Replacement heart valve

Information

  • Patent Grant
  • 10639146
  • Patent Number
    10,639,146
  • Date Filed
    Wednesday, January 25, 2017
    7 years ago
  • Date Issued
    Tuesday, May 5, 2020
    4 years ago
Abstract
A replacement heart valve can have an expandable frame configured to engage a native valve annulus. A valve body can be mounted onto the expandable frame to provide functionality similar to a natural valve. The valve body has an upstream end and a downstream end, and a diameter at the downstream end is greater than a diameter at the upstream end.
Description
BACKGROUND

Field of the Invention


The present invention relates generally to replacement heart valves.


Description of Related Art


Human heart valves, which include the aortic, pulmonary, mitral and tricuspid valves, function essentially as one-way valves operating in synchronization with the pumping heart. The valves allow blood to flow in a downstream direction, but block blood from flowing in an upstream direction. Diseased heart valves exhibit impairments such as narrowing of the valve or regurgitation. Such impairments reduce the heart's blood-pumping efficiency and can be a debilitating and life threatening condition. For example, valve insufficiency can lead to conditions such as heart hypertrophy and dilation of the ventricle. Thus, extensive efforts have been made to develop methods and apparatus to repair or replace impaired heart valves.


Prostheses exist to correct problems associated with impaired heart valves. For example, mechanical and tissue-based heart valve prostheses can be used to replace impaired native heart valves. More recently, substantial effort has been dedicated to developing replacement heart valves, particularly tissue-based replacement heart valves, that can be delivered with less trauma to the patient than through open heart surgery. Replacement valves are being designed to be delivered through minimally invasive procedures and even percutaneous procedures. Such replacement valves often include a tissue-based valve body that is connected to an expandable frame that is then delivered to the native valve's annulus.


Development of replacement heart valves that can be compacted for delivery and then controllably expanded for controlled placement has proven to be particularly challenging.


SUMMARY OF THE INVENTION

Accordingly, there is in the need of the art for an improved replacement heart valve.


In accordance with one embodiment, the present invention provides a replacement heart valve that comprises an expandable frame and a valve body mounted onto the expandable frame. The expandable frame may have an engagement system configured to engage a native valve annulus at an engagement zone along the length of the frame. The frame can have an upstream portion, a downstream portion, and a transition portion between the upstream and downstream portions, where a diameter of the downstream portion is greater than a diameter of the upstream portion. The valve body can have a plurality of valve leaflets configured to move between an open condition and a closed condition. A diameter of the valve body at a downstream end of the leaflets can be greater than a diameter of the valve body at an upstream end of the leaflets and the upstream end of each leaflet can be positioned upstream of the frame engagement zone.


In some embodiments, the engagement system comprises a set of upstream anchors and a set of downstream anchors, each anchor comprising an anchor tip, and the frame engagement zone is defined between the tips of the upstream and downstream anchors.


The anchors can include one of many features. For example, a diameter defined by the tips of the upstream anchors can be approximately equal to a diameter defined by the tips of the downstream anchors. As another example, the downstream anchors can extend from the downstream portion of the expandable frame and the upstream anchors can extend from an area of the frame having a diameter less than the downstream portion, such as the upstream portion or the transition portion of the expandable frame.


In some embodiments, a replacement heart valve comprises an expandable frame configured to engage a native valve annulus at an engagement zone along the length of the frame and a valve body attached to the expandable frame. The expandable frame can include a foreshortening portion configured to longitudinally contract as the frame radially expands from a compacted to an expanded condition, a plurality of first anchors and a plurality of second anchors.


Each of the anchors, according to some embodiments, can extend radially outwardly from the frame at an anchor base and terminate at an anchor tip. At least part of the foreshortening portion can be disposed between the first and second anchor bases and the engagement zone can be defined between the first and second anchor tips. Further, the first anchors can comprise first, second and third spaced apart bending stages along the length of each upstream anchor, and wherein the first anchor is bent radially outwardly in the first and second bending stages, and is bent in an opposite direction in the third bending stage.


The anchors may include additional features. For example, the portion of the first anchor between the third bending stage and the anchor tip can be generally parallel to an axis of the frame. The second anchor can comprise first, second and third spaced apart bending stages, and wherein in the first bending stage the anchor is bent radially inwardly, in the second bending stage the anchor is bent radially outwardly, and in the third bending stage the anchor is bent radially inwardly. The second bending stage of the first anchor can be bent about 180 degrees.


According to some embodiments, a replacement heart valve comprises an expandable frame configured to engage a native valve annulus at an engagement zone along the length of the frame, and a valve body attached to the expandable frame. The valve body can comprise a plurality of valve leaflets configured to open to allow flow in a first direction and engage one another so as to close and not allow flow in a second direction opposite the first direction. The expandable frame can comprise an upstream portion, a downstream portion, a transition portion, a plurality of upstream anchors and a plurality of downstream anchors.


The downstream portion can have a diameter different than a diameter of the upstream portion. The transition portion can be between the upstream and downstream portions. Each anchor can extend radially outwardly from the frame at an anchor base and terminate at an anchor tip. At least part of a foreshortening portion disposed between the upstream and downstream anchor bases. The engagement zone defined between the upstream and downstream anchor tips. The bases of the upstream anchors can be disposed at a location along the length of the frame having a first diameter, and the bases of the downstream anchors can be disposed at a location along the length of the frame having a second diameter, and the first diameter is different than the second diameter.


In some embodiments, the diameter of the downstream portion is greater than the diameter of the upstream portion. In addition, in some embodiments, the bases of the upstream anchors are disposed in the upstream portion, and the bases of the downstream anchors are disposed in the downstream portion or the bases of the upstream anchors are disposed in the transition portion, and the bases of the downstream anchors are disposed in the downstream portion.


In some embodiments, a replacement heart valve comprises an expandable frame configured to engage a native valve annulus and a valve body mounted onto the expandable frame. The valve body can comprise a plurality of valve leaflets configured to open to allow flow in a first direction and engage one another so as to close and not allow flow in a second direction opposite the first direction. The valve body can have an upstream end and a downstream end where a diameter at the downstream end is greater than a diameter at the upstream end.


In some embodiments, a replacement heart valve comprises an expandable frame configured to engage a native valve annulus and a valve body mounted onto the expandable frame. The valve body can include a plurality of valve leaflets configured to open to allow flow in a first direction and engage one another so as to close and not allow flow in a second direction opposite the first direction. The expandable frame can have an upstream portion, a downstream portion, a first set of anchors, and a second set of anchors. A diameter of the expandable frame at the downstream portion can be greater than a diameter of the expandable frame at the upstream portion. Further, each anchor can comprise an anchor tip. The first set of anchors can extend from the downstream portion of the expandable frame and the second set of anchors can extend from an area of the frame having a diameter less than the downstream portion. The anchor tips of the first set of anchors can be configured to be positioned generally opposed to the anchor tips of the second set of anchors when the expandable frame is engaged to the native valve annulus.


Other inventive embodiments and features are disclosed below.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages are described below with reference to the drawings, which are intended to illustrate but not to limit the invention. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments.



FIG. 1 is a perspective view of one embodiment of a replacement heart valve.



FIG. 2 is a view looking upstream through the replacement heart valve of FIG. 1.



FIGS. 3A and 3B are schematic views of one embodiment of a valve body.



FIG. 4 is a schematic side view of one embodiment of a frame for supporting a valve body.



FIG. 5 is a partial flat pattern depiction of the pattern from which the frame of FIG. 4 is cut.



FIGS. 6 and 6A show valve leaflets configured in accordance with one embodiment.



FIG. 7 illustrates components of an outer valve skirt configured in accordance with one embodiment.



FIG. 8 illustrates components of another embodiment of an outer valve skirt.



FIG. 9 illustrates components of still another embodiment of an outer valve skirt.



FIG. 10 shows an embodiment of a connection skirt.



FIG. 11 is a schematic side view of another embodiment of a frame.



FIG. 12 is a partial flat pattern depiction of the pattern from which the frame of FIG. 11 is cut.



FIG. 13 is a side view of still another embodiment of a frame.



FIG. 14 shows a schematic side view of yet another embodiment of a frame.



FIGS. 15-19 are photographs filed in U.S. Provisional Application No. 61/357,048, filed on Jun. 21, 2010, which has been incorporated herein by reference. FIG. 15 is an image, from the perspective of the left ventricle, of one embodiment of a replacement heart valve positioned within a native mitral valve.



FIG. 16 is another image, from the perspective of the left ventricle, of the replacement heart valve of FIG. 15 positioned within a native mitral valve.



FIG. 17 is another image, from the perspective of the left ventricle, of the replacement heart valve of FIG. 15 positioned within a native mitral valve.



FIG. 18 is an image, from the perspective of the left atrium, of the replacement heart valve of FIG. 15 positioned within a native mitral valve.



FIG. 19 is an image, from the perspective of the left atrium, of the replacement heart valve of FIG. 15 positioned within a native mitral valve.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present specification and drawings disclose aspects and features of the invention in the context of several embodiments of replacement heart valves and portions thereof that are configured for replacement of natural heart valves in a patient. These embodiments may be discussed in connection with replacing specific valves such as the patient's aortic or mitral valve. However, it is to be understood that the context of a particular valve or particular features of a valve should not be taken as limiting, and features of any one embodiment discussed herein can be combined with features of other embodiments as desired and when appropriate.


