Replacement heart valve implant with invertible leaflets

Abstract
A locking mechanism for a medical implant may include a buckle member, a post member axially translatable with respect to the buckle member, the post member including a receiving portion proximate a proximal end of the post member, a distal end, a laterally-arched central body portion extending between the receiving portion and the distal end, and a cantilevered leg extending proximally from the distal end, and an actuator element including a proximal shaft portion and a distal engagement portion, the distal engagement portion being configured to releasably engage the receiving portion of the post member. The proximal shaft portion may be pivotable with respect to the distal engagement portion.
Description
TECHNICAL FIELD

The present disclosure pertains to medical devices, and methods for manufacturing and/or using medical devices. More particularly, the present disclosure pertains to configurations of a replacement heart valve.


BACKGROUND

A wide variety of intracorporeal medical devices have been developed for medical use, for example, intravascular use. Some of these devices include guidewires, catheters, medical device delivery systems (e.g., for stents, grafts, replacement valves, etc.), and the like. These devices are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known medical devices and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices as well as alternative methods for manufacturing and using medical devices.


SUMMARY

In a first aspect, a locking mechanism for a medical implant may comprise a buckle member, a post member axially translatable with respect to the buckle member, the post member including a receiving portion proximate a proximal end of the post member, a distal end, a laterally-arched central body portion extending between the receiving portion and the distal end, and a cantilevered leg extending proximally from the distal end, and an actuator element including a proximal shaft portion and a distal engagement portion, the distal engagement portion being configured to releasably engage the receiving portion of the post member. The proximal shaft portion may be pivotable with respect to the distal engagement portion.


In addition or alternatively, and in a second aspect, the actuator element includes a hinge element disposed between the proximal shaft portion and the distal engagement portion.


In addition or alternatively, and in a third aspect, the post member includes at least one aperture extending therethrough proximate the distal end, the at least one aperture being configured to receive a coupling element therethrough.


In addition or alternatively, and in a fourth aspect, the distal engagement portion includes a lateral protrusion proximate a distal end of the distal engagement portion.


In addition or alternatively, and in a fifth aspect, the lateral protrusion is configured to engage with an aperture disposed within the receiving portion.


In addition or alternatively, and in a sixth aspect, the laterally-arched central body portion includes a tooth extending laterally therefrom.


In addition or alternatively, and in a seventh aspect, the tooth extends toward the cantilevered leg.


In addition or alternatively, and in an eighth aspect, the central body portion arches laterally in a first direction relative to the proximal end and the distal end, and the tooth extends laterally in the first direction from the central body portion.


In addition or alternatively, and in a ninth aspect, the cantilevered leg includes a longitudinally-oriented slot extending therethrough.


In addition or alternatively, and in a tenth aspect, the receiving portion includes a first portion and a second portion configured to splay apart as the post member is translated proximally within the buckle member to release the distal engagement portion therefrom.


In addition or alternatively, and in an eleventh aspect, the buckle member is formed of a substantially rigid material.


In addition or alternatively, and in a twelfth aspect, the central body portion is configured to flex towards a substantially straight configuration upon proximal translation through the buckle member.


In addition or alternatively, and in a thirteenth aspect, a replacement heart valve implant may comprise a tubular anchor member defining a central longitudinal axis; a plurality of locking mechanisms, each locking mechanism comprising a buckle member fixedly attached to the tubular anchor member, and a post member axially translatable with respect to the buckle member, the post member including a receiving portion proximate a proximal end of the post member, a distal end, a laterally-arched central body portion extending between the receiving portion and the distal end, and a cantilevered leg extending proximally from the distal end; a plurality of valve leaflets, wherein each valve leaflet is coupled to the cantilevered leg of at least one of the plurality of locking mechanisms; and a plurality of actuator elements corresponding to the plurality of locking mechanisms, each actuator element including a proximal shaft portion and a distal engagement portion, wherein the proximal shaft portion is pivotable relative to the distal engagement portion, wherein the distal engagement portion is releasably fixed to the receiving portion of one post member.


In addition or alternatively, and in a fourteenth aspect, the buckle member of each locking mechanism is positioned against an inner surface of the tubular anchor member.


In addition or alternatively, and in a fifteenth aspect, the plurality of valve leaflets is configured to shift between an everted position wherein a free end of each of the plurality of valve leaflets is disposed distally of the tubular anchor member, and a deployed position wherein the free end of each of the plurality of valve leaflets is disposed within the tubular anchor member.


In addition or alternatively, and in a sixteenth aspect, in the everted position, each of the plurality of actuator elements extends distally of the tubular anchor member.


In addition or alternatively, and in a seventeenth aspect, each of the plurality of valve leaflets is secured to the tubular anchor member at a secured end opposite the free end.


In addition or alternatively, and in an eighteenth aspect, a replacement heart valve implant may comprise a tubular anchor member defining a central longitudinal axis, the tubular anchor member being configured to shift between a delivery configuration and a deployed configuration; a plurality of locking mechanisms, each locking mechanism comprising a buckle member fixedly attached to the tubular anchor member, and a post member axially translatable with respect to the buckle member, the post member including a receiving portion proximate a proximal end of the post member, a distal end, a laterally-arched central body portion extending from the receiving portion to the distal end, and a cantilevered leg extending proximally from the distal end; a plurality of valve leaflets, wherein each valve leaflet is coupled to the cantilevered leg of at least one of the plurality of locking mechanisms; and a plurality of actuator elements corresponding to the plurality of locking mechanisms, each actuator element including a proximal shaft portion pivotably connected to a distal engagement portion, the distal engagement portion being releasably fixed to the receiving portion of one post member, wherein the distal engagement portion is configured to pivot with respect to the proximal shaft portion in a radial direction relative to the central longitudinal axis.


In addition or alternatively, and in a nineteenth aspect, each actuator element extends through the buckle member of its corresponding locking mechanism when the tubular anchor member is in the delivery configuration, and each actuator element is configured to translate the post member of its corresponding locking mechanism into engagement with the buckle member of its corresponding locking mechanism upon proximal retraction of the plurality of actuator elements.


In addition or alternatively, and in a twentieth aspect, the post member is at least partially disposed distally of the tubular anchor member when the tubular anchor member is in the delivery configuration, and the post member is locked within the buckle member when the tubular anchor member is in the deployed configuration.


The above summary of some embodiments, aspects, and/or examples is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify these embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:



FIG. 1 illustrates an example medical implant system;



FIG. 2 illustrates an example medical implant in a deployed configuration;



FIG. 3 is an isometric view of an example buckle member associated with an example medical implant;



FIG. 4 is an isometric view of an example post member associated with an example medical implant;



FIG. 5 is an isometric view of an example actuator member associated with an example medical implant system;



FIG. 6 illustrates selected portions of an example medical implant in a delivery or everted configuration;



FIG. 7 illustrates selected portions of an example medical implant in a partially deployed configuration;



FIG. 8 illustrates selected portions of an example medical implant in a partially deployed configuration;



FIG. 9 illustrates selected components of an example medical implant associated with an example medical implant system in a partially deployed configuration;



FIG. 10 illustrates selected components of an example medical implant associated with an example medical implant system in a deployed configuration;



FIGS. 11-12 illustrate selected components of an example medical implant associated with an example medical implant system in a partially-released configuration; and



FIG. 13 illustrates selected components of an example medical implant associated with an example medical implant system in a released configuration.





While aspects of the disclosure are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DETAILED DESCRIPTION

The following description should be read with reference to the drawings, which are not necessarily to scale, wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings are intended to illustrate but not limit the claimed invention. Those skilled in the art will recognize that the various elements described and/or shown may be arranged in various combinations and configurations without departing from the scope of the disclosure. The detailed description and drawings illustrate example embodiments of the claimed invention.


For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about”, in the context of numeric values, generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (e.g., having the same function or result). In many instances, the term “about” may include numbers that are rounded to the nearest significant figure. Other uses of the term “about” (e.g., in a context other than numeric values) may be assumed to have their ordinary and customary definition(s), as understood from and consistent with the context of the specification, unless otherwise specified.


The recitation of numerical ranges by endpoints includes all numbers within that range, including the endpoints (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


Although some suitable dimensions, ranges, and/or values pertaining to various components, features and/or specifications are disclosed, one of skill in the art, incited by the present disclosure, would understand desired dimensions, ranges, and/or values may deviate from those expressly disclosed.


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


Relative terms such as “proximal”, “distal”, “advance”, “retract”, variants thereof, and the like, may be generally be considered with respect to the positioning, direction, and/or operation of various elements relative to a user/operator/manipulator of the device, wherein “proximal” and “retract” indicate or refer to closer to or toward the user and “distal” and “advance” indicate or refer to farther from or away from the user. Other relative terms, such as “upstream”, “downstream”, “inflow”, and “outflow” refer to a direction of fluid flow within a lumen, such as a body lumen, a blood vessel, or within a device.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it would be within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments, whether or not explicitly described, unless clearly stated to the contrary. That is, the various individual elements described below, even if not explicitly shown in a particular combination, are nevertheless contemplated as being combinable or arrangable with each other to form other additional embodiments or to complement and/or enrich the described embodiment(s), as would be understood by one of ordinary skill in the art.


For the purpose of clarity, certain identifying numerical nomenclature (e.g., first, second, third, fourth, etc.) may be used throughout the description and/or claims to name and/or differentiate between various described and/or claimed features. It is to be understood that the numerical nomenclature is not intended to be limiting and is exemplary only. In some embodiments, alterations of and deviations from previously-used numerical nomenclature may be made in the interest of brevity and clarity. That is, a feature identified as a “first” element may later be referred to as a “second” element, a “third” element, etc. or may be omitted entirely, and/or a different feature may be referred to as the “first” element. The meaning and/or designation in each instance will be apparent to the skilled practitioner.


Diseases and/or medical conditions that impact the cardiovascular system are prevalent in the United States and throughout the world. Traditionally, treatment of the cardiovascular system was often conducted by directly accessing the impacted part of the system. For example, treatment of a blockage in one or more of the coronary arteries was traditionally treated using coronary artery bypass surgery. As can be readily appreciated, such therapies are rather invasive to the patient and require significant recovery times and/or treatments. More recently, less invasive therapies have been developed, for example, where a blocked coronary artery could be accessed and treated via a percutaneous catheter (e.g., angioplasty). Such therapies have gained wide acceptance among patients and clinicians.


Some relatively common medical conditions may include or be the result of inefficiency, ineffectiveness, or complete failure of one or more of the valves within the heart. For example, failure of the aortic valve or the mitral valve can have a serious effect on a human and could lead to serious health condition and/or death if not dealt with. Treatment of defective heart valves poses other challenges in that the treatment often requires the repair or outright replacement of the defective valve. Such therapies may be highly invasive to the patient. Disclosed herein are medical devices that may be used for delivering a medical device to a portion of the cardiovascular system in order to diagnose, treat, and/or repair the system. At least some of the medical devices disclosed herein may be used to deliver and implant a replacement heart valve (e.g., a replacement aortic valve, replacement mitral valve, etc.). In addition, the devices disclosed herein may deliver the replacement heart valve percutaneously and, thus, may be much less invasive to the patient. The devices disclosed herein may also provide a number of additional desirable features and benefits as described in more detail below.


The figures illustrate selected components and/or arrangements of a medical implant system 10, shown schematically in FIG. 1 for example. It should be noted that in any given figure, some features of the medical implant system 10 may not be shown, or may be shown schematically, for simplicity. Additional details regarding some of the components of the medical implant system 10 may be illustrated in other figures in greater detail. A medical implant system 10 may be used to deliver and/or deploy a variety of medical devices to a number of locations within the anatomy. In at least some embodiments, the medical implant system 10 may include a replacement heart valve delivery system (e.g., a replacement aortic valve delivery system) that can be used for percutaneous delivery of a medical implant 14, such as a replacement heart valve. This, however, is not intended to be limiting as the medical implant system 10 may also be used for other interventions including valve repair, valvuloplasty, and the like, or other similar interventions.


The medical implant system 10, as seen in FIG. 1 for example, may generally be described as a catheter system that includes a delivery system 12 and the medical implant 14 (e.g., a replacement heart valve implant, for example, which term may be used interchangeably with the term “medical implant” herein) which may be coupled to the delivery system 12 and disposed within a lumen of the delivery system 12 during delivery of the medical implant 14. In some embodiments, a handle 18 may be disposed and/or attached at a proximal end of the delivery system 12, as seen in FIG. 1, and may include at least one actuation means associated therewith. In some embodiments, the handle 18 may be configured to manipulate the position of the delivery system 12 and/or aid in the deployment of the medical implant 14. In some embodiments, the medical implant system 10 may include a nose cone disposed at a distal end of a guidewire extension tube, wherein the guidewire extension tube may extend distally from the delivery system 12. In at least some embodiments, the nose cone may be designed to have an atraumatic shape. In some embodiments, the nose cone may include a ridge or ledge that is configured to abut a distal tip of the delivery system 12 during delivery of the medical implant 14.


In use, the medical implant system 10 may be advanced percutaneously through the vasculature to a position proximate to an area of interest and/or a treatment location. For example, in some embodiments, the medical implant system 10 may be advanced through the vasculature to a position proximate to a defective native valve (e.g., aortic valve, mitral valve, etc.). Alternative approaches to treat a defective aortic valve and/or other heart valve(s) are also contemplated with the medical implant system 10. During delivery, the medical implant 14 may be generally disposed in an elongated and low profile “delivery” configuration within the delivery system 12. Once positioned, at least a portion of the delivery system 12 may be retracted relative to the medical implant 14 to expose the medical implant 14. In some embodiments, the medical implant 14 may be disposed in an “everted” configuration while disposed within the lumen and/or the distal end of the delivery system 12 and/or immediately upon exposure after retracting the delivery system 12. In some embodiments, the “delivery” configuration and the “everted” configuration may be substantially similar and/or may be used interchangeably. The medical implant 14 may be actuated using the handle 18 in order to translate the medical implant 14 into a generally shortened and larger profile “deployed” configuration suitable for implantation within the anatomy, as seen in FIG. 2 for example. When the medical implant 14 is suitably deployed within the anatomy, the medical implant 14 may be released and/or detached from the medical implant system 10 and the delivery system 12 can be removed from the vasculature, thereby leaving the medical implant 14 in place in a “released” configuration, to function as, for example, a suitable replacement for the native valve. In at least some interventions, the medical implant 14 may be deployed within the native valve (e.g., the native valve is left in place and not excised). Alternatively, the native valve may be removed and the medical implant 14 may be deployed in its place as a replacement.


