The disclosures of the following applications are hereby incorporated herein by reference, International Patent Application No. PCT/US2016/032550, filed May 13, 2016, titled “REPLACEMENT MITRAL VALVES”, to U.S. patent application Ser. No. 14/170,388, filed Jan. 31, 2014, titled “SYSTEM AND METHOD FOR CARDIAC VALVE REPAIR AND REPLACEMENT,” now U.S. Pat. No. 8,870,948, and to U.S. patent application Ser. No. 14/677,320, filed Apr. 2, 2015, titled “REPLACEMENT CARDIAC VALVES AND METHODS OF USE AND MANUFACTURE”.
All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The mitral valve lies between the left atrium and the left ventricle of the heart. Various diseases can affect the function of the mitral valve, including degenerative mitral valve disease and mitral valve prolapse. These diseases can cause mitral stenosis, in which the valve fails to open fully and thereby obstructs blood flow, and/or mitral insufficiency, in which the mitral valve is incompetent and blood flows passively in the wrong direction.
Many patients with heart disease, including those with mitral valve problems, are intolerant of the trauma associated with open-heart surgery. Age or advanced illness may have impaired the patient's ability to recover from the injury of an open-heart procedure. Additionally, the high costs associated with open-heart surgery and extra-corporeal perfusion can make such procedures prohibitive.
Patients in need of cardiac valve repair or cardiac valve replacement can be served by minimally invasive surgical techniques. In many minimally invasive procedures, small devices are manipulated within the patient's body under visualization from a live imaging source like ultrasound, fluoroscopy, or endoscopy. Minimally invasive cardiac procedures are inherently less traumatic than open procedures and may be performed without extra-corporeal perfusion, which carries a significant risk of procedural complications.
Minimally invasive aortic valve replacement devices, such as the Medtronic Corevalve or the Edwards Sapien, deliver aortic valve prostheses through small tubes which may be positioned within the heart through the aorta via the femoral artery or through the apex of the heart. However, the mitral valve differs from the aortic valve in that the shape and anatomy immediately surrounding the valve varies greatly from one side of the valve to the other. Moreover, current cardiac valve prostheses are not designed to function effectively within the mitral valve. Further, current cardiac valve prostheses delivered via a minimally invasive device are often difficult to place correctly within the native valve, difficult to match in size to the native valve, and difficult to retrieve and replace if initially placed incorrectly.
These and other deficiencies in existing approaches are described herein.
In general, in one embodiment, a prosthetic mitral valve includes an anchor assembly, a strut frame, and a plurality of replacement leaflets secured to the annular strut frame. The anchor assembly includes a ventricular anchor, an atrial anchor, and a central portion therebetween. The ventricular anchor and the atrial anchor are configured to flare radially outwards relative to the central portion. The annular strut frame is disposed radially within the anchor assembly and is attached to the anchor assembly at an plurality of attachment locations that are positioned between the central portion and an atrial-most edge of the anchor assembly. The central portion is configured to align with a native valve orifice and the ventricular anchor and the atrial anchor are configured to compress native cardiac tissue therebetween.
This and other embodiments can include one or more of the following features. An atrial end of the strut frame can be attached to the anchor assembly. Atrial tips of the strut frame can be attached to the anchor assembly. An atrial end of the strut frame can be flared radially outwards. A flare of the strut frame can be configured to substantially conform to a flare of the atrial anchor. A ventricular end of the strut frame can be spaced away from the anchor assembly. The ventricular end of the strut frame can be spaced away from the anchor assembly by a radial distance of 1-15 mm. The anchor assembly and the strut frame can be configured to self-expand from a constrained configuration to an expanded configuration. The strut frame can be attached to the anchor assembly with a plurality of rivets. Each of the plurality of attachment locations can be radially aligned with tips of the atrial anchor. The plurality of attachment locations can each be part of the anchor assembly that extends further radially inwards than a remaining portion of the anchor assembly. The anchor assembly can comprise a plurality of diamond-shaped cells. The plurality of attachment locations can be positioned at a mid-point of the outermost atrial diamond-shaped cells. The strut frame can include a plurality of linear struts and v-shaped connectors therebetween. The anchor assembly can form a substantially hour-glass shape.
In general, in one embodiment, a prosthetic mitral valve includes an anchor assembly, an annular strut frame, and a plurality of replacement leaflets secured to the annular strut frame. The anchor assembly includes a ventricular anchor, an atrial anchor, and a central portion therebetween. The ventricular anchor and the atrial anchor are configured to flare radially outwards relative to the central portion. Further, the anchor assembly comprises a plurality of diamond-shaped cells. The annular strut frame is disposed radially within the anchor assembly and is attached to the anchor assembly at a plurality of attachment locations that are positioned at a mid-point of the outermost atrial diamond-shaped cells between the central portion and an atrial-most edge of the anchor assembly.
This and other embodiments can include one or more of the following features. An atrial end of the strut frame can be attached to the anchor assembly. Atrial tips of the strut frame can be attached to the anchor assembly. An atrial end of the strut frame can be flared radially outwards. A flare of the strut frame can be configured to substantially conform to a flare of the atrial anchor. A ventricular end of the strut frame can be spaced away from the anchor assembly. The ventricular end of the strut frame can be spaced away from the anchor assembly by a radial distance of 1-15 mm. The anchor assembly and the strut frame can be configured to self-expand from a constrained configuration to an expanded configuration. The strut frame can be attached to the anchor assembly with a plurality of rivets. Each of the plurality of attachment locations can be radially aligned with tips of the atrial anchor. The plurality of attachment locations can each be part of the anchor assembly that extends further radially inwards than a remaining portion of the anchor assembly. The strut frame can include a plurality of linear struts and v-shaped connectors therebetween. The anchor assembly can form a substantially hour-glass shape.