With initial reference to FIGS. 1 and 2, an embodiment of a replacement heart valve 10 is shown. The illustrated replacement heart valve 10 is designed to replace a diseased native mitral valve. In this embodiment, the replacement heart valve 10 is made up of a self-expanding frame 20 to which a valve body 30 is attached. As best seen in FIG. 2, the valve body 30 includes flexible leaflets 32 that open and close. The valve body 30 can include two, three or more leaflets 32. The valve body 30 has an inflow end 34 and an outflow end 36. The replacement heart valve 10 is shown with an upstream portion 38, a transition portion 40 adjacent the upstream portion 38 and a downstream portion 42 disposed adjacent the other side of the transition portion 40.


The valve body 30 can extend the length of the frame 20 or it can extend along only part of the length of the frame 20. For example, the valve body 30 shown in FIGS. 1 and 2 extends along the upstream portion 38 and the transition portion 40. The valve body 30 also extends along the non-foreshortening zone 52. In another embodiment the valve body 30 also extends along the downstream portion 42 and/or the foreshortening zone 54. As shown, in the illustrated embodiment a connection skirt 50 extends along the length of the downstream portion 42. In some embodiments, the ends 14, 16 of the replacement heart valve 10 can coincide with the inflow end 34 of the valve body 30 and the outflow end 36 of the valve body. In the illustrated embodiment, the inflow end 34 substantially coincides with one end 14 of the replacement heart valve 10 while the other end 16 of the replacement heart valve 10 extends past the outflow end 36 of the valve body.


The valve body 30 can be implanted within a heart to replace a damaged or diseased heart valve such as a mitral valve. The valve leaflets 32 can function in a manner similar to the natural mitral valve. For example, a plurality of valve leaflets 32 can open to allow flow in a first direction and engage one another so as to close and not allow flow in a second direction opposite the first direction. The replacement heart valve 10 can be constructed so as the open naturally with the beating of the heart.


Additional example replacement heart valves with valve bodies and leaflets are discussed in detail in Applicants' U.S. application Ser. No. 12/569,856, filed Sep. 29, 2009, incorporated by reference herein in its entirety and with particular reference to FIGS. 1-3C, 5-13 and 17-25 and the accompanying discussion including paragraphs [0063]-[0070], [0083]-[0101], [0110]-[0114], [0118], [0124]-[0128], and [0130]-[0137].


With continued reference to FIGS. 1-2, in this embodiment, the frame 20 is elongate with different diameter sections. For example, the upstream end 14 of replacement heart valve 10 or frame 20 has a first diameter that is substantially less than a second diameter at the downstream end 16. The frame 20 maintains the first diameter along its length in the upstream portion 38. In the transition portion 40 between the upstream 38 and downstream 42 portions, the frame 20 flares outwardly so that the diameter increases to the second diameter. The downstream portion 42 disposed adjacent the transition portion 40 preferably maintains the second diameter along its length.


The frame 20 is constructed from a metal tube, such as a nitinol tube. As such, the frame 20 can be expanded and/or compressed and/or otherwise worked to have the desired introduction and implantation configurations.


The frame 20 is constructed so that part of the frame foreshortens as the frame is radially expanded from a collapsed configuration. In the illustrated embodiment a foreshortening zone 54 generally corresponds with the downstream portion 42. A non-foreshortening zone 52 extends upstream from the foreshortening zone 54, and generally corresponds to the upstream 38 and transition 40 portions.


Opposing anchors 22, 24 are constructed on the frame 20 so that preferably their tips 26, 28 are in the downstream portion 42. The anchors 22, 24 are configured to grasp opposite sides of the native mitral annulus. In some embodiments, one or more of the anchor tips 26, 28 are in the downstream portion 42, the upstream portion 38, the transition portion 40, or at or near the border of the transition portion 40 and the downstream portion 42 or the border of the transition portion 40 and the upstream portion 38. Preferably, each of the anchors 22, 24 also extends generally radially outwardly from the frame 20 so that the anchor tips 26, 28 are generally spaced away from the rest of the frame 20. In some embodiments, all or part of the structure connected to the anchor tip and extending radially from the frame, including one or more rings and/or struts, can be considered part of the anchor. The anchors can include a base located on the anchor on a side opposite the tip. The base can be for example where the anchor begins to extend away from the frame 20.


As shown, the anchors 22 extend from the downstream portion 42 of the frame 20. For example, the anchors 22 can extend from the end 16 of the frame 20. In some embodiments the anchors 22 can extend from other parts of the downstream portion 42 of the frame. The illustrated anchors 24 extend from the upstream portion 38 of the frame 20. As such, the anchors 24 and the anchors 22 both extend from regions having different diameters. As an additional example, the anchors 24 can extend from the downstream portion 42 and the anchors 22 can extend from the transition portion 40. Alternatively, both set of anchors 22, 24 can extend from the transition portion 40.


The anchors 22, 24 can also extend from regions having the same diameter. For example both sets of anchors can extend from the downstream portion 42.


The anchors 22, 24 can be one of many different lengths. For example, the anchors can be shorter than, as long as or longer than any of the upstream 38, transition 40, and downstream 42 portions. As shown, the anchors 24 are shorter than the downstream portion 42 and the anchors 22 are longer than the transition portion 40. The anchors 22 extend from the upstream portion 38, through the transition portion 40 and into the downstream portion 42. Other configurations are also possible.


The anchor tips 26, 28 can have one of many shapes. For example, the shape can be configured to increase the amount of surface area of the tip that is in contact with tissue. The tips 26, 28 are shown as round or elliptical disks but can have other shapes as well, such as tear drop, rectangular, rectangular with a curved end, etc.


In preferred embodiments, the replacement heart valve 10 may be deployed into a heart valve annulus, and positioned when compacted so that the anchor tips 26, 28 of the opposing anchors 22, 24 are disposed on opposite sides of the native annulus. As the replacement heart valve 10 is expanded, the opposing anchors are drawn closer together so as to grasp opposite sides of the native annulus with the anchor tips 26, 28 and securely hold the replacement heart valve 10 in position. As such, the replacement heart valve 10 can be held securely in position without requiring a substantial radial force against the native annulus. The foreshortening zone 54 can be used to move the anchor tips 26, 28 closer together as the replacement heart valve 10 moves to the expanded position to thereby engage the native valve annulus.


Applicant's U.S. patent application Ser. No. 12/084,586, which was published on Aug. 27, 2009 as U.S. Publication No. 2009/0216314, discusses embodiments of foreshortening stents with anchors, and can be referred to for further discussion of certain aspects of the illustrated embodiments. The above application is incorporated in its entirety by reference herein with particular reference to the discussion concerning structure and operation of embodiments of a foreshortening stent, particularly a foreshortening stent having anchors.



FIGS. 3A-B show an embodiment of the valve body 30 separate from the other components of the replacement heart valve 10. The valve body 30 preferably is shaped to accommodate the transition portion 40 of the frame 20. More specifically, the valve body transition portion 40 is generally conical, where the upstream portion 38 is generally cylindrical. In embodiments where the valve body 30 extends into the downstream portion 42, the downstream portion can also be generally cylindrical. In some embodiments, one or more of the upstream portion 38 and the downstream portion 42 can be generally conical. In the illustrated embodiment, the upstream portion 38 of the valve body 30 has an inflow diameter D1. A downstream, or outflow end 36 of the valve body 30 has a diameter D2 that is greater than the upstream portion diameter D1. Approaching the outflow end 36 of the valve body 30, the valve body flares outwardly to the larger diameter. As such, the inflow diameter D1 of the valve body 30 is less than the outflow diameter D2 of the valve body 30. The inflow D1 and outflow D2 diameters can vary greatly, in some embodiments, the inflow diameter D1 can be approximately 30 mm and the outflow diameter D2 can be approximately 40 mm.


The valve leaflets 32 extend along all or part of the length of the valve body 30, and including all or part of the reduced and increasing diameter portions of the valve body, i.e. the upstream 38 and transition 40 portions, as shown. In some embodiments, the leaflets 32 can also span all or part of the length of the downstream portion 42.


As best shown in FIGS. 1 and 2, the replacement heart valve 10 can also include a connection skirt 50. The connection skirt 50 can be a flexible fabric, preferably a knit polyester fabric. The connection skirt 50 can be attached to one or both of the frame 20 and the valve body 30. As shown, the connection skirt 50 is attached to the distal end of the valve body 30 and also attached to the frame 20 in the foreshortening zone. In the illustrated embodiment, the valve body 30 is attached to the frame 20 so that it is contained within the non-foreshortening zone. In other embodiments, the valve body 30 may be partially contained in both the non-foreshortening zone 52 and the foreshortening zone 54. Some embodiments may not include the connection skirt 50.


With additional reference to FIGS. 4 and 5, a schematic side view of the frame 20 is shown, along with a flat pattern depiction of the pattern from which the frame 20 is cut from a metal tube, such as a nitinol tube. As mentioned previously, the frame 20 has a non-foreshortening zone 52 and a foreshortening zone 54. As shown, longitudinal struts 56 span the length of the non-foreshortening zone 52. Distal or downstream portions of the longitudinal struts 56 make up the transition portion 40, in which the struts 56 bend so as to flare radially outwardly and then bend again so as to stop expanding in radius and attach to the foreshortening zone 54 of the frame 20. As such, the frame 20 is generally divided into an upstream portion 38 made up of the first diameter, a transition portion 40 at which the diameter is expanding, and a downstream portion 42 which includes the foreshortening zone 54 and which is adapted to engage the native valve annulus.


