The present invention relates generally to replacement heart valves.
Human heart valves, which include the aortic, pulmonary, mitral and tricuspid valves, function essentially as one-way valves operating in synchronization with the pumping heart. The valves allow blood to flow in a downstream direction, but block blood from flowing in an upstream direction. Diseased heart valves exhibit impairments such as narrowing of the valve or regurgitation. Such impairments reduce the heart's blood-pumping efficiency and can be a debilitating and life threatening condition. For example, valve insufficiency can lead to conditions such as heart hypertrophy and dilation of the ventricle. Thus, extensive efforts have been made to develop methods and apparatus to repair or replace impaired heart valves.
Prostheses exist to correct problems associated with impaired heart valves. For example, mechanical and tissue-based heart valve prostheses can be used to replace impaired native heart valves. More recently, substantial effort has been dedicated to developing replacement heart valves, particularly tissue-based replacement heart valves, that can be delivered with less trauma to the patient than through open heart surgery. Replacement valves are being designed to be delivered through minimally invasive procedures and even percutaneous procedures. Such replacement valves often include a tissue-based valve body that is connected to an expandable frame that is then delivered to the native valve's annulus.
Development of replacement heart valves that can be compacted for delivery and then controllably expanded for controlled placement has proven to be particularly challenging.
Accordingly, there is in the need of the art for an improved replacement heart valve.
In accordance with one embodiment, the present invention provides a replacement heart valve that comprises an expandable frame and a valve body mounted onto the expandable frame. The expandable frame may have an engagement system configured to engage a native valve annulus at an engagement zone along the length of the frame. The frame can have an upstream portion, a downstream portion, and a transition portion between the upstream and downstream portions, where a diameter of the downstream portion is greater than a diameter of the upstream portion. The valve body can have a plurality of valve leaflets configured to move between an open condition and a closed condition. A diameter of the valve body at a downstream end of the leaflets can be greater than a diameter of the valve body at an upstream end of the leaflets and the upstream end of each leaflet can be positioned upstream of the frame engagement zone.
In some embodiments, the engagement system comprises a set of upstream anchors and a set of downstream anchors, each anchor comprising an anchor tip, and the frame engagement zone is defined between the tips of the upstream and downstream anchors.
The anchors can include one of many features. For example, a diameter defined by the tips of the upstream anchors can be approximately equal to a diameter defined by the tips of the downstream anchors. As another example, the downstream anchors can extend from the downstream portion of the expandable frame and the upstream anchors can extend from an area of the frame having a diameter less than the downstream portion, such as the upstream portion or the transition portion of the expandable frame.
In some embodiments, a replacement heart valve comprises an expandable frame configured to engage a native valve annulus at an engagement zone along the length of the frame and a valve body attached to the expandable frame. The expandable frame can include a foreshortening portion configured to longitudinally contract as the frame radially expands from a compacted to an expanded condition, a plurality of first anchors and a plurality of second anchors.
Each of the anchors, according to some embodiments, can extend radially outwardly from the frame at an anchor base and terminate at an anchor tip. At least part of the foreshortening portion can be disposed between the first and second anchor bases and the engagement zone can be defined between the first and second anchor tips. Further, the first anchors can comprise first, second and third spaced apart bending stages along the length of each upstream anchor, and wherein the first anchor is bent radially outwardly in the first and second bending stages, and is bent in an opposite direction in the third bending stage.
The anchors may include additional features. For example, the portion of the first anchor between the third bending stage and the anchor tip can be generally parallel to an axis of the frame. The second anchor can comprise first, second and third spaced apart bending stages, and wherein in the first bending stage the anchor is bent radially inwardly, in the second bending stage the anchor is bent radially outwardly, and in the third bending stage the anchor is bent radially inwardly. The second bending stage of the first anchor can be bent about 180 degrees.
According to some embodiments, a replacement heart valve comprises an expandable frame configured to engage a native valve annulus at an engagement zone along the length of the frame, and a valve body attached to the expandable frame. The valve body can comprise a plurality of valve leaflets configured to open to allow flow in a first direction and engage one another so as to close and not allow flow in a second direction opposite the first direction. The expandable frame can comprise an upstream portion, a downstream portion, a transition portion, a plurality of upstream anchors and a plurality of downstream anchors.
The downstream portion can have a diameter different than a diameter of the upstream portion. The transition portion can be between the upstream and downstream portions. Each anchor can extend radially outwardly from the frame at an anchor base and terminate at an anchor tip. At least part of a foreshortening portion disposed between the upstream and downstream anchor bases. The engagement zone defined between the upstream and downstream anchor tips. The bases of the upstream anchors can be disposed at a location along the length of the frame having a first diameter, and the bases of the downstream anchors can be disposed at a location along the length of the frame having a second diameter, and the first diameter is different than the second diameter.
In some embodiments, the diameter of the downstream portion is greater than the diameter of the upstream portion. In addition, in some embodiments, the bases of the upstream anchors are disposed in the upstream portion, and the bases of the downstream anchors are disposed in the downstream portion or the bases of the upstream anchors are disposed in the transition portion, and the bases of the downstream anchors are disposed in the downstream portion.
In some embodiments, a replacement heart valve comprises an expandable frame configured to engage a native valve annulus and a valve body mounted onto the expandable frame. The valve body can comprise a plurality of valve leaflets configured to open to allow flow in a first direction and engage one another so as to close and not allow flow in a second direction opposite the first direction. The valve body can have an upstream end and a downstream end where a diameter at the downstream end is greater than a diameter at the upstream end.
In some embodiments, a replacement heart valve comprises an expandable frame configured to engage a native valve annulus and a valve body mounted onto the expandable frame. The valve body can include a plurality of valve leaflets configured to open to allow flow in a first direction and engage one another so as to close and not allow flow in a second direction opposite the first direction. The expandable frame can have an upstream portion, a downstream portion, a first set of anchors, and a second set of anchors. A diameter of the expandable frame at the downstream portion can be greater than a diameter of the expandable frame at the upstream portion. Further, each anchor can comprise an anchor tip. The first set of anchors can extend from the downstream portion of the expandable frame and the second set of anchors can extend from an area of the frame having a diameter less than the downstream portion. The anchor tips of the first set of anchors can be configured to be positioned generally opposed to the anchor tips of the second set of anchors when the expandable frame is engaged to the native valve annulus.
Other inventive embodiments and features are disclosed below.
These and other features, aspects and advantages are described below with reference to the drawings, which are intended to illustrate but not to limit the invention. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments.
The present specification and drawings disclose aspects and features of the invention in the context of several embodiments of replacement heart valves and portions thereof that are configured for replacement of natural heart valves in a patient. These embodiments may be discussed in connection with replacing specific valves such as the patient's aortic or mitral valve. However, it is to be understood that the context of a particular valve or particular features of a valve should not be taken as limiting, and features of any one embodiment discussed herein can be combined with features of other embodiments as desired and when appropriate.
With initial reference to
The valve body 30 can extend the length of the frame 20 or it can extend along only part of the length of the frame 20. For example, the valve body 30 shown in
The valve body 30 can be implanted within a heart to replace a damaged or diseased heart valve such as a mitral valve. The valve leaflets 32 can function in a manner similar to the natural mitral valve. For example, a plurality of valve leaflets 32 can open to allow flow in a first direction and engage one another so as to close and not allow flow in a second direction opposite the first direction. The replacement heart valve 10 can be constructed so as the open naturally with the beating of the heart.
