The present application relates to a removable pick module for use in a sheet feeding office machine such as a printer, photocopier or high capacity paper feeder. More particularly, the present application relates to a removable pick module assembly for use in a sheet feeding office machine and a method for inserting and removing said module assembly and will be described with particular reference thereto. However, it is to be appreciated that the removable pick module assembly and method may relate to other similar environments and applications.
Pick system rollers generally have more wear issues than any other rollers in a sheet feeding machine and, therefore, are the most likely to require replacement during the life of a sheet feeding office machine. In some prior art sheet feeding machines, the rollers were permanently mounted to shafts which required a service technician to disassemble the product to replace the rollers. More recently, some manufacturers have made the pick rollers in their machines removable so that they can be replaced by the user. However, this process can often be difficult and non-intuitive. Further, this process may still require the user to obtain additional service support.
In some products, the rollers are replaced by lifting a tab on a roller hub and sliding the roller off a shaft. This is often difficult, particularly, when the roller is deep inside a printer. In such products as auto document feeders, where access can be gained from above, some designs allow two or three rollers to be replaced simultaneously by combining them into a pick module. These pick modules are, however, still often difficult to be replaced by a user without additional service support. Moreover, when access from above is unavailable, such as in some printer devices, these designs may fail to allow user replacement. Thus, there is a need for a replaceable pick module, usable with sheet feeding devices where access may not be available from above the device, that can be installed and removed by a user in a relatively easy manner.
A sheet feeder and separator assembly for separating and sequentially feeding individual print media sheets from a stack thereof includes a frame having at least one bearing recess. A removable print media tray is carried by the frame. A separator is connected to the removable print media tray. A pick module assembly is removably connected to the frame adjacent the removable print media tray. The pick module assembly includes a pick roller adjacent the separator to form a nip and at least one flexible bearing is removably received in the at least one bearing recess to removably connect the pick module assembly to the frame.
a is a cross-sectional view of the printing device of
b is an enlarged partial cross-sectional view of the printing device of
a is a partial cross-sectional view of the frame and the pick module assembly shown in a semi-engaged position;
b is a partial cross-sectional view of the frame and the pick module assembly shown in an operatively engaged position;
c is a partial elevational view of an axially extending portion of one of the flexible bearings on a pick shaft of the pick module assembly;
a is a partial view of the actuator arm assembly and the pick module assembly showing the pick module assembly in the semi-engaged position and ready for full installation into the frame;
b is a partial view of the actuator arm assembly and the pick module assembly showing the pick module assembly initially engaging the actuator arm assembly;
c is a partial view of the actuator arm assembly and the pick module assembly showing the pick module assembly pivoting the actuator arm assembly;
d is a partial view of the actuator arm assembly and the pick module assembly showing the pick module assembly in the operative, engaged position and locked therein by the actuator arm assembly;
a is a partial view of the actuator arm assembly and the pick module assembly showing where a force is to be applied on the actuator arm assembly to unlock the pick module assembly; and
b is a partial view of its actuator arm assembly and the pick module assembly showing the pick module assembly in the semi-engaged position and ready for removal from the frame.
Referring now to the drawings wherein the showings are for purposes of illustrating an embodiment and not for purposes of limiting the same, a printer device is shown in
More particularly, the printer device 10 includes a removable print media tray 12 that is suitable for receiving a stack of print media sheets, such as various grades of paper, transparencies or the like. The sheet feeder and separator assembly is able to pull a single sheet from the stack of print media sheets held by the print media tray 12 and deliver the single sheet further into the printer device for printing thereon. After a first sheet is fed further into the printer device, subsequent sheets can be sequentially fed one at a time.
With additional reference to
A replaceable pick module assembly 16 is removably connected to the frame 14 adjacent the tray 12 as will be described in more detail below. The pick module assembly 16, also referred to herein as a customer replaceable unit, includes a first or pick roller 18 and a second or nudger roller 20. A separator 22 is connected to the tray 12 such that when the tray is fully inserted into the printer device 10, the separator is positioned adjacent or close to the pick module assembly 16. More particularly, the pick module assembly 16 and the pick roller 18 are positioned adjacent to the separator 22 such that the pick roller 18 and the separator form a nip for receiving single or multiple sheets of print media therein. The nudger roller 20 is positioned inwardly of pick roller 18 and together the pick roller 18, the nudger roller 20 and the separator 22 are able to pick a single print media sheet from a stack of print media sheets carried in the tray 12 while retarding all other sheets other than the single, selected sheet. The single sheet can then be fed between the separator 22 and the pick roller 18 and delivered further into the printer device 10 for further processing or printing thereon.