In some embodiments, the delivery system 12 may include at least one lumen extending therethrough. For example, in some embodiments, the delivery system 12 may include a first lumen, a second lumen, a third lumen, and a fourth lumen. Other configurations are also contemplated. In general, the at least one lumen extend along an entire length of the delivery system 12. Other embodiments are contemplated, however, where at least one of the at least one lumen extends along only a portion of the length of the delivery system 12. In some embodiments, a coupler assembly 32 may be attached at and/or to a distal end of the delivery system 12. In some embodiments, the coupler assembly 32 may releasably couple the medical implant 14 and/or selected components thereof to the delivery system 12. In some embodiments, the coupler assembly 32 may include a plurality of fingers, as discussed in more detail below.


In some embodiments, disposed within one of the lumens of the delivery system 12 may be at least one actuator member 50, which may be used to actuate (e.g., translate axially or longitudinally, and/or expand) the medical implant 14 between a delivery configuration and a deployed configuration. In some embodiments, the medical implant system 10 may include at least one actuator member 50. In some embodiments, the at least one actuator member 50 may include a plurality of actuator members 50, two actuator members 50, three actuator members 50, four actuator members 50, or another suitable or desired number of actuator members 50. For the purpose of illustration only, the medical implant system 10 and/or the medical implant 14 of FIG. 2 is configured to use three actuator members 50. In use, a proximal end of an actuator member 50 may be connected to the handle 18, and/or manipulated or otherwise actuated by a user using the handle 18, to shift the tubular anchor member 40 and/or the medical implant 14 from a “delivery” configuration to a “deployed” configuration, and later to a “released” configuration. During the release process for the medical implant 14, (e.g., as the medical implant 14 and/or the tubular anchor member 40 is actuated from the “delivery” configuration to the “deployed” configuration to the “released” configuration), the at least one actuator member 50 may be retracted, withdrawn, and/or translated proximally relative to delivery system 12, the medical implant 14, and/or components or elements thereof.


It is to be noted that in order to facilitate understanding, certain features of the disclosure may be described in the singular, even though those features may be plural or recurring within the disclosed embodiment(s). Each instance of the features may include and/or be encompassed by the singular disclosure(s), unless expressly stated to the contrary. For example, a reference to “the actuator member”, “the locking element”, “the lumen”, or other features may be equally referred to all instances and quantities beyond one of said feature. As such, it will be understood that the following discussion may apply equally to any and/or all of the components for which there are more than one within the medical implant 14 (e.g., the at least one actuator member 50, the plurality of locking elements, etc.) and/or the medical implant system 10, unless explicitly stated to the contrary. Additionally, not all instances of some elements or features may be shown in each figure for clarity.



FIG. 2 illustrates some selected components of the medical implant system 10 and/or the medical implant 14 in the “deployed” configuration. For example, the medical implant 14 includes a plurality of valve leaflets 16 (e.g., bovine pericardial, polymeric, etc.) which may be secured to a tubular anchor member 40 that is actuatable between an elongated “delivery” configuration, as in FIG. 1 for example, and an expanded “deployed” configuration, as in FIG. 2. In some embodiments, the tubular anchor member 40 may include a proximal end and a distal end. In some embodiments, the tubular anchor member 40 may form a tubular structure defining a central longitudinal axis extending from the proximal end of the tubular anchor member 40 to the distal end of the tubular anchor member 40, and/or a lumen extending through the tubular anchor member 40 along, parallel to, coaxial with, and/or coincident with the central longitudinal axis. In some embodiments, the tubular anchor member 40 may be and/or include a braid formed from at least one filament or wire (e.g., a single filament or wire, two filaments or wires, etc.). Other configurations are also contemplated. Some suitable but non-limiting materials for the tubular anchor member 40, for example metallic materials or polymeric materials, are described below.


In some embodiments, the tubular anchor member 40 may include and/or form a plurality of anchor member intersection points 42 distributed around a circumference of the tubular anchor member 40. In some embodiments, the plurality of anchor member intersection points 42 may include two or more overlapping segments (e.g., a first segment, a second segment, a third segment, etc.) of the tubular anchor member 40 and/or the braid, filaments, wires, etc. thereof. In some embodiments, the two or more overlapping segments may be arranged in an alternating over-and-under pattern or arrangement. For example, at a first anchor member intersection point 42, a first segment may be disposed radially outward of a second segment. At an adjacent second anchor member intersection point 42 including the first segment, the first segment may be disposed radially inward of an overlapping segment (e.g., a third segment). If the first segment (or any single segment) is followed around the circumference of the tubular anchor member 40, the over-under-over pattern would continue alternating about the entire circumference of the tubular anchor member 40.


In some embodiments, the medical implant 14 may include a plurality of locking mechanisms attached to the tubular anchor member 40, the plurality of locking mechanisms being configured to secure the tubular anchor member 40 in the “deployed” and/or “released” configuration(s). In some embodiments, the medical implant 14 and/or the tubular anchor member 40 may be reversed and/or longitudinally extended back toward the “delivery” configuration at any point up until the plurality of locking mechanisms actually “locks” the medical implant 14 and/or the tubular anchor member in the “deployed” configuration. In some embodiments, the at least one actuator member 50 may be configured to engage with the plurality of locking mechanisms and actuate the tubular anchor member 40 and/or the medical implant 14 between the “delivery” configuration, the “deployed” configuration, and/or the “released” configuration. In some embodiments, one actuator member 50 may correspond to, engage with, and/or actuate one locking mechanism. In some embodiments, each actuator member 50 may extend through a guide 38 adjacent to and covering one of the plurality of fingers, as described herein, of the coupler assembly 32, and through a collar 36 coupling and/or locking the finger to one of the plurality of locking mechanisms. The guide 38 may be disposed over each of the fingers proximal of the collar 36 and may serve to keep the fingers of the coupler assembly 32 associated with the actuator members 50 extending adjacent to (and axially slidable relative to) the fingers of the coupler assembly 32. Other configurations are also contemplated. For example, in some embodiments, one actuator member 50 may correspond to, engage with, and/or actuate more than one locking mechanism.


For simplicity and clarity purposes, not all elements of the disclosed invention are necessarily shown in each figure. In some illustrative examples, only one of the fingers of the coupler assembly 32, only one of the plurality of actuator members 50, only one of the post members 76, only one of the buckle members 58, only one of the collars 36, etc. are shown and discussed (the whole medical implant 14 and/or the tubular anchor member 40 may not be shown to facilitate understanding of the locking mechanisms and/or other elements). However, it will be understood that the following discussion may apply equally to any and/or all of the components for which there are more than one within the medical implant 14 (e.g., each of the plurality of fingers 34, collars 36, guides 38, actuator members 50, buckle members 58, post members 76, etc.) and/or the medical implant system 10.


In some embodiments, the plurality of locking mechanisms may each comprise a buckle member 58 or other receiving element fixedly attached to the tubular anchor member 40 (e.g., along an inner surface of the tubular anchor member 40), and an axially movable post member 76, for example at the commissure portions of the valve leaflets 16 (a post member 76 may sometimes be referred to as a “commissure post”, which may serve to secure the plurality of valve leaflets 16, or a post member 76 may be connected and/or attached to a commissure post). In some embodiments, the buckle member 58 or other receiving element may be configured to slidably receive at least a portion of the post member 76 therein to engage with the buckle member 58 and thereafter lock the tubular anchor member 40 and/or the medical implant 14 in the “deployed” and/or the “released” configuration(s). In some embodiments, each of the plurality of valve leaflets 16 may be secured to the tubular anchor member 40 at one post member 76. In some embodiments, each of the plurality of valve leaflets 16 may be secured to two adjacent post members 76 at opposing sides of the valve leaflet 16. In at least some embodiments, a medical implant 14 may include a plurality of post members 76 and a corresponding plurality of buckle members 58 (e.g., one post member 76 for each/one buckle member 58). Other configurations and correspondences are also contemplated. Some suitable but non-limiting materials for the buckle member(s) 58 and/or the post member(s) 76, for example metallic materials or polymeric materials, may be described below.


Positioned proximate to (e.g., aligned with) the plurality of post members 76 may be a corresponding plurality of buckle members 58, which may be secured and/or fixedly attached to the tubular anchor member 40 (e.g., along the interior of the tubular anchor member 40) with sutures, adhesives, or other suitable mechanisms. In some embodiments, the post member 76 may be axially translatable relative to the buckle member 58 generally parallel to the central longitudinal axis of the tubular anchor member 40 when the post member 76 is at least partially disposed within and/or engaged with the buckle member 58.


In some embodiments, one buckle member 58 may be fixedly attached to the tubular anchor member 40 proximate to each of the three post members 76 and/or proximate the proximal end of the tubular anchor member 40. Accordingly, in some embodiments, the tubular anchor member 40 may have a total of three buckle members 58 and three post members 76 attached thereto. Similarly, one actuator member 50 may be associated with each post member 76 and buckle member 58, for a total of three actuator members 50 in the illustrated example(s). Other embodiments are contemplated where fewer or more buckle members 58, post members 76, and/or actuator members 50 may be utilized.


In some embodiments, the medical implant 14 and/or the tubular anchor member may be attached, coupled, and/or connected to the delivery system 12 by a coupler assembly 32, as seen in FIG. 2 for example. The coupler assembly 32 may generally include a cylindrical base (not shown) that may be attached to and/or extending from a distal end of the delivery system 12 and/or a portion or component thereof. Projecting distally from the base is a plurality of fingers (e.g., two fingers, three fingers, four fingers, etc.) that are each configured to engage with the medical implant 14 at the buckle members 58 (for example, at a proximal end of the buckle members 58), with the plurality of actuator members 50 extending therethrough and engaging the post members 76. A collar 36 may be disposed about each of the fingers 34 of the coupler assembly 32 to further assist in coupling, engaging, attaching, and/or otherwise holding together the fingers 34 and the buckle members 58. Some suitable but non-limiting materials for the coupler assembly 32, the fingers 34, the collars 36, and/or the guides 38, for example metallic materials or polymeric materials, may be described below.


In some embodiments, the plurality of valve leaflets 16 may be secured to the tubular anchor member 40 at, proximate to, and/or using (at least in part) individual, corresponding post members 76. In some embodiments, the plurality of valve leaflets 16 may also be secured to the distal end of the tubular anchor member 40. In at least some embodiments, the distal end of the tubular anchor member 40 may be interchangeably described as the “inflow” end or the “upstream” end of the tubular anchor member 40 and/or the medical implant 14. In at least some embodiments, the proximal end of the tubular anchor member 40 may be interchangeably described as the “outflow” end or the “downstream” end of the tubular anchor member 40 and/or the medical implant 14.


As will be described in more detail below, the post member 76 may be secured, attached, coupled, and/or connected to the distal end and/or the inflow end of the tubular anchor member 40. Therefore, in some embodiments, when the post member 76 is pulled proximally to engage the buckle member 58, as will be described herein, the distal end and/or the inflow end of the tubular anchor member 40 is also pulled proximally relative to the buckle member 58, thereby transitioning from the “delivery” configuration and/or the “everted” configuration toward the “deployed” configuration. In some embodiments, the plurality of valve leaflets 16 may be coupled and/or secured (e.g., to the post member 76, to the tubular anchor member 40, and/or back to themselves) using at least one suture, thread, wire, filament, or other suitable element. In some embodiments, the plurality of valve leaflets 16 may be coupled and/or secured (e.g., to the post member 76, to the tubular anchor member 40, and/or back to themselves) using an adhesive, a bonding agent, or other suitable securing means. In some embodiments, the plurality of valve leaflets 16 may be coupled and/or secured (e.g., to the post member 76, to the tubular anchor member 40, and/or back to themselves) using a fabric strip, a textile, or other thin flexible material. In some embodiments, the plurality of valve leaflets 16 may not be directly attached to the tubular anchor member 40.


In some embodiments, a seal member 44 may be circumferentially disposed on and/or about a distal portion and/or an inflow portion of the tubular anchor member 40, as seen in FIG. 2 for example, and as the term suggests, may help to seal an exterior of the medical implant 14 and/or the tubular anchor member 40 within and/or against a target site or area of interest upon deployment (e.g., in the “deployed” configuration and/or the “released” configuration), thereby inhibiting or preventing leakage around the medical implant 14 and/or the tubular anchor member 40. In some embodiments, the seal member 44 may be disposed about and/or radially outward of an outside surface of the tubular anchor member 40. In some embodiments, the seal member 44 may be disposed around a perimeter and/or on or against an exterior or outer surface of the tubular anchor member 40. In some embodiments, the seal member 44 may be coupled and/or secured at the distal end and/or the inflow end of the tubular anchor member 40.


In some embodiments, the seal member 44 may include a plurality of layers of polymeric material. Some suitable polymeric materials may include, but are not necessarily limited to, polycarbonate, polyurethane, polyamide, polyether block amide, polyethylene, polyethylene terephthalate, polypropylene, polyvinylchloride, polytetrafluoroethylene, polysulfone, and copolymers, blends, mixtures or combinations thereof. Other configurations and/or other suitable materials are also contemplated.


In some embodiments, the modulus of elasticity may vary and/or be different from layer to layer. In other embodiments, the elongation to break may vary and/or be different from layer to layer. In some embodiments, the seal member 44 may also include a reinforcement, a reinforcing layer, and/or at least one reinforcing member added to the polymeric material prior to curing. The reinforcement, the reinforcing layer, and/or the at least one reinforcing member may comprise a woven or nonwoven fabric and may be positioned within or between the various layers. In some embodiments, the reinforcement, the reinforcing layer, and/or the at least one reinforcing member may be positioned on a radially innermost surface or radially outermost surface of the seal member 44. In some embodiments, the reinforcement, the reinforcing layer, and/or the at least one reinforcing member may be generally aligned. In some embodiments, the reinforcement, the reinforcing layer, and/or the at least one reinforcing member may be randomly oriented and/or disposed on the seal member 44.


In some embodiments, a distal end of the seal member 44 may include a reinforcing band fixedly attached to the seal member 44 at and/or proximate the distal end and/or the inflow end of the tubular anchor member 40. In some embodiments, the reinforcing band may be integrally formed with, incorporated into, adhered to, and/or at least partially embedded within the seal member 44. In some embodiments, the reinforcing band may be formed from a woven or nonwoven fabric strip, a textile, or other thin flexible material. The reinforcing band may provide tear resistance in the vicinity of sutures, filaments, or other attachment elements associated with components or aspects of the medical implant 14. In some embodiments, the seal member 44 and/or the reinforcing band may extend longitudinally beyond the distal end and/or the inflow end of the tubular anchor member 40.


