece construction. In some one-piece embodiments, the flute assemblies 160 have anchor members 210, 212 integrally formed with the outer flutes 200, 202. For example, an elongated, continuous strip of metal can form the outer flutes 200, 202 and anchor members 210, 212.
As shown in
The inserts 170 can be somewhat compressible to cushion the log 120 upon initial impact, thus limiting, minimizing, or substantially preventing damage to an end 121 of the log 120. Advantageously, a wide range of feed rates can be used without significantly impacting the performance of the debarker 100. For example, the log 120 can be delivered at a high line speed without appreciably damaging the leading end 121 (
After the roller assemblies 110, 112 receive the log 120, the inserts 170 can provide sufficient frictional interaction with the log 120 so as to limit, minimize, or substantially prevent any slipping (e.g., linear and/or rotational movement of the log 120) with respect to the inserts 170. The frictional interaction therefore ensures that the log 120 can be quickly and efficiently moved through the debarker apparatus 100. When the opposing inserts 170 on the rotating roller assemblies 110, 112 are compressed against the log 120, the inserts 170 snugly hold the log 120.
The log 120 can compress the inserts 170 to expose the rigid flute assemblies 160, which may provide a sufficient amount of traction to effectively move the log 120 along the processing line 175. The flute assemblies 160 can thus grip, center, and propel the log 120. One of ordinary skill in the art can select the designs of the flute assemblies 160 and inserts 170 to achieve the desired interaction with the log 120.
After the inserts 170 disengage the log 120, the inserts 170 can return to their original uncompressed configurations. Additionally or alternatively, the inserts 170 can dampen vibrations producing reduced cyclic loading for an improved fatigue life. The dampening facilitates smooth movement of the log 120 through the debarker apparatus 100.
With continued reference to
With reference to
In the illustrated embodiment, the longitudinal axis 286 of the first elongate arm 270 is not parallel to the longitudinal axis 296 of the second elongate arm 272. The angle defined between the longitudinal axes 286, 296 can be at least 30 degrees, 50 degrees, 60 degrees, 70 degrees, 90 degrees, 100 degrees, 120 degrees, and ranges encompassing such angles. The central portion 273 is formed, at least in part, by the first inner end 284 and the second inner end 292. In the illustrated embodiment, the first elongate arm 270, second elongate arm 272, and central portion 273 cooperate to define an engagement face 300 that faces outwardly when the insert 170 is installed, as shown in
Various types of inserts 170 can be used. The inserts 170 can be generally V-shaped, U-shaped, W-shaped, or have any other suitable shape for being received in the gap 168. Based on the configuration of the gaps 168, one of ordinary skill can determine an appropriate configuration of the inserts 170. The illustrated V-shaped inserts 170 are somewhat curved to generally match the curvature of the outer surface 167. The installed inserts 170 can rest against the outer surface 164, which can help apply compressive forces to the log 120 via the inserts 170.
As shown in
The traction elements 310 can be at other locations on the feed roller assemblies 110, 112. To enhance interaction with the flute assemblies 160, for example, the traction elements 310 can be fixedly coupled to outwardly facing surfaces of the flute assemblies 160. Other components of the roller assemblies 110, 112 can also be provided with the traction elements 310.
With continued reference to
For convenient installation, the buffer 320 can also include an aperture 358 sized and dimensioned to receive a fastener. As shown in
Various types of materials can be used to form the buffer 320. In some embodiments, the buffer 320 can comprise a somewhat compressible material that conforms about the outer surface of the log 120. As used herein, the term “compressible material” is a broad term that may include, without limitation, materials that are generally more compliant than wood, such as oak, pine, cedar, or other types of wood that are typically subjected to a debarking process. For example, the compressible material can have a modulus of elasticity equal to or less than the wood to be debarked. In some embodiments, the compressible material can have a modulus of elasticity less than the modulus of elasticity of steel and, thus, may produce less damage to the log as compared to steel flutes. As such, the compressible material can be readily deformed to conform to irregular surfaces of the logs without appreciably deforming the periphery of the logs. In some embodiments, the compressible material can elastically deform for repeated use.
The insert 170 can comprise one or more materials selected from one or more non-metals, metals (e.g., steel, aluminum, titanium, and the like), composites, polymers, alloys, foams, rubbers, thermoplastics, thermosets, elastomers, combinations thereof, and other materials suitable for engaging logs. In some non-limiting exemplary embodiments, the insert 170 and/or buffer 320 can be formed, in whole or in part, of a non-metal material (e.g., a polymer or plastic, such as polyurethane). In some embodiments, the insert 170 and/or buffer 320 comprises more than about 40% by weight of a non-metal material. In some embodiments, the insert 170 and/or buffer 320 comprises more than about 60% by weight of a non-metal material. In some embodiments, the insert 170 and/or buffer 320 comprises more than about 80% by weight of a non-metal material. In some embodiments, the insert 170 comprises mostly a non-metal material. In such embodiments, the insert 170 and/or buffer 320 can absorb enough energy to appreciably minimize or limit damage to the log while providing enough frictional interaction to rapidly move the log 120.