Additional example replacement heart valves with valve bodies and leaflets are discussed in detail in Applicants' U.S. application Ser. No. 12/569,856, filed Sep. 29, 2009, incorporated by reference herein in its entirety and with particular reference to FIGS. 1-3C, 5-13 and 17-25 and the accompanying discussion including paragraphs [0063]-[0070], [0083]-[0101], [0110]-[0114], [0118], [0124]-[0128], and [0130]-[0137].
With continued reference to
The frame 20 is constructed from a metal tube, such as a nitinol tube. As such, the frame 20 can be expanded and/or compressed and/or otherwise worked to have the desired introduction and implantation configurations.
The frame 20 is constructed so that part of the frame foreshortens as the frame is radially expanded from a collapsed configuration. In the illustrated embodiment a foreshortening zone 54 generally corresponds with the downstream portion 42. A non-foreshortening zone 52 extends upstream from the foreshortening zone 54, and generally corresponds to the upstream 38 and transition 40 portions.
Opposing anchors 22, 24 are constructed on the frame 20 so that preferably their tips 26, 28 are in the downstream portion 42. The anchors 22, 24 are configured to grasp opposite sides of the native mitral annulus. In some embodiments, one or more of the anchor tips 26, 28 are in the downstream portion 42, the upstream portion 38, the transition portion 40, or at or near the border of the transition portion 40 and the downstream portion 42 or the border of the transition portion 40 and the upstream portion 38. Preferably, each of the anchors 22, 24 also extends generally radially outwardly from the frame 20 so that the anchor tips 26, 28 are generally spaced away from the rest of the frame 20. In some embodiments, all or part of the structure connected to the anchor tip and extending radially from the frame, including one or more rings and/or struts, can be considered part of the anchor. The anchors can include a base located on the anchor on a side opposite the tip. The base can be for example where the anchor begins to extend away from the frame 20.
As shown, the anchors 22 extend from the downstream portion 42 of the frame 20. For example, the anchors 22 can extend from the end 16 of the frame 20. In some embodiments the anchors 22 can extend from other parts of the downstream portion 42 of the frame. The illustrated anchors 24 extend from the upstream portion 38 of the frame 20. As such, the anchors 24 and the anchors 22 both extend from regions having different diameters. As an additional example, the anchors 24 can extend from the downstream portion 42 and the anchors 22 can extend from the transition portion 40. Alternatively, both set of anchors 22, 24 can extend from the transition portion 40.
The anchors 22, 24 can also extend from regions having the same diameter. For example both sets of anchors can extend from the downstream portion 42.
The anchors 22, 24 can be one of many different lengths. For example, the anchors can be shorter than, as long as or longer than any of the upstream 38, transition 40, and downstream 42 portions. As shown, the anchors 24 are shorter than the downstream portion 42 and the anchors 22 are longer than the transition portion 40. The anchors 22 extend from the upstream portion 38, through the transition portion 40 and into the downstream portion 42. Other configurations are also possible.
The anchor tips 26, 28 can have one of many shapes. For example, the shape can be configured to increase the amount of surface area of the tip that is in contact with tissue. The tips 26, 28 are shown as round or elliptical disks but can have other shapes as well, such as tear drop, rectangular, rectangular with a curved end, etc.
In preferred embodiments, the replacement heart valve 10 may be deployed into a heart valve annulus, and positioned when compacted so that the anchor tips 26, 28 of the opposing anchors 22, 24 are disposed on opposite sides of the native annulus. As the replacement heart valve 10 is expanded, the opposing anchors are drawn closer together so as to grasp opposite sides of the native annulus with the anchor tips 26, 28 and securely hold the replacement heart valve 10 in position. As such, the replacement heart valve 10 can be held securely in position without requiring a substantial radial force against the native annulus. The foreshortening zone 54 can be used to move the anchor tips 26, 28 closer together as the replacement heart valve 10 moves to the expanded position to thereby engage the native valve annulus.
Applicant's U.S. patent application Ser. No. 12/084,586, which was published on Aug. 27, 2009 as U.S. Publication No. 2009/0216314, discusses embodiments of foreshortening stents with anchors, and can be referred to for further discussion of certain aspects of the illustrated embodiments. The above application is incorporated in its entirety by reference herein with particular reference to the discussion concerning structure and operation of embodiments of a foreshortening stent, particularly a foreshortening stent having anchors.
The valve leaflets 32 extend along all or part of the length of the valve body 30, and including all or part of the reduced and increasing diameter portions of the valve body, i.e. the upstream 38 and transition 40 portions, as shown. In some embodiments, the leaflets 32 can also span all or part of the length of the downstream portion 42.
As best shown in
With additional reference to
First 58, second 60, and third 62 rings made up of undulating struts are connected to the longitudinal struts 56 in the non-foreshortening zone 52. The illustrated first 58 and second 60 rings are of generally the same size, however, the struts in the third ring 62 are substantially larger and longer than the struts in the first 58 and second 60 rings. For example, the struts of the first 58 and second 60 rings can be about twice as long as the struts of the third ring 62, or longer. Additionally, upstream anchors 22 extend from the free apices of the struts in the third ring 62. As best shown in
Referring to
Additionally, downstream anchors 24 extend from the free apices of the fifth ring 66. As best shown in
The shape of each of the anchors will now be described in more detail with reference to
The downstream anchor 24 has a base 76 that is connected to a free apex of the fifth ring 66. After the base 76 there is a first bending stage 78 so that the anchor is radially spaced outwardly from the frame 20. As shown, the anchor at the first bending stage 78 is bent approximately 180 degrees. A large bend such as a bend of approximately 180 degrees, or between around 150-200 degrees, can provide structural support and strength to the anchor. Such a large bend can also be located at other points in the anchor and at other bending stages. A second bending stage 80 is shown used to flare the anchor radially outwardly from the frame 20. In a third bending stage 82 the anchor bends in a radially inward direction so as to direct the anchor tip 28 towards the opposing anchor 22 and position the portion of the anchor between the tip and the third bending stage parallel or substantially parallel to the frame 20. In some embodiments more or fewer bending stages can be used. In addition, the various bending stages can be used to different purposes and to provide different positions of the anchor than those described above.
The upstream anchor 22 can also have one or more bending stages. The anchor 22 has a base 84 where the strut of the third ring 62 connects to the longitudinal strut 56. A first bending stage 86 of the anchor 22 can be located at the base to move the anchor 22 radially outwardly from frame 20. A second bending stage 88 can further move the anchor 22 radially outwardly from frame 20. In this way, the anchor 22 can be bent in a gradual manner away from the frame 20. In some embodiments, one bending stage can be used to move the anchor 22 away from the frame. The anchor 22 can also include a large bend similar to the approximately 180 degree bend in the first bending stage 78 of anchor 24. Finally, anchor 22 is also shown with a third bending stage 90. The third bending stage 90 can direct the anchor tip 26 towards the opposing anchor 24 and position the tip parallel or substantially parallel to the frame 20.
The transition portion 40 can also include one or more bending stages, such as bending stages 92, 94 shown in
Notably, in this embodiment the native annulus which is intended to be gripped between the anchor tips 26, 28 will be engaged by the foreshortening zone 54 of the frame 20, and will not engage the transition portion 40 of the frame 20. Rather, in a mitral placement, the upstream 38 and transition 40 portions of the replacement valve 10 will not necessarily be disposed within the annulus but mostly or entirely in the atrium.