First 58, second 60, and third 62 rings made up of undulating struts are connected to the longitudinal struts 56 in the non-foreshortening zone 52. The illustrated first 58 and second 60 rings are of generally the same size, however, the struts in the third ring 62 are substantially larger and longer than the struts in the first 58 and second 60 rings. For example, the struts of the first 58 and second 60 rings can be about twice as long as the struts of the third ring 62, or longer. Additionally, upstream anchors 22 extend from the free apices of the struts in the third ring 62. As best shown in FIG. 4, the struts in the third ring 62 preferably are flared radially out at a more dramatic angle than is the longitudinal strut 56 at the transition portion 40. In the illustrated embodiment, the third ring struts 62 can be considered part of the upstream anchors 22.


Referring to FIGS. 4 and 5, a fourth ring 64 is attached to the distal end of the longitudinal struts 56 at an apex of the fourth ring 64. A fifth ring 66 attaches to the fourth ring 66 on the side opposite the longitudinal struts 56. The fifth ring 66 can be a mirror image of the fourth ring 64. As illustrated, the fourth 64 and fifth 66 rings are of generally the same size. The fourth 64 and fifth 66 rings are made up of undulating struts and make up the foreshortening zone 54. Expansion of the replacement heart valve 10 causes the struts of the fourth ring 64 to move farther apart such that they are at a greater angle relative to one another. Thus, they move from a relatively vertical orientation to a more horizontal orientation. This also causes the ring to shrink in vertical height. The fifth ring exhibits similar behavior when the valve 10 expands. This movement of the fourth 64 and fifth 66 rings results in foreshortening of the frame 20.


Additionally, downstream anchors 24 extend from the free apices of the fifth ring 66. As best shown in FIG. 4, the downstream anchors 24 are bent down and flared radially out from the struts of the fourth 64 and fifth 66 rings. The upstream anchors 22 on the third ring 62 are bent so as to generally oppose the downstream anchors 24 that extend from the foreshortening zone 54. A tip 26 of each upstream anchor 22 is downstream of the transition portion 40. As such, the downstream anchors 24 extend from the distal or outflow end 16 of the valve 10, and the upstream anchors 22 extend outwardly from the upstream portion of the valve 10, upstream of the transition portion 40.


The shape of each of the anchors will now be described in more detail with reference to FIG. 4. Each anchor 22, 24 can have one or more bending stages to position the anchor tip in the desired location. Preferably, each anchor has at least two bending stages.


The downstream anchor 24 has a base 76 that is connected to a free apex of the fifth ring 66. After the base 76 there is a first bending stage 78 so that the anchor is radially spaced outwardly from the frame 20. As shown, the anchor at the first bending stage 78 is bent approximately 180 degrees. A large bend such as a bend of approximately 180 degrees, or between around 150-200 degrees, can provide structural support and strength to the anchor. Such a large bend can also be located at other points in the anchor and at other bending stages. A second bending stage 80 is shown used to flare the anchor radially outwardly from the frame 20. In a third bending stage 82 the anchor bends in a radially inward direction so as to direct the anchor tip 28 towards the opposing anchor 22 and position the portion of the anchor between the tip and the third bending stage parallel or substantially parallel to the frame 20. In some embodiments more or fewer bending stages can be used. In addition, the various bending stages can be used to different purposes and to provide different positions of the anchor than those described above.


The upstream anchor 22 can also have one or more bending stages. The anchor 22 has a base 84 where the strut of the third ring 62 connects to the longitudinal strut 56. A first bending stage 86 of the anchor 22 can be located at the base to move the anchor 22 radially outwardly from frame 20. A second bending stage 88 can further move the anchor 22 radially outwardly from frame 20. In this way, the anchor 22 can be bent in a gradual manner away from the frame 20. In some embodiments, one bending stage can be used to move the anchor 22 away from the frame. The anchor 22 can also include a large bend similar to the approximately 180 degree bend in the first bending stage 78 of anchor 24. Finally, anchor 22 is also shown with a third bending stage 90. The third bending stage 90 can direct the anchor tip 26 towards the opposing anchor 24 and position the tip parallel or substantially parallel to the frame 20.


The transition portion 40 can also include one or more bending stages, such as bending stages 92, 94 shown in FIG. 4.


Notably, in this embodiment the native annulus which is intended to be gripped between the anchor tips 26, 28 will be engaged by the foreshortening zone 54 of the frame 20, and will not engage the transition portion 40 of the frame 20. Rather, in a mitral placement, the upstream 38 and transition 40 portions of the replacement valve 10 will not necessarily be disposed within the annulus but mostly or entirely in the atrium.


In the embodiment illustrated in connection with FIGS. 1-5, the valve body 30 is a two-layer valve comprising an outer valve skirt 33 and inner leaflets 32 (see FIGS. 2 and 3A). The outer valve skirt 33 is disposed between the leaflets 32 and the frame 20. It is to be understood, however, that in other embodiments, a single-layer valve body 30 not having an outer valve skirt 33 may be employed.


With particular reference next to FIG. 6, an embodiment of conical valve leaflet 32 is shown. This figure shows one embodiment of a pattern for cutting the leaflets 32 from a flat, tissue material such as pericardium. Preferably, upstream portions of the leaflets are generally curved and commissures are disposed along downstream side edges of the leaflets. The curvature and size of the pattern cuts, and particularly the curvature of the side edges, is chosen so that the valve fits within the generally conical shape defined by the frame 20. In the illustrated embodiment, the side edges at and adjacent the downstream end are angled relative to a longitudinal axis of the valve. As such, the valve as defined by the leaflets 32 has an outflow diameter that is greater than its inflow diameter. In addition, as discussed previously, the leaflets can extend between different diameter sections of the valve body, thus the leaflets are generally positioned at a smaller diameter at the upstream end than at the downstream end. FIG. 6A shows another embodiment of a conical leaflet pattern 32′.


In the illustrated embodiments, the outer valve skirt 33 is attached to the frame 20 and the leaflets 32 are attached to the outer valve skirt 33. Preferably, the outer valve skirt 33 is also formed of a pericardium tissue similar to the leaflets 32. The outer valve skirt 33 can be constructed in multiple different ways. For example, with reference next to FIGS. 7 and 8, embodiments show that an outer valve skirt 33, 33′ can be made by cutting multiple pieces of flat tissue material and sewing the tissue together to form the outer valve skirt with the flared transition portion. In FIG. 7, a generally rectangular piece 68 makes up the constant-diameter upstream portion 38 of the outer valve skirt 33, and three or more curving pieces 70 that can be sewn together to approximate the shape of the flared transition portion 40 are cut, sewn together, and sewn to the downstream end of the upstream portion 38 to construct the outer valve skirt 33.


In FIG. 8, multiple pieces 72, each having a constant-width upstream portion, an expanding-width transition portion, and a constant-width downstream portion can be employed to form an outer valve skirt 33′. In the illustrated embodiment, three such pieces are shown and can be sewn together to create the flared valve skirt. However, it is to be understood that in other embodiments, six, nine, or 12 pieces, or even other numbers of pieces can be employed to construct a flared outer valve skirt 33′.


With reference next to FIG. 9, an embodiment of a pattern for forming an outer valve skirt 33″ out of a single piece of flat tissue is shown. In this embodiment, the downstream end is generally contiguous, but cavities are cut from an upstream end down to a point adjacent the downstream end. Upstream portions of the cavities are generally constant in width so as to approximate the upstream portion of the outer valve skirt 33″, and transition portions of the pattern progressively reduce in width until forming a point so as to correspond to the transition portion. In constructing the outer valve skirt 33″, the opposing edges of the cavities are sewn together so that the valve skirt takes on the flared shape generally corresponding to the frame 20. In the illustrated embodiment, six cavities are used. However, in other embodiments, more or less cavities such as three, nine, or 12, can be employed.


Preferably, the outer valve skirt 33 is constructed of a tissue that is flexible, but not particularly expansive and stretchy. As such, in the illustrated embodiments, the outer valve skirt 33 extends through the non-foreshortening zone 52 of the frame 20, but does not extend into the foreshortening zone 54 of the frame 20. However, in other embodiments, a portion of the outer valve skirt 33 may extend into the foreshortening zone 54.


Referring back to FIGS. 1 and 2, in a preferred embodiment a downstream end of the outer valve skirt 33 is sewn to a connection skirt 50. The connection skirt 50 can be made of knit polyester or another stretchable fabric. The connection skirt 50 can be made to move with the foreshortening portion 54 of the frame 20.


With additional reference next to FIG. 10, one embodiment of a flat pattern for a connection skirt 50 is illustrated. In this embodiment, an upstream edge of the connection skirt 50 is generally straight so as to correspond to the downstream edge of the outer valve skirt 33 and contribute to an advantageous seam structure. A downstream end of the connection skirt, 50 however, undulates. Preferably, the undulations are patterned to generally correspond to undulations of struts in the foreshortening zone 24 of the frame 20, such as struts of the fifth ring 66. The undulations can match the curvature of the struts, and the connection skirt 50 is sewn along the edges of its undulations to the corresponding foreshortening cell struts, as shown in FIGS. 1 and 2. It is to be understood that other configurations of connection skirts 50 can be employed. For example, a connection skirt 50 can have a generally straight downstream end or can have undulations that do not correspond with the end 16 of the frame 20.