In some embodiments, the plurality of valve leaflets 16 may each define a secured end and a free end opposite the secured end, wherein the free ends of the plurality of valve leaflets 16 come together to define an outflow end of a valve disposed within the tubular anchor member 40 in the “deployed” configuration. In some embodiments, the secured end of each of the plurality of valve leaflets 16 may be directly attached to the seal member 44 and/or the reinforcing band at and/or proximate the distal end and/or the inflow end of the tubular anchor member 40. In some embodiments, the plurality of valve leaflets 16 may not be attached directly to the distal end and/or the inflow end of the tubular anchor member 40. In some embodiments, the plurality of valve leaflets 16 may be configured to shift between a deployed position wherein the outflow end of the valve is disposed within the tubular anchor member 40, and an everted position wherein the outflow end of the valve is disposed outside of, distal of, and/or upstream of the tubular anchor member 40.


As shown in FIG. 3, a buckle member 58 may include a proximal end and a distal end disposed opposite the proximal end. In some embodiments, the buckle member 58 may include a back wall extending from the proximal end to the distal end. In some embodiments, the buckle member 58 may include two axially-extending side walls extending radially inward toward the central longitudinal axis away from the back wall and/or the tubular anchor member 40, when the buckle member 58 is attached thereto. In some embodiments, the back wall may be configured to engage a radially inner surface of the tubular anchor member 40. In an example, the back wall may be configured to matingly engage the radially inner surface of the tubular anchor member 40 such that the back wall is disposed radially distant from the central longitudinal axis of the medical implant 14 relative to the two side walls. In some embodiments, the back wall may include a generally planar inner surface facing toward the central longitudinal axis when the buckle member 58 is fixedly attached and/or secured to the tubular anchor member 40. In some embodiments, the back wall may include a curved outer surface configured to mate with and/or lie against an inner surface of the tubular anchor member 40 when the buckle member 58 is fixedly attached and/or secured to the tubular anchor member 40.


In some embodiments, the two axially-extending side walls may include a first side wall and a second side wall. In some embodiments, each side wall may include a proximal upper flange 57 and a distal upper flange 59 spaced longitudinally apart from the proximal upper flange 57, the proximal upper flange 57 and the distal upper flange 59 each extending from a top of the side wall distant from the back wall, the proximal upper flange 57 and the distal upper flange 59 each extending inwardly toward a central plane through the buckle member 58 (and/or the central longitudinal axis) normal to the back wall and/or the generally planar inner surface. In at least some embodiments, the proximal upper flange 57 and the distal upper flange 59 each may be oriented generally parallel to the back wall and/or the generally planar inner surface of the back wall. In some embodiments, the distal upper flange(s) 59 may define a proximal locking face configured to engage a latch portion extending laterally from the post member 76, as described herein.


In some embodiments, the back wall may extend between the two side walls, such that the two side walls, the back wall, and/or the proximal upper flange(s) 57 and the distal upper flange(s) 59 define a channel extending axially through the buckle member 58. In some embodiments, the buckle member 58 and/or the channel may include a suitable shape and/or keying feature(s) configured to cooperate with the actuator member 50 and/or the post member 76 to prevent relative rotation between the actuator member 50 and/or the post member 76 and the buckle member 58. In some embodiments, the back wall may include at least one aperture disposed within the back wall and between the two side walls. In some embodiments, a fastening element (e.g., a suture, thread, wire, filament, etc.) may pass through the at least one aperture and secure the buckle member 58 to the tubular anchor member 40. In some embodiments, the back wall may include a recessed portion in communication with some or all of the at least one aperture of the buckle member 58.


In some embodiments, the buckle member 58 may be substantially rigid. In some embodiments, the buckle member 58 may be formed from a metallic material, a polymeric material, a ceramic material, a composite material, or other suitable materials or combinations thereof. In some embodiments, the buckle member 58 may be partially rigid and/or partially flexible. In some embodiments, a buckle member 58 may permit an actuator member 50 and/or a post member 76 to be slidably received within and/or axially translate through the channel. In some embodiments, the buckle member 58 may be configured to prevent the actuator member 50 and/or the post member 76 from exiting the buckle member 58 in a radially inward direction toward the central longitudinal axis of the tubular anchor member 40, thereby limiting motion of the actuator member 50 and/or the post member 76 within the tubular anchor member 40 to axial translation.


As seen in FIG. 4, an example post member 76 may include a proximal end and a distal end, wherein the proximal end and the distal end may be defined based upon the orientation of the post member 76 when the medical implant 14 and/or the tubular anchor member 40 is in the “deployed” configuration and/or the “released” configuration. In some embodiments, the post member 76 may include a central body portion extending from the proximal end to the distal end, the central body portion being oriented generally along a first plane. In some embodiments, when the post member 76 is engaged with the buckle member 58, the central body portion may be oriented generally parallel to the generally planar inner surface of the back wall of the buckle member 58.


In some embodiments, the post member 76 may include a latch portion 80 connected to and/or integrally formed with or as a part of the central body portion. In some embodiments, the central body portion may be a laterally-arched central body portion extending laterally away from the first plane to form the latch portion 80. In some embodiments, the latch portion 80 may be resilient and/or self-biased away from the first plane. In some embodiments, the latch portion 80 may be configured to be deflected by the buckle member 58 and/or the distal upper flange(s) 59 as the post member 76 is translated proximally through the buckle member 58 and/or past the distal upper flange(s) 59.


In some embodiments, the post member 76 (in association and/or cooperation with axial translation of the actuator member 50) may be reversibly actuatable between a first orientation, wherein the proximal end extends distally from the central body portion (e.g., in the “delivery” and/or “everted” configuration), and a second orientation, wherein the proximal end extends proximally from the central body portion. In some embodiments, the post member 76 may be positioned and/or oriented in the second orientation in at least one configuration, including but not limited to, the “deployed” and/or “released” configurations. In some embodiments, the post member 76 may be axially translatable relative to the buckle member 58 and/or the tubular anchor member 40.


In some embodiments, the post member 76 may include a cantilevered leg 84 connected by a flexible hinge portion 82 at the distal end of the post member 76. In some embodiments, the cantilevered leg 84 may extend proximally from the hinge portion 82 and/or the distal end to a free end of the cantilevered leg 84 disposed radially inward from the central body portion and/or the latch portion 80 (relative to the tubular anchor member 40), when the post member 76 is in the second orientation. In some embodiments, the free end may be disposed proximal of the latch portion 80 when the post member 76 is in the second orientation. In some embodiments, the latch portion 80 may be disposed proximal of the distal end and/or the hinge portion 82 when the post member 76 is in the second orientation. In some embodiments, the cantilevered leg 84 may extend distally from the hinge portion 82 and/or the distal end to the free end of the cantilevered leg 84 disposed radially outward from the central body portion and/or the latch portion 80 (relative to the tubular anchor member 40), when the post member 76 is in the first orientation. In some embodiments, the free end may be disposed distal of the latch portion 80 when the post member 76 is in the first orientation. In some embodiments, the latch portion 80 may be disposed distal of the distal end and/or the hinge portion 82 when the post member 76 is in the first orientation.


In some embodiments, the hinge portion 82 may have and/or include a radius of curvature. For example, in some embodiments, the radius of curvature may be between 0 and 3 millimeters (mm). In some embodiments, the radius of curvature may be an inner radius of curvature of between 0 and 3 millimeters (mm). In some embodiments, the radius of curvature may be an outer radius of curvature of between 0 and 3 millimeters (mm). Other configurations and radii of curvature are also contemplated. In some embodiments, the hinge portion 82 may be configured to dispose the central body portion and the cantilevered leg 84 at an acute angle relative to each other. In some embodiments, the acute angle may be between about 0 degrees and about 90 degrees, between about 3 degrees and about 60 degrees, between about 5 degrees and about 45 degrees, between about 8 degrees and about 30 degrees, between about 10 degrees and about 20 degrees, between about 12 degrees and about 16 degrees, about 14 degrees, or another suitable angle. In at least some embodiments, the hinge portion 82 flexibly attaches the cantilevered leg 84 to the central body portion of the post member 76. In some embodiments, at least part of the cantilevered leg 84 may longitudinally overlap the buckle member 58 along a central longitudinal axis of the tubular anchor member 40 in the “deployed” configuration.


In some embodiments, the cantilevered leg 84 may include a free end and a secured end, where the cantilevered leg 84 may be attached to the central body portion and/or the distal end of the post member 76 at the secured end of the cantilevered leg 84, which may connect directly to the hinge portion 82. In some embodiments, the free end of the cantilevered leg 84 may be unattached (e.g., not directly attached) to any other structure of the medical implant 14, except for the cantilevered leg 84 and/or the plurality of valve leaflets 16. In other words, in some embodiments, the free end of the cantilevered leg 84 may not be directly attached to any other structure or feature of the medical implant 14 (e.g., the buckle member 58, the tubular anchor member 40, etc.). In some embodiments, the distal end of the post member 76, which in at least some embodiments may be proximate to and/or include the hinge portion 82, may be coupled to the distal end of the tubular anchor member 40, such as, for example, by a fastening element such as a suture, a filament, a wire, or other suitable means, as described herein. In some embodiments, the central body portion may include at least one aperture or hole 86 configured to receive a coupling element therethrough for securing the post member 76 to a distal end of the tubular anchor member 40, such as the suture, for example. As such, when the post member 76 is pulled proximally to engage the buckle member 58, the distal end of the tubular anchor member 40 is also pulled proximally relative to the buckle member 58, thereby transitioning from the “delivery” configuration toward the “deployed” configuration.


In some embodiments, the cantilevered leg(s) 84 may include a first longitudinally-oriented slot 85 extending therethrough between the secured end of the cantilevered leg 84 and the free end of the cantilevered leg 84. In at least some embodiments, at least one of the plurality of valve leaflets 16 may be coupled to and/or attached to the cantilevered leg(s) 84. In some embodiments, at least one of the plurality of valve leaflets 16 extend through the first longitudinally-oriented slot 85 of the cantilevered leg(s) 84. In some embodiments, attachment of the plurality of valve leaflets 16 to the cantilevered leg(s) 84 may provide flexibility and/or a reduction in stress between the plurality of valve leaflets 16 and the tubular anchor member 40. In some embodiments, at least a portion of the plurality of valve leaflets 16 may axially or longitudinally overlap at least a portion of the buckle members 58 at a common position along a central longitudinal axis of the tubular anchor member 40, which in some embodiments may allow for a shorter overall length or height of the medical implant 14. In some embodiments, the plurality of valve leaflets 16 may be secured directly to the cantilevered leg(s) 84. In some embodiments, the plurality of valve leaflets 16 may not be directly secured to the central body portion of the post member 76, but is instead coupled to the post member 76 via the cantilevered leg(s) 84. In some embodiments, the plurality of valve leaflets 16 may be wrapped around at least a portion of the cantilevered leg(s) 84. In some embodiments, a distalmost end of the plurality of valve leaflets 16 may be coupled to the distal end of the tubular anchor member 40. In some embodiments, the plurality of valve leaflets 16 may be coupled and/or secured (e.g., to the cantilevered leg 84, to the tubular anchor member 40, and/or back to themselves) using at least one suture, thread, wire, filament, or other suitable element. In some embodiments, the plurality of valve leaflets 16 may be coupled and/or secured (e.g., to the cantilevered leg 84, to the tubular anchor member 40, and/or back to themselves) using an adhesive, a bonding agent, or other suitable securing means. In some embodiments, the plurality of valve leaflets 16 may be coupled and/or secured (e.g., to the cantilevered leg 84, to the tubular anchor member 40, and/or back to themselves) using a fabric, a textile, or other thin flexible material.


In some embodiments, the post member 76 may include a receiving portion 88 proximate the proximal end. In some embodiments, the receiving portion 88 may include a first portion 81 and a second portion 83, each extending proximally from the central body portion and/or the latch portion 80 when the post member 76 is in the second orientation. In some embodiments, the first portion 81 and the second portion 83 may be spaced apart by a second longitudinally-oriented slot 87 disposed therebetween. In some embodiments, the second longitudinally-oriented slot 87 may narrow distally when the post member 76 is in the second orientation. In some embodiments, each of the first portion 81 and the second portion 83 may include an aperture 89 extending into and/or from the second longitudinally-oriented slot 87 such that the aperture 89 of each respective portion is in communication with the second longitudinally-oriented slot 87. In some embodiments, the aperture 89 of the first portion 81 and/or the aperture 89 of the second portion 83 may extend partially through its respective portion in a radial (with respect to the central longitudinal axis and/or the tubular anchor member 40) direction. In some embodiments, the aperture 89 of the first portion 81 and/or the aperture 89 of the second portion 83 may extend completely through its respective portion in a radial (with respect to the central longitudinal axis and/or the tubular anchor member 40) direction. In some embodiments, the first portion 81 and the second portion 83 may be configured to releasably engage the actuator member 50, thereby releasably connecting the actuator member 50 to the proximal end of the post member 76. In some embodiments, as the actuator member 50 and/or the post member 76 is translated proximally through the buckle member 58 in the second orientation, the second longitudinally-oriented slot 87 of the post member 76 may contact and/or engage a distal end of the finger of the coupler assembly 32. In some embodiments, the distal end of the finger may be configured to splay apart the first portion 81 and the second portion 83 by forcing the first portion 81 radially inward toward the central longitudinal axis relative to, and/or away from, the second portion 83 as the post member 76 is translated proximally when the first portion 81 contacts the finger, as seen in FIGS. 11 and 12 for example.


In some embodiments, the latch portion 80 may be configured to engage the proximal locking face of the distal upper flange(s) 59 of the buckle member 58 when the post member 76 is in the second orientation, such that axial movement of the post member 76 distally relative to the buckle member 58 is prevented when the medical implant 14 and/or the tubular anchor member 40 is in the “deployed” configuration and/or the “released” configuration. In some embodiments, the latch portion 80 may include a transversely-oriented tooth extending laterally (or radially relative to the central longitudinal axis) therefrom and/or extends toward the cantilevered leg 84, wherein the tooth is configured to engage with the proximal locking face of the distal upper flange(s) 59 when the post member 76 is in the second orientation and/or the tubular anchor member 40 is in the “deployed” configuration and/or the “released” configuration. In some embodiments, the central body portion arches laterally (or radially relative to the central longitudinal axis) in a first direction relative to the proximal end and the distal end of the post member 76 (e.g., relative to the first plane), and the latch portion 80 and/or the tooth extends laterally (or radially relative to the central longitudinal axis) in the first direction from the central body portion.