In the embodiment illustrated in connection with
With particular reference next to
In the illustrated embodiments, the outer valve skirt 33 is attached to the frame 20 and the leaflets 32 are attached to the outer valve skirt 33. Preferably, the outer valve skirt 33 is also formed of a pericardium tissue similar to the leaflets 32. The outer valve skirt 33 can be constructed in multiple different ways. For example, with reference next to
In
With reference next to
Preferably, the outer valve skirt 33 is constructed of a tissue that is flexible, but not particularly expansive and stretchy. As such, in the illustrated embodiments, the outer valve skirt 33 extends through the non-foreshortening zone 52 of the frame 20, but does not extend into the foreshortening zone 54 of the frame 20. However, in other embodiments, a portion of the outer valve skirt 33 may extend into the foreshortening zone 54.
Referring back to
With additional reference next to
With reference next to
The anchor 24′ is shown with a base 76′ connected to the fifth ring 66′. The anchor 24′ includes first 78′ and second 80′ bending stages. The first bending stage 78′ positions the anchor 24′ away from the frame 20′ and the second bending stage 80′ positions the tip 28′. The anchor 22′ also has first 86′ and second 88′ bending stages. The first bending stage 86′ is located at and near the base 84′ and positions the anchor 22′ away from frame 20′. The second bending stage 88′ positions the anchor tip 26′ towards the opposing anchor 24′ and positions the tip parallel or substantially parallel to the frame 20′.
In the frame 20′ embodiment of
Referring to
One, two, three, or more rings made up of undulating struts can be connected to the longitudinal struts 56′″ in the non-foreshortening zone 52′″. One, two, three, or more rings made up of undulating struts can also be used to form the foreshortening zone 54′″.
Downstream anchors 24′″ can extend from a portion of the downstream portion 42′″ or foreshortening portion 54′″ as shown. The downstream anchors 24′″ are bent down or bent out from the frame 20′″ and flared radially out from the frame 20′″. Anchor 24′″ is shown with a base 76′″ connected to the frame 20′″. The anchor 24′″ includes first 78″, second 80′″ and third 82′″ bending stages. The first bending stage 78′″ is a radially inward bend. The inward bend can be between about 5-30 degrees, for example. The second bending stage 80′″ can have a large bend, such as an approximately 180 degree radially outwardly extending bend, or between around 150-200 degrees, as has been described. After the second stage bend the anchor extends in an upstream and radially outward direction. The first 78′″ and second 80′″ bending stages can position the anchor 24′″ away from the frame 20′″. The third bending stage 82′″ can position the tip 28″, such as to position the tip 28′″ to oppose the anchor tip 26′″ and/or position the tip 28′″ parallel or substantially parallel with the frame 20′″. The bend at the third bending stage can be, for example, between about 5-30 degrees.
Upstream anchors 22′″ preferably extend from the non-foreshortening portion 52′″. For example, upstream anchors 22′″ and/or the ring(s) or struts to which they are attached, are shown extending from the transition portion 40′″. As can be seen in
In this embodiment, the anchors 22′″ extend from the frame 20′″ at the transition portion 40′″ rather than at the upstream portion 38′″. This allows the anchors 22′″ to have a smaller bend or angle at the first bending stage 86′″ because some of the desired bend is already provided by the first bending stage 92′″ of the transition at portion 40′″. For example, where it is desired to position the anchor 22′″ an angle A1 from the upstream portion, the first bending stage 92′″ of the transition portion 40′″ can be bent an angle A2 and then the first bending stage 86′″ of the anchor 22′″ can be bent the remaining amount to provide the angle A1. For example, where the anchor 22′″ is positioned an angle A1 of approximately 40 degrees from the frame of the upstream portion 38′″, the transition portion can be positioned at an angle A2 of approximately 20 degrees or 30 degrees and then the anchor 22 can be positioned an additional amount from frame at the transition portion to make up the entire 40 degrees.
In another embodiment, the anchor 22′″ can extend from the upstream portion of the frame, and can have a first bending stage at which the anchor bends approximately the same as the first bending stage of the transition portion. The anchor 22′″ can have a second bending stage spaced from the first stage and which directs the anchor 22′″ further radially outwardly to the desired angle A1. The anchor 22′″ has a third bending stage to position the anchor tip 26′″.
The upstream anchors 22′″ are bent so as to generally oppose the downstream anchors 24′″ that extend from the foreshortening zone 54′″. A tip 26′″ of each upstream anchor 22′″ is downstream of the transition portion 40′″. As such, the anchor tips 26, 28 of the opposing anchors 22, 24 can be disposed on opposite sides of the native annulus of a heart valve and used to engage the valve to thereby replace the valve with a replacement heart valve as has been described herein.
As can also be seen in
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. For example, the frame shown in
This application is a continuation of U.S. application Ser. No. 15/415,794, filed Jan. 25, 2017, which is a continuation of U.S. application Ser. No. 13/165,721, filed Jun. 21, 2011, which claims priority to U.S. Provisional Application No. 61/357,048, filed on Jun. 21, 2010. The entire contents of the above applications are hereby incorporated by reference herein. Further, Applicants' U.S. application Ser. No. 12/569,856, filed Sep. 29, 2009, and U.S. application Ser. No. 12/761,349, filed Apr. 15, 2010 disclose several embodiments of replacement heart valves. In some instances, the present disclosure describes embodiments and principles that build upon and improve embodiments disclosed in these previous applications. As such, the entirety of each of these prior applications is incorporated by reference into this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3739402 | Cooley et al. | Jun 1973 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4079468 | Liotta et al. | Mar 1978 | A |
4204283 | Bellhouse et al. | May 1980 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4340977 | Brownlee et al. | Jul 1982 | A |