With reference next to FIGS. 11 and 12, a schematic side section view and flat pattern cutout view of a frame 20′ in accordance with another embodiment is shown. As with the embodiment in FIGS. 1-5, the illustrated frame 20′ has an upstream portion 38′ of generally constant diameter, a transition portion 40′ of expanding diameter and a downstream or annulus-engagement portion 42′ of generally constant diameter, which diameter is greater than the upstream portion diameter. In this embodiment, longitudinal struts 56′ extend distally beyond the transition portion 40′, and define the upstream anchors 22′. More specifically, the longitudinal struts 56′ bend radially outwardly from the upstream portion 38′ upstream of the transition portion 40′, and extend downstream beyond the transition portion 40′ so that a downstream tip of each strut defines an anchor tip 26′. The transition portion 40′ in this embodiment is made up of the undulating struts in the third ring 62′. The transition portion 40′ also includes two bending stages 92′, 94′. Downstream apices in the third ring 62′ have second longitudinal struts 74 extending therefrom, which connect each downstream apex to an apex of closed foreshortening cells defined by the fourth 64′ and fifth 66′ rings.


The anchor 24′ is shown with a base 76′ connected to the fifth ring 66′. The anchor 24′ includes first 78′ and second 80′ bending stages. The first bending stage 78′ positions the anchor 24′ away from the frame 20′ and the second bending stage 80′ positions the tip 28′. The anchor 22′ also has first 86′ and second 88′ bending stages. The first bending stage 86′ is located at and near the base 84′ and positions the anchor 22′ away from frame 20′. The second bending stage 88′ positions the anchor tip 26′ towards the opposing anchor 24′ and positions the tip parallel or substantially parallel to the frame 20′.


In the frame 20′ embodiment of FIGS. 11 and 12, since the third ring 62′ is attached to the longitudinal struts 56′ only at the upstream apices, at least some foreshortening can be anticipated in the transition portion 40′ due to expansion of the third ring struts. In a preferred embodiment, a greater proportion of foreshortening takes place in the closed foreshortening cells of the downstream fourth 64′ and fifth 66′ rings than in the third ring 62′. In some embodiments, a greater proportion of the outer valve skirt or all of the outer valve skirt can be constructed of flexible fabric so that the outer valve skirt can accommodate and move with the foreshortening third ring 62′, while the leaflets can continue to be made of a generally nonelastic material such as pericardium. In further embodiments, a pericardium outer valve skirt can be relatively-loosely stitched or otherwise attached to a connection skirt and the frame 20′ along, for example, the second longitudinal struts 74 so that during the radial expansion process, the distal end of the outer valve skirt can move relative to the frame 20′ so that the outer valve skirt and the leaflets maintain optimal geometry and placement as the frame length changes. In still further embodiments, the struts of a third ring 62′ can be configured so that any foreshortening during radial expansion is sufficiently minor or small so as to not substantially affect tissue-based valve members such as the outer valve skirt and/or leaflets.



FIG. 13 shows yet another embodiment of a frame 20″. The frame 20″ has a substantially constant inner diameter, such that the diameter is substantially the same at the two opposing ends 14″ and 16″. This embodiment employs longitudinal struts 56″ in the non-foreshortening portion 52″ and first 58″ and second 60″ rings of expansible struts connected to the longitudinal struts 56″. The second rings 60″ flare radially outwardly as part of the anchors 22″. The foreshortening zone 54″ has two rows of closed foreshortening cells made by third 62″, fourth 64″ and fifth 66″ rings. The downstream anchors 24″ extend from points adjacent the downstream end 16″ of the frame 20″, but portions of some of the foreshortening cells are downstream of the anchor bases. In the illustrated embodiment, the downstream anchors are longer than the upstream anchors.


Referring to FIG. 14, a schematic side view of a frame 20′″ is shown. As mentioned previously, the frame 20 has a non-foreshortening zone 52′″ and a foreshortening zone 54′″. Longitudinal struts 56′″ span all or part of the length of the non-foreshortening zone 52′″. Distal or downstream portions of the longitudinal struts 56′″ make up all or part of the transition portion 40′″, in which the struts 56′″ bend at bending stage 92′″ so as to flare radially outwardly and then bend again at bending stage 94′″ so as to stop expanding in radius and attach to the foreshortening zone 54′″ of the frame 20′″. As such, the frame 20′″ is generally divided into an upstream portion 38′″ made up of the first diameter, a transition portion 40′″ at which the diameter is expanding, and a downstream portion 42′″ which includes the foreshortening zone 54′″ and which is adapted to engage the native valve annulus.


One, two, three, or more rings made up of undulating struts can be connected to the longitudinal struts 56′″ in the non-foreshortening zone 52′″. One, two, three, or more rings made up of undulating struts can also be used to form the foreshortening zone 54′″.


Downstream anchors 24′″ can extend from a portion of the downstream portion 42′″ or foreshortening portion 54′″ as shown. The downstream anchors 24′″ are bent down or bent out from the frame 20′″ and flared radially out from the frame 20′″. Anchor 24′″ is shown with a base 76′″ connected to the frame 20′″. The anchor 24′″ includes first 78′″, second 80′″ and third 82′″ bending stages. The first bending stage 78′″ is a radially inward bend. The inward bend can be between about 5-30 degrees, for example. The second bending stage 80′″ can have a large bend, such as an approximately 180 degree radially outwardly extending bend, or between around 150-200 degrees, as has been described. After the second stage bend the anchor extends in an upstream and radially outward direction. The first 78′″ and second 80′″ bending stages can position the anchor 24′″ away from the frame 20′″. The third bending stage 82′″ can position the tip 28′″, such as to position the tip 28′″ to oppose the anchor tip 26′″ and/or position the tip 28′″ parallel or substantially parallel with the frame 20′″. The bend at the third bending stage can be, for example, between about 5-30 degrees.


Upstream anchors 22′″ preferably extend from the non-foreshortening portion 52′″. For example, upstream anchors 22′″ and/or the ring(s) or struts to which they are attached, are shown extending from the transition portion 40′″. As can be seen in FIG. 14, the upstream anchors 22′″ are flared radially out at a more dramatic angle than is the longitudinal strut 56′″. As has been mentioned above, the transition portion 40′″ has a first bending stage 92′″ and a second bending stage 94′″ which changes the diameter of the frame 20′″ between the upstream portion 38′″ and the downstream portion 42′″. The anchor 22′″ also has first 86′″ and second 88′″ bending stages. The first bending stage 86′″ is located near or at the base 84′″ and directs the anchor 22′″ away from frame 20′″. The second bending stage 88′″ directs the anchor tip 26′″ towards the opposing anchor 24′″ and preferably positions the tip parallel or substantially parallel to the frame 20′″.


In this embodiment, the anchors 22′″ extend from the frame 20′″ at the transition portion 40′″ rather than at the upstream portion 38′″. This allows the anchors 22′″ to have a smaller bend or angle at the first bending stage 86′″ because some of the desired bend is already provided by the first bending stage 92′″ of the transition at portion 40′″. For example, where it is desired to position the anchor 22′″ an angle A1 from the upstream portion, the first bending stage 92′″ of the transition portion 40′″ can be bent an angle A2 and then the first bending stage 86′″ of the anchor 22′″ can be bent the remaining amount to provide the angle A1. For example, where the anchor 22′″ is positioned an angle A1 of approximately 40 degrees from the frame of the upstream portion 38′″, the transition portion can be positioned at an angle A2 of approximately 20 degrees or 30 degrees and then the anchor 22 can be positioned an additional amount from frame at the transition portion to make up the entire 40 degrees.


In another embodiment, the anchor 22′″ can extend from the upstream portion of the frame, and can have a first bending stage at which the anchor bends approximately the same as the first bending stage of the transition portion. The anchor 22′″ can have a second bending stage spaced from the first stage and which directs the anchor 22′″ further radially outwardly to the desired angle A1. The anchor 22′″ has a third bending stage to position the anchor tip 26′″.


The upstream anchors 22′″ are bent so as to generally oppose the downstream anchors 24′″ that extend from the foreshortening zone 54′″. A tip 26′″ of each upstream anchor 22′″ is downstream of the transition portion 40′″. As such, the anchor tips 26, 28 of the opposing anchors 22, 24 can be disposed on opposite sides of the native annulus of a heart valve and used to engage the valve to thereby replace the valve with a replacement heart valve as has been described herein.


As can also be seen in FIG. 14, the valve body 30′″ can be attached to the frame 20′″. The valve body 30′″ can be positioned in the upstream 38′″, transition 40′″, and/or downstream 42′″ portions. The valve body 30′″ can also be positioned in both the foreshortening 54′″ and the non-foreshortening 52′″ zones. An example leaflet 32′″ is also illustrated. In this embodiment, the leaflet 32′″ is within the transition portion 40′″ and the downstream portion 42′″ but is not within the upstream portion 38′″.


In some embodiments, the implant can be delivered via a transvenous, transseptal, or an antegrade approach.



FIGS. 15-19 are photographs filed in U.S. Provisional Application No. 61/357,048, filed on Jun. 21, 2010, which has been incorporated herein by reference. These images are of post-implant examination which showed engagement of an implant with native leaflets and annulus. Referring next to FIGS. 15-19, an embodiment of a valve 10″″ having a frame 20″″ and valve body 30″″ is shown deployed within a native mitral valve. FIGS. 15-17 are shown from within the left ventricle and FIGS. 18 and 19 are shown from within the left atrium.


With reference first to FIGS. 15-17, the downstream anchors 24″″ can extend around the native mitral valve leaflets. As shown, the downstream anchors 24″″ extend between chordae tendineae coupling the native mitral valve leaflet and papillary heads of papillary muscle. The tips 28″″ of the downstream anchors 24″″ can engage the native mitral valve annulus. As shown in the illustrated embodiment, in some instances tips 28″″ of the downstream anchors 24″″ can engage the fibrous trigones of the native mitral valve. With reference next to FIGS. 18 and 19, the tips 26″″ of the upstream anchors 22″″ can engage the native mitral valve annulus.