With continued reference to
With reference to
The nudger roller 20 is rotatably connected to the pick frame 46 by a nudger shaft 54 which is positioned adjacent the pick roller 18. More specifically, the nudger shaft 54 is rotatably received and held in pick frame recesses 56 formed as part of the pick frame 46. Like the pick roller 18, the nudger roller 20 is connected to the nudger shaft 54 and, more specifically, includes a hub 58, a one-way bearing (not shown) connecting the hub 58 rotatably to the shaft 54 and a frictional roller tread 60 fixed to the hub 58. Again, this one-way bearing rotatably fixes the nudger roller 20 to the shaft 54 when the shaft is rotated in the first direction (clockwise in
The nudger shaft 54 is connected to the pick roller shaft 48 for rotation therewith such that rotation of the pick roller shaft 48 causes simultaneous rotation of the nudger shaft 54. More specifically, a pick roller gear 66 is rotatably fixed to the pick roller shaft 48. Likewise, a nudger roller gear 68 is rotatably fixed to the nudger shaft 54. An idler gear 70 is rotatably mounted to the pick frame 46 between the pick roller gear 66 and the nudger roller gear 68. Teeth of the idler gear 70 mesh with teeth of the pick roller gear 66 and the nudger roller gear 68 such that the idler gear 70 is engaged to both gears 66,68 so that rotation of the pick roller shaft 48 rotates the pick roller gear which rotates the nudger shaft 54 through the idler gear 70 and the nudger roller gear 68. A driven gear 72 is fixed to one end of the pick roller shaft 48 and positioned within the printer device 10 for selective engagement with an associated drive gear (not shown). Through a power means such as a motor (not shown), the associated drive gear is positioned to selectively rotate the driven gear 72 and, as described above, the pick and nudger rollers 18,20.
With reference to
With reference to
The bracket 88 includes recesses defined by flexible fingers (not shown) that engage or snap-on to the shaft projections 102 defined by the tray 12. The hub 92 is connected to the bracket 88 by a retard shaft (not shown) and a retard wrap spring (not shown). In one embodiment, the shaft is made of plastic to reduce manufacturing costs. The shaft removably connects to the bracket 88 by snapping into recesses or grooves (not shown) of the bracket 88 which enables relatively easy replacement of the entire retard roller assembly or just the shaft, hub 92 and tread 94 independent of the bracket 88. More specifically, the retard shaft is nonrotatably fixed to the retard bracket 88. The hub 92 is rotatably connected to the shaft with the retard wrap spring. The retard wrap spring provides a constant drag when the retard roller 90 is forced to rotate—for example directly by the pick roller 18 or by a sheet of print media in the nip. The retard roller 90 is able to prevent more than a single sheet of print media from being picked up because a retard torque (or drag torque) developed by the wrap spring causes a separation force higher than the force that keeps two or more sheets of the print media together.
In operation, the retard spring winds up slightly when providing the drag torque. Thus, when a trailing edge of a picked sheet of print media leaves the nip, the retard spring releases and kicks any other sheets out of the nip. Therefore, the retard roller acts as an active driven retard roller without being driven as a result of the wrap spring. For this reason, the use of a retard spring to urge the retard roller 90 toward the pick roller 18 classifies the retard roller assembly of the illustrated embodiment as having a semi-active retard roller.
Alternately, the retard roller assembly could be modified or substituted for a variety of other known retard roller assemblies. For example, an active retard roller could be used in place of the illustrated and described semi-active retard roller 90. An active retard roller could necessitate the use of a more complicated mechanism to transmit torque to the retard roller but could also allow for improved separation reliability of the sheets of print media. In another example, a separator pad could be used in place of the retard roller assembly. The use of the separator pad could reduce the complexity of the separator but may result in reduced separation reliability for the sheets of print media. In any case, the separator 22 is independent of the pick module assembly 16 and can be replaced independently of the pick module assembly 16.