4470157 | Love | Sep 1984 | A |
4477930 | Totten et al. | Oct 1984 | A |
4490859 | Black et al. | Jan 1985 | A |
4553545 | Maass et al. | Nov 1985 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4865600 | Carpentier et al. | Sep 1989 | A |
4994077 | Dobben | Feb 1991 | A |
5326371 | Love et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5411552 | Andersen et al. | May 1995 | A |
5415667 | Frater | May 1995 | A |
5545214 | Stevens | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5697382 | Love et al. | Dec 1997 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
6086612 | Jansen | Jul 2000 | A |
6113631 | Jansen | Sep 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6251093 | Valley et al. | Jun 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6440164 | DiMatteo et al. | Aug 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6511491 | Grudem et al. | Jan 2003 | B2 |
6527800 | McGuckin, Jr. et al. | Mar 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6610088 | Gabbay | Aug 2003 | B1 |
6629534 | Goar et al. | Oct 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6676698 | McGuckin, Jr. et al. | Jan 2004 | B2 |
6695878 | McGuckin, Jr. et al. | Feb 2004 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
6716207 | Farnholtz | Apr 2004 | B2 |
6729356 | Baker et al. | May 2004 | B1 |
6730118 | Spenser et al. | May 2004 | B2 |
6746422 | Noriega et al. | Jun 2004 | B1 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6767362 | Schreck | Jul 2004 | B2 |
6780200 | Jansen | Aug 2004 | B2 |
6790229 | Berreklouw | Sep 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6875231 | Anduiza et al. | Apr 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7186265 | Sharkawy et al. | Mar 2007 | B2 |
7192440 | Andreas et al. | Mar 2007 | B2 |
7198646 | Figulla et al. | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7252682 | Seguin | Aug 2007 | B2 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7329278 | Seguin et al. | Feb 2008 | B2 |
7381219 | Salahieh et al. | Jun 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7445631 | Salahieh et al. | Nov 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7553324 | Andreas et al. | Jun 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7621948 | Herrmann et al. | Nov 2009 | B2 |
7628805 | Spenser et al. | Dec 2009 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7753949 | Lamphere et al. | Jul 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7806919 | Bloom et al. | Oct 2010 | B2 |
7815673 | Bloom et al. | Oct 2010 | B2 |
7824443 | Salahieh et al. | Nov 2010 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
7947075 | Goetz et al. | May 2011 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7972378 | Tabor et al. | Jul 2011 | B2 |
7981151 | Rowe | Jul 2011 | B2 |
7993392 | Righini et al. | Aug 2011 | B2 |
8016877 | Seguin et al. | Sep 2011 | B2 |
8048153 | Salahieh et al. | Nov 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8070800 | Lock et al. | Dec 2011 | B2 |
8070802 | Lamphere et al. | Dec 2011 | B2 |
8075615 | Eberhardt et al. | Dec 2011 | B2 |
8080054 | Rowe | Dec 2011 | B2 |
8092520 | Quadri | Jan 2012 | B2 |
8109996 | Stacchino et al. | Feb 2012 | B2 |
8118866 | Herrmann et al. | Feb 2012 | B2 |
8136218 | Millwee et al. | Mar 2012 | B2 |
8137398 | Tuval et al. | Mar 2012 | B2 |
8157852 | Bloom et al. | Apr 2012 | B2 |
8167934 | Styrc et al. | May 2012 | B2 |
8182528 | Salahieh et al. | May 2012 | B2 |
8182530 | Huber | May 2012 | B2 |
8216301 | Bonhoeffer et al. | Jul 2012 | B2 |
8219229 | Cao et al. | Jul 2012 | B2 |
8220121 | Hendriksen et al. | Jul 2012 | B2 |
8221493 | Boyle et al. | Jul 2012 | B2 |
8226710 | Nguyen et al. | Jul 2012 | B2 |
8236045 | Benichou et al. | Aug 2012 | B2 |
8246675 | Zegdi | Aug 2012 | B2 |
8246678 | Salahieh et al. | Aug 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8252052 | Salahieh et al. | Aug 2012 | B2 |
8287584 | Salahieh et al. | Oct 2012 | B2 |
8303653 | Bonhoeffer et al. | Nov 2012 | B2 |
8313525 | Tuval et al. | Nov 2012 | B2 |
8323335 | Rowe et al. | Dec 2012 | B2 |
8353953 | Giannetti et al. | Jan 2013 | B2 |
8403983 | Quadri et al. | Mar 2013 | B2 |
8414644 | Quadri et al. | Apr 2013 | B2 |
8414645 | Dwork et al. | Apr 2013 | B2 |
8444689 | Zhang | May 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8454685 | Hariton et al. | Jun 2013 | B2 |
8460368 | Taylor et al. | Jun 2013 | B2 |
8470023 | Eidenschink et al. | Jun 2013 | B2 |
8475521 | Suri et al. | Jul 2013 | B2 |
8475523 | Duffy | Jul 2013 | B2 |
8479380 | Malewicz et al. | Jul 2013 | B2 |
8486137 | Suri et al. | Jul 2013 | B2 |
8491650 | Wiemeyer et al. | Jul 2013 | B2 |
8500733 | Watson | Aug 2013 | B2 |
8500798 | Rowe et al. | Aug 2013 | B2 |
8511244 | Holecek et al. | Aug 2013 | B2 |
8512401 | Murray, III et al. | Aug 2013 | B2 |
8518096 | Nelson | Aug 2013 | B2 |
8518106 | Duffy et al. | Aug 2013 | B2 |
8562663 | Mearns et al. | Oct 2013 | B2 |
8579963 | Tabor | Nov 2013 | B2 |
8579964 | Lane et al. | Nov 2013 | B2 |
8579965 | Bonhoeffer et al. | Nov 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8585756 | Bonhoeffer et al. | Nov 2013 | B2 |
8591570 | Revuelta et al. | Nov 2013 | B2 |
8597348 | Rowe et al. | Dec 2013 | B2 |
8617236 | Paul et al. | Dec 2013 | B2 |
8640521 | Righini et al. | Feb 2014 | B2 |
8647381 | Essinger et al. | Feb 2014 | B2 |
8652145 | Maimon et al. | Feb 2014 | B2 |
8652201 | Oberti et al. | Feb 2014 | B2 |
8652202 | Alon et al. | Feb 2014 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8668733 | Haug et al. | Mar 2014 | B2 |
8673000 | Tabor et al. | Mar 2014 | B2 |
8679174 | Ottma et al. | Mar 2014 | B2 |
8679404 | Liburd et al. | Mar 2014 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8721708 | Seguin et al. | May 2014 | B2 |
8721714 | Kelley | May 2014 | B2 |
8728154 | Alkhatib | May 2014 | B2 |
8728155 | Montorfano et al. | May 2014 | B2 |
8740974 | Lambrecht et al. | Jun 2014 | B2 |
8740976 | Tran et al. | Jun 2014 | B2 |
8747458 | Tuval et al. | Jun 2014 | B2 |
8747459 | Nguyen et al. | Jun 2014 | B2 |
8747460 | Tuval et al. | Jun 2014 | B2 |
8758432 | Solem | Jun 2014 | B2 |
8764818 | Gregg | Jul 2014 | B2 |
8771344 | Tran et al. | Jul 2014 | B2 |
8771345 | Tuval et al. | Jul 2014 | B2 |
8771346 | Tuval et al. | Jul 2014 | B2 |
8778020 | Gregg et al. | Jul 2014 | B2 |
8784337 | Voeller et al. | Jul 2014 | B2 |
8784478 | Tuval et al. | Jul 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8790387 | Nguyen et al. | Jul 2014 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8795357 | Yohanan et al. | Aug 2014 | B2 |