Claims
  • 1. A method of delivering a replacement valve to a native mitral valve of a heart and securing the replacement valve relative to a native mitral valve annulus, the native mitral valve positioned between a left atrium and a left ventricle, the method comprising: delivering the replacement valve to the native mitral valve annulus while the replacement valve is in a radially compacted state, the replacement valve comprising: an expandable frame having a proximal end ending at a proximalmost end and a distal end ending at a distalmost end;a valve body positioned within a lumen of the expandable frame; andone or more distal anchors extending from the distal end of the expandable frame and sized to contact tissue on a ventricular side of the native mitral valve when the replacement valve is deployed within the native mitral valve; anddeploying the replacement valve within the native mitral valve annulus such that: the replacement valve is in an expanded configuration with a cross-sectional diameter of the distalmost end of the expandable frame being greater than a cross-sectional diameter of the proximalmost end of the expandable frame, the replacement valve only decreasing or remaining constant in cross-sectional diameter from the distalmost end to the proximalmost end;the one or more distal anchors are positioned radially outwardly from the frame;tips of the one or more distal anchors extend substantially parallel to a longitudinal axis of the expandable frame; andat least one of the distal anchors extends between chordae tendineae of the native mitral valve.
  • 2. The method of claim 1, wherein: the expandable frame further comprises a proximal anchoring portion sized to contact tissue on an atrial side of the native mitral valve when the replacement valve is deployed within the native mitral valve; anddeploying the replacement valve within the native mitral valve annulus comprises expanding the replacement valve such that the proximal anchoring portion is positioned radially outwardly from the frame.
  • 3. The method of claim 2, wherein the proximal anchoring portion comprises a plurality of free apices each connected to the expandable frame at a first base and at a second base, the first and the second bases located distal of the proximal end of the expandable frame.
  • 4. The method of claim 2, wherein each distal anchor extends from a portion of the expandable frame having a greater cross-sectional diameter than a portion from which the proximal anchoring portion extends.
  • 5. The method of claim 1, wherein deploying the replacement valve within the native mitral valve annulus comprises engaging at least a first of the one or more distal anchors with a first fibrous trigone of the native mitral valve.
  • 6. The method of claim 5, wherein deploying the replacement valve within the native mitral valve annulus comprises disposing a native leaflet of the native mitral valve between at least the first distal anchor and the expandable frame.
  • 7. The method of claim 5, wherein deploying the replacement valve within the native mitral valve annulus comprises engaging at least a second of the one or more distal anchors with the native mitral valve annulus.
  • 8. The method of claim 1, wherein delivering the replacement valve to the native mitral valve annulus while the replacement valve is in the radially compacted state comprises delivering the replacement valve from a region outside the heart to the left ventricle of the heart.
  • 9. The method of claim 8, wherein delivering the replacement valve to the native mitral valve annulus while the replacement valve is in the radially compacted state comprises transseptally delivering the replacement valve.
  • 10. The method of claim 1, wherein the expandable frame further comprises an engagement zone, and wherein expanding the replacement valve comprises radially expanding the engagement zone of the expandable frame to engage the native mitral valve annulus.
  • 11. The method of claim 1, wherein the valve body comprises a plurality of valve leaflets.
  • 12. The method of claim 11, wherein the replacement valve comprises a plurality of commissures disposed along downstream side edges of the valve leaflets.
  • 13. The method of claim 11, wherein the valve body comprises three leaflets.
  • 14. The method of claim 11, wherein the plurality of valve leaflets are configured to open to allow flow in a first direction from the left atrium to the left ventricle and engage one another so as to close and not allow flow in a second direction opposite the first direction.
  • 15. The method of claim 1, wherein each of the one or more distal anchors is formed by a single strut.
  • 16. The method of claim 1, wherein the tips of the one or more distal anchors are enlarged relative to a remainder of the one or more distal anchors to increase a surface area of the tips in contact with the tissue on the ventricular side of the native mitral valve when the replacement valve is expanded and deployed within the native mitral valve.
  • 17. The method of claim 1, wherein the expandable frame comprises a plurality of cells, and wherein the valve body is fully located radially within the plurality of cells of the expandable frame.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/165,721, filed Jun. 21, 2011, which claims priority to U.S. Provisional Application No. 61/357,048, which was filed on Jun. 21, 2010. The entire contents of the above applications are hereby incorporated by reference herein. Further, Applicants' U.S. application Ser. No. 12/569,856, filed Sep. 29, 2009, and U.S. application Ser. No. 12/761,349, filed Apr. 15, 2010 disclose several embodiments of replacement heart valves. In some instances the present disclosure describes embodiments and principles that build upon and improve embodiments disclosed in these previous applications. As such, the entirety of each of these prior applications is incorporated by reference into this disclosure.