In general, in one embodiment, a prosthetic mitral valve includes an anchor assembly, an annular strut frame, and a plurality of replacement leaflets secured to the annular strut frame. The anchor assembly further includes a ventricular anchor, an atrial anchor, and a central portion therebetween. The ventricular anchor and the atrial anchor are configured to flare radially outwards relative to the central portion. Further, the atrial anchor includes a plurality of atrial cells and the ventricular anchor includes a plurality of ventricular cells. The annular strut frame is disposed radially within the anchor assembly. A first plurality of the atrial cells are positioned radially inwards relative to a second plurality of the atrial cells such that the first plurality of cells attach the strut frame to the anchor assembly.
This and other embodiments can include one or more of the following features. The central portion can be configured to align with a native valve orifice, and the ventricular anchor and the atrial anchor can be configured to compress native cardiac tissue therebetween. An atrial end of the strut frame can be attached to the anchor assembly. Atrial tips of the strut frame can be attached to the anchor assembly. An atrial end of the strut frame can be flared radially outwards. A flare of the strut frame can be configured to substantially conform to a flare of the atrial anchor. A ventricular end of the strut frame can be spaced away from the anchor assembly. The ventricular end of the strut frame can be spaced away from the anchor assembly by a radial distance of 1-15 mm. The anchor assembly and the strut frame can be configured to self-expand from a constrained configuration to an expanded configuration. The strut frame can be attached to the anchor assembly with a plurality of rivets. The first plurality of atrial cells can end in disconnected apexes. The disconnected apexes can be radially aligned with outer-most tips of the second plurality of atrial cells. The first plurality of atrial cells can be angled at approximately 70-80 degrees relative to the axis that extends through the central portion. The second plurality of atrial cells can be angled at approximately 20-30 degrees relative to the axis that extends through the central portion. The annular strut frame can flare radially outwards at 70-80 degrees relative to the axis that extends through the central portion.
In general, in one embodiment, a prosthetic mitral valve includes an anchor assembly, an annular strut frame, and a plurality of replacement leaflets secured to the annular strut frame. The anchor assembly includes a ventricular anchor, an atrial anchor, and a central portion therebetween. The ventricular anchor and the atrial anchor are configured to flare radially outwards relative to the central portion. Further, the atrial anchor includes a plurality of atrial cells. The annular strut frame is disposed radially within the anchor assembly. A first plurality of the atrial cells are interior disconnected apexes and the second plurality of atrial cells are outermost atrial cells. The first plurality positioned radially inwards relative to a second plurality of the atrial cells such that the first plurality of cells attach the strut frame to the anchor assembly.
This and other embodiments can include one or more of the following features. The central portion can be configured to align with a native valve orifice. The ventricular anchor and the atrial anchor can be configured to compress native cardiac tissue therebetween. An atrial end of the strut frame can be attached to the anchor assembly. Atrial tips of the strut frame can be attached to the anchor assembly. An atrial end of the strut frame can be flared radially outwards. A flare of the strut frame can be configured to substantially conform to a flare of the atrial anchor. A ventricular end of the strut frame can be spaced away from the anchor assembly. The ventricular end of the strut frame can be spaced away from the anchor assembly by a radial distance of 1-15 mm. The anchor assembly and the strut frame can be configured to self-expand from a constrained configuration to an expanded configuration. The strut frame can be attached to the anchor assembly with a plurality of rivets. The disconnected apexes can be radially aligned with outer-most tips of the second plurality of atrial cells. The first plurality of atrial cells can be angled at approximately 70-80 degrees relative to an axis that extends through the central portion. The second plurality of atrial cells can be angled at approximately 20-30 degrees relative to the axis that extends through the central portion. The annular strut frame can flare radially outwards at 70-80 degrees relative to the axis that extends through the central portion.
In general, in one embodiment, a prosthetic mitral valve includes a valve support assembly that includes a ventricular anchor and an atrial anchor. The valve support assembly has a plurality of slots therethrough. The prosthetic mitral valve further includes a plurality of replacement leaflets. Each leaflet has a leaflet arm extending through one of the plurality of slots. The prosthetic mitral valve further includes a plurality of commissure plates. Each commissure plate is circumferentially and axially aligned with one of the plurality of slots to form a commissure attachment mechanism. Each commissure plate further includes a plurality of channels in the sides thereof. The at least one suture is positioned at each commissure attachment mechanism and is wrapped around a portion of the valve support assembly, through the plurality of indents, and around the commissure plate.
This and other embodiments can include one or more of the following features. The valve support assembly can include an anchor assembly that includes the ventricular and atrial anchors and an annular strut frame that includes the plurality of slots. The annular strut frame can be positioned radially within the anchor assembly. The plurality of slots can be in a portion of the strut frame that extends past the anchor assembly in the ventricular direction. The anchor assembly can further include a central portion, and the ventricular and atrial anchors can flare radially outwards relative to the central portion. The plurality of channels can extend from the sides of each commissure plate towards a center of the plate. The plurality of channels can be substantially straight. There can be between 6 and 12 channels in each commissure plate. Each of the slots can be in an axially extending strut. Arms of the leaflets can extend through the plurality of slots. The arms can be further be wound around an outer perimeter of an inner strut frame of the valve support assembly. The plurality of slots can be positioned equidistance around a circumference of the valve support assembly. Each of the plurality of slots can be positioned towards a ventricular end of the valve support assembly. The valve support assembly can be configured to self-expand from a constrained configuration to an expanded configuration. Atrial edges of the leaflets can be sewn around an inner circumference of the valve support assembly. Each of the leaflets further includes a leaflet protector thereon. The leaflet protector can be made of a lubricious fabric and can be configured to protect the respective leaflet from an inner circumference of the valve support assembly.