8808356 | Braido et al. | Aug 2014 | B2 |
8828078 | Salahieh et al. | Sep 2014 | B2 |
8828079 | Thielen et al. | Sep 2014 | B2 |
8834564 | Tuval et al. | Sep 2014 | B2 |
8845718 | Tuval et al. | Sep 2014 | B2 |
8858620 | Salahieh et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8870950 | Hacohen | Oct 2014 | B2 |
8876893 | Dwork et al. | Nov 2014 | B2 |
8876894 | Tuval et al. | Nov 2014 | B2 |
8876895 | Tuval et al. | Nov 2014 | B2 |
8911455 | Quadri et al. | Dec 2014 | B2 |
8926693 | Duffy et al. | Jan 2015 | B2 |
8926694 | Costello | Jan 2015 | B2 |
8939960 | Rosenman et al. | Jan 2015 | B2 |
8945209 | Bonyuet et al. | Feb 2015 | B2 |
8951299 | Paul et al. | Feb 2015 | B2 |
8961593 | Bonhoeffer et al. | Feb 2015 | B2 |
8961595 | Alkhatib | Feb 2015 | B2 |
8974524 | Yeung et al. | Mar 2015 | B2 |
8979922 | Jayasinghe et al. | Mar 2015 | B2 |
8986372 | Murry, III et al. | Mar 2015 | B2 |
8986375 | Garde et al. | Mar 2015 | B2 |
8992608 | Haug et al. | Mar 2015 | B2 |
8998979 | Seguin et al. | Apr 2015 | B2 |
8998980 | Shipley et al. | Apr 2015 | B2 |
9005273 | Salahieh et al. | Apr 2015 | B2 |
9011521 | Haug et al. | Apr 2015 | B2 |
9011523 | Seguin | Apr 2015 | B2 |
9011524 | Eberhardt | Apr 2015 | B2 |
9028545 | Taylor | May 2015 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9034033 | McLean et al. | May 2015 | B2 |
9039757 | McLean et al. | May 2015 | B2 |
9055937 | Rowe et al. | Jun 2015 | B2 |
9066801 | Kovalsky et al. | Jun 2015 | B2 |
9078749 | Lutter et al. | Jul 2015 | B2 |
9078751 | Naor | Jul 2015 | B2 |
9084676 | Chau et al. | Jul 2015 | B2 |
9125738 | Figulla et al. | Sep 2015 | B2 |
9138312 | Tuval et al. | Sep 2015 | B2 |
9161834 | Taylor et al. | Oct 2015 | B2 |
9173737 | Hill et al. | Nov 2015 | B2 |
9180004 | Alkhatib | Nov 2015 | B2 |
9186249 | Rolando et al. | Nov 2015 | B2 |
9220594 | Braido et al. | Dec 2015 | B2 |
9241790 | Lane et al. | Jan 2016 | B2 |
9248014 | Lane et al. | Feb 2016 | B2 |
9277990 | Klima et al. | Mar 2016 | B2 |
9277993 | Gamarra et al. | Mar 2016 | B2 |
9289291 | Gorman, III et al. | Mar 2016 | B2 |
9289296 | Braido et al. | Mar 2016 | B2 |
9295551 | Straubinger et al. | Mar 2016 | B2 |
9326815 | Watson | May 2016 | B2 |
9331328 | Eberhardt et al. | May 2016 | B2 |
9339382 | Tabor et al. | May 2016 | B2 |
9351831 | Braido et al. | May 2016 | B2 |
9351832 | Braido et al. | May 2016 | B2 |
9364321 | Alkhatib et al. | Jun 2016 | B2 |
9445897 | Bishop et al. | Sep 2016 | B2 |
9456877 | Weitzner et al. | Oct 2016 | B2 |
9681968 | Goetz et al. | Jun 2017 | B2 |
9700329 | Metzger et al. | Jul 2017 | B2 |
9700411 | Klima et al. | Jul 2017 | B2 |
9795479 | Lim et al. | Oct 2017 | B2 |
9833313 | Board et al. | Dec 2017 | B2 |
9861473 | Lafontaine | Jan 2018 | B2 |
9861476 | Salahieh et al. | Jan 2018 | B2 |
9861477 | Backus et al. | Jan 2018 | B2 |
9867698 | Kovalsky et al. | Jan 2018 | B2 |
9877830 | Lim et al. | Jan 2018 | B2 |
9889029 | Li et al. | Feb 2018 | B2 |
9895225 | Rolando et al. | Feb 2018 | B2 |
9925045 | Creaven et al. | Mar 2018 | B2 |
20010007956 | Letac et al. | Jul 2001 | A1 |
20010047180 | Grudem et al. | Nov 2001 | A1 |
20020016623 | Kula et al. | Feb 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020045929 | Diaz | Apr 2002 | A1 |
20020052644 | Shaolian et al. | May 2002 | A1 |
20030105517 | White et al. | Jun 2003 | A1 |
20030120333 | Ouriel et al. | Jun 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030176914 | Rabkin et al. | Sep 2003 | A1 |
20030199971 | Tower et al. | Oct 2003 | A1 |
20030220683 | Minasian et al. | Nov 2003 | A1 |
20040117009 | Cali et al. | Jun 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040186561 | McGuckin et al. | Sep 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040215325 | Penn et al. | Oct 2004 | A1 |
20040225353 | McGuckin et al. | Nov 2004 | A1 |
20040236411 | Sarac et al. | Nov 2004 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050043790 | Seguin | Feb 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050090887 | Pryor | Apr 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050107872 | Mensah et al. | May 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050137693 | Haug et al. | Jun 2005 | A1 |
20050159811 | Lane | Jul 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060095115 | Bladillah et al. | May 2006 | A1 |
20060173537 | Yang et al. | Aug 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060212110 | Osborne et al. | Sep 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060265056 | Nguyen et al. | Nov 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20060293745 | Carpentier et al. | Dec 2006 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070050021 | Johnson | Mar 2007 | A1 |
20070100432 | Case et al. | May 2007 | A1 |
20070129794 | Realyvasquez | Jun 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070255394 | Ryan | Nov 2007 | A1 |
20080021546 | Patz et al. | Jan 2008 | A1 |
20080071361 | Tuval et al. | Mar 2008 | A1 |
20080071363 | Tuval et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080082164 | Friedman | Apr 2008 | A1 |
20080082165 | Wilson et al. | Apr 2008 | A1 |
20080097581 | Shanley | Apr 2008 | A1 |
20080147179 | Cai et al. | Jun 2008 | A1 |
20080147183 | Styrc | Jun 2008 | A1 |
20080161911 | Revuelta et al. | Jul 2008 | A1 |
20080177381 | Navia et al. | Jul 2008 | A1 |
20080183273 | Mesana et al. | Jul 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080228254 | Ryan | Sep 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090182413 | Burkart et al. | Jul 2009 | A1 |
20090188964 | Orlov | Jul 2009 | A1 |
20090270972 | Lane | Oct 2009 | A1 |
20090276027 | Glynn | Nov 2009 | A1 |
20090276040 | Rowe | Nov 2009 | A1 |
20090281618 | Hill et al. | Nov 2009 | A1 |
20090287296 | Manasse | Nov 2009 | A1 |
20090292350 | Eberhardt et al. | Nov 2009 | A1 |
20090306768 | Quadri | Dec 2009 | A1 |
20100082094 | Quadri et al. | Apr 2010 | A1 |
20100114305 | Kang et al. | May 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100249894 | Oba et al. | Sep 2010 | A1 |
20100249911 | Alkhatib | Sep 2010 | A1 |
20100256723 | Murray | Oct 2010 | A1 |
20100305685 | Millwee et al. | Dec 2010 | A1 |
20110004296 | Lutter et al. | Jan 2011 | A1 |
20110029067 | McGuckin, Jr. et al. | Feb 2011 | A1 |
20110208297 | Tuval et al. | Aug 2011 | A1 |
20110208298 | Tuval et al. | Aug 2011 | A1 |
20110224785 | Hacohen | Sep 2011 | A1 |
20110264196 | Savage et al. | Oct 2011 | A1 |