In some embodiments, at least a portion of the post member 76 is flexible. In some embodiments, the latch portion 80 and/or the tooth may be movable relative to the central body portion. In some embodiments, the latch portion 80 may be deflectable relative to the central body portion such that the latch portion 80 and/or the tooth may translate laterally relative to the central body portion and/or radially outward relative to the central longitudinal axis. In some embodiments, the central body portion and/or the latch portion 80 may be configured to flex towards the first plane and/or a substantially straight configuration (e.g., radially relative to the central longitudinal axis) upon proximal translation of the post member 76 through the buckle member 58. In some embodiments, the free end of the cantilevered leg 84 may be movable toward and away from the central body portion (e.g., radially relative to the central longitudinal axis) by bending and/or pivoting the cantilevered leg 84 at and/or using the hinge portion 82.


In some embodiments, the central body portion may be unitary with and/or integrally formed with the latch portion 80, the hinge portion 82, the cantilevered leg 84, the receiving portion 88, and/or the first portion 81 and the second portion 83, of the post member 76 as and/or from a single piece of material. In some embodiments, the post member 76 may be formed from a single piece of wire, flat stock, or other suitable material as discussed herein. In some embodiments, the post member 76 may be formed by further processing the single piece of wire, flat stock, or other suitable material, such as by machining, stamping, laser cutting, or other suitable techniques.


In some embodiments, an example actuator member 50, as seen in FIG. 5 for example, may include a proximal end and a distal end. In some embodiments, the actuator member 50 may include a proximal shaft portion 52 and a distal engagement portion 56 configured to be releasably engaged with and/or connected to the proximal end, the receiving portion 88, the first portion 81, and/or the second portion 83, of the post member 76. In some embodiments, the proximal shaft portion 52 may be pivotable with respect to the distal engagement portion 56. In some embodiments, the actuator member 50 may include a hinge element 54 disposed between the proximal shaft portion 52 and the distal engagement portion 56. In some embodiments, the hinge element 54 may include a pivot pin, or a plurality of pivot pins, fixedly attached to one of the proximal shaft portion 52 and the distal engagement portion 56, and a receiving element configured to pivotably engage the pivot pin, or the plurality of pivot pins, fixedly attached to the other one of the proximal shaft portion 52 and the distal engagement portion 56.


In some embodiments, the distal engagement portion 56 may include a lateral protrusion 60 proximate a distal end thereof. In some embodiments, the distal engagement portion 56 may include more than one lateral protrusion 60 proximate a distal end thereof. In some embodiments, the lateral protrusion 60 may be configured to matingly engage with the receiving portion 88, the aperture 89 of the first portion 81, and/or the aperture 89 of the second portion 83 of the post member 76. In some embodiments, the actuator member 50 may be prevented from rotating (e.g., is non-rotatable) relative to the post member 76 when the distal engagement portion 56 and/or the lateral protrusion 60 of the actuator member 50 is engaged with the receiving portion 88, the aperture 89 of the first portion 81, and/or the aperture 89 of the second portion 83 of the post member 76. In some embodiments, the actuator member 50 may be prevented from rotating (e.g., is non-rotatable) relative to the buckle member 58 when the distal engagement portion 56 and/or the lateral protrusion 60 of the actuator member 50 is engaged with the receiving portion 88, the aperture 89 of the first portion 81, and/or the aperture 89 of the second portion 83 of the post member 76, and/or when the post member 76 is engaged with the buckle member 58.


In use, the proximal end of the actuator member 50 may be connected to and/or manipulated or otherwise actuated by a user, for example using the handle 18, to shift the medical implant 14 from a “delivery” configuration and/or an “everted” configuration to a “deployed” configuration, and later to a “released” configuration. In some embodiments, the actuator member 50 may be axially translatable relative to the buckle member 58. In some embodiments, the actuator member 50 may extend through the channel of the buckle member 58 when the tubular anchor member 40 is in the “delivery” configuration and/or the “everted” configuration. In some embodiments, the actuator member 50 may extend distally of the tubular anchor member 40 in the “delivery” configuration and/or the “everted” configuration. In some embodiments, the actuator member 50 may be axially translatable within and/or through the channel of the buckle member 58 to engage the post member 76 with the buckle member 58.


In some embodiments, the actuator member 50 may be aligned with the post member 76 and/or the lateral protrusion(s) 60 may be releasably engaged with and/or connected to the proximal end of the post member 76 and/or the receiving portion 88, the aperture 89 of the first portion 81, and/or the aperture 89 of the second portion 83 of the post member 76. In some embodiments, the distal engagement portion 56 may be received within the second longitudinally-oriented slot 87 disposed between the first portion 81 and the second portion 83 of the post member 76. In some embodiments, the lateral protrusion(s) 60 may be configured to engage with, be received by, and/or extend into the aperture(s) 89 formed within each of the first portion 81 and the second portion 83 of the post member 76.


In some embodiments, the actuator member 50 and/or the proximal shaft portion 52 may be generally round, oblong, ovoid, rectangular, polygonal (e.g., two-sided, three-sided, four-sided, five-sided, six-sided, etc.) in shape. Other shapes, both regular and irregular, are also contemplated. For example, in some embodiments, the proximal shaft portion 52 may include a flattened portion or side oriented radially inward toward the central longitudinal axis. In some embodiments, the actuator member 50 may be formed from a single piece of wire, round stock, or other suitable material, as discussed herein. In some embodiments, the actuator member 50 may be formed by further processing the single piece of wire, round stock, or other suitable material, such as by machining, stamping, laser cutting, or other suitable techniques. Some suitable but non-limiting materials for the actuator member 50, the proximal shaft portion 52, the distal engagement portion 56, and/or the hinge element 54, for example metallic materials or polymeric materials, may be described below.



FIGS. 6-13 illustrate the general relationship and operation of selected components of a locking mechanism configured to lock the medical implant 14 (and/or the tubular anchor member 40) in the “deployed” configuration and/or the “released” configuration.


During delivery, after the medical implant 14 is advanced within the anatomy to the desired and/or target location, at least a portion of the delivery system 12 may be withdrawn (e.g., moved proximally relative to the medical implant 14) to expose the medical implant 14 in the “delivery” configuration and/or the “everted” configuration. FIG. 6 illustrates selected elements of the medical implant system 10 in the “delivery” configuration and/or the “everted” configuration. In the “delivery” configuration and/or the “everted” configuration, the plurality of valve leaflets 16 may extend and/or be positioned distally of and/or away from the tubular anchor member 40. In some embodiments, in the “delivery” configuration and/or the “everted” configuration, the plurality of actuator members 50 may extend distally of, away from, and/or completely through the tubular anchor member 40, and/or the plurality of post members 76 may extend distally of and/or away from the tubular anchor member 40, as seen in FIG. 6 for example.


In some embodiments, a distal end of the axially movable post member 76 may be secured and/or attached (e.g., fixedly attached, movably attached, removably attached, etc.) to a distal portion of the tubular anchor member 40, such as by a suture 74, a tether, adhesives, or other suitable element. In some embodiments, the commissure post and/or the post member 76 may include at least one hole 86 (as seen in FIG. 4 for example) or other features provided to aid in securing and/or attaching the commissure post and/or the post member 76 to the tubular anchor member 40. For example, in some embodiments, the suture 74 may pass through the at least one hole 86 in the post member 76 and/or the suture 74 may be secured to the post member 76 using the at least one hole 86.


In some embodiments, the post member 76 may be movable relative to the tubular anchor member 40 and/or the buckle member 58. In some embodiments, the post member 76 may be axially or longitudinally movable relative to the tubular anchor member 40 and/or the buckle member 58. In some embodiments, the buckle member 58 may be fixedly attached to the tubular anchor member 40 at and/or proximate the proximal end thereof. Other embodiments are contemplated where the buckle member 58 may be movably or removably attached to the tubular anchor member 40. In some embodiments, the post member 76 may be movably or removably attached to the tubular anchor member 40 and the buckle member 58 may be movably or removably attached to the tubular anchor member 40. In some embodiments, the post member 76 may be secured or attached (e.g., fixedly attached, movably attached, removably attached, etc.) to a distal end of the tubular anchor member 40.


As seen in FIG. 6, when the medical implant 14 and/or the tubular anchor member is in the “delivery” configuration and/or the “everted” configuration, the distal engagement portion 56 of the actuator member 50 extends proximally from the hinge element 54 of the actuator member 50, and the post member 76 is in the first orientation. Similarly, when the medical implant 14 and/or the tubular anchor member 40 is in the “delivery” configuration and/or the “everted” configuration, the cantilevered leg 84 of the post member 76 extends radially outward from the hinge portion 82 and/or the central body portion. The plurality of valve leaflets 16 may be disposed distally of the tubular anchor member 40. In some embodiments, having the plurality of valve leaflets 16 and the plurality of post members 76 disposed outside of the tubular anchor member 40 may permit the tubular anchor member 40 to be collapsed to a smaller overall diameter and/or size for delivery due to less structure being disposed within the lumen of the tubular anchor member 40.


Turning now to FIG. 7, a user has manipulated and/or operated the handle 18 to partially withdraw the actuator member 50 through the buckle member 58, thereby drawing the post member 76 towards the buckle member 58. As may be seen in the figure, the post member 76 has begun to transition away from the first orientation and towards the second orientation. The medical implant 14 and/or the tubular anchor member 40 may thus be understood to be in a partially-everted configuration and/or a partially-deployed configuration. In the partially-everted configuration and/or the partially-deployed configuration, at least some portions of the post member 76 (e.g., the receiving portion, the first portion, the second portion, etc.) may extend radially inward toward the central longitudinal axis from the distal end of the post member 76. For example, the free end of the cantilevered leg 84 and/or the proximal end of the post member 76 may be positioned radially inward of the distal end of the post member 76 and/or the tubular anchor member 40.



FIG. 8 illustrates selected components of the medical implant system 10 in a partially deployed configuration. Here it may be seen that the actuator member 50 has been retracted proximally, such that the distal engagement portion 56 has pivoted relative to the proximal shaft portion 52 at and/or about the hinge element 54 until the post member 76 is oriented in the second orientation to permit a smooth transition into the channel of the buckle member 58. In some embodiments, when the post member 76 is oriented in the second orientation, the proximal shaft portion 52 and the distal engagement portion 56 are coaxial with each other and/or the post member 76.



FIG. 9 illustrates selected components in cross-section of the medical implant system 10 in a partially deployed configuration. As shown in the figure, as the actuator member 50 is translated proximally through the buckle member 58, the proximal end of the post member 76 may engage the buckle member 58 and be pulled into the channel thereof. As the latch portion 80 and/or the tooth approaches a distally facing surface of the distal upper flange(s) 59, the latch portion 80 and/or the tooth contacts the distally facing surface and the distally facing surface begins to interfere with proximal translation of the actuator member 50 and/or the post member 76. A user may notice and/or detect an increase in force as friction and/or interference between the latch portion 80 and/or the tooth and the distal upper flange(s) 59 of the buckle member 58 is generated. In some embodiments, a user may use this increase in force as a cue to re-assess the location and/or progress of the deployment, such as by a visualization means. If the placement is unsatisfactory, the user may reverse the direction of translation of the actuator member 50, and actuate the medical implant 14 and/or the tubular anchor member 40 toward the “delivery” configuration for repositioning and/or complete withdrawal, if necessary. If the placement is satisfactory, the user may continue using the handle 18 to translate the actuator member 50 and/or the post member 76 proximally until the latch portion 80 and/or the tooth has passed the distal upper flange(s) 59 of the buckle member 58, thereby placing the medical implant 14 and/or the tubular anchor member 40 in the “deployed” configuration, as seen in FIG. 10 for example.



FIG. 10 illustrates the proximal end of the post member 76 engaged with the buckle member 58 after further proximal retraction of the actuator member 50 through the buckle member 58. After the latch portion 80 and/or the tooth has passed the distal upper flange(s) 59 of the buckle member 58, contact between the latch portion 80 and/or the tooth and the proximally facing surface of the distal upper flange(s) 59 may prevent distal translation of the medical implant 14 and/or the tubular anchor member 40 toward the “delivery” configuration. In at least some embodiments, with the post member 76 engaged with the buckle member 58, the post member 76 may be positioned in the second orientation.


As seen in FIGS. 11 and 12, further proximal translation and/or retraction of the actuator member 50 relative to the buckle member 58 results in the receiving portion 88, and/or the first portion 81 and the second portion 83, of the post member 76 contacting and/or engaging a distal end of the finger 34. Continued proximal translation and/or retraction of the actuator member 50 may splay apart the receiving portion 88, and/or first portion 81 and the second portion 83, of the post member 76 as the distal end of the finger 34 extends into the second longitudinally-oriented slot 87, thereby disengaging the distal engagement portion 56 and/or the lateral protrusion(s) 60 of the actuator member 50 from the aperture(s) 89 in the receiving portion 88, and/or the aperture 89 in the first portion 81 and the aperture 89 in the second portion 83, of the post member 76.


Simultaneously with and/or immediately before splaying apart the receiving portion 88, and/or the first portion 81 and the second portion 83, of the post member 76 and/or disengagement of the distal engagement portion 56 and/or the lateral protrusion(s) 60 of the actuator member 50 from the aperture(s) 89 in the receiving portion 88, and/or the aperture 89 in the first portion 81 and the aperture 89 in the second portion 83, of the post member 76, a proximal face along a top or radially-inward facing side of the proximal shaft portion 52 of the actuator member 50 proximate to and/or proximal of the hinge element 54 may contact the collar 36, thereby proximally retracting the collar 36 along with the actuator member 50 to expose the finger 34 where it engages with the proximal end of the buckle member 58.