In general, in one embodiment, a prosthetic mitral valve includes a valve support assembly. The valve support assembly includes an anchor assembly having a ventricular anchor and an atrial anchor and an annular strut frame positioned radially within the anchor assembly. The annular strut frame includes a plurality of slots therethrough. The prosthetic mitral valve further includes a plurality of replacement leaflets. Each leaflet has a leaflet arm extending through one of the plurality of slots. The prosthetic mitral valve further includes a plurality of commissure plates. Each commissure plate is circumferentially and axially aligned with one of the plurality of slots to form a commissure attachment mechanism. Each commissure plate further includes a plurality of channels in the sides thereof.
This and other embodiments can include one or more of the following features. The prosthetic mitral valve can include at least one suture at each commissure attachment mechanism. The at least one suture can be positioned around the strut frame, through the plurality of indents, and around the commissure plate. The plurality of slots can be in a portion of the strut frame that extends past the anchor assembly in the ventricular direction. The anchor assembly can further include a central portion, and the ventricular and atrial anchors can be flared radially outwards relative to the central portion. The plurality of channels can extend from the sides of each commissure plate towards a center of the plate. The plurality of channels can be substantially straight. There can be between 6 and 12 channels in each commissure plate. Each of the slots can be in an axially extending strut. The arms of the leaflets can extend through the plurality of slots. The arms can be further be wound around an outer perimeter of the strut frame. The plurality of slots can be positioned equidistance around a circumference of the strut frame. Each of the plurality of slots can be positioned towards a ventricular end of the strut frame. The valve support assembly can be configured to self-expand from a constrained configuration to an expanded configuration. Atrial edges of the leaflets can be sewn around an inner circumference of the strut frame. Each of the leaflets can further include a leaflet protector thereon. The leaflet protector can be made of a lubricious fabric and can be configured to protect the leaflet from an inner circumference of the valve support assembly.
In general, in one embodiment, a prosthetic mitral valve includes a valve support assembly, a plurality of leaflets secured to the valve support assembly, and a plurality of retention hooks. The valve support assembly includes a ventricular anchor, a central portion, and an atrial anchor. The valve support assembly is configured to self-expand from a collapsed configuration to an expanded configuration. The plurality of retention hooks are attached to the ventricular anchor. Each of the retention hooks curves radially outwards to point in an atrial direction when the valve support assembly is in the expanded configuration. Each retention hook has a ratio of radius of curvature to thickness of between 4:1 and 6:1.
This and other embodiments can include one or more of the following features. Each of the plurality of retention hooks can be configured to point at an angle of 50°-80° relative to a central longitudinal axis of the prosthetic mitral valve. The angle can be approximately 65°. A radius of curvature of each of the plurality of retention hooks can be between 3-5 mm. A thickness of each retention hooks can be between 0.8 mm and 1.6 mm. The plurality of retention hooks can be integral with the valve support assembly. The valve support assembly can include an anchor assembly that further includes the ventricular and atrial anchors and the central portion and an annular strut frame positioned radially within the anchor assembly. The plurality of retention hooks can be attached to the anchor assembly. The central portion can be configured to align with a native valve orifice, and the ventricular anchor and the atrial anchors can be configured to compress native cardiac tissue therebetween. The valve support assembly can include a plurality of diamond-shaped cells. Each of the retention hooks can extend from an apex of an interior diamond-shaped cell. A retention hook can extend from each apex in a circumferential line around the prosthetic mitral valve except at positions closest to leaflet attachment points.
In general, in one embodiment, a prosthetic mitral valve includes a valve support assembly, a plurality of leaflets secured to the valve support assembly, and a plurality of retention hooks. The valve support assembly includes a ventricular anchor, a central portion, and an atrial anchor. Each of the retention hooks is attached to the ventricular anchor and curves radially outwards to point in an atrial direction. Each retention hook has a ratio of radius of curvature to thickness of between 4:1 and 6:1 and points at an angle of 50°-80° relative to a central longitudinal axis of the prosthetic mitral valve.
This and other embodiments can include one or more of the following features. The angle can be approximately 65°. A radius of curvature of each of the plurality of retention hooks can be between 3-5 mm. A thickness of each retention hooks can be between 0.8 mm and 1.6 mm. The plurality of retention hooks can be integral with the valve support assembly. The valve support assembly can include an anchor assembly that further includes the ventricular and atrial anchors and the central portion and an annular strut frame positioned radially within the anchor assembly. The plurality of retention hooks can be attached to the anchor assembly. The central portion can be configured to align with a native valve orifice, and the ventricular anchor and the atrial anchors can be configured to compress native cardiac tissue therebetween. The valve support assembly can include a plurality of diamond-shaped cells. Each of the retention hooks can extend from an apex of an interior diamond-shaped cell. A retention hook can extend from each apex in a circumferential line around the prosthetic mitral valve except at positions closest to leaflet attachment points.
In general, in one embodiment, a replacement mitral valve includes a self-expandable valve support assembly that includes a ventricular anchor, a central portion, and an atrial anchor. The valve support assembly has a self-expanded configuration in which the ventricular anchor and the atrial anchor are flared radially outward relative to the central portion. The atrial anchor has a larger diameter than the ventricular anchor when the valve assembly is in the self-expanded configuration. The replacement mitral valve further includes a plurality of replacement leaflets secured to the valve assembly.