20110313515 | Quadri et al. | Dec 2011 | A1 |
20120022639 | Hacohen et al. | Jan 2012 | A1 |
20120041550 | Salahieh et al. | Feb 2012 | A1 |
20120059454 | Millwee et al. | Mar 2012 | A1 |
20120078360 | Rafiee | Mar 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120101572 | Kovalsky et al. | Apr 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120215303 | Quadri et al. | Aug 2012 | A1 |
20120271398 | Essinger et al. | Oct 2012 | A1 |
20120290062 | McNamara et al. | Nov 2012 | A1 |
20120310328 | Olson et al. | Dec 2012 | A1 |
20130006294 | Kashkarov et al. | Jan 2013 | A1 |
20130035759 | Gross et al. | Feb 2013 | A1 |
20130053950 | Rowe et al. | Feb 2013 | A1 |
20130131788 | Quadri et al. | May 2013 | A1 |
20130144378 | Quadri et al. | Jun 2013 | A1 |
20130211508 | Lane et al. | Aug 2013 | A1 |
20130253635 | Straubinger et al. | Sep 2013 | A1 |
20130253642 | Brecker | Sep 2013 | A1 |
20130310928 | Morriss et al. | Nov 2013 | A1 |
20130331929 | Mitra et al. | Dec 2013 | A1 |
20130338766 | Hastings et al. | Dec 2013 | A1 |
20130345786 | Behan | Dec 2013 | A1 |
20140018912 | Delaloye et al. | Jan 2014 | A1 |
20140025163 | Padala et al. | Jan 2014 | A1 |
20140039611 | Lane et al. | Feb 2014 | A1 |
20140052237 | Lane et al. | Feb 2014 | A1 |
20140052242 | Revuelta et al. | Feb 2014 | A1 |
20140100651 | Kheradvar et al. | Apr 2014 | A1 |
20140100653 | Savage et al. | Apr 2014 | A1 |
20140142694 | Tabor et al. | May 2014 | A1 |
20140163668 | Rafiee | Jun 2014 | A1 |
20140172077 | Bruchman et al. | Jun 2014 | A1 |
20140172083 | Bruchman et al. | Jun 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140207231 | Hacohen et al. | Jul 2014 | A1 |
20140214153 | Ottma et al. | Jul 2014 | A1 |
20140214154 | Nguyen et al. | Jul 2014 | A1 |
20140214155 | Kelley | Jul 2014 | A1 |
20140214160 | Naor | Jul 2014 | A1 |
20140222136 | Geist et al. | Aug 2014 | A1 |
20140222139 | Nguyen et al. | Aug 2014 | A1 |
20140222142 | Kovalsky et al. | Aug 2014 | A1 |
20140230515 | Tuval et al. | Aug 2014 | A1 |
20140236288 | Lambrecht et al. | Aug 2014 | A1 |
20140257467 | Lane et al. | Sep 2014 | A1 |
20140277390 | Ratz et al. | Sep 2014 | A1 |
20140277402 | Essinger et al. | Sep 2014 | A1 |
20140277422 | Ratz et al. | Sep 2014 | A1 |
20140277427 | Ratz et al. | Sep 2014 | A1 |
20140296973 | Bergheim et al. | Oct 2014 | A1 |
20140296975 | Tegels et al. | Oct 2014 | A1 |
20140303719 | Cox et al. | Oct 2014 | A1 |
20140309728 | Dehdashtian et al. | Oct 2014 | A1 |
20140309732 | Solem | Oct 2014 | A1 |
20140324160 | Benichou et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140330368 | Gloss et al. | Nov 2014 | A1 |
20140330371 | Gloss et al. | Nov 2014 | A1 |
20140330372 | Weston et al. | Nov 2014 | A1 |
20140336754 | Gurskis et al. | Nov 2014 | A1 |
20140343669 | Lane et al. | Nov 2014 | A1 |
20140343670 | Bakis et al. | Nov 2014 | A1 |
20140343671 | Yohanan et al. | Nov 2014 | A1 |
20140350663 | Braido et al. | Nov 2014 | A1 |
20140350666 | Righini | Nov 2014 | A1 |
20140350668 | Delaloye et al. | Nov 2014 | A1 |
20140358223 | Rafiee et al. | Dec 2014 | A1 |
20140364939 | Deshmukh et al. | Dec 2014 | A1 |
20140364943 | Conklin | Dec 2014 | A1 |
20140371842 | Marquez et al. | Dec 2014 | A1 |
20140371844 | Dale et al. | Dec 2014 | A1 |
20140371845 | Tuval et al. | Dec 2014 | A1 |
20140371847 | Madrid et al. | Dec 2014 | A1 |
20140371848 | Murray, III et al. | Dec 2014 | A1 |
20140379067 | Nguyen et al. | Dec 2014 | A1 |
20140379068 | Thielen et al. | Dec 2014 | A1 |
20140379077 | Tuval et al. | Dec 2014 | A1 |
20150005863 | Para | Jan 2015 | A1 |
20150012085 | Salahieh et al. | Jan 2015 | A1 |
20150018938 | Von Segesser et al. | Jan 2015 | A1 |
20150018944 | O'Connell et al. | Jan 2015 | A1 |
20150039083 | Rafiee | Feb 2015 | A1 |
20150045880 | Hacohen | Feb 2015 | A1 |
20150142103 | Vidlund | May 2015 | A1 |
20150148731 | McNamara et al. | May 2015 | A1 |
20150157457 | Hacohen | Jun 2015 | A1 |
20150157458 | Thambar et al. | Jun 2015 | A1 |
20150173897 | Raanani et al. | Jun 2015 | A1 |
20150196390 | Ma et al. | Jul 2015 | A1 |
20150209141 | Braido et al. | Jul 2015 | A1 |
20150272737 | Dale et al. | Oct 2015 | A1 |
20150297346 | Duffy et al. | Oct 2015 | A1 |
20150327994 | Morriss et al. | Nov 2015 | A1 |
20150328001 | McLean et al. | Nov 2015 | A1 |
20150335429 | Morriss et al. | Nov 2015 | A1 |
20150351903 | Morriss et al. | Dec 2015 | A1 |
20150351906 | Hammer et al. | Dec 2015 | A1 |
20150359629 | Ganesan et al. | Dec 2015 | A1 |
20160000591 | Lei et al. | Jan 2016 | A1 |
20160030169 | Shahriari | Feb 2016 | A1 |
20160030170 | Alkhatib et al. | Feb 2016 | A1 |
20160030171 | Quijano et al. | Feb 2016 | A1 |
20160038281 | Delaloye et al. | Feb 2016 | A1 |
20160074160 | Christianson et al. | Mar 2016 | A1 |
20160106537 | Christianson et al. | Apr 2016 | A1 |
20160113765 | Ganesan et al. | Apr 2016 | A1 |
20160113766 | Ganesan et al. | Apr 2016 | A1 |
20160113768 | Ganesan et al. | Apr 2016 | A1 |
20160143732 | Glimsdale | May 2016 | A1 |
20160158010 | Lim et al. | Jun 2016 | A1 |
20160166383 | Lim et al. | Jun 2016 | A1 |
20160184097 | Lim et al. | Jun 2016 | A1 |
20160199206 | Lim et al. | Jul 2016 | A1 |
20160213473 | Hacohen et al. | Jul 2016 | A1 |
20160235529 | Ma et al. | Aug 2016 | A1 |
20160279386 | Dale et al. | Sep 2016 | A1 |
20170128209 | Morriss et al. | May 2017 | A1 |
20170216023 | Lane et al. | Aug 2017 | A1 |
20170216575 | Asleson et al. | Aug 2017 | A1 |
20170258614 | Griffin | Sep 2017 | A1 |
20170325954 | Perszyk | Nov 2017 | A1 |
20170348096 | Anderson | Dec 2017 | A1 |
20170367823 | Hariton et al. | Dec 2017 | A1 |
20180055636 | Valencia et al. | Mar 2018 | A1 |
20180085218 | Eidenschink | Mar 2018 | A1 |
20180110534 | Gavala et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2304325 | Oct 2000 | CA |
2827556 | Jul 2012 | CA |
102006052564 | Dec 2007 | DE |
1171059 | Jan 2002 | EP |
1369098 | Dec 2003 | EP |
1472996 | Nov 2004 | EP |
1259194 | Feb 2005 | EP |
1734903 | Dec 2006 | EP |
1255510 | Apr 2007 | EP |
1827558 | Sep 2007 | EP |
1239901 | Oct 2007 | EP |
1935377 | Mar 2010 | EP |
2237746 | Oct 2010 | EP |
2238947 | Oct 2010 | EP |
2285317 | Feb 2011 | EP |
2308425 | Apr 2011 | EP |
2398543 | Dec 2011 | EP |
1281375 | Feb 2012 | EP |
2496182 | Sep 2012 | EP |
2566416 | Mar 2013 | EP |
2319458 | Apr 2013 | EP |
2745805 | Jun 2014 | EP |
2124826 | Jul 2014 | EP |
2749254 | Jul 2014 | EP |
2750630 | Jul 2014 | EP |
2777617 | Sep 2014 | EP |
2815723 | Dec 2014 | EP |
2815725 | Dec 2014 | EP |