With reference to
In the illustrated embodiment, both flexible bearings 30,32 are substantially similar and only one will be discussed in further detail. With additional reference to
More specifically, with reference to
With reference to
With reference to
With reference to
When the pick module assembly 16 is properly installed, the tray 12 can be loaded with a stack of print media and inserted in the frame 14. Once the printer device 10 senses that the tray 12 has been inserted it turns on the lift motor (not shown), raising the lift plate 86 and the associated stack of media. The uppermost sheet of the associated stack of print media contacts the nudger roller 20 of the pick module assembly 16 and rotates the pick module assembly 16 slightly about the bearings 30,32. The extending member 82, which is captured by the actuator fork 80, rotates the actuator arm 76 when the engagement of the print media causes the pick module assembly 16 to rotate. As the actuator arm 76 rotates, a flag 128 on the arm 76 actuates a sensor (not shown) connected to the frame 14 indicating to the printer device that the media has reached the correct height for feeding and that the lift motor can be turned off. To pick the top sheet of the stack of print media, the driven gear 72 is driven by the associated drive gear which rotates the rollers 18,20. The nudger roller 20 moves the top sheet from the stack so that the leading edge enters the nip formed by the pick roller 18 and the separator 22. The pick roller then drives the sheet of media up into the print device 10 for printing. If multiple sheets attempt to enter the nip, they are separated by the separator so that only a single sheet will be fed past the nip.
Removal of the pick module assembly 16 may be desirable if the pick module assembly is to be replaced such as may be necessary when either or both of the treads 52,60 wear out. To remove the pick module assembly 16 from the frame 14, a user first removes the media tray 12 to gain access to the underside of the pick module assembly 16. A user then applies a force to the actuator arm 76 to pivot the arm against the urging of the spring 84. More particularly, with reference to
Due to the orientation of the pick module assembly 16 in the illustrated embodiment, upon application of sufficient force to the release lever 126, the extending member 82 disengages from the fork 80 of the arm 76 and gravity causes the pick module assembly 16 to rotate away from the arm 76 (clockwise in
To install a new pick module, the user holds the pick module assembly 16 in a vertical orientation (i.e., with the pick roller 18 above the nudger roller 20), and pushes it up into the bearing recesses 34,36 of the frame 14. The flexible bearings 30,32 on the pick module assembly 16 allow the assembly to snap into and connect to the rigid printer frame 14 as described above. The user then pushes on the nudger roller 20 to rotate the pick module assembly 16 up into the recess 24 in the frame 14. As the pick module assembly 16 rotates up, the extending member or pin 82 contacts the underside of the actuator arm fork 80. The user must continue to rotate the nudger roller 20 up far enough so that the pick module assembly 16 rotates past a horizontal position and the pin 82 slides past the lower part of the actuator arm fork 80 and engages into the fork 80. The user then reinserts the media tray 12.
The exemplary embodiment has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4565360 | Runzi | Jan 1986 | A |
5039080 | Kato et al. | Aug 1991 | A |
5265859 | Watson et al. | Nov 1993 | A |
5421569 | Davidson | Jun 1995 | A |
5624109 | Tanaka | Apr 1997 | A |
5709380 | Petocchi et al. | Jan 1998 | A |
5720478 | Carter et al. | Feb 1998 | A |
5769410 | Davidson et al. | Jun 1998 | A |
5921539 | Westcott et al. | Jul 1999 | A |
6059279 | Wenthe, Jr. | May 2000 | A |
6120018 | Amano | Sep 2000 | A |
6173951 | Inoue et al. | Jan 2001 | B1 |
6325560 | Hirabayashi et al. | Dec 2001 | B1 |
6565078 | Foglino et al. | May 2003 | B1 |
6626596 | Hirabayashi et al. | Sep 2003 | B1 |
6666446 | Gaarder et al. | Dec 2003 | B1 |
20020008349 | Miki | Jan 2002 | A1 |
20020190460 | Gaarder et al. | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
0 296 850 | Dec 1988 | EP |
2000 203728 | Jul 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20050151312 A1 | Jul 2005 | US |