In some embodiments, after disengaging the distal engagement portion 56 and/or the lateral protrusion(s) 60 of the actuator member 50 from the aperture(s) 89 in the receiving portion 88, and/or the aperture 89 in the first portion 81 and the aperture 89 in the second portion 83, of the post member 76, the medical implant 14 and/or the tubular anchor member 40 may experience a minor or slight “spring-back” toward the “delivery” configuration. Additionally, since the collar 36 is no longer maintaining the finger 34 and the buckle member 58 in a coupled relationship or configuration, the finger(s) 34 and/or the coupler assembly 32 may separate from the medical implant 14, the buckle member(s) 58, and/or the tubular anchor member 40. As noted above, the latch portion 80 and/or the tooth may contact the proximally facing surface of the distal upper flange(s) 59, preventing the medical implant 14 and/or the tubular anchor member 40 from actuating further toward the “delivery” configuration. Upon separation and/or disengagement of the coupler assembly 32 from the medical implant 14, the medical implant 14 and/or the tubular anchor member 40 may be left in the “released” configuration, as seen in FIG. 13 for example, and the delivery system 12 may be withdrawn from the patient.


The materials that can be used for the various components of the medical implant system 10 (and/or other systems disclosed herein) and the various elements thereof disclosed herein may include those commonly associated with medical devices. For simplicity purposes, the following discussion makes reference to the delivery system 12 and/or the medical implant 14. However, this is not intended to limit the devices and methods described herein, as the discussion may be applied to other elements, members, components, or devices disclosed herein, such as, but not limited to, the tubular anchor member 40, the actuator member 50, the locking mechanism, the post member 76, the buckle member 58, and/or elements or components thereof.


In some embodiments, the delivery system 12 and/or the medical implant 14, and/or components thereof (such as, but not limited to, the tubular anchor member 40, the locking mechanisms, the actuator members 50, etc.), may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material. Some examples of suitable metals and metal alloys include stainless steel, such as 444V, 444L, and 314LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®, other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R44035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys (e.g., UNS: R44003 such as ELGILOY®, PHYNOX®, and the like); platinum enriched stainless steel; titanium; combinations thereof; and the like; or any other suitable material.


As alluded to herein, within the family of commercially available nickel-titanium or nitinol alloys, is a category designated “linear elastic” or “non-super-elastic” which, although may be similar in chemistry to conventional shape memory and super elastic varieties, may exhibit distinct and useful mechanical properties. Linear elastic and/or non-super-elastic nitinol may be distinguished from super elastic nitinol in that the linear elastic and/or non-super-elastic nitinol does not display a substantial “superelastic plateau” or “flag region” in its stress/strain curve like super elastic nitinol does. Instead, in the linear elastic and/or non-super-elastic nitinol, as recoverable strain increases, the stress continues to increase in a substantially linear, or a somewhat, but not necessarily entirely linear relationship until plastic deformation begins or at least in a relationship that is more linear than the super elastic plateau and/or flag region that may be seen with super elastic nitinol. Thus, for the purposes of this disclosure linear elastic and/or non-super-elastic nitinol may also be termed “substantially” linear elastic and/or non-super-elastic nitinol.


In some cases, linear elastic and/or non-super-elastic nitinol may also be distinguishable from super elastic nitinol in that linear elastic and/or non-super-elastic nitinol may accept up to about 2-5% strain while remaining substantially elastic (e.g., before plastically deforming) whereas super elastic nitinol may accept up to about 8% strain before plastically deforming. Both of these materials can be distinguished from other linear elastic materials such as stainless steel (that can also be distinguished based on its composition), which may accept only about 0.2 to 0.44 percent strain before plastically deforming.


In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy is an alloy that does not show any martensite/austenite phase changes that are detectable by differential scanning calorimetry (DSC) and dynamic metal thermal analysis (DMTA) analysis over a large temperature range. For example, in some embodiments, there may be no martensite/austenite phase changes detectable by DSC and DMTA analysis in the range of about −60 degrees Celsius (° C.) to about 120° C. in the linear elastic and/or non-super-elastic nickel-titanium alloy. The mechanical bending properties of such material may therefore be generally inert to the effect of temperature over this very broad range of temperature. In some embodiments, the mechanical bending properties of the linear elastic and/or non-super-elastic nickel-titanium alloy at ambient or room temperature are substantially the same as the mechanical properties at body temperature, for example, in that they do not display a super-elastic plateau and/or flag region. In other words, across a broad temperature range, the linear elastic and/or non-super-elastic nickel-titanium alloy maintains its linear elastic and/or non-super-elastic characteristics and/or properties.


In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy may be in the range of about 50 to about 60 weight percent nickel, with the remainder being essentially titanium. In some embodiments, the composition is in the range of about 54 to about 57 weight percent nickel. One example of a suitable nickel-titanium alloy is FHP-NT alloy commercially available from Furukawa Techno Material Co. of Kanagawa, Japan. Other suitable materials may include ULTANIUM™ (available from Neo-Metrics) and GUM METAL™ (available from Toyota). In some other embodiments, a superelastic alloy, for example a superelastic nitinol can be used to achieve desired properties.


In at least some embodiments, portions or all of the delivery system 12 and/or the medical implant 14, and/or components thereof, may also be doped with, made of, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids a user in determining the location of the delivery system 12 and/or the medical implant 14. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of the delivery system 12 and/or the medical implant 14 to achieve the same result.


In some embodiments, a degree of Magnetic Resonance Imaging (MRI) compatibility is imparted into the medical implant 14. For example, the delivery system 12 and/or the medical implant 14, and/or components or portions thereof, may be made of a material that does not substantially distort the image and create substantial artifacts (e.g., gaps in the image). Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image. The delivery system 12 and/or the medical implant 14, or portions thereof, may also be made from a material that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R44003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R44035 such as MP35-N® and the like), nitinol, and the like, and others.


In some embodiments, a sheath or covering (not shown) may be disposed over portions or all of the delivery system 12 and/or the medical implant 14. The sheath may be made from a polymer or other suitable material. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the sheath can be blended with a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.


It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The invention's scope is, of course, defined in the language in which the appended claims are expressed.

Claims
  • 1. A locking mechanism for a medical implant, comprising: a buckle member;a post member axially translatable with respect to the buckle member, the post member including a receiving portion proximate a proximal end of the post member, a distal end, a laterally-arched central body portion extending between the receiving portion and the distal end, and a cantilevered leg extending proximally from the distal end; andan actuator element including a proximal shaft portion and a distal engagement portion, the distal engagement portion being configured to releasably engage the receiving portion of the post member;wherein the proximal shaft portion is pivotable with respect to the distal engagement portion.
  • 2. The locking mechanism of claim 1, wherein the actuator element includes a hinge element disposed between the proximal shaft portion and the distal engagement portion.
  • 3. The locking mechanism of claim 1, wherein the post member includes at least one aperture extending therethrough proximate the distal end, the at least one aperture being configured to receive a coupling element therethrough.
  • 4. The locking mechanism of claim 1, wherein the distal engagement portion includes a lateral protrusion proximate a distal end of the distal engagement portion.
  • 5. The locking mechanism of claim 4, wherein the lateral protrusion is configured to engage with an aperture disposed within the receiving portion.
  • 6. The locking mechanism of claim 1, wherein the laterally-arched central body portion includes a tooth extending laterally therefrom.
  • 7. The locking mechanism of claim 6, wherein the tooth extends toward the cantilevered leg.
  • 8. The locking mechanism of claim 6, wherein the central body portion arches laterally in a first direction relative to the proximal end and the distal end, and the tooth extends laterally in the first direction from the central body portion.
  • 9. The locking mechanism of claim 1, wherein the cantilevered leg includes a longitudinally-oriented slot extending therethrough.
  • 10. The locking mechanism of claim 1, wherein the receiving portion includes a first portion and a second portion configured to splay apart as the post member is translated proximally within the buckle member to release the distal engagement portion therefrom.
  • 11. The locking mechanism of claim 1, wherein the buckle member is formed of a substantially rigid material.
  • 12. The locking mechanism of claim 1, wherein the central body portion is configured to flex towards a substantially straight configuration upon proximal translation through the buckle member.
  • 13. A replacement heart valve implant, comprising: a tubular anchor member defining a central longitudinal axis;a plurality of locking mechanisms, each locking mechanism comprising: a buckle member fixedly attached to the tubular anchor member; anda post member axially translatable with respect to the buckle member, the post member including a receiving portion proximate a proximal end of the post member, a distal end, a laterally-arched central body portion extending between the receiving portion and the distal end, and a cantilevered leg extending proximally from the distal end;a plurality of valve leaflets, wherein each valve leaflet is coupled to the cantilevered leg of at least one of the plurality of locking mechanisms; anda plurality of actuator elements corresponding to the plurality of locking mechanisms, each actuator element including a proximal shaft portion and a distal engagement portion, wherein the proximal shaft portion is pivotable relative to the distal engagement portion, wherein the distal engagement portion is releasably fixed to the receiving portion of one post member.
  • 14. The replacement heart valve implant of claim 13, wherein the buckle member of each locking mechanism is positioned against an inner surface of the tubular anchor member.
  • 15. The replacement heart valve implant of claim 13, wherein the plurality of valve leaflets is configured to shift between an everted position wherein a free end of each of the plurality of valve leaflets is disposed distally of the tubular anchor member, and a deployed position wherein the free end of each of the plurality of valve leaflets is disposed within the tubular anchor member.
  • 16. The replacement heart valve implant of claim 15, wherein in the everted position, each of the plurality of actuator elements extends distally of the tubular anchor member.
  • 17. The replacement heart valve implant of claim 15, wherein each of the plurality of valve leaflets is secured to the tubular anchor member at a secured end opposite the free end.
  • 18. A replacement heart valve implant, comprising: a tubular anchor member defining a central longitudinal axis, the tubular anchor member being configured to shift between a delivery configuration and a deployed configuration;a plurality of locking mechanisms, each locking mechanism comprising: a buckle member fixedly attached to the tubular anchor member; anda post member axially translatable with respect to the buckle member, the post member including a receiving portion proximate a proximal end of the post member, a distal end, a laterally-arched central body portion extending from the receiving portion to the distal end, and a cantilevered leg extending proximally from the distal end;a plurality of valve leaflets, wherein each valve leaflet is coupled to the cantilevered leg of at least one of the plurality of locking mechanisms, anda plurality of actuator elements corresponding to the plurality of locking mechanisms, each actuator element including a proximal shaft portion pivotably connected to a distal engagement portion, the distal engagement portion being releasably fixed to the receiving portion of one post member, wherein the distal engagement portion is configured to pivot with respect to the proximal shaft portion in a radial direction relative to the central longitudinal axis.
  • 19. The replacement heart valve implant of claim 18, wherein each actuator element extends through the buckle member of its corresponding locking mechanism when the tubular anchor member is in the delivery configuration, and each actuator element is configured to translate the post member of its corresponding locking mechanism into engagement with the buckle member of its corresponding locking mechanism upon proximal retraction of the plurality of actuator elements.
  • 20. The replacement heart valve implant of claim 18, wherein the post member is at least partially disposed distally of the tubular anchor member when the tubular anchor member is in the delivery configuration, and the post member is locked within the buckle member when the tubular anchor member is in the deployed configuration.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 62/336,944, filed May 16, 2016.