2898858 | Jul 2015 | EP |
2967858 | Jan 2016 | EP |
2926766 | Feb 2016 | EP |
2985006 | Feb 2016 | EP |
2168536 | Apr 2016 | EP |
2262451 | May 2017 | EP |
3184083 | Jun 2017 | EP |
2446915 | Jan 2018 | EP |
3057541 | Jan 2018 | EP |
3037064 | Mar 2018 | EP |
3046511 | Mar 2018 | EP |
3142603 | Mar 2018 | EP |
3294220 | Mar 2018 | EP |
1264471 | Feb 1972 | GB |
1315844 | May 1973 | GB |
2398245 | Aug 2004 | GB |
2002540889 | Dec 2002 | JP |
2008541865 | Nov 2008 | JP |
9749355 | Dec 1997 | WO |
0061034 | Oct 2000 | WO |
03092554 | Nov 2003 | WO |
2004030569 | Apr 2004 | WO |
2005011534 | Feb 2005 | WO |
2006070372 | Jul 2006 | WO |
2006085225 | Aug 2006 | WO |
2006089236 | Aug 2006 | WO |
2006127765 | Nov 2006 | WO |
2007025028 | Mar 2007 | WO |
2007058857 | May 2007 | WO |
WO-2007058857 | May 2007 | WO |
2007123658 | Nov 2007 | WO |
2008013915 | Jan 2008 | WO |
2008070797 | Jun 2008 | WO |
2008103722 | Aug 2008 | WO |
2008125153 | Oct 2008 | WO |
2008150529 | Dec 2008 | WO |
2009026563 | Feb 2009 | WO |
2009033469 | Mar 2009 | WO |
2009042196 | Apr 2009 | WO |
2009045331 | Apr 2009 | WO |
2009053497 | Apr 2009 | WO |
2009091509 | Jul 2009 | WO |
2009094500 | Jul 2009 | WO |
2009134701 | Nov 2009 | WO |
2010005524 | Jan 2010 | WO |
2010008549 | Jan 2010 | WO |
2010022138 | Feb 2010 | WO |
2010037141 | Apr 2010 | WO |
2010040009 | Apr 2010 | WO |
2010057262 | May 2010 | WO |
2011025945 | Mar 2011 | WO |
2011057087 | May 2011 | WO |
2011111047 | Sep 2011 | WO |
2011137531 | Nov 2011 | WO |
2012177942 | Dec 2012 | WO |
2013028387 | Feb 2013 | WO |
2013075215 | May 2013 | WO |
2013120181 | Aug 2013 | WO |
2013175468 | Nov 2013 | WO |
2013192305 | Dec 2013 | WO |
2014018432 | Jan 2014 | WO |
2014099655 | Jun 2014 | WO |
2014110019 | Jul 2014 | WO |
2014110171 | Jul 2014 | WO |
2014121042 | Aug 2014 | WO |
2014139545 | Sep 2014 | WO |
2014145338 | Sep 2014 | WO |
2014149865 | Sep 2014 | WO |
2014163706 | Oct 2014 | WO |
2014164364 | Oct 2014 | WO |
2014194178 | Dec 2014 | WO |
2014204807 | Dec 2014 | WO |
2014205064 | Dec 2014 | WO |
2014210124 | Dec 2014 | WO |
2015077274 | May 2015 | WO |
2015148241 | Oct 2015 | WO |
2016016899 | Feb 2016 | WO |
Entry |
---|
Backer, Ole De, MD, et al., “Percutaneous Transcatheter Mitral Valve Replacement—An Overview of Devices in Preclinical and Early Clinical Evaluation,” Contemporary Reviews in Interventional Cardiology, Circ Cardiovasc Interv. 2014;7:400-409, Applicant believes this may have been available as early as June of 2014. |
Banai, Shmeul et al., The Journal of the American College of Cardiology, “Transapical Mitral Implantation of the Tiara Bioprosthesis Pre-Clinical Results,” Feb. 2014, <http://interventions.onlinejacc.org/article.aspx?articleid=1831234>. |
Bavaria, Joseph E. M.D.: “CardiAQ Valve Technologies: Transcatheter Mitral Valve Implantation,” Sep. 21, 2009. |
Bavaria, Joseph E. M.D. et al.: “Transcatheter Mitral Valve Implantation: The Future Gold Standard for MR?,” Applicant requests the Examiner to consider this reference to be prior art as of December of 2010. |
Berreklouw, Eric, PhD, et al., “Sutureless Mitral Valve Replacement With Bioprostheses and Nitinol Attachment Rings: Feasibility In Acute Pig Experiments,” The Journal of Thoracic and Cardiovascular Surgery, vol. 142, No. 2, Aug. 2011 in 7 pages, Applicant believes this may have been available online as early as Feb. 7, 2011. |
Biospace, “CardiAQ Valve Technologies (CVT) Reports Cardiovascular Medicine Milestone: First-In-Humannonsurgical Percutaneous Implantation of a Bioprosthetic Mitral Heart Valve,” Jun. 14, 2012, p. 1, http://www.biospace.com/News/cardiaq-valve-technologies-cvt-reports/263900. |
Biospace, “CardiAQ Valve Technologies (CVT) Reports First-In-Human Percutaneous Transfemoral, Transseptal Implantation With Its Second Generation Transcatheter Bioprosthetic Mitral Heart Valve,” Jun. 23, 2015, p. 1, http://www.biospace.com/News/cardiaq-valve-technologies-cvt-reports-first-in/382370. |
Boudjemline, Younes, et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves,” JACC, vol. 46, No. 2, Jul. 19, 2005:360-5. |
CardiAQ Valve Technologies, “Innovations in Heart Valve Therapy,” In3 San Francisco, Jun. 18, 2008, PowerPoint presentation in 19 slides. |
“CardiAQTM Valve Technologies reports Successful First-in-Human Trans-Apical implantation of its Second Generation Transcatheter Mitral Valve,” CardiAQ Valve Technologies Press Release, May 20, 2014. |
Chiam, Paul T.L., et al., “Percutaneous Transcatheter Aortic Valve Implantation: Assessing Results, Judging Dutcomes, and Planning Trials,” JACC: Cardiovascular Interventions, The American College of Cardiology Foundation, vol. 1, No. 4, Aug. 2008:341-50. |
“Company Overview,” at TVT on Jun. 25, 2009. |
Condado, Jose Antonio, et al., “Percutaneous Treatment of Heart Valves,” Rev Esp Cardio. 2006;59(12):1225-31, Applicant believes this may have been available as early as December of 2006. |
Fornell, Dave, “Transcatheter Mitral Valve replacement Devices in Development,” Diagnostic and Interventional Cardiology, Dec. 30, 2014, p. 3, <http://www.dicardiology.com/article/transcatheter-milral-valve-replacement-devices-development>. |
Engager System, Precise Valve Positioning, Transcatheter Aortic Valve Implantation System, Transcatheter Aortic Valve Replacement—TAVR I Medtronic Engager, http://www.medtronic-engager.com/home/transcatheter-aortic-valve-repl., 2014 Medtronic, Inc. in 2 pages Applicant believes this may have been available online as early as Aug. 25, 2013. |
Feldman, Ted, MD. “Prospects for Percutaneous Valve Therapies,” Circulation 2007; 116:2866-2877. Applicant believes that this may be available as early as Dec. 11, 2007. |
Grube, E. et al., “Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome.” J Am Coll Cardiol. Jul. 3, 2007;50(1):69-76. Epub Jun. 6, 2007. |
Horvath et al.: “Transapical Aortic Valve Replacement under Real-time Magnetic Resonance Imaging Guidance: Experimental Results with Balloon—Expandable and Self-Expanding Stents,” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038190/. Jun. 2011. |
Karimi, Houshang, et al., “Percutaneous Valve Therapies,” SIS 2007 Yearbook, Chapter 11, pp. 1-11. |
Fanning, Jonathon P., et al., “Transcatheter Aortic Valve Implantation (TAVI): Valve Design And Evolution,” International Journal of Cardiology 168 (2013) 1822-1831, Applicant believes this may have been available as early as Oct. 3, 2013. |