US Referenced Citations (478)
Number Name Date Kind
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3739402 Cooley et al. Jun 1973 A
4056854 Boretos et al. Nov 1977 A
4079468 Liotta et al. Mar 1978 A
4204283 Bellhouse et al. May 1980 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4339831 Johnson Jul 1982 A
4340977 Brownlee et al. Jul 1982 A
4470157 Love Sep 1984 A
4477930 Totten et al. Oct 1984 A
4490859 Black et al. Jan 1985 A
4553545 Maass et al. Nov 1985 A
4777951 Cribier et al. Oct 1988 A
4865600 Carpentier et al. Sep 1989 A
4994077 Dobben Feb 1991 A
5326371 Love et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5370685 Stevens Dec 1994 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5545214 Stevens Aug 1996 A
5554185 Block et al. Sep 1996 A
5697382 Love et al. Dec 1997 A
5840081 Andersen et al. Nov 1998 A
5855601 Bessler et al. Jan 1999 A
5957949 Leonhardt et al. Sep 1999 A
6086612 Jansen Jul 2000 A
6113631 Jansen Sep 2000 A
6168614 Andersen et al. Jan 2001 B1
6251093 Valley et al. Jun 2001 B1
6312465 Griffin et al. Nov 2001 B1
6358277 Duran Mar 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6458153 Bailey et al. Oct 2002 B1
6482228 Norred Nov 2002 B1
6511491 Grudem et al. Jan 2003 B2
6527800 McGuckin, Jr. et al. Mar 2003 B1
6582462 Andersen et al. Jun 2003 B1
6610088 Gabbay Aug 2003 B1
6629534 St Goar et al. Oct 2003 B1
6652578 Bailey et al. Nov 2003 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6695878 McGuckin, Jr. et al. Feb 2004 B2
6712836 Berg et al. Mar 2004 B1
6716207 Farnholtz Apr 2004 B2
6729356 Baker et al. May 2004 B1
6730118 Spenser et al. May 2004 B2
6746422 Noriega et al. Jun 2004 B1
6749560 Konstorum et al. Jun 2004 B1
6767362 Schreck Jul 2004 B2
6780200 Jansen Aug 2004 B2
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6875231 Anduiza et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
7018406 Seguin et al. Mar 2006 B2
7186265 Sharkawy et al. Mar 2007 B2
7192440 Andreas et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7252682 Seguin Aug 2007 B2
7276078 Spenser et al. Oct 2007 B2
7329278 Seguin et al. Feb 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7524330 Berreklouw Apr 2009 B2
7553324 Andreas et al. Jun 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7628805 Spenser et al. Dec 2009 B2
7748389 Salahieh et al. Jul 2010 B2
7753949 Lamphere et al. Jul 2010 B2
7803185 Gabbay Sep 2010 B2
7806919 Bloom et al. Oct 2010 B2
7815673 Bloom et al. Oct 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7892281 Seguin et al. Feb 2011 B2
7914569 Nguyen et al. Mar 2011 B2
7947075 Goetz et al. May 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7972378 Tabor et al. Jul 2011 B2
7981151 Rowe Jul 2011 B2
7993392 Righini et al. Aug 2011 B2
8016877 Seguin et al. Sep 2011 B2
8048153 Salahieh et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8070800 Lock et al. Dec 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8075615 Eberhardt et al. Dec 2011 B2
8080054 Rowe Dec 2011 B2
8092520 Quadri Jan 2012 B2
8109996 Stacchino et al. Feb 2012 B2
8118866 Herrmann et al. Feb 2012 B2
8136218 Millwee et al. Mar 2012 B2
8137398 Tuval et al. Mar 2012 B2
8157852 Bloom et al. Apr 2012 B2
8167934 Styrc et al. May 2012 B2
8182528 Salahieh et al. May 2012 B2
8182530 Huber May 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8219229 Cao et al. Jul 2012 B2
8220121 Hendriksen et al. Jul 2012 B2
8221493 Boyle et al. Jul 2012 B2
8226710 Nguyen et al. Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8246675 Zegdi Aug 2012 B2
8246678 Salahieh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8313525 Tuval et al. Nov 2012 B2
8323335 Rowe et al. Dec 2012 B2
8353953 Giannetti et al. Jan 2013 B2
8403983 Quadri et al. Mar 2013 B2
8414644 Quadri et al. Apr 2013 B2
8414645 Dwork et al. Apr 2013 B2
8444689 Zhang May 2013 B2
8449599 Chau et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8460368 Taylor et al. Jun 2013 B2
8470023 Eidenschink et al. Jun 2013 B2
8475521 Suri et al. Jul 2013 B2
8475523 Duffy Jul 2013 B2
8479380 Malewicz et al. Jul 2013 B2
8486137 Suri et al. Jul 2013 B2
8491650 Wiemeyer et al. Jul 2013 B2
8500733 Watson Aug 2013 B2
8500798 Rowe et al. Aug 2013 B2
8511244 Holecek et al. Aug 2013 B2
8512401 Murray, III et al. Aug 2013 B2
8518096 Nelson Aug 2013 B2
8518106 Duffy et al. Aug 2013 B2
8562663 Mearns et al. Oct 2013 B2
8579963 Tabor Nov 2013 B2
8579964 Lane et al. Nov 2013 B2
8579965 Bonhoeffer et al. Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8585756 Bonhoeffer et al. Nov 2013 B2
8591570 Revuelta et al. Nov 2013 B2
8597348 Rowe et al. Dec 2013 B2
8617236 Paul et al. Dec 2013 B2
8640521 Righini et al. Feb 2014 B2
8647381 Essinger et al. Feb 2014 B2
8652145 Maimon et al. Feb 2014 B2
8652201 Oberti et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8668733 Haug et al. Mar 2014 B2
8673000 Tabor et al. Mar 2014 B2
8679174 Ottma et al. Mar 2014 B2
8679404 Liburd et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8721708 Seguin et al. May 2014 B2
8721714 Kelley May 2014 B2
8728154 Alkhatib May 2014 B2
8728155 Montorfano et al. May 2014 B2
8740974 Lambrecht et al. Jun 2014 B2
8740976 Tran et al. Jun 2014 B2
8747458 Tuval et al. Jun 2014 B2
8747459 Nguyen et al. Jun 2014 B2
8747460 Tuval et al. Jun 2014 B2
8758432 Solem Jun 2014 B2
8764818 Gregg Jul 2014 B2
8771344 Tran et al. Jul 2014 B2
8771345 Tuval et al. Jul 2014 B2
8771346 Tuval et al. Jul 2014 B2
8778020 Gregg et al. Jul 2014 B2
8784337 Voeller et al. Jul 2014 B2
8784478 Tuval et al. Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790387 Nguyen et al. Jul 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8808356 Braido et al. Aug 2014 B2
8828078 Salahieh et al. Sep 2014 B2
8828079 Thielen et al. Sep 2014 B2
8834564 Tuval et al. Sep 2014 B2
8845718 Tuval et al. Sep 2014 B2
8858620 Salahieh et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870950 Hacohen Oct 2014 B2
8876893 Dwork et al. Nov 2014 B2
8876894 Tuval et al. Nov 2014 B2
8876895 Tuval et al. Nov 2014 B2
8911455 Quadri et al. Dec 2014 B2
8926693 Duffy et al. Jan 2015 B2
8926694 Costello Jan 2015 B2
8939960 Rosenman et al. Jan 2015 B2
8945209 Bonyuet et al. Feb 2015 B2
8951299 Paul et al. Feb 2015 B2
8961593 Bonhoeffer et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8974524 Yeung et al. Mar 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986372 Murry, III et al. Mar 2015 B2
8986375 Garde et al. Mar 2015 B2
8992608 Haug et al. Mar 2015 B2
8998979 Seguin et al. Apr 2015 B2
8998980 Shipley et al. Apr 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011521 Haug et al. Apr 2015 B2
9011523 Seguin Apr 2015 B2
9011524 Eberhardt Apr 2015 B2
9028545 Taylor May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9055937 Rowe et al. Jun 2015 B2
9066801 Kovalsky et al. Jun 2015 B2
9078749 Lutter et al. Jul 2015 B2
9078751 Naor Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9125738 Figulla et al. Sep 2015 B2
9138312 Tuval et al. Sep 2015 B2
9161834 Taylor et al. Oct 2015 B2
9173737 Hill et al. Nov 2015 B2
9180004 Alkhatib Nov 2015 B2
9186249 Rolando et al. Nov 2015 B2
9220594 Braido et al. Dec 2015 B2
9241790 Lane et al. Jan 2016 B2
9248014 Lane et al. Feb 2016 B2
9277990 Klima et al. Mar 2016 B2
9277993 Gamarra et al. Mar 2016 B2
9289291 Gorman, III et al. Mar 2016 B2
9289296 Braido et al. Mar 2016 B2
9295551 Straubinger et al. Mar 2016 B2
9326815 Watson May 2016 B2
9331328 Eberhardt et al. May 2016 B2
9339382 Tabor et al. May 2016 B2
9351831 Braido et al. May 2016 B2
9351832 Braido et al. May 2016 B2
9364321 Alkhatib et al. Jun 2016 B2
9445897 Bishop et al. Sep 2016 B2
9456877 Weitzner et al. Oct 2016 B2
9681968 Goetz et al. Jun 2017 B2
9700329 Metzger et al. Jul 2017 B2
9700411 Klima et al. Jul 2017 B2
9795479 Lim et al. Oct 2017 B2
9833313 Board et al. Dec 2017 B2
9861473 Lafontaine Jan 2018 B2
9861476 Salahieh et al. Jan 2018 B2
9861477 Backus et al. Jan 2018 B2
9867698 Kovalsky et al. Jan 2018 B2
9877830 Lim et al. Jan 2018 B2
9889029 Li et al. Feb 2018 B2
9895225 Rolando et al. Feb 2018 B2
9925045 Creaven et al. Mar 2018 B2
20010007956 Letac et al. Jul 2001 A1
20020016623 Kula et al. Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020045929 Diaz Apr 2002 A1
20020052644 Shaolian et al. May 2002 A1
20030105517 White et al. Jun 2003 A1
20030120333 Ouriel et al. Jun 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030176914 Rabkin et al. Sep 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030220683 Minasian et al. Nov 2003 A1
20040117009 Cali et al. Jun 2004 A1
20040133273 Cox Jul 2004 A1
20040186561 McGuckin et al. Sep 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215325 Penn et al. Oct 2004 A1
20040225353 McGuckin et al. Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20050033398 Seguin Feb 2005 A1
20050075727 Wheatley Apr 2005 A1
20050090887 Pryor Apr 2005 A1
20050096738 Cali et al. May 2005 A1
20050107872 Mensah et al. May 2005 A1
20050137682 Justino Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050159811 Lane Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060020327 Lashinski et al. Jan 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060095115 Bladillah et al. May 2006 A1
20060173537 Yang et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060212110 Osborne et al. Sep 2006 A1
20060241745 Solem Oct 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060293745 Carpentier et al. Dec 2006 A1
20070010876 Salahieh et al. Jan 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070050021 Johnson Mar 2007 A1