US Referenced Citations (966)
Number Name Date Kind
15192 Peale Jun 1856 A
2682057 Lord Jun 1954 A
2701559 Cooper Feb 1955 A
2832078 Williams Apr 1958 A
3029819 Starks Apr 1962 A
3099016 Edwards Jul 1963 A
3113586 Edmark, Jr. Dec 1963 A
3130418 Head et al. Apr 1964 A
3143742 Cromie Aug 1964 A
3221006 Moore et al. Nov 1965 A
3334629 Cohn May 1967 A
3365728 Edwards et al. Jan 1968 A
3367364 Cruz, Jr. et al. Feb 1968 A
3409013 Berry Nov 1968 A
3445916 Schulte May 1969 A
3540431 Mobin-Uddin Nov 1970 A
3548417 Kischer et al. Dec 1970 A
3570014 Hancock Mar 1971 A
3587115 Shiley Jun 1971 A
3592184 Watkins et al. Jul 1971 A
3628535 Ostrowsky et al. Dec 1971 A
3642004 Osthagen et al. Feb 1972 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3725961 Magovern et al. Apr 1973 A
3755823 Hancock Sep 1973 A
3795246 Sturgeon Mar 1974 A
3839741 Haller Oct 1974 A
3868956 Alfidi et al. Mar 1975 A
3874388 King et al. Apr 1975 A
3983581 Angell et al. Oct 1976 A
3997923 Possis Dec 1976 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4084268 Ionescu et al. Apr 1978 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4233690 Akins Nov 1980 A
4265694 Boretos et al. May 1981 A
4291420 Reul Sep 1981 A
4297749 Davis et al. Nov 1981 A
4323358 Lentz et al. Apr 1982 A
4326306 Poler Apr 1982 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4423809 Mazzocco Jan 1984 A
4425908 Simon Jan 1984 A
4470157 Love Sep 1984 A
4484579 Meno et al. Nov 1984 A
4501030 Lane Feb 1985 A
4531943 Van Tassel et al. Jul 1985 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4580568 Gianturco Apr 1986 A
4592340 Boyles Jun 1986 A
4602911 Ahmadi et al. Jul 1986 A
4605407 Black et al. Aug 1986 A
4610688 Silvestrini et al. Sep 1986 A
4612011 Kautzky Sep 1986 A
4617932 Kornberg Oct 1986 A
4643732 Pietsch et al. Feb 1987 A
4647283 Carpentier et al. Mar 1987 A
4648881 Carpentier et al. Mar 1987 A
4655218 Kulik et al. Apr 1987 A
4655771 Wallsten Apr 1987 A
4662885 Dipisa, Jr. May 1987 A
4665906 Jervis May 1987 A
4680031 Alonso Jul 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4705516 Barone et al. Nov 1987 A
4710192 Liotta et al. Dec 1987 A
4733665 Palmaz Mar 1988 A
4755181 Igoe Jul 1988 A
4759758 Gabbay Jul 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4819751 Shimada et al. Apr 1989 A
4829990 Thuroff et al. May 1989 A
4834755 Silvestrini et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4865600 Carpentier et al. Sep 1989 A
4872874 Taheri Oct 1989 A
4873978 Ginsburg Oct 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4885005 Nashef et al. Dec 1989 A
4909252 Goldberger Mar 1990 A
4917102 Miller et al. Apr 1990 A
4922905 Strecker May 1990 A
4927426 Dretler May 1990 A
4954126 Wallsten Sep 1990 A
4966604 Reiss Oct 1990 A
4969890 Sugita et al. Nov 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5002556 Ishida et al. Mar 1991 A
5002559 Tower Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5064435 Porter Nov 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5122154 Rhodes Jun 1992 A
5132473 Furutaka et al. Jul 1992 A
5141494 Danforth et al. Aug 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5159937 Tremulis Nov 1992 A
5161547 Tower Nov 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5209741 Spaeth May 1993 A
5215541 Nashef et al. Jun 1993 A
5217481 Barbara Jun 1993 A
5217483 Tower Jun 1993 A
5238004 Sahatjian et al. Aug 1993 A
5258023 Reger Nov 1993 A
5258042 Mehta Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5336258 Quintero et al. Aug 1994 A
5350398 Pavcnik et al. Sep 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5389106 Tower Feb 1995 A
5397351 Pavcnik et al. Mar 1995 A
5409019 Wilk Apr 1995 A
5411552 Andersen et al. May 1995 A
5425739 Jessen Jun 1995 A
5425762 Muller Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5443446 Shturman Aug 1995 A
5443449 Buelna Aug 1995 A
5443477 Marin et al. Aug 1995 A
5443495 Buscemi et al. Aug 1995 A
5443499 Schmitt Aug 1995 A
5469868 Reger Nov 1995 A
5476506 Lunn Dec 1995 A
5476510 Eberhardt et al. Dec 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5480424 Cox Jan 1996 A
5489297 Duran Feb 1996 A
5500014 Quijano et al. Mar 1996 A
5507767 Maeda et al. Apr 1996 A
5522881 Lentz Jun 1996 A
5534007 St. Germain et al. Jul 1996 A
5545133 Burns et al. Aug 1996 A
5545209 Roberts et al. Aug 1996 A
5545211 An et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5573520 Schwartz et al. Nov 1996 A
5575818 Pinchuk Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5591195 Taheri et al. Jan 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5628784 Strecker May 1997 A
5645559 Hachtman et al. Jul 1997 A
5653745 Trescony et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5667523 Bynon et al. Sep 1997 A
5674277 Freitag Oct 1997 A
5681345 Euteneuer Oct 1997 A
5693083 Baker et al. Dec 1997 A
5693088 Lazarus Dec 1997 A
5693310 Gries et al. Dec 1997 A
5695498 Tower Dec 1997 A
5709713 Evans et al. Jan 1998 A
5713951 Garrison et al. Feb 1998 A
5713953 Vallana et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5716417 Girard et al. Feb 1998 A
5720391 Dohm et al. Feb 1998 A
5725549 Lam Mar 1998 A
5728068 Leone et al. Mar 1998 A
5733325 Robinson et al. Mar 1998 A
5735842 Krueger et al. Apr 1998 A
5749890 Shaknovich May 1998 A
5755783 Stobie et al. May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5769882 Fogarty et al. Jun 1998 A
5772609 Nguyen et al. Jun 1998 A
5776188 Shepherd et al. Jul 1998 A
5782904 White et al. Jul 1998 A
5800456 Maeda et al. Sep 1998 A
5800531 Cosgrove et al. Sep 1998 A
5807405 Vanney et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824037 Fogarty et al. Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824043 Cottone, Jr. Oct 1998 A
5824053 Khosravi et al. Oct 1998 A
5824055 Spiridigliozzi et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5824064 Taheri Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5843158 Lenker et al. Dec 1998 A
5843161 Solovay Dec 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5860966 Tower Jan 1999 A
5860996 Urban et al. Jan 1999 A
5861024 Rashidi Jan 1999 A
5861028 Angell Jan 1999 A
5868783 Tower Feb 1999 A
5876419 Carpenter et al. Mar 1999 A
5876448 Thompson et al. Mar 1999 A
5885228 Rosenman et al. Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5891191 Stinson Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5906619 Olson et al. May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5910154 Tsugita et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5925063 Khosravi Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968070 Bley et al. Oct 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
5984959 Robertson et al. Nov 1999 A
5993469 McKenzie et al. Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6015431 Thornton et al. Jan 2000 A
6022370 Tower Feb 2000 A
6027520 Tsugita et al. Feb 2000 A
6027525 Suh et al. Feb 2000 A
6042598 Tsugita et al. Mar 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6051014 Jang Apr 2000 A
6059827 Fenton, Jr. May 2000 A
6074418 Buchanan et al. Jun 2000 A
6093203 Uflacker Jul 2000 A
6096074 Pedros Aug 2000 A
6110198 Fogarty et al. Aug 2000 A
6123723 Konya et al. Sep 2000 A
6132473 Williams et al. Oct 2000 A
6139510 Palermo Oct 2000 A
6142987 Tsugita Nov 2000 A
6146366 Schachar Nov 2000 A
6162245 Jayaraman Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6165209 Patterson et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6168614 Andersen et al. Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6187016 Hedges et al. Feb 2001 B1
6197053 Cosgrove et al. Mar 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6206911 Milo Mar 2001 B1
6214036 Letendre et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6221096 Aiba et al. Apr 2001 B1
6221100 Strecker Apr 2001 B1
6231544 Tsugita et al. May 2001 B1
6231551 Barbut May 2001 B1
6241757 An et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6258114 Konya et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6258129 Dybdal et al. Jul 2001 B1
6267783 Letendre et al. Jul 2001 B1
6270513 Tsugita et al. Aug 2001 B1
6277555 Duran et al. Aug 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6306164 Kujawski Oct 2001 B1
6309417 Spence et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6319281 Patel Nov 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
6336934 Gilson et al. Jan 2002 B1
6336937 Vonesh et al. Jan 2002 B1
6338735 Stevens Jan 2002 B1
6346116 Brooks et al. Feb 2002 B1
6348063 Yassour et al. Feb 2002 B1
6352554 De Paulis Mar 2002 B2
6352708 Duran et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6363938 Saadat et al. Apr 2002 B2
6364895 Greenhalgh Apr 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371983 Lane Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6387122 Cragg May 2002 B1
6398807 Chouinard et al. Jun 2002 B1
6402736 Brown et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6416510 Altman et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468303 Amplatz et al. Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6475239 Campbell et al. Nov 2002 B1
6482228 Norred Nov 2002 B1
6485501 Green Nov 2002 B1
6485502 Don Michael et al. Nov 2002 B2
6488704 Connelly et al. Dec 2002 B1
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig et al. Jan 2003 B2
6508803 Horikawa et al. Jan 2003 B1
6508833 Pavcnik et al. Jan 2003 B2
6527800 McGuckin, Jr. et al. Mar 2003 B1
6530949 Konya et al. Mar 2003 B2
6530952 Vesely Mar 2003 B2
6537297 Tsugita et al. Mar 2003 B2
6540768 Diaz et al. Apr 2003 B1
6540782 Snyders Apr 2003 B1
6562058 Seguin et al. May 2003 B2
6569196 Vesely May 2003 B1
6572643 Gharibadeh Jun 2003 B1
6585766 Huynh et al. Jul 2003 B1
6592546 Barbut et al. Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6605112 Moll et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616682 Joergensen et al. Sep 2003 B2
6622604 Chouinard et al. Sep 2003 B1
6623518 Thompson et al. Sep 2003 B2
6623521 Steinke et al. Sep 2003 B2
6626938 Butaric et al. Sep 2003 B1
6632243 Zadno-Azizi et al. Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635079 Unsworth et al. Oct 2003 B2
6635080 Lauterjung et al. Oct 2003 B1
6652571 White et al. Nov 2003 B1
6652578 Bailey et al. Nov 2003 B2
6663588 DuBois et al. Dec 2003 B2
6663663 Kim et al. Dec 2003 B2
6663667 Dehdashtian et al. Dec 2003 B2
6669724 Park et al. Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6673109 Cox Jan 2004 B2
6676668 Mercereau et al. Jan 2004 B2
6676692 Rabkin et al. Jan 2004 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6682543 Barbut et al. Jan 2004 B2
6682558 Tu et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6689144 Gerberding Feb 2004 B2
6689164 Seguin Feb 2004 B1
6692512 Jang Feb 2004 B2
6695864 Macoviak et al. Feb 2004 B2
6695865 Boyle et al. Feb 2004 B2
6702851 Chinn et al. Mar 2004 B1
6712842 Gifford, III et al. Mar 2004 B1
6712843 Elliott Mar 2004 B2
6714842 Ito Mar 2004 B1
6719789 Cox Apr 2004 B2
6723116 Taheri Apr 2004 B2
6729356 Baker et al. May 2004 B1
6730118 Spenser et al. May 2004 B2
6730377 Wang May 2004 B2
6733525 Yang et al. May 2004 B2
6736846 Cox May 2004 B2
6752828 Thornton Jun 2004 B2
6755854 Gillick et al. Jun 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6764503 Ishimaru Jul 2004 B1
6764509 Chinn et al. Jul 2004 B2
6767345 St. Germain et al. Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6773454 Wholey et al. Aug 2004 B2
6773456 Gordon et al. Aug 2004 B1
6776791 Stallings et al. Aug 2004 B1
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6790237 Stinson Sep 2004 B2
6792979 Konya et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6814746 Thompson et al. Nov 2004 B2
6814754 Greenhalgh Nov 2004 B2
6821297 Snyders Nov 2004 B2
6824041 Grieder et al. Nov 2004 B2
6830585 Artof et al. Dec 2004 B1
6837901 Rabkin et al. Jan 2005 B2
6840957 DiMatteo et al. Jan 2005 B2
6843802 Villalobos et al. Jan 2005 B1
6849085 Marton Feb 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6863688 Ralph et al. Mar 2005 B2
6866650 Stevens et al. Mar 2005 B2
6866669 Buzzard et al. Mar 2005 B2
6872223 Roberts et al. Mar 2005 B2
6872226 Cali et al. Mar 2005 B2
6875231 Anduiza et al. Apr 2005 B2
6881220 Edwin et al. Apr 2005 B2
6887266 Williams et al. May 2005 B2
6890340 Duane May 2005 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6905743 Chen et al. Jun 2005 B1
6908481 Cribier Jun 2005 B2
6911036 Douk et al. Jun 2005 B2
6911040 Johnson et al. Jun 2005 B2
6911043 Myers et al. Jun 2005 B2
6936058 Forde et al. Aug 2005 B2
6936067 Buchanan Aug 2005 B2
6939352 Buzzard et al. Sep 2005 B2
6951571 Srivastava Oct 2005 B1
6953332 Kurk et al. Oct 2005 B1
6964673 Tsugita et al. Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6972025 WasDyke Dec 2005 B2
6974464 Quijano et al. Dec 2005 B2
6974474 Pavcnik et al. Dec 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6979350 Moll et al. Dec 2005 B2
6984242 Campbell et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
7004176 Lau Feb 2006 B2
7011681 Vesely Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7025791 Levine et al. Apr 2006 B2
7037331 Mitelberg et al. May 2006 B2
7041132 Quijano et al. May 2006 B2
7044966 Svanidze et al. May 2006 B2
7097658 Oktay Aug 2006 B2
7108715 Lawrence-Brown et al. Sep 2006 B2
7122020 Mogul Oct 2006 B2
7125418 Duran et al. Oct 2006 B2
7141063 White et al. Nov 2006 B2
7147663 Berg et al. Dec 2006 B1
7166097 Barbut Jan 2007 B2
7175652 Cook et al. Feb 2007 B2
7175653 Gaber Feb 2007 B2
7175654 Bonsignore et al. Feb 2007 B2
7175656 Khairkhahan Feb 2007 B2
7189258 Johnson et al. Mar 2007 B2
7191018 Gielen et al. Mar 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7235093 Gregorich Jun 2007 B2
7252682 Seguin Aug 2007 B2
7258696 Rabkin et al. Aug 2007 B2
7261732 Justino Aug 2007 B2
7264632 Wright et al. Sep 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7276078 Spenser et al. Oct 2007 B2