The insert 170 and/or buffer 320 in some embodiments may comprise foamed and/or unfoamed material, such as polyurethane. For a lightweight insert 170, the insert 170 can be formed of low density foam, medium density foam, or high density foam based on the end use. The density of the foam can be selected based on the desired overall weight of the insert 170.
In some embodiments, the buffer 320 comprises mostly a non-metal material. In such embodiments, the buffer 320 provides localized deformation that helps protect the log 120, even if the base 330 is formed of a hard, rigid material. For example, the buffer 320 can be made of a compliant polymer, and the base 330 can be made of a metal, such as steel. The buffer 320 and base 330 can be formed of a similar material or different materials. In some embodiments, the buffer 320 comprises a first material and the base 330 comprises a second material that is substantially less compliant than the first material.
Additionally or alternatively, the buffer 320 can be formed, in whole or in part, of a high wear material. In some embodiments, for example, polyesters, polyurethane, and the like can provide a high wear-resistant buffer 320 suitable for repeated interaction with logs. The strength, wear resistance, compressibility, and material properties of the materials selected to form the inserts 170 can be determined based on the properties of the logs, processing speeds, desired forces for moving the logs, and other operating criteria that affect the debarking process. One of ordinary skill in the art can determine the appropriate combination of material type, thickness, and shape to achieve the desired physical interaction with the logs.
With reference to
To assemble the insert 170, the mounting portion 340 of the buffer 320 can be placed within the base receiving portion 386 of the base 330. A bottom surface 400 of the buffer 320 can engage an upper surface 402 of the receiving portion 386. Sidewalls 406, 408 of the mounting portion 340 can abut against sidewalls 410, 412 of the receiving portion 386.
To lock the buffer 320 to the base 330, protuberances 420, 422 of the base 330 can be received within recesses 430, 432, respectively, of the buffer 320. In this manner, the buffer 320 can be keyed to the base 330. To further minimize or eliminate relative movement between the buffer 320 and base 330, an upwardly extending fastener receiving portion 440 of the base 330 can be received within the aperture 358 of the buffer 330. When assembled, the fastener 244 of
Fastener receiving portions 460, 462 of the base 330 of
Because logs repeatedly strike and bear against the buffer 320, the buffer 320 may become deformed, worn, roughened, or otherwise damaged, especially after extended use. Advantageously, the buffer 320 can be conveniently replaced such that the base 330 can be reused with another buffer. The base 330 can remain attached to the roller assembly 110 during the replacement process.
The entire insert 170 can also be replaced, as needed or desired. In such embodiments, the buffer 320 can be permanently coupled to the base 330. For example, adhesives, welds, or other permanent coupling means, alone or in combination with one or more fasteners, can be used to permanently couple the buffer 320 to the base 330.
Although the illustrated inserts 170 are removable, the inserts 170 in other embodiments can be permanently coupled to the roller assembly 110. For example, the base 330 can be welded, bonded, or otherwise affixed to the roller assembly 110. In such embodiments, the buffer 320 can be removably coupled to the base 330 for convenient buffer replacement. In other such embodiments, the buffer 320 can be permanently coupled to the base 330 to ensure that the buffer 320 remains attached to the base 330 during prolonged use. Thus, if the inserts 170 become worn, the entire roller assembly 110, or a portion thereof, can be easily replaced.
In operation, the log 120 can be fed into the simultaneously rotating roller assemblies 110, 112. As the end 121 of the log 120 comes into contact with the inserts 170, the buffers 320 can engage and pull the log 120 along the processing line 175. To enhance performance, the buffers 320 may deform and absorb energy thereby dampening vibrations and cushioning the end 121.
Because the buffers 320 extend radially outward beyond the flute assemblies 160, logs of different sizes and geometries can be processed by the apparatus 100. The distance between the roller assemblies 110, 112 can be increased or decreased to decrease or increase, respectively, the compressive forces applied to the inserts 170 and log 120. The distance that the inserts 170 extend beyond corresponding adjacent flute assemblies 160 can be selected based on the dimensions of the logs being processed, material properties of the buffer 320 (e.g., compressibility, wear resistance, and the like), and other operating parameters known in the art.
If the buffer 320 is compressed a sufficient amount, the log 120 can engage the flange 390 of the base 330. Even so, the flange 390 protects the anchor members 210, 212 from bearing against the outer surface of the log 120. As such, the inserts 170 can cooperate to form a somewhat continuous annular surface about the entire roller assembly 110. As the log 120 is moved lengthwise along the roller assemblies 110, 112, it remains in generally continuous contact with the inserts 170, thereby prolonging the life of the underlying fluted rolls.