This and other embodiments can include one or more of the following features. The ventricular anchor can have outer diameter of less than 55 mm. The atrial anchor can have diameter that is 3-10% larger than diameter of ventricular anchor. The valve support assembly can include an anchor assembly that includes the central portion and ventricular and atrial anchors. The valve support assembly can further include an annular strut frame positioned radially within the anchor assembly. The anchor assembly can be made of a plurality of diamond-shaped cells joined together. The valve support assembly can be configured to self-expand from a constrained configuration to an expanded configuration. The anchor assembly can be configured to foreshorten when transitioning from the constrained configuration to the expanded configuration. The anchor assembly can be configured to take on an hour-glass shape. Tips of the atrial anchor can point in a ventricular direction. The atrial and ventricular anchors can be configured to compress native cardiac tissue therebetween. The atrial anchor can include a plurality of atrial tips and the ventricular anchor can include a plurality of ventricular tips. There can be more ventricular tips than atrial tips.
In general, in one embodiment, a replacement mitral valve includes a valve support assembly that includes a ventricular anchor, a central portion, and an atrial anchor. The valve support assembly has a self-expanded configuration in which the ventricular anchor and the atrial anchor are flared radially outward relative to the central portion. The atrial anchor has a diameter that is 3-10% larger than a diameter of the ventricular anchor. The replacement mitral valve further includes a plurality of replacement leaflets secured to the valve assembly.
This and other embodiments can include one or more of the following features. The ventricular anchor can have outer diameter of less than 55 mm. The valve support assembly can include an anchor assembly including the central portion and ventricular and atrial anchors. The valve support assembly can further include an annular strut frame positioned radially within the anchor assembly. The anchor assembly can be made of a plurality of diamond-shaped cells joined together. The valve support assembly can be configured to self-expand from a constrained configuration to an expanded configuration. The anchor assembly can be configured to foreshorten when transitioning from the constrained configuration to the expanded configuration. The anchor assembly can be configured to take on an hour-glass shape. Tips of the atrial anchor can point in a ventricular direction. The atrial and ventricular anchors can be configured to compress native cardiac tissue therebetween. The atrial anchor can include a plurality of atrial tips and the ventricular anchor can include a plurality of ventricular tips. There can be more ventricular tips than atrial tips.
In general, in one embodiment, a prosthetic mitral valve includes an anchor assembly that includes a ventricular anchor, an atrial anchor, and a central portion therebetween. The anchor assembly is configured to compress native cardiac tissue between the ventricular anchor and the atrial anchor. An annular strut frame is disposed radially within the anchor assembly and attached thereto. The prosthetic mitral valve further includes a plurality of replacement leaflets secured to the annular strut frame. The anchor assembly and annular strut frame are configured to self expand from a collapsed configuration to an expanded configuration. The anchor assembly is configured to foreshorten along a central axis of the prosthetic mitral valve when expanding from the collapsed configuration to the expanded configuration. The annular strut frame is configured to be substantially nonforeshortening along the central axis when expanding from the collapsed configuration to the expanded configuration.
This and other embodiments can include one or more of the following features. The anchor assembly can include a plurality of diamond-shaped cells. The ventricular anchor can include a plurality of struts and v-shaped connecting members. The ventricular anchor and atrial anchors can flare radially outwards relative to the central portion when in the expanded configuration. The anchor assembly can be configured to foreshorten by 20-30% when self-expanding from the collapsed configuration to the expanded configuration.
In general, in one embodiment, a prosthetic mitral valve includes an anchor assembly that includes a ventricular anchor, an atrial anchor, and a central portion therebetween. The anchor assembly is configured to compress native cardiac tissue between the ventricular anchor and the atrial anchor. An annular strut frame is disposed radially within the anchor assembly such that the annular strut frame is spaced radially away from the central portion of the anchor assembly. The prosthetic mitral valve further includes a plurality of replacement leaflets secured to the annular strut frame.
This and other embodiments can include one or more of the following features. The annular strut frame can be spaced radially away from the central portion by 2-3 mm. The annular strut frame can be flared at an atrial end. Atrial tips of the annular strut frame can be attached to the anchor assembly. A portion of the anchor assembly can be pulled radially inwards relative to a remainder of the anchor assembly so as to attach to the annular strut frame.
In general, in one embodiment, a prosthetic mitral valve includes a valve assembly that includes a ventricular anchor, a central portion, and an atrial anchor. The anchor assembly is configured to expand from a collapsed configuration to an expanded configuration. The atrial anchor includes a plurality of atrial cells forming peaks and valleys around a circumference thereof, and the ventricular anchor includes a plurality of ventricular cells forming peaks and valleys around a circumference thereof. A plurality of replacement leaflets are secured to the valve assembly. A plurality of retention hooks are attached only to the ventricular anchor. Each of the plurality of retention hooks is positioned in a valley between the ventricular cells when the valve assembly is in the expanded configuration.
This and other embodiments can include one or more of the following features. The plurality of retention hooks can curve to point in the atrial direction when the anchor assembly is in the expanded configuration. The valve assembly can be configured to self-expand. The plurality of retention hooks can point at an angle of 50°-80° relative to a central longitudinal axis of the prosthetic mitral valve. The plurality of retention hooks can be positioned in every valley except valleys closest to leaflet attachment points.
In general, in one embodiment, a prosthetic mitral valve includes an anchor assembly that includes a ventricular anchor, a central portion, and an atrial anchor. The anchor assembly configured to expand from a collapsed configuration to an expanded configuration. The atrial anchor includes a plurality of atrial cells at an atrial edge of the atrial anchor, and the ventricular anchor includes a plurality of ventricular cells at a ventricular edge of the ventricular anchor. The number of ventricular cells is divisible by 2, and the number of atrial cells is divisible by 3. An annular strut frame is positioned within the anchor assembly and includes a plurality of struts connected by connection members. Three of the struts include commissure attachment points. The three commissure attachment points are spaced equally around a circumference of the annular strut frame. Three replacement leaflets are secured to the annular strut frame at the commissure attachment points.