20070100432 Case et al. May 2007 A1
20070129794 Realyvasquez Jun 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070255394 Ryan Nov 2007 A1
20080021546 Patz et al. Jan 2008 A1
20080071361 Tuval Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080082164 Friedman Apr 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080097581 Shanley Apr 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080147183 Styrc Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080228254 Ryan Sep 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090138079 Tuval et al. May 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090182413 Burkart et al. Jul 2009 A1
20090188964 Orlov Jul 2009 A1
20090270972 Lane Oct 2009 A1
20090276027 Glynn Nov 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281618 Hill et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090292350 Eberhardt et al. Nov 2009 A1
20090306768 Quadri Dec 2009 A1
20100082094 Quadri et al. Apr 2010 A1
20100114305 Kang et al. May 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249894 Oba et al. Sep 2010 A1
20100249911 Alkhatib Sep 2010 A1
20100256723 Murray Oct 2010 A1
20100305685 Millwee et al. Dec 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110029067 McGuckin, Jr. et al. Feb 2011 A1
20110208297 Tuval et al. Aug 2011 A1
20110208298 Tuval et al. Aug 2011 A1
20110224785 Hacohen Sep 2011 A1
20110264196 Savage et al. Oct 2011 A1
20110313515 Quadri et al. Dec 2011 A1
20120022639 Hacohen et al. Jan 2012 A1
20120041550 Salahieh et al. Feb 2012 A1
20120059454 Millwee et al. Mar 2012 A1
20120078360 Rafiee Mar 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120123529 Levi et al. May 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120271398 Essinger et al. Oct 2012 A1
20120290062 McNamara et al. Nov 2012 A1
20120310328 Olson et al. Dec 2012 A1
20130006294 Kashkarov et al. Jan 2013 A1
20130035759 Gross et al. Feb 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130131788 Quadri et al. May 2013 A1
20130144378 Quadri et al. Jun 2013 A1
20130211508 Lane et al. Aug 2013 A1
20130253635 Straubinger et al. Sep 2013 A1
20130253642 Brecker Sep 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20130338766 Hastings et al. Dec 2013 A1
20130345786 Behan Dec 2013 A1
20140018912 Delaloye et al. Jan 2014 A1
20140025163 Padala et al. Jan 2014 A1
20140039611 Lane et al. Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140052242 Revuelta et al. Feb 2014 A1
20140100651 Kheradvar et al. Apr 2014 A1
20140100653 Savage et al. Apr 2014 A1
20140142694 Tabor et al. May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140172077 Bruchman et al. Jun 2014 A1
20140172083 Bruchman et al. Jun 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140214153 Ottma et al. Jul 2014 A1
20140214154 Nguyen et al. Jul 2014 A1
20140214155 Kelley Jul 2014 A1
20140214160 Naor Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140222139 Nguyen et al. Aug 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140230515 Tuval et al. Aug 2014 A1
20140236288 Lambrecht et al. Aug 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140277390 Ratz et al. Sep 2014 A1
20140277402 Essinger et al. Sep 2014 A1
20140277422 Ratz et al. Sep 2014 A1
20140277427 Ratz et al. Sep 2014 A1
20140296973 Bergheim et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303719 Cox et al. Oct 2014 A1
20140309728 Dehdashtian et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140330368 Gloss et al. Nov 2014 A1
20140330371 Gloss et al. Nov 2014 A1
20140330372 Weston et al. Nov 2014 A1
20140336754 Gurskis et al. Nov 2014 A1
20140343669 Lane et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140343671 Yohanan et al. Nov 2014 A1
20140350663 Braido et al. Nov 2014 A1
20140350666 Righini Nov 2014 A1
20140350668 Delaloye et al. Nov 2014 A1
20140358223 Rafiee et al. Dec 2014 A1
20140364939 Deshmukh et al. Dec 2014 A1
20140364943 Conklin Dec 2014 A1
20140371842 Marquez et al. Dec 2014 A1
20140371844 Dale et al. Dec 2014 A1
20140371845 Tuval et al. Dec 2014 A1
20140371847 Madrid et al. Dec 2014 A1
20140371848 Murray, III et al. Dec 2014 A1
20140379067 Nguyen et al. Dec 2014 A1
20140379068 Thielen et al. Dec 2014 A1
20140379077 Tuval et al. Dec 2014 A1
20150005863 Para Jan 2015 A1
20150012085 Salahieh et al. Jan 2015 A1
20150018938 Von Segesser et al. Jan 2015 A1
20150018944 O'Connell et al. Jan 2015 A1
20150039083 Rafiee Feb 2015 A1
20150045880 Hacohen Feb 2015 A1
20150142103 Vidlund May 2015 A1
20150148731 McNamara et al. May 2015 A1
20150157457 Hacohen Jun 2015 A1
20150157458 Thambar et al. Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150196390 Ma et al. Jul 2015 A1
20150209141 Braido et al. Jul 2015 A1
20150272737 Dale et al. Oct 2015 A1
20150297346 Duffy et al. Oct 2015 A1
20150327994 Morriss et al. Nov 2015 A1
20150328001 McLean et al. Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20150359629 Ganesan et al. Dec 2015 A1
20160000591 Lei et al. Jan 2016 A1
20160030169 Shahriari Feb 2016 A1
20160030170 Alkhatib et al. Feb 2016 A1
20160030171 Quijano et al. Feb 2016 A1
20160038281 Delaloye et al. Feb 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106537 Christianson et al. Apr 2016 A1
20160113765 Ganesan et al. Apr 2016 A1
20160113766 Ganesan et al. Apr 2016 A1
20160113768 Ganesan et al. Apr 2016 A1
20160143732 Glimsdale May 2016 A1
20160158010 Lim et al. Jun 2016 A1
20160166383 Lim et al. Jun 2016 A1
20160184097 Lim et al. Jun 2016 A1
20160199206 Lim et al. Jul 2016 A1
20160213473 Hacohen et al. Jul 2016 A1
20160235529 Ma et al. Aug 2016 A1
20160279386 Dale et al. Sep 2016 A1
20170128209 Morriss et al. May 2017 A1
20170216023 Lane et al. Aug 2017 A1
20170216575 Asleson et al. Aug 2017 A1
20170258614 Griffin Sep 2017 A1
20170325954 Perszyk Nov 2017 A1
20170348096 Anderson Dec 2017 A1
20170367823 Hariton et al. Dec 2017 A1
20180055636 Valencia et al. Mar 2018 A1
20180085218 Eidenschink Mar 2018 A1
20180110534 Gavala et al. Apr 2018 A1
Foreign Referenced Citations (105)
Number Date Country
2304325 Oct 2000 CA
2827556 Jul 2012 CA
102006052564 Dec 2007 DE
1171059 Jan 2002 EP
1259194 Nov 2002 EP
1281375 Feb 2003 EP
1369098 Dec 2003 EP
1472996 Nov 2004 EP
1734903 Dec 2006 EP
1255510 Apr 2007 EP
1827558 Sep 2007 EP
1239901 Oct 2007 EP
2124826 Dec 2009 EP
1935377 Mar 2010 EP
2237746 Oct 2010 EP
2238947 Oct 2010 EP
2285317 Feb 2011 EP
2308425 Apr 2011 EP
2319458 May 2011 EP
2398543 Dec 2011 EP
2496182 Sep 2012 EP
2566416 Mar 2013 EP
2745805 Jun 2014 EP
2749254 Jul 2014 EP
2750630 Jul 2014 EP
2777617 Sep 2014 EP
2815723 Dec 2014 EP
2815725 Dec 2014 EP
2898858 Jul 2015 EP
2926766 Oct 2015 EP
2967858 Jan 2016 EP
2985006 Feb 2016 EP
2168536 Apr 2016 EP
2262451 May 2017 EP
3184083 Jun 2017 EP
2446915 Jan 2018 EP
3057541 Jan 2018 EP
3037064 Mar 2018 EP
3046511 Mar 2018 EP
3142603 Mar 2018 EP
3294220 Mar 2018 EP
1264471 Feb 1972 GB
1315844 May 1973 GB
2398245 Aug 2004 GB
2002540889 Dec 2002 JP
2008541865 Nov 2008 JP
1997049355 Dec 1997 WO
0061034 Oct 2000 WO
03092554 Nov 2003 WO
2004030569 Apr 2004 WO
2005011534 Feb 2005 WO
2006070372 Jul 2006 WO
2006085225 Aug 2006 WO
2006089236 Aug 2006 WO
2006127765 Nov 2006 WO
2007025028 Mar 2007 WO
2007058857 May 2007 WO
WO-2007058857 May 2007 WO
2007123658 Nov 2007 WO
2008013915 Jan 2008 WO
2008070797 Jun 2008 WO
2008103722 Aug 2008 WO
2008125153 Oct 2008 WO
2008150529 Dec 2008 WO
2009026563 Feb 2009 WO
2009033469 Mar 2009 WO
2009042196 Apr 2009 WO
2009045331 Apr 2009 WO
2009053497 Apr 2009 WO
2009091509 Jul 2009 WO
2009094500 Jul 2009 WO
2009134701 Nov 2009 WO
2010005524 Jan 2010 WO
2010008549 Jan 2010 WO
2010022138 Feb 2010 WO
2010037141 Apr 2010 WO
2010040009 Apr 2010 WO
2010057262 May 2010 WO
2011025945 Mar 2011 WO
2011057087 May 2011 WO
2011111047 Sep 2011 WO
2011137531 Nov 2011 WO
2012177942 Dec 2012 WO
2013028387 Feb 2013 WO
2013075215 May 2013 WO
2013120181 Aug 2013 WO
2013175468 Nov 2013 WO
2013192305 Dec 2013 WO
2014018432 Jan 2014 WO
2014099655 Jun 2014 WO
2014110019 Jul 2014 WO
2014110171 Jul 2014 WO
2014121042 Aug 2014 WO
2014139545 Sep 2014 WO
2014145338 Sep 2014 WO
2014149865 Sep 2014 WO
2014163706 Oct 2014 WO
2014164364 Oct 2014 WO
2014194178 Dec 2014 WO
2014204807 Dec 2014 WO
2014205064 Dec 2014 WO
2014210124 Dec 2014 WO
2015077274 May 2015 WO
2015148241 Oct 2015 WO
2016016899 Feb 2016 WO
Non-Patent Literature Citations (52)
Entry
Mack, Michael M.D., “Advantages and Limitations of Surgical Mitral Valve Replacement; Lessons for the Transcatheter Approach,” Applicant believes this may have been available as early as Jun. 7, 2010. Applicant believes this may have been presented at the Texas Cardiovascular Innovative Ventures (TCIV) Conference in Dallas, TX on Dec. 8, 2010.
Bavaria, Joseph E. M.D. et al.: “Transcatheter Mitral Valve Implantation: The Future Gold Standard for MR?,” Applicant requests the Examiner to consider this reference to be prior art as of Dec. 2010.
Kronemyer, Bob, “CardiAQ Valve Technologies: Percutaneous Mitral Valve Replacement,” Start Up—Windhover Review of Emerging Medical Ventures, vol. 14, Issue No. 6, Jun. 2009, pp. 48-49.
Bavaria, Joseph E. M.D.: “CardiAQ Valve Technologies: Transcatheter Mitral Valve Implantation,” Sep. 21, 2009.
Ostrovsky, Gene, “Transcatheter Mitral Valve Implantation Technology from CardiAQ,” medGadget, Jan. 15, 2010, available at: http://www.medgadget.com/2010/01/transcatheter_ mitral_valve_implantation_technology_from_cardiaq.html.