Fitzgerald, Peter J. M.D., “Tomorrow's Technology: Percutaneous Mitral Valve Replacement, Chordal Shortening, and Beyond,” Transcatheter Valve Therapies (TVT) Conference. Seattle, WA. Applicant believes this may have been available as early as Jun. 7, 2010. |
Kronemyer, Bob, “CardiAQ Valve Technologies: Percutaneous Mitral Valve Replacement,” Start Up—Windhover Review of Emerging Medical Ventures, vol. 14, Issue No. 6, Jun. 2009, pp. 48-49. |
Leon, Martin B., et al., “Transcatheter Aortic Valve Replacement in Patients with Critical Aortic Stenosis: Rationale, Device Descriptions, Early Clinical Experiences, and Perspectives,” Semin. Thorac. Cardiovasc. Surg. 18:165-174, 2006 in 10 pages, Applicant believes this may have been available as early as the Summer of 2006. |
Lutter, Georg, et al., “Off-Pump Transapical Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 36 (2009) 124-128, Applicant believes this may have been available as early as Apr. 25, 2009. |
Ma, Liang, et al., “Double-Crowned Valved Stents For Off-Pump Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 28 (2005) 194-199, Applicant believes this may have been available as early as August of 2005. |
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: A Short-term Experience in Swine Model,” Applicant believes this may have been presented on May of 2011 at TVT. |
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: On-Going Experience in Swine Model,” Applicant believes this may have been presented on November of 2011 at TCT. |
Masson, Jean-Bernard, et al., “Percutaneous Treatment of Mitral Regurgitation,” Circulation: Cardiovascular Interventions, 2:140-146, Applicant believes this may have been available as early as Apr. 14, 2009. |
Mack, Michael M.D., “Advantages and Limitations of Surgical Mitral Valve Replacement; Lessons for the Transcatheter Approach,” Applicant believes this may have been available as early as Jun. 7, 2010. Applicant believes this may have been presented at the Texas Cardiovascular Innovative Ventures (TCIV) Conference in Dallas, TX on Dec. 8, 2010. |
NJ350: Vote for Your Favorite New Jersey Innovations, Jun. 27, 2014, http://www.kilmerhouse.com/2014/06/nj350-vote-for-your-favorite-new-jersey-innovations/. |
Neovasc corporate presentation, Oct. 2009, available at http://www.neovasc.com/investors/documents/Neovasc-Corporate-Presentation-October-2009.pdf. |
Ostrovsky, Gene, “Transcatheter Mitral Valve Implantation Technology from CardiAQ,” medGadget, Jan. 15, 2010, available at: http://www.medgadget.com/2010/01/transcatheter_mitral_valve_implantation_technology_from_cardiaq.html. |
Pluth, James R., M.D., et al., “Aortic and Mitral Valve Replacement with Cloth-Covered Braunwald-Cutter Prosthesis, A Three-Year Follow-up,” The Annals Of Thoracic Surgery, vol. 20, No. 3, Sep. 1975, pp. 239-248. |
Piazza, Nicoló, MD, et al., “Anatomy of the Aortic Valvar Complex and Its Implications for Transcatheter Implantation of the Aortic Valve,” Contemporary Reviews in Interventional Cardiology, Circ. Cardiovasc. Intervent., 2008;1:74-81, Applicant believes this may have been available as early as August of 2008. |
Preston-Maher, Georgia L., et al., “A Technical Review of Minimally Invasive Mitral Valve Replacements,” Cardiovascular Engineering and Technology, vol. 6, No. 2, Jun. 2015, pp. 174-184. Applicant believes this may have been available as early as Nov. 25, 2014. |
Quadri, Arshad M.D., “Transcatheter Mitral Valve Implantation (TMVI) (An Acute In Vivo Study),” Applicant believes this may have been presented on Sep. 22, 2010 at TCT. |
Ratz, J. Brent, “In3 Company Overview,” Jun. 24, 2009. |
Ratz, J. Brent, “LSI EMT Spotlight,” May 15, 2009. |
Ratz, J. Brent et al., “Any experiences making an expandable stent frame?” Arch-Pub.com, Architecture Forums: Modeling, Multiple forum postings from Feb. 3, 2009 to Feb. 4, 2009, http://www.arch-pub.com. |
Ruiz, Carlos E., “Overview of Novel Transcatheter Valve Technologies,” Applicant believes this may have been presented on May 27, 2010 at EuroPCR. |
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have been presented at TCT 2013. |
Seidel, Wolfgang, et al., “A Mitral Valve Prosthesis and a Study of Thrombosis on Heart Valves in Dogs,” JSR—vol. II, No. 3—May 1962, submitted for publication Oct. 9, 1961. |
Sondergaard, Lars, “CardiAQ TMVR FIH—Generation 2,” Applicants believe this may have been presented in 2014 at the TVT symposium. |
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have been presented at EuroPCR 2013. |
Spillner, J et al., “New Sutureless ‘Atrial-Mitral-Valve Prosthesis’ For Minimally Invasive Mitral Valve Therapy,” Textile Research Journal, 2010, in 7 pages, Applicant believes this may have been available as early as Aug. 9, 2010. |
Taramasso et al.: “New devices for TAVI: technologies and initial clinical experiences” http://www.nature.com/nrcardio/journal/v11/n3/full/nrcardio.2013.221.html?message-global=remove#access. Jan. 21, 2014. |
Treede et al.: “Transapical transcatheter aortic valve implantation using the JenaValve™ system: acute and 30-day results of the multicentre CE-mark study” http://ejcts.oxfordjournals.org/content/41/6/e131.long. Apr. 16, 2012. |
“Update,” Applicant believes this may have been presented on Jun. 6, 2010 at TVT. |
Van Mieghem, et al., “Anatomy of the Mitral Valvular Complez and Its Implications for Transcatheter Interventions for Mitral Regurgitation,” J. Am. Coll. Cardiol., 56:617-626 (Aug. 17, 2010). |
Vu, Duc-Thang, et al., “Novel Sutureless Mitral Valve Implantation Method Involving A Bayonet Insertion And Release Mechanism: A Proof Of Concept Study In Pigs,” The Journal of Thoracic and Cardiovascular Surgery, vol. 143, No. 4, 985-988, Apr. 2012, Applicant believes this may have been available online as early as Feb. 13, 2012. |
Wayback Machine, Cleveland Clinic Lemer Research Institute, Transcatheter Mitral Stent/Valve Prosthetic, https://web.archive.org/web/20130831094624/http://mds.clevelandclinic.org/Portfolio.aspx?n=331, indicated as archived on Aug. 31, 2013. |
Webb, John G., et al., “Transcatheter Aortic Valve Implantation: The Evolution Of Prostheses, Delivery Systems And Approaches,” Archives of Cardiovascular Disease (2012) 105, 153-159. Applicant believes this may have been available as early as Mar. 16, 2012. |
Number | Date | Country | |
---|---|---|---|
20200214835 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
61357048 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15415794 | Jan 2017 | US |
Child | 16824188 | US | |
Parent | 13165721 | Jun 2011 | US |
Child | 15415794 | US |