This and other embodiments can include one or more of the following features. There can be 30 ventricular cells, 15 atrial cells, and 15 struts. There can be 24 ventricular cells, 12 atrial cells, and 12 struts. There can be more ventricular cells than atrial cells. The number of ventricular cells can also be divisible by 3.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
This disclosure includes replacement heart valves (also referred to herein as prosthetic heart valves), methods of manufacturing replacement heart valves, including subassemblies thereof, and methods of using replacement heart valves. This disclosure describes the prostheses in the context of replacement mitral valves, but it is conceivable that the prostheses herein can be used or modified to be used as other replacement heart valves. In some embodiments, the replacement heart valves are self-orienting replacement mitral valves configured to be delivered using minimally invasive techniques.
The replacement heart valves described herein include an anchor assembly that includes an atrial anchor (e.g., configured to be placed on an atrial side of a mitral valve annulus), a ventricular anchor (e.g., configured to be placed on a ventricular side of a mitral valve annulus), and a central portion positioned axially between the atrial and ventricular anchors. The anchor assembly is adapted to collapse to a delivery or collapsed configuration and expand to an expanded configuration. The replacement heart valves also include a strut frame secured to at least one of the central portion, the ventricular anchor, or the atrial anchor for attaching a plurality of replacement leaflets thereto. The strut frame can be configured to deform and collapse as the rest of the anchor assembly is collapsed. The struts of the strut frame extend towards and/or past the ventricular anchor.
The replacement heart valves described herein are configured to be secured in the native valve orifice by sandwiching the cardiac orifice between ventricular and atrial anchors, which are larger in diameter than the valve orifice, by applying an axial compressive force from the anchors, a radial force from the center portion outward against the cardiac orifice, and/or by using hooks or barbs that extend into the tissue of the orifice.
Further, the replacement heart valves described herein can be delivered to a cardiac valve orifice, such as the mitral valve, by using minimally invasive techniques to access the cardiac valve. In some embodiments, the mitral valve prostheses can be delivered through a transatrial route, i.e., by making a small incision in the patient's body and passing the prosthesis through the apex of the heart to, for example, the mitral valve. In other embodiments, the mitral valve prostheses can be delivered through the transseptal route, i.e., through the venous system and into the left atrium via a transseptal puncture. In both the transatrial and transseptal delivery methods, the distal-most anchor can be delivered to the ventricle while the proximal-most anchor can be delivered to the atrium.
In some embodiments, the anchor assembly 101 and/or strut frame 105 can be made of wire, such as a shape memory metal wire (e.g., a nitinol). In other embodiments, the anchor assembly and/or strut frame can be laser cut from one or more tubes, such as a shape memory metal tube (e.g., nitinol). For example, the anchor assembly 101 can be laser cut from a first hypotube while the strut frame 105 can be laser cut from a second hypotube of smaller diameter. The anchor assembly 101 can be cut, for example, from a 9-12 mm diameter tube, such as a 10 mm tube, while the strut frame 105 can be cut, for example, from a 7-9 mm diameter tube, such as an 8 mm tube.
The valve prosthesis 100 can be configured to expand (e.g., self-expand) from a collapsed or constrained (delivery) configuration to an expanded (treatment) configuration. In the expanded configuration shown in
The anchor assembly 101 can be configured to expand circumferentially and foreshorten axially as the valve prosthesis 100 expands from the collapsed delivery configuration to the expanded treatment configuration. For example, as shown in
The strut frame 105 can be configured to expand circumferentially, but maintain the same axial dimension (i.e., be non-foreshortening) as the valve prosthesis 100 expands from the collapsed delivery configuration to the expanded treatment configuration. By being non-foreshortening, the strut frame 105 can advantageously ensure that less strain is placed on the leaflets during delivery and/or packing. Thus, while the anchor assembly 101 is designed to be foreshortening, the strut frame 105 is designed so as to be substantially non-foreshortening. As can be best seen in
The strut frame 105 and the anchor assembly 101 can be coupled together with coupling members, such as rivets. In some embodiments, and as shown in
The radially inner surfaces of strut frame 105 can substantially define the perimeter of a central opening 106. Replacement leaflets, which are not shown in
In some embodiments, the valve 100 can include hooks 188 or barbs to help anchor the assembly in the mitral valve orifice. As shown in
In some embodiments, each of the atrial apexes 219 can have a rivet hole therein for connection to the atrial tips 229 of the strut frame 205. Further, in some embodiments (and as shown in
Further, in this embodiment, the strut frame 205 and anchor assembly 201 can be attached at a central point of the atrial anchor 202 (i.e., at apexes 219) rather than at the outer-most or atrial-most tips 212 of the atrial anchor 202. By attaching the inner strut frame 205 to the anchor assembly 201 at a mid-point of the atrial anchor 202 rather than at the atrial tips 212, less torque or torsion is applied to the strut frame 205 as the atrial anchor 202 conforms to the tissue, thereby helping to ensure that the leaflets maintain their required position.