7322932 Xie et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329279 Haug et al. Feb 2008 B2
7331993 White Feb 2008 B2
7374560 Ressemann et al. May 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7381220 Macoviak et al. Jun 2008 B2
7399315 Iobbi Jul 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7470285 Nugent et al. Dec 2008 B2
7473417 Zeltinger et al. Jan 2009 B2
7491232 Bolduc et al. Feb 2009 B2
7510574 Lê et al. Mar 2009 B2
7524330 Berreklouw Apr 2009 B2
7530995 Quijano et al. May 2009 B2
7544206 Cohn Jun 2009 B2
7601159 Ewers et al. Oct 2009 B2
7622276 Cunanan et al. Nov 2009 B2
7628802 White et al. Dec 2009 B2
7628803 Pavcnik et al. Dec 2009 B2
7632298 Hijlkema et al. Dec 2009 B2
7641687 Chinn et al. Jan 2010 B2
7674282 Wu et al. Mar 2010 B2
7712606 Salahieh et al. May 2010 B2
7722638 Deyette, Jr. et al. May 2010 B2
7722662 Steinke et al. May 2010 B2
7722666 Lafontaine May 2010 B2
7731742 Schlick et al. Jun 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7758625 Wu et al. Jul 2010 B2
7763065 Schmid et al. Jul 2010 B2
7780725 Haug et al. Aug 2010 B2
7799065 Pappas Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7824442 Salahieh et al. Nov 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7833262 McGuckin, Jr. et al. Nov 2010 B2
7846204 Letac et al. Dec 2010 B2
7857845 Stacchino et al. Dec 2010 B2
7892292 Stack et al. Feb 2011 B2
7914574 Schmid et al. Mar 2011 B2
7918880 Austin Apr 2011 B2
7927363 Perouse Apr 2011 B2
7938851 Olson et al. May 2011 B2
7947071 Schmid et al. May 2011 B2
7959666 Salahieh et al. Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7967853 Eidenschink et al. Jun 2011 B2
7988724 Salahieh et al. Aug 2011 B2
8048153 Salahieh et al. Nov 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8136659 Salahieh et al. Mar 2012 B2
8157853 Laske et al. Apr 2012 B2
8167894 Miles et al. May 2012 B2
8172896 McNamara et al. May 2012 B2
8182528 Salahieh et al. May 2012 B2
8192351 Fishler et al. Jun 2012 B2
8226710 Nguyen et al. Jul 2012 B2
8231670 Salahieh et al. Jul 2012 B2
8236049 Rowe et al. Aug 2012 B2
8246678 Salahieh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8277500 Schmid et al. Oct 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8308798 Pintor et al. Nov 2012 B2
8317858 Straubinger et al. Nov 2012 B2
8323335 Rowe et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8343213 Salahieh et al. Jan 2013 B2
8348999 Kheradvar et al. Jan 2013 B2
8366767 Zhang Feb 2013 B2
8376865 Forster et al. Feb 2013 B2
8377117 Keidar et al. Feb 2013 B2
8398708 Meiri et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8414644 Quadri et al. Apr 2013 B2
8414645 Dwork et al. Apr 2013 B2
8512394 Schmid et al. Aug 2013 B2
8523936 Schmid et al. Sep 2013 B2
8540762 Schmid et al. Sep 2013 B2
8545547 Schmid et al. Oct 2013 B2
8579962 Salahieh et al. Nov 2013 B2
8603160 Salahieh et al. Dec 2013 B2
8617235 Schmid et al. Dec 2013 B2
8617236 Paul et al. Dec 2013 B2
8623074 Ryan Jan 2014 B2
8623076 Salahieh et al. Jan 2014 B2
8623078 Salahieh et al. Jan 2014 B2
8668733 Haug et al. Mar 2014 B2
8696743 Holecek et al. Apr 2014 B2
8795354 Benichou et al. Aug 2014 B2
8828078 Salahieh et al. Sep 2014 B2
8840662 Salahieh et al. Sep 2014 B2
8840663 Salahieh et al. Sep 2014 B2
8858620 Salahieh et al. Oct 2014 B2
8894703 Salahieh et al. Nov 2014 B2
8951299 Paul et al. Feb 2015 B2
8992608 Haug et al. Mar 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011521 Haug et al. Apr 2015 B2
9168131 Yohanan et al. Oct 2015 B2
9283072 Bruchman et al. Mar 2016 B2
9393114 Sutton Jul 2016 B2
9901445 Backus Feb 2018 B2
20010002445 Vesely May 2001 A1
20010007956 Letac et al. Jul 2001 A1
20010010017 Letac et al. Jul 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025196 Chinn et al. Sep 2001 A1
20010027338 Greenberg Oct 2001 A1
20010032013 Marton Oct 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20010041930 Globerman et al. Nov 2001 A1
20010044634 Don Michael et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20010044656 Williamson, IV et al. Nov 2001 A1
20020002396 Fulkerson Jan 2002 A1
20020010489 Grayzel et al. Jan 2002 A1
20020026233 Shaknovich Feb 2002 A1
20020029014 Jayaraman Mar 2002 A1
20020029981 Nigam Mar 2002 A1
20020032480 Spence et al. Mar 2002 A1
20020032481 Gabbay Mar 2002 A1
20020042651 Liddicoat et al. Apr 2002 A1
20020052651 Myers et al. May 2002 A1
20020055767 Forde et al. May 2002 A1
20020055769 Wang May 2002 A1
20020055774 Liddicoat May 2002 A1
20020058987 Butaric et al. May 2002 A1
20020058995 Stevens May 2002 A1
20020077696 Zadno-Azizi et al. Jun 2002 A1
20020082609 Green Jun 2002 A1
20020095173 Mazzocchi Jul 2002 A1
20020095209 Zadno-Azizi et al. Jul 2002 A1
20020111674 Chouinard et al. Aug 2002 A1
20020120328 Pathak et al. Aug 2002 A1
20020123802 Snyders Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020156522 Ivancev et al. Oct 2002 A1
20020161390 Mouw Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020177766 Mogul Nov 2002 A1
20020183781 Casey et al. Dec 2002 A1
20020188341 Elliott Dec 2002 A1
20020188344 Bolea et al. Dec 2002 A1
20020193871 Beyersdorf et al. Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030028247 Cali Feb 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030040736 Stevens et al. Feb 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030040791 Oktay Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030057156 Peterson et al. Mar 2003 A1
20030060844 Borillo et al. Mar 2003 A1
20030069492 Abrams et al. Apr 2003 A1
20030069646 Stinson Apr 2003 A1
20030070944 Nigam Apr 2003 A1
20030074058 Sherry Apr 2003 A1
20030093145 Lawrence-Brown et al. May 2003 A1
20030100918 Duane May 2003 A1
20030100919 Hopkins et al. May 2003 A1
20030109924 Cribier Jun 2003 A1
20030109930 Bluni et al. Jun 2003 A1
20030114912 Sequin et al. Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030125795 Pavcnik et al. Jul 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030135257 Taheri Jul 2003 A1
20030144732 Cosgrove et al. Jul 2003 A1
20030149475 Hyodoh et al. Aug 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030153974 Spenser et al. Aug 2003 A1
20030165352 Ibrahim et al. Sep 2003 A1
20030171803 Shimon Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030181850 Diamond et al. Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030191516 Weldon et al. Oct 2003 A1
20030195609 Berenstein et al. Oct 2003 A1
20030199759 Richard Oct 2003 A1
20030199913 Dubrul et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030199972 Zadno-Azizi et al. Oct 2003 A1
20030204249 Letort Oct 2003 A1
20030208224 Broome Nov 2003 A1
20030212429 Keegan et al. Nov 2003 A1
20030212452 Zadno-Azizi et al. Nov 2003 A1
20030212454 Scott et al. Nov 2003 A1
20030216774 Larson Nov 2003 A1
20030225445 Derus et al. Dec 2003 A1
20030229390 Ashton et al. Dec 2003 A1
20030233117 Adams et al. Dec 2003 A1
20030236567 Elliot Dec 2003 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040033364 Spiridigliozzi et al. Feb 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040049226 Keegan et al. Mar 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040059409 Stenzel Mar 2004 A1
20040073198 Gilson et al. Apr 2004 A1
20040082904 Houde et al. Apr 2004 A1
20040082967 Broome et al. Apr 2004 A1
20040082989 Cook et al. Apr 2004 A1
20040087982 Eskuri May 2004 A1
20040088045 Cox May 2004 A1
20040093016 Root et al. May 2004 A1
20040093060 Seguin et al. May 2004 A1
20040097788 Mourlas et al. May 2004 A1
20040098022 Barone May 2004 A1
20040098098 McGuckin, Jr. et al. May 2004 A1
20040098099 McCullagh et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040107004 Levine et al. Jun 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040116951 Rosengart Jun 2004 A1
20040116999 Ledergerber Jun 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040122468 Yodfat et al. Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040127936 Salahieh et al. Jul 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040138694 Tran et al. Jul 2004 A1
20040138742 Myers et al. Jul 2004 A1
20040138743 Myers et al. Jul 2004 A1
20040148018 Carpentier et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040153094 Dunfee et al. Aug 2004 A1
20040158277 Lowe et al. Aug 2004 A1
20040167565 Beulke et al. Aug 2004 A1
20040167620 Ortiz et al. Aug 2004 A1
20040181140 Falwell et al. Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040197695 Aono Oct 2004 A1
20040199245 Lauterjung Oct 2004 A1
20040204755 Robin Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210306 Quijano et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215331 Chew et al. Oct 2004 A1
20040215333 Duran et al. Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220655 Swanson et al. Nov 2004 A1
20040225321 Krolik et al. Nov 2004 A1
20040225353 McGuckin, Jr. et al. Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040225355 Stevens Nov 2004 A1
20040243221 Fawzi et al. Dec 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20050010287 Macoviak et al. Jan 2005 A1
20050021136 Xie et al. Jan 2005 A1
20050033398 Seguin Feb 2005 A1
20050033402 Cully et al. Feb 2005 A1
20050043711 Corcoran et al. Feb 2005 A1
20050043757 Arad et al. Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050049696 Siess et al. Mar 2005 A1
20050055088 Liddicoat et al. Mar 2005 A1
20050060016 Wu et al. Mar 2005 A1
20050060029 Le et al. Mar 2005 A1
20050065594 DiMatteo et al. Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050075712 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050075730 Myers et al. Apr 2005 A1
20050075731 Artof et al. Apr 2005 A1
20050085841 Eversull et al. Apr 2005 A1
20050085842 Eversull et al. Apr 2005 A1
20050085843 Opolski et al. Apr 2005 A1
20050085890 Rasmussen et al. Apr 2005 A1
20050090846 Pedersen et al. Apr 2005 A1
20050090890 Wu et al. Apr 2005 A1
20050096692 Linder et al. May 2005 A1
20050096734 Majercak et al. May 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050100580 Osborne et al. May 2005 A1
20050107822 Wasdyke May 2005 A1
20050113910 Paniagua et al. May 2005 A1
20050131438 Cohn Jun 2005 A1
20050137683 Hezi-Yamit et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137696 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137699 Salahieh et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050138689 Aukerman Jun 2005 A1
20050143807 Pavcnik et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050149159 Andreas et al. Jul 2005 A1
20050165352 Henry et al. Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050165479 Drews et al. Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050203818 Rotman et al. Sep 2005 A9
20050209580 Freyman Sep 2005 A1
20050228472 Case et al. Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050240262 White Oct 2005 A1
20050251250 Verhoeven et al. Nov 2005 A1
20050251251 Cribier Nov 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050267560 Bates Dec 2005 A1
20050283231 Haug et al. Dec 2005 A1
20050283962 Boudjemline Dec 2005 A1
20060004439 Spenser et al. Jan 2006 A1
20060004442 Spenser et al. Jan 2006 A1
20060015168 Gunderson Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060155312 Levine et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060173524 Salahieh et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070055340 Pryor Mar 2007 A1
20070061008 Salahieh et al. Mar 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070100427 Perouse May 2007 A1
20070112355 Salahieh et al. May 2007 A1
20070118214 Salahieh et al. May 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070173918 Dreher et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070244552 Salahieh et al. Oct 2007 A1
20070288089 Gurskis et al. Dec 2007 A1
20080009940 Cribier Jan 2008 A1
20080033541 Gelbart et al. Feb 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080125859 Salahieh et al. May 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234814 Salahieh et al. Sep 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080269878 Iobbi Oct 2008 A1
20080288054 Pulnev et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090030512 Thielen et al. Jan 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090093877 Keidar et al. Apr 2009 A1
20090096598 Tengler et al. Apr 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090216312 Straubinger et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090264759 Byrd Oct 2009 A1
20090264997 Salahieh et al. Oct 2009 A1
20090299462 Fawzi et al. Dec 2009 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082089 Quadri et al. Apr 2010 A1
20100094399 Dorn et al. Apr 2010 A1
20100121434 Paul et al. May 2010 A1
20100161045 Righini Jun 2010 A1
20100185275 Richter et al. Jul 2010 A1
20100191320 Straubinger et al. Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100219092 Salahieh et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100268332 Tuval et al. Oct 2010 A1
20100280495 Paul et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20110040366 Goetz et al. Feb 2011 A1
20110098805 Dwork et al. Apr 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110257735 Salahieh et al. Oct 2011 A1
20110264191 Rothstein Oct 2011 A1
20110264196 Savage et al. Oct 2011 A1
20110264203 Dwork et al. Oct 2011 A1
20110276129 Salahieh et al. Nov 2011 A1
20110288634 Tuval et al. Nov 2011 A1
20110295363 Girard et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120016469 Salahieh et al. Jan 2012 A1
20120016471 Salahieh et al. Jan 2012 A1
20120022633 Olson et al. Jan 2012 A1
20120022642 Haug et al. Jan 2012 A1
20120029627 Salahieh et al. Feb 2012 A1
20120041549 Salahieh et al. Feb 2012 A1
20120041550 Salahieh et al. Feb 2012 A1
20120046740 Paul et al. Feb 2012 A1
20120053683 Salahieh et al. Mar 2012 A1
20120089224 Haug et al. Apr 2012 A1
20120132547 Salahieh et al. May 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120197379 Laske et al. Aug 2012 A1