The intermediate flute elements 506, 508 can serve as the primary load bearing elements of the roller assembly 510, thus prolonging the working life of other components of the roller assembly 510. Once the flute elements 506, 508 become damaged or worn, they can be conveniently replaced.
Each of the intermediate flute elements 506 includes a plurality of traction elements 515 whereas the intermediate flute element 508 has a bare upper surface. The intermediate flute elements 506, 508 (alone or in combination with the flute inserts 500, flute assemblies 509, or both) can effectively grip and propel a log, and can be similar to or the same as the flute elements disclosed in U.S. Pat. Nos. 6,253,813 and 6,422,277, which are hereby incorporated by reference in their entireties.
With reference to
The mounting feature 550 of
The buffer end 582 has a through hole 588 to increase the pull-out strength of the installed mounting feature 550. If the buffer 540 is formed through a molding process (such as an injection molding process or overmolding process), molded material can extend through the through hole 588 so as to effectively lock the mounting feature 550 to the insert 500. Other types of coupling arrangements can also be used.
The mounting feature 552 of
When installed, the mounting features 550, 552, 554 can effectively reduce, limit, or substantially eliminate unwanted movement of the insert 540 relative to the adjacent components of the roller assembly 110. The mounting features 550, 552, 554 can be formed, in whole or in part, of a relatively strong material, such as metal (e.g., steel, carbon structural steel, titanium, and the like), polymers (e.g., nylon and other high strength polymers), and the like.
The insert 500 of
To couple the flute insert 500 to the roller assembly 110, fasteners 585 can be disposed through corresponding mounting features 550, 552, 554. As shown in
Other types of mounting features (e.g., tabs, hooks, snap-in members, and the like) or mounting arrangements can be used to mount the inserts 500 to the roller assembly 510. In some embodiments, for example, the buffer 540 itself can have one or more through holes (e.g., countersunk through holes) for receiving fasteners. Fasteners can extend through corresponding through holes to couple the buffer 540 to the cylindrical roller body 590. As such, bolts, fasteners, or other coupling means can directly coupled the insert 500 to the cylindrical roller body 590.
Referring to
The traction elements 630 can be evenly or unevenly spaced along the engagement surface 640. For example, the illustrated traction elements 630 are somewhat evenly spaced from each other so as to form a two-dimensional traction zone 650 (
The illustrated traction zone 650 is positioned along an elongate arm 700 and a portion of a central portion 702 of the insert 610. The traction system 620 can securely grip the log whereas the bare elongate arm 710 can slidably engage the log. A log positioned between two of the flute assemblies (e.g., in the arrangement illustrated in
The retainer 670 of
The retainer 670 can have one or more holes through which the body 672 can extend to lock the retainer 670 therein. Material extending through the one or more holes can limit or substantially prevent separation of the main body 672 from a central section of the retainer 670. Other types of locking features can also be incorporated into the retainer 670.
The traction system 620 can have a one-piece or multi-piece construction. The elongate members 662 of
The traction system 620 can be formed, in whole or in part, of a generally rigid material, such as metals (e.g., steel, tool steel, titanium, aluminum), ceramics, and other high wear materials suitable for striking and bearing against the logs. In use, the end of the log can initially impact the traction elements 630 or the engagement surface 640. The engagement surface 640 can absorb the impact to control the amount of damage, if any, to the leading end of the log. The traction elements 630 can be quickly brought into contact with the log to pull the log through the debarker. The traction elements 630 can dig into the log to grip and propel the log along a processing line.
The traction system 620 can also be used with other inserts described herein. For example, the traction system 620 can be incorporated into the insert 170 of
A skilled artisan can design the roller assemblies 110, 112 for mounting onto various known debarkers. Various methods and techniques described above provide a number of ways to carry out the invention. Of course, it is to be understood that not necessarily all objectives or advantages described may be achieved in accordance with any particular embodiment described herein. Thus, for example, those skilled in the art will recognize that the methods may be performed in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objectives or advantages as may be taught or suggested herein.
Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments disclosed herein. Similarly, the various features and acts discussed above, as well as other known equivalents for each such feature or act, can be mixed and matched by one of ordinary skill in this art to perform methods in accordance with principles described herein. Additionally, the methods which are described and illustrated herein are not limited to the exact sequence of acts described, nor are they necessarily limited to the practice of all of the acts set forth. Other sequences of events or acts, or less than all of the events, or simultaneous occurrence of the events, may be utilized in practicing the embodiments of the invention.
Although the invention has been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. Accordingly, it is not intended that the invention be limited, except as by the appended claims.