As shown best in
In some embodiments, the number of ventricular cells or ventricular tips 214 in valve 200 (or any valve described herein) can be divisible by both 2 and 3. For example, there can be 18, 24, or 30 ventricular cells or tips 214. Because the number of ventricular tips 214 is divisible by 2, there can be half as many atrial tips 212. Further, by having the number of cells divisible by 3, the three attachment points for the three leaflets (e.g., struts 221a,b,c) of the strut frame 205 can be even spaced around the circumference of the central opening 206. Increasing the number of ventricular tips/cells (e.g., from 18 cells to 30 cells) in any given design means that the total amount of required circumferential expansion of each individual cell decreases, thereby allowing the longitudinal lengths of the cells to be shorter, decreasing the overall length of the packed assembly (i.e., during delivery). In some embodiments, the cells have a length of between 4 and 6 mm and a width of between 0.2 and 0.4 mm when collapsed, e.g., before expansion. With these dimensions, the packed assembly can be, for example, 30-40 mm, such as 32-35 mm. Further, in some embodiments, the cell dimensions are chosen such that the ratio of width to length yields no more than 8-10% sheathing strain when the anchor assembly is retracted into the catheter for delivery.
Further, as is best shown in
The anchor assembly 2001 also includes barbs or hooks 2088 that, similar to hooks 888, are positioned between the ventricular tips 2014 in the valleys and are curved backwards towards the atrial end. Further, in some embodiments, and as shown at
In some embodiments, such as for the anchor assembly 2000, the atrial anchor 2002 can have a larger diameter than the ventricular anchor 2004. Having a larger atrial anchor 2002 than a ventricular anchor 2004 allows the anchors 2002, 2004 to grip tissue while preventing the ventricular anchor 2004 from impeding flow to the aortic valve. That is, as shown in
In some embodiments, the prostheses described herein can be made in a plurality of different sizes so as to fit within a range of native valve orifice sizes. For example, referring to
Anchor assemblies 101-401, 801, 2001, 2401, and 2501 all foreshorten upon expansion (due to their cellular design). For example, the anchor assemblies can foreshorten by 20%-30%. In contrast, the corresponding strut frames 105-405, 805, 2005, 2405, and 2505 maintain substantially the same axial length.
In some embodiments, the prosthesis can be designed such that the entire prosthesis does not foreshorten during expansion. Having the prosthesis not foreshorten advantageously allows the packed length to be much shorter, such as less than 35 mm, such than 30 mm, or less than 25 mm.
For example,
Various hook or barb mechanisms can be used with any of the valves described herein. For example, the barb or hook can be riveted to the anchor assembly, can be laser cut from the assembly, and/can be formed as part of a v-shaped feature of the anchor assembly. The hook or barb mechanisms can be designed such that they point radially outwards during deployment (i.e., not into the tissue) and do not engage with tissue until fully released, thereby preventing interference with the deployment. This can be achieved, for example, by using a hook having the proper radius of curvature to thickness ratio.
In some embodiments, the hooks can be on the ventricular most tips of the ventricular anchor, as shown in
In some embodiments, the hooks can be riveted to the anchor assembly. In other embodiments (as shown in
In some embodiments, as shown in
Any of the valve prostheses described herein can include a fabric cover and/or skirt on one or more portions of the device. For example, referring to
In some embodiments, as shown in
In some embodiments, the skirt, or a portion of the skirt, can be knit in a three-dimensional shape, e.g., an hour glass shape, to help maintain a consistent seal of the skirt against the prosthesis and to help pack the skirt-covered prosthesis during delivery. For example, as shown in
Referring to
Further, in some embodiments, and as shown in
The skirt can advantageously help block blood flow from one side of the valve over the other. The skirt can also help prevent the anatomy from having an adverse interaction with the frame itself.
In some embodiments, a coupler can be used to connect the strut frame to the anchor assembly. Rivets herein are an example of a coupler. The locations where components are secured to one another may be referred to as a coupling herein. Coupling also refers to the two components that are secured together. Riveting as used herein is an example of a method that plastically deforms a coupler to secure two or more components together at a coupling. Coupling and rivets are described further in U.S. patent application Ser. No. 14/677,334, filed Apr. 2, 2015, titled “REPLACEMENT CARDIAC VALVES AND METHODS OF USE AND MANUFACTURE,” the entire contents of which are incorporated by reference herein.
In some embodiments, the valve prostheses have been shown without leaflets for clarity. It is to be understood that each of the embodiments described herein can include replacement leaflets 1022a,b,c attached thereto, as shown in
Further, the leaflets can be attached to any of the valve prosthesis designs in a variety of different ways.
For example, referring to
Another exemplary mechanism for leaflet attachment is shown in
Additional exemplary mechanisms for leaflet attachment are shown in
Another exemplary mechanism for leaflet attachment is shown in
Another exemplary mechanism for leaflet attachment is shown in
In some embodiments, referring to
In some embodiments, a valve prosthesis as described herein can include a delivery system attachment mechanism. For example, as shown in
Another delivery system attachment mechanism is shown in
An exemplary method of delivering a valve prosthesis 1700 (which can be any of the valves prostheses described herein) after attachment to the tethers of the delivery system is shown in
The valve prostheses described herein can advantageously pack to a very low packing length, such as less than 4 cm, less than 3.8 cm, less than 3.6 cm, less than 3.2 cm, or less than 3.0 cm for delivery with a 32 French catheter. This low axial packing length advantageously allows the prostheses to be delivered transseptally, e.g., be easily maneuvered around the bend through the septum.