20120303113 Benichou et al. Nov 2012 A1
20120303116 Gorman et al. Nov 2012 A1
20120330409 Haug et al. Dec 2012 A1
20130013057 Salahieh et al. Jan 2013 A1
20130018457 Gregg et al. Jan 2013 A1
20130030520 Lee et al. Jan 2013 A1
20130079867 Hoffman et al. Mar 2013 A1
20130079869 Straubinger et al. Mar 2013 A1
20130096664 Goetz et al. Apr 2013 A1
20130123796 Sutton et al. May 2013 A1
20130138207 Quadri et al. May 2013 A1
20130158656 Sutton et al. Jun 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130184813 Quadri et al. Jul 2013 A1
20130190865 Anderson Jul 2013 A1
20130204360 Gainor Aug 2013 A1
20130253640 Meiri et al. Sep 2013 A1
20130289698 Wang et al. Oct 2013 A1
20130296999 Burriesci et al. Nov 2013 A1
20130304199 Sutton et al. Nov 2013 A1
20130310917 Richter et al. Nov 2013 A1
20130310923 Kheradvar et al. Nov 2013 A1
20140018911 Zhou et al. Jan 2014 A1
20140031924 Bruchman et al. Jan 2014 A1
20140094904 Salahieh et al. Apr 2014 A1
20140114340 Zhou Apr 2014 A1
20140114405 Paul et al. Apr 2014 A1
20140114406 Salahieh et al. Apr 2014 A1
20140121766 Salahieh et al. May 2014 A1
20140135912 Salahieh et al. May 2014 A1
20140243967 Salahieh et al. Aug 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20150012085 Salahieh et al. Jan 2015 A1
20150073540 Salahieh et al. Mar 2015 A1
20150073541 Salahieh et al. Mar 2015 A1
20150127094 Salahieh et al. May 2015 A1
20150245909 Salahieh et al. Sep 2015 A1
20160045307 Yohanan et al. Feb 2016 A1
20160143731 Backus May 2016 A1
20160157998 Bruchman et al. Jun 2016 A1
20160199184 Ma et al. Jul 2016 A1
20160213467 Backus Jul 2016 A1
20160220359 Backus Aug 2016 A1
20160220360 Lin Aug 2016 A1
20160256271 Backus Sep 2016 A1
20160296322 Edelman Oct 2016 A1
20170042669 Backus Feb 2017 A1
20170042671 Backus Feb 2017 A1
20170042672 Backus Feb 2017 A1
20170042676 Backus Feb 2017 A1
20170071729 Wrobel Mar 2017 A1
20170304049 Hayes Oct 2017 A1
20170319335 Backus Nov 2017 A1
20170325928 Ino Nov 2017 A1
Foreign Referenced Citations (177)
Number Date Country
2002329324 Jul 2007 AU
1338951 Mar 2002 CN
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
0103546 May 1988 EP
0144167 Nov 1989 EP
579523 Jan 1994 EP
0409929 Apr 1997 EP
0850607 Jul 1998 EP
0597967 Dec 1999 EP
1000590 May 2000 EP
1057459 Dec 2000 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
0937439 Sep 2003 EP
1340473 Sep 2003 EP
1356793 Oct 2003 EP
1042045 May 2004 EP
0819013 Jun 2004 EP
1430853 Jun 2004 EP
1435879 Jul 2004 EP
1439800 Jul 2004 EP
1472996 Nov 2004 EP
1229864 Apr 2005 EP
1059894 Jul 2005 EP
1551274 Jul 2005 EP
1551336 Jul 2005 EP
1078610 Aug 2005 EP
1562515 Aug 2005 EP
1570809 Sep 2005 EP
1576937 Sep 2005 EP
1582178 Oct 2005 EP
1582179 Oct 2005 EP
1469797 Nov 2005 EP
1589902 Nov 2005 EP
1600121 Nov 2005 EP
1156757 Dec 2005 EP
1616531 Jan 2006 EP
1690515 Aug 2006 EP
1605871 Jul 2008 EP
2047824 May 2012 EP
2749254 Jun 2015 EP
2926766 Oct 2015 EP
2788217 Jul 2000 FR
2056023 Mar 1981 GB
2398245 Aug 2004 GB
1271508 Nov 1986 SU
1371700 Feb 1988 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9315693 Aug 1993 WO
9504556 Feb 1995 WO
9529640 Nov 1995 WO
9614032 May 1996 WO
9624306 Aug 1996 WO
9640012 Dec 1996 WO
9748350 Dec 1997 WO
9829057 Jul 1998 WO
9836790 Aug 1998 WO
9850103 Nov 1998 WO
9855047 Dec 1998 WO
9857599 Dec 1998 WO
9933414 Jul 1999 WO
9940964 Aug 1999 WO
9944542 Sep 1999 WO
9947075 Sep 1999 WO
9951165 Oct 1999 WO
0009059 Feb 2000 WO
2000009059 Feb 2000 WO
0041652 Jul 2000 WO
0044308 Aug 2000 WO
0044311 Aug 2000 WO
0044313 Aug 2000 WO
0045874 Aug 2000 WO
0047139 Aug 2000 WO
0049970 Aug 2000 WO
0067661 Nov 2000 WO
0105331 Jan 2001 WO
0106959 Feb 2001 WO
0108596 Feb 2001 WO
0110320 Feb 2001 WO
0110343 Feb 2001 WO
0135870 May 2001 WO
0149213 Jul 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
2001054625 Aug 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0197715 Dec 2001 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
02056955 Jul 2002 WO
02069842 Sep 2002 WO
02100297 Dec 2002 WO
03003943 Jan 2003 WO
03003949 Jan 2003 WO
03011195 Feb 2003 WO
03028592 Apr 2003 WO
03030776 Apr 2003 WO
03032869 Apr 2003 WO
03037222 May 2003 WO
03037227 May 2003 WO
03047468 Jun 2003 WO
03047648 Jun 2003 WO
03088873 Oct 2003 WO
03015851 Nov 2003 WO
03094793 Nov 2003 WO
03094797 Nov 2003 WO
03096932 Nov 2003 WO
2004006803 Jan 2004 WO
2004006804 Jan 2004 WO
2004014256 Feb 2004 WO
2004019811 Mar 2004 WO
2004019817 Mar 2004 WO
2004021922 Mar 2004 WO
2004023980 Mar 2004 WO
2004026117 Apr 2004 WO
2004041126 May 2004 WO
2004043293 May 2004 WO
2004047681 Jun 2004 WO
2004058106 Jul 2004 WO
2004066876 Aug 2004 WO
2004082536 Sep 2004 WO
2004089250 Oct 2004 WO
2004089253 Oct 2004 WO
2004093728 Nov 2004 WO
2004105651 Dec 2004 WO
2005002466 Jan 2005 WO
2005004753 Jan 2005 WO
2005009285 Feb 2005 WO
2005011534 Feb 2005 WO
2005011535 Feb 2005 WO
2005023155 Mar 2005 WO
2005027790 Mar 2005 WO
2005046528 May 2005 WO
2005046529 May 2005 WO
2005048883 Jun 2005 WO
2005062980 Jul 2005 WO
2005065585 Jul 2005 WO
2005084595 Sep 2005 WO
2005087140 Sep 2005 WO
2005096993 Oct 2005 WO
2006005015 Jan 2006 WO
2006009690 Jan 2006 WO
2006027499 Mar 2006 WO
2006093795 Sep 2006 WO
2006138391 Dec 2006 WO
2007009117 Jan 2007 WO
2007033093 Mar 2007 WO
2007035471 Mar 2007 WO
2005102015 Apr 2007 WO
2007044285 Apr 2007 WO
2007053243 Apr 2007 WO
2007058847 May 2007 WO
2007092354 Aug 2007 WO
2007097983 Aug 2007 WO
2008028569 Mar 2008 WO
2008035337 Mar 2008 WO
2010042950 Apr 2010 WO
2010098857 Sep 2010 WO
2012116368 Aug 2012 WO
2012162228 Nov 2012 WO
2013009975 Jan 2013 WO
2013028387 Feb 2013 WO
2013074671 May 2013 WO
2013096545 Jun 2013 WO
2016126511 Aug 2016 WO
Non-Patent Literature Citations (57)
Entry
US 8,062,356, 11/2011, Salahieh et al. (withdrawn)
US 8,062,357, 11/2011, Salahieh et al. (withdrawn)
US 8,075,614, 12/2011, Salahieh et al. (withdrawn)
US 8,133,271, 03/2012, Salahieh et al. (withdrawn)
US 8,211,170, 07/2012, Paul et al. (withdrawn)
International Search Report and Written Opinion dated Jul. 28, 2017 for International Application No. PCT/US2017/032284.
U.S. Appl. No. 60/553,945 to White, filed March 18, 2004.
Cribier et al., “Percutaneous Transluminal Valvuloplasty of Acquired Aortic Stenosis in Elderly Patients: An Alternative to Valve Replacement?” The Lancet, 63-7 (Jan. 11, 1986).
Supplemental Search Report from EP Patent Office, EP Application No. 04813777.2, dated Aug. 19, 2011.
Laborde et al., “Percutaneous Implantation of the Corevalve Aortic Valve Prosthesis for Patients Presenting High Risk for Surgical Valve Replacement.” EuroIntervention: 472-474, Feb. 2006.
“A Matter of Size.” Triennial Review of the National Nanotechnology Initiative, The National Academies Press, Washington DC, v-13, http://www.nap.edu/catalog/11752/a-matter-of-size-triennial-review-of-the-national-nanotechnology, 2006.
“Heart Valve Materials—Bovine (cow).” Equine & Porcine Pericardium, Maverick Biosciences Pty. Lt, http://maverickbio.com/biological-medical-device-materials.php?htm. 2009.
“Pericardial Heart Valves.” Edwards Lifesciences, Cardiovascular Surgery FAQ, http://www.edwards.com/products/cardiovascularsurgeryfaq.htm, Nov. 14, 2010.
Allen et al., “What are the characteristics of the ideal endovascular graft for abdominal aortic aneurysm exclusion?” J. Endovasc. Surg., 4(2):195-202 (May 1997).
Andersen et al. “Transluminal catheter implantation of a new expandable artificial cardiac valve (the stent—valve) in the aorta and the beating heart of closed chest pigs (Abstract).” Eur. Heart J., 11 (Suppl.): 224a (1990).
Andersen et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” Euro. Heart J., 13:704-708, May 1992.
Atwood et al., “Insertion of Heart Valves by Catheterization.” Project Supervised by Prof. S. Muftu of Northeastern University 2001-2002: 36-40, May 30, 2002.
Atwood et al., “Insertion of Heart Valves by Catheterization.” The Capstone Design Course Report MIME 1501-1502. Technical Design Report Northeastern University, pp. 1-93, Nov. 5, 2007.
Bailey, “Percutaneous Expandable Prosthetic Valves, Textbook of Interventional Cardiology.” vol. 2, 2d ed. Eric J. Topol, W.B. Saunders Co. (1994).
Blum et al., “Endoluminal Stent—Grafts for Intrarenal Abdominal Aortic Aneurysms.” New Engl. J. Med., 336:13-20 (1997).
Bodnar et al., “Replacement Cardiac Valves R Chapter 13: Extinct Cardiac Valve Prostheses.” Pergamon Publishing Corporation. New York, 307-322, 1991.
Bonhoeffer et al., “Percutaneous Insertion of the Pulmonary Valve.” J. Am. Coll. Cardiol., 39:1664-9 (2002).
Bonhoeffer et al., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position: A Lamb Study.” Circulation, 102: 813-16 (2000).
Bonhoeffer, et al., “Percutaneous replacement of pulmonary valve in a right ventricle to pulmonary-artery prosthetic conduit with valve dysfunction.” The Lancet, vol. 356, 1403-05 (Oct. 21, 2000).
Boudjemline et al., “Percutaneous Implantation of a Biological Valve in the Aorta to Treat Aortic Valve Insufficiency—A Sheep Study.” Med Sci. Monit., vol. 8, No. 4: BR113-116, Apr. 12, 2002.
Boudjemline et al., “Percutaneous Implantation of a Valve in the Descending Aorta in Lambs.” Euro. Heart J., 23: 1045-1049, Jul. 2002.
Boudjemline et al., “Percutaneous Pulmonary Valve Replacement in a Large Right Ventricular Outflow Tract: An Experimental Study.” Journal of the American College of Cardiology, vol. 43(6): 1082-1087, Mar. 17, 2004.
Boudjemline et al., “Percutaneous Valve Insertion: A New Approach?” J. of Thoracic and Cardio. Surg, 125(3):741-743, Mar. 2003.
Boudjemline et al., “Steps Toward Percutaneous Aortic Valve Replacement.” Circulation, 105: 775-778, Feb. 12, 2002.
Carpentier-Edwards PERIMOUNT Bioprosthesis (2003).
Couper, “Surgical Aspects of Prosthetic Valve Selection,” Overview of Cardiac Surgery for the Cardiologist, Springer-Verlag New York, Inc., 131-145 (1994).
Cribier et al., “Early Experience with Percutaneous Transcatheter Implantation of Heart Valve Prosthesis for the Treatment of End-Stage Inoperable Patients with Calcific Aortic Stenosis.” J. of Am. Coll. of Cardio, 43(4): 698-703, Feb. 18, 2004.
Cribier et al., “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case.” Percutaneous Valve Technologies, Inc., 16 pages, Apr. 16, 2002.
Cribier et al., “Percutaneous Transcatheter Implementation of an Aortic Valve Prosthesis for Calcitic Aortic Stenosis: First Human Case Description.” Circulation, 106: 3006-3008, Dec. 10, 2002.
Cribier et al., “Trans-Cathether Implantation of Balloon-Expandable Prosthetic Heart Valves: Early Results in an Animal Model.” Circulation [suppl. II] 104(17) II-552 (Oct. 23, 2001).
Cunanan et al., “Tissue Characterization and Calcification Potential of Commercial Bioprosthetic Heart Valves.” Ann. Thorac. Surg., S417-421, May 15, 2001.
Cunliffe et al., “Glutaraldehyde Inactivation of Exotic Animal Viruses in Swine Heart Tissue.” Applied and Environmental Microbiology, Greenport, New York, 37(5): 1044-1046, May 1979.
Dake et al., “Transluminal Placement of Endovascular Stent-Grafts for the Treatment of Descending Thoracic Aortic Aneurysms.” New Engl. J. of Med., 331(26):1729-34 (1994).
Dalby et al., “Non-Surgical Aortic Valve Replacement” Br. J. Cardiol., 10:450-2 (2003).
Dhasmana, et al., “Factors Associated With Periprosthetic Leakage Following Primary Mitral Valve Replacement: With Special Consideration of Suture Technique.” Annals of Thorac. Surg. 35(2), 170-8 (Feb. 1983).
Diethrich, AAA Stent Grafts: Current Developments, J. Invasive Cardiol. 13(5) (2001).
Dolmatch et al., Stent Grafts: Current Clinical Practice (2000)—EVT Endograft and Talent Endoprosthesis.
Dotter, “Transluminally-Placed Coilspring Endarterial Tube Grafts,” Investigative Radiology, pp. 329-332 (1969).
Emery et al., 'Replacement of the Aortic Valve in Patients Under 50 Years of Age: Long-Term Follow-Up of the St. Jude Medical Prosthesis.' Ann. Thorac. Surg., 75:1815-9 (2003).
EP Search Report for EP Application No. 06824992.9, dated Aug. 10, 2011.
Examiner's First Report on AU Patent Application No. 2011202667, dated May 17, 2012.
Ferrari et al., “Percutaneous Transvascular Aortic Valve Replacement with Self-Expanding Stent-Valve Device.” Poster from the presentation given at SMIT 2000, 12th International Conference. Sep. 5, 2000.
Fluency Vascular Stent Graft Instructions for Use (2003).
Greenberg, “Abdominal Aortic Endografting: Fixation and Sealing.” J. Am. Coll. Surg. 194:1:S79-S87 (2002).
Grossi, “Impact of Minimally Invasive Valvular Heart Surgery: A Case-Control Study.” Ann. Thorac. Surg., 71:807-10 (2001).
Helmus, “Mechanical and Bioprosthetic Heart Valves in Biomaterials for Artificial Organs.” Woodhead Publishing Limited: 114-162, 2011.
Hijazi, “Transcatheter Valve Replacement: A New Era of Percutaneous Cardiac Intervention Begins.” J. of Am. College of Cardio., 43(6): 1088-1089, Mar. 17, 2004.
Hourihan et al., “Transcatheter Umbrella Closure of Valvular and Paravalvular Leaks.” JACC, Boston, Massachusetts, 20(6): 1371-1377, Nov. 15, 1992.
Huber et al., “Do Valved Stents Compromise Coronary Flow?” European Journal of Cardio-thoracic Surgery, vol. 25: 754-759, Jan. 23, 2004.
Ing, “Stents: What's Available to the Pediatric Interventional Cardiologist?” Catheterization and Cardiovascular Interventions 57:274-386 (2002).
Ionescu, et al., “Prevalence and Clinical Significance of Incidental Paraprosthetic Valvar Regurgitation: A prospective study using transesophageal echocardiography.” Heart, 89:1316-21 (2003).
Kaiser, et al., “Surgery for Left Ventricle Outflow Obstruction: Aortic Valve Replacement and Myomectomy,” Overview of Cardiac Surgery for the Cardiologist. Springer-Verlag New York, Inc., 40-45 (1994).
Related Publications (1)
Number Date Country
20170325938 A1 Nov 2017 US
Provisional Applications (1)
Number Date Country
62336944 May 2016 US