Berreklouw, Eric, PhD, et al., “Sutureless Mitral Valve Replacement With Bioprostheses and Nitinol Attachment Rings: Feasibility in Acute Pig Experiments,” The Journal of Thoracic and Cardiovascular Surgery, vol. 142, No. 2, Aug. 2011 in 7 pages, Applicant believes this may have been available online as early as Feb. 7, 2011.
Boudjemline, Younes, et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves,” JACC, vol. 46, No. 2, Jul. 19, 2005:360-5.
Chiam, Paul T.L., et al., “Percutaneous Transcatheter Aortic Valve Implantation: Assessing Results, Judging Outcomes, and Planning Trials,” JACC: Cardiovascular Interventions, The American College of Cardiology Foundation, vol. 1, No. 4, Aug. 2008:341-50.
Condado, Jose Antonio, et al., “Percutaneous Treatment of Heart Valves,” Rev Esp Cardio. 2006;59(12):1225-31, Applicant believes this may have been available as early as Dec. 2006.
Vu, Duc-Thang, et al., “Novel Sutureless Mitral Valve Implantation Method Involving a Bayonet Insertion and Release Mechanism: A Proof of Concept Study in Pigs,” The Journal of Thoracic and Cardiovascular Surgery, vol. 143, No. 4, 985-988, Apr. 2012, Applicant believes this may have been available online as early as Feb. 13, 2012.
Fanning, Jonathon P., et al., “Transcatheter Aortic Valve Implantation (TAVI): Valve Design and Evolution,” International Journal of Cardiology 168 (2013) 1822-1831, Applicant believes this may have been available as early as Oct. 3, 2013.
Spillner, J. et al., “New Sutureless ‘Atrial- Mitral-Valve Prosthesis’ for Minimally Invasive Mitral Valve Therapy,” Textile Research Journal, 2010, in 7 pages, Applicant believes this may have been available as early as Aug. 9, 2010.
Karimi, Houshang, et al., “Percutaneous Valve Therapies,” SIS 2007 Yearbook, Chapter 11, pp. 1-11.
Leon, Martin B., et al., “Transcatheter Aortic Valve Replacement in Patients with Critical Aortic Stenosis: Rationale, Device Descriptions, Early Clinical Experiences, and Perspectives,” Semin. Thorac. Cardiovasc. Surg. 18:165-174, 2006 in 10 pages, Applicant believes this may have been available as early as the Summer of 2006.
Lutter, Georg, et al., “Off-Pump Transapical Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 36 (2009) 124-128, Applicant believes this may have been available as early as Apr. 25, 2009.
Ma, Liang, et al., “Double-Crowned Valved Stents for Off-Pump Mitral Valve Replacement,” European Journal of Cardio-thoracic Surgery 28 (2005) 194-199, Applicant believes this may have been available as early as Aug. 2005.
Pluth, James R., M.D., et al., “Aortic and Mitral Valve Replacement with Cloth-Covered Braunwald-Cutter Prosthesis, A Three-Year Follow-up,” The Annals of Thoracic Surgery, vol. 20, No. 3, Sep. 1975, pp. 239-248.
Seidel, Wolfgang, et al., “A Mitral Valve Prosthesis and a Study of Thrombosis on Heart Valves in Dogs,” JSR—vol. II, No. 3—May, 1962, submitted for publication Oct. 9, 1961.
Engager System, Precise Valve Positioning, Transcatheter Aortic Valve Implantation System, Transcatheter Aortic Valve Replacement—TAVR I Medtronic Engager, http://www.medtronic-engager.com/home/transcatheter-aortic-valve-repl., 2014 Medtronic, Inc. in 2 pages. Applicant believes this may have been available online as early as Aug. 25, 2013.
Webb, John G., et al., “Transcatheter Aortic Valve Implantation: The Evolution of Prostheses, Delivery Systems and Approaches,” Archives of Cardiovascular Disease (2012) 105, 153-159. Applicant believes this may have been available as early as Mar. 16, 2012.
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have been presented at TCT 2013.
Sondergaard, Lars, et al., “Transcatheter Mitral Valve Implantation: CardiAQ™,” Applicant believes this may have been presented at EuroPCR 2013.
Sondergaard, Lars, “CardiAQ TMVR FIH—Generation 2,” Applicants believe this may have been presented in 2014 at the TVT symposium.
CardiAQ Valve Technologies, “Innovations in Heart Valve Therapy,” In3 San Francisco, Jun. 18, 2008, PowerPoint presentation in 19 slides.
Ratz, J. Brent, “LSI EMT Spotlight,” May 15, 2009.
Ratz, J. Brent, “In3 Company Overview,” Jun. 24, 2009.
“Company Overview,” at TVT on Jun. 25, 2009.
Ruiz, Carlos E., “Overview of Novel Transcatheter Valve Technologies,” Applicant believes this may have been presented on May 27, 2010 at EuroPCR.
“Update,” Applicant believes this may have been presented on Jun. 6, 2010 at TVT.
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: A Short-term Experience in Swine Model,” Applicant believes this may have been presented on May 2011 at TVT.
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: On-Going Experience in Swine Model,” Applicant believes this may have been presented on Nov. 2011 at TCT.
Fitzgerald, Peter J. M.D., “Tomorrow's Technology: Percutaneous Mitral Valve Replacement, Chordal Shortening, and Beyond,” Transcatheter Valve Therapies (TVT) Conference. Seattle, WA. Applicant believes this may have been available as early as Jun. 7, 2010.
Quadri, Arshad M.D., “Transcatheter Mitral Valve Implantation (TMVI) (An Acute In Vivo Study),” Applicant believes his may have been presented on Sep. 22, 2010 at TCT.
Masson, Jean-Bernard, et al., “Percutaneous Treatment of Mitral Regurgitation,” Circulation: Cardiovascular Interventions, 2:140-146, Applicant believes this may have been available as early as Apr. 14, 2009.
Horvath et al.: “Transapical Aortic Valve Replacement under Real-time Magnetic Resonance Imaging Guidance: Experimental Results with Balloon-Expandable and Self-Expanding Stents,” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038190/. Jun. 2011.
Treede et al.: “Transapical transcatheter aortic valve implantation using the JenaValve™ system: acute and 30-day results of the multicentre CE-mark study.” http://ejcts.oxfordjournals.org/content/41/6/e131.long. Apr. 16, 2012.
Taramasso et al.: “New devices for TAVI: technologies and initial clinical experiences” http://www.nature.com/hrcardio/journal/v11/n3/full/nrcardio.2013.221.html?message-global=remove#access. Jan. 21, 2014.
Van Mieghem, et al., “Anatomy of the Mitral Valvular Complez and Its Implications for Transcatheter Interventions for Mitral Regurgitation,” J. Am. Coll. Cardiol., 56:617-626 (Aug. 17, 2010).
Wayback Machine, Cleveland Clinic Lerner Research Institute, Transcatheter Mitral Stent/Valve Prosthetic, https://web.archive.org/web/20130831094624/http://mds.clevelandclinic.org/Portfolio.aspx?n=331, indicated as archived on Aug. 31, 2013.
Grube, E. et al, “Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome.” J Am Coll Cardiol. Jul. 3, 2007;50(1):69-76. Epub Jun. 6, 2007.
Piazza, Nicoló, MD, et al., “Anatomy of the Aortic Valvar Complex and Its Implications for Transcatheter Implantation of the Aortic Valve” Contemporary Reviews in Interventional Cardiology, Circ. Cardiovasc. Intervent., 2008;1:74-81, Applicant believes this may have been available as early as Aug. 2008.
Feldman, Ted, MD. “Prospects for Percutaneous Valve Therapies,” Circulation 2007;116:2866-2877. Applicant believes that this may be available as early as Dec. 11, 2007.
Backer, Ole De, MD, et al., “Percutaneous Transcatheter Mitral Valve Replacement—An Overview of Devices in Preclinical and Early Clinical Evaluation,” Contemporary Reviews in Interventional Cardiology, Circ Cardiovasc Interv. 2014;7:400-409, Applicant believes this may have been available as early as Jun. 2014.
Preston-Maher, Georgia L., et al., “A Technical Review of Minimally Invasive Mitral Valve Replacements,” Cardiovascular Engineering and Technology, vol. 6, No. 2, Jun. 2015, pp. 174-184. Applicant believes this may have been available as early as Nov. 25, 2014.
BioSpace, “CardiAQ Valve Technologies (CVT) Reports Cardiovascular Medicine Milestone: First-In-Humannonsurgical Percutaneous Implantation of a Bioprosthetic Mitral Heart Valve,” Jun. 14, 2012, p. 1, http://www.biospace.com/News/cardiaq-valve-technologies-cvt-reports/263900.
BioSpace, “CardiAQ Valve Technologies (CVT) Reports First-In-Human Percutaneous Transfemoral, Transseptal Implantation With Its Second Generation Transcatheter Bioprosthetic Mitral Heart Valve,” Jun. 23, 2015, p. 1, http://www.biospace.com/News/cardiaq-valve-technologies-cvt-reports-first- in/382370.
“CardiAQTM Valve Technologies reports Successful First-in-Human Trans-Apical implantation of its Second Generation Transcatheter Mitral Valve,” CardiAQ Valve Technologies Press Release, May 20, 2014.
Dave Fornell, “Transcatheter Mitral Valve replacement Devices in Development,” Diagnostic and Interventional cardiology, Dec. 30, 2014, p. 3, <http://www.dicardiology.com/article/transcatheter-mitral-valve-replacement-devices-development>.
The Journal of the American College of Cardiology, “Transapical Mitral Implantation of the Tiara Bioprosthesis Pre-Clinical Results,” Feb. 2014, <http://interventions.onlinejacc.org/article.aspx?articleid=1831234>.
Ratz, J. Brent et al., “Any experiences making an expandable stent frame?” Arch-Pub.com, Architecture Forums: Modeling, Multiple forum postings from Feb. 3, 2009 to Feb. 4, 2009, http://www.arch-pub.com.
Neovasc corporate presentation, Oct. 2009, available at http://www.neovasc.com/investors/documents/Neovasc-Corporate-Presentation-October-2009.pdf.
NJ350: Vote for Your Favorite New Jersey Innovations, Jun. 27, 2014, http://www.kilmerhouse.com/2014/06/nj350-vote-for-your-favorite-new-jersey-innovations/.
Related Publications (1)
Number Date Country
20170354496 A1 Dec 2017 US
Provisional Applications (1)
Number Date Country
61357048 Jun 2010 US
Continuations (1)
Number Date Country
Parent 13165721 Jun 2011 US
Child 15415794 US