Further, the cells and/or v-shaped patterns of the valve prostheses described herein can be specifically designed so as to ensure that the ventricular side doesn't flare out when delivered. For example, by making the atrial anchor flexible (e.g., with flexible members), the ventricular anchor is less likely to hook around when delivered. As another example, the radius of the valve (the anchor or the strut frame) can be tuned and/or the valve can be made more flexible in specific areas (of the anchor or the strut frame) so as to ensure that the valve is less prone to hooking/flaring out when delivered. That is, referring to
The valve prostheses described herein can advantageously avoid interference with blood flow through the valve. For example, the skirting and shape of the nitinol on the inflow (or atrial) portion of the valve can be contoured to provide smooth approach to the valve orifice. This helps decrease the risk of any turbulent flow or pockets of stagnant blood. As another example, the attachment point between the inner strut and the outer frame can be adjusted longitudinally to change the relative obstruction of the inner strut with blood flow and the ventricular sub-valvular apparatus. As yet another example, the skirting can be selectively applied to areas only in which there is a risk of blood escaping between the prosthesis and the anatomy. By allowing some cells to be open, particularly on the ventricular anchoring member, there is less impedance to flow.
Any of the valve features or structural details of any device embodiment described herein can be incorporated or combined with any of the other embodiments herein. For example, the central members described herein are not limited in use with the anchor assemblies and strut frames in the specific embodiment, but can be replaced with any of the features described in any other embodiment.
In use, when the devices described herein can be used as mitral valve replacements. In some embodiments, when the replacement heart valve has been delivered near the mitral valve, the ventricular anchor can be deployed first in a cardiac chamber, such as the ventricle, and retracted to a seated position against the valve orifice, such as the mitral valve orifice. Then the center portion and atrial anchor portion may be deployed in another cardiac chamber, such as the atrium, wherein the expansion and reconfiguration of the atrial anchor and the central portion sandwiches the valve orifice securely between the anchors that have been deployed on either side of the annulus. Other exemplary aspects of the methods of delivery described in U.S. Pat. No. 8,870,948, issued Oct. 28, 2014, in International Patent Application No. PCT/US2016/032546, filed May 13, 2016, titled “CARDIAC VALVE DELIVERY DEVICES AND SYSTEMS,” and in U.S. Provisional Patent Application Nos. 62/424,021 and 62/424,051, both filed Nov. 18, 2016 and titled “CARDIAC VALVE DELIVERY DEVICES AND SYSTEMS” all of which are incorporated by reference in their entireties.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This application is a continuation of International Patent Application No. PCT/US2018/14902, filed Jan. 23, 2018, titled “REPLACEMENT MITRAL VALVES”, which claims priority to U.S. Provisional Application No. 62/513,877, filed Jun. 1, 2017 and to U.S. Provisional Patent Application No. 62/449,498, filed Jan. 23, 2017, and titled “REPLACEMENT MITRAL VALVES,” the entireties of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3334629 | Cohn | Aug 1967 | A |
3409013 | Henry | Nov 1968 | A |
3540431 | Mobin-Uddin | Nov 1970 | A |
3628535 | Ostrowsky et al. | Dec 1971 | A |
3642004 | Osthagen et al. | Feb 1972 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Edwards et al. | Feb 1973 | A |
3795246 | Sturgeon | Mar 1974 | A |
3839741 | Haller | Oct 1974 | A |
3868956 | Alfidi et al. | Mar 1975 | A |
3874388 | King et al. | Apr 1975 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4233690 | Akins | Nov 1980 | A |
4291420 | Reul | Sep 1981 | A |
4326306 | Poler | Apr 1982 | A |
4423809 | Mazzocco | Jan 1984 | A |
4425908 | Simon | Jan 1984 | A |
4501030 | Lane | Feb 1985 | A |
4531943 | Van Tassel et al. | Jul 1985 | A |
4580568 | Gianturco | Apr 1986 | A |
4602911 | Ahmadi et al. | Jul 1986 | A |
4610688 | Silvestrini et al. | Sep 1986 | A |
4617932 | Kornberg | Oct 1986 | A |
4648881 | Carpentier et al. | Mar 1987 | A |
4655218 | Kulik et al. | Apr 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4662885 | DiPisa, Jr. | May 1987 | A |
4665906 | Jervis | May 1987 | A |
4710192 | Liotta et al. | Dec 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4755181 | Igoe | Jul 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4819751 | Shimada et al. | Apr 1989 | A |
4834755 | Silvestrini et al. | May 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4865600 | Carpentier et al. | Sep 1989 | A |
4872874 | Taheri | Oct 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4909252 | Goldberger | Mar 1990 | A |
4917102 | Miller et al. | Apr 1990 | A |
4927426 | Dretler | May 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
5002556 | Ishida et al. | Mar 1991 | A |
5002559 | Tower | Mar 1991 | A |
5064435 | Porter | Nov 1991 | A |
5161547 | Tower | Nov 1992 | A |
5163953 | Vince | Nov 1992 | A |
5209741 | Spaeth | May 1993 | A |
5258023 | Reger | Nov 1993 | A |
5258042 | Mehta | Nov 1993 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5336258 | Quintero et al. | Aug 1994 | A |
5350398 | Pavcnik et al. | Sep 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5389106 | Tower | Feb 1995 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5405377 | Cragg | Apr 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5425762 | Muller | Jun 1995 | A |
5431676 | Dubrul et al. | Jul 1995 | A |
5443495 | Buscemi et al. | Aug 1995 | A |
5443499 | Schmitt | Aug 1995 | A |
5476506 | Lunn | Dec 1995 | A |
5476510 | Eberhardt et al. | Dec 1995 | A |
5480423 | Ravenscroft et al. | Jan 1996 | A |
5507767 | Maeda et al. | Apr 1996 | A |
5534007 | St. Germain et al. | Jul 1996 | A |
5545133 | Burns et al. | Aug 1996 | A |
5545211 | An et al. | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5554183 | Nazari | Sep 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5575818 | Pinchuk | Nov 1996 | A |
5645559 | Hachtman et al. | Jul 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5667523 | Bynon et al. | Sep 1997 | A |
5674277 | Freitag | Oct 1997 | A |
5693083 | Baker et al. | Dec 1997 | A |
5695498 | Tower | Dec 1997 | A |
5713953 | Vallana et al. | Feb 1998 | A |
5716370 | Williamson et al. | Feb 1998 | A |
5720391 | Dohm et al. | Feb 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5733325 | Robinson et al. | Mar 1998 | A |
5735842 | Krueger et al. | Apr 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5807405 | Vanney et al. | Sep 1998 | A |
5817126 | Imran | Oct 1998 | A |
5824041 | Lenker et al. | Oct 1998 | A |
5824043 | Cottone, Jr. | Oct 1998 | A |
5824053 | Khosravi et al. | Oct 1998 | A |
5824055 | Spiridigliozzi et al. | Oct 1998 | A |
5824056 | Rosenberg | Oct 1998 | A |
5824064 | Taheri | Oct 1998 | A |
5843158 | Lenker et al. | Dec 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5860966 | Tower | Jan 1999 | A |
5861024 | Rashidi | Jan 1999 | A |
5861028 | Angell | Jan 1999 | A |
5868783 | Tower | Feb 1999 | A |
5876448 | Thompson et al. | Mar 1999 | A |
5885228 | Rosenman et al. | Mar 1999 | A |
5888201 | Stinson et al. | Mar 1999 | A |
5891191 | Stinson | Apr 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5907893 | Zadno-Azizi et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5954766 | Zadno-Azizi et al. | Sep 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5968070 | Bley et al. | Oct 1999 | A |
5984957 | Laptewicz et al. | Nov 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5984973 | Girard et al. | Nov 1999 | A |
5993469 | McKenzie et al. | Nov 1999 | A |
5997557 | Barbut et al. | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6022370 | Tower | Feb 2000 | A |
6027525 | Suh et al. | Feb 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6042607 | Williamson et al. | Mar 2000 | A |
6093203 | Uflacker | Jul 2000 | A |
6113612 | Swanson et al. | Sep 2000 | A |
6123723 | Konya et al. | Sep 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6162245 | Jayaraman | Dec 2000 | A |
6165209 | Patterson et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6174322 | Schneidt | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6187016 | Hedges et al. | Feb 2001 | B1 |
6197053 | Cosgrove et al. | Mar 2001 | B1 |
6200336 | Pavcnik et al. | Mar 2001 | B1 |
6206909 | Hanada et al. | Mar 2001 | B1 |
6214036 | Letendre et al. | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6221096 | Aiba et al. | Apr 2001 | B1 |
6231544 | Tsugita et al. | May 2001 | B1 |
6231551 | Barbut | May 2001 | B1 |
6241757 | An et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6251135 | Stinson et al. | Jun 2001 | B1 |
6258114 | Konya et al. | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6258120 | McKenzie et al. | Jul 2001 | B1 |
6277555 | Duran et al. | Aug 2001 | B1 |
6309417 | Spence et al. | Oct 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6319281 | Patel | Nov 2001 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6336937 | Vonesh et al. | Jan 2002 | B1 |
6338735 | Stevens | Jan 2002 | B1 |
6348063 | Yassour et al. | Feb 2002 | B1 |
6352708 | Duran et al. | Mar 2002 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6371970 | Khosravi et al. | Apr 2002 | B1 |
6371983 | Lane | Apr 2002 | B1 |
6379368 | Corcoran et al. | Apr 2002 | B1 |
6379383 | Palmaz et al. | Apr 2002 | B1 |
6398807 | Chouinard et al. | Jun 2002 | B1 |
6409750 | Hyodoh et al. | Jun 2002 | B1 |
6411552 | Chiba | Jun 2002 | B1 |
6416510 | Altman et al. | Jul 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6425916 | Garrison | Jul 2002 | B1 |
6440152 | Gainor et al. | Aug 2002 | B1 |
6440164 | DiMatteo et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6468303 | Amplatz et al. | Oct 2002 | B1 |
6475239 | Campbell et al. | Nov 2002 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6485502 | Don Michael et al. | Nov 2002 | B2 |
6494909 | Greenhalgh | Dec 2002 | B2 |
6503272 | Duerig et al. | Jan 2003 | B2 |
6527800 | McGuckin et al. | Mar 2003 | B1 |
6540768 | Diaz et al. | Apr 2003 | B1 |
6562058 | Seguin et al. | May 2003 | B2 |
6592546 | Barbut et al. | Jul 2003 | B1 |
6592614 | Lenker et al. | Jul 2003 | B2 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6616675 | Evard et al. | Sep 2003 | B1 |
6616682 | Joergensen et al. | Sep 2003 | B2 |
6622604 | Chouinard et al. | Sep 2003 | B1 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6635079 | Unsworth et al. | Oct 2003 | B2 |
6652571 | White et al. | Nov 2003 | B1 |
6656206 | Corcoran et al. | Dec 2003 | B2 |
6663588 | DuBois et al. | Dec 2003 | B2 |
6663663 | Kim et al. | Dec 2003 | B2 |
6669724 | Park et al. | Dec 2003 | B2 |
6673089 | Yassour et al. | Jan 2004 | B1 |
6673109 | Cox | Jan 2004 | B2 |
6676668 | Mercereau et al. | Jan 2004 | B2 |
6676692 | Rabkin et al. | Jan 2004 | B2 |
6676698 | McGuckin et al. | Jan 2004 | B2 |
6682558 | Tu et al. | Jan 2004 | B2 |
6682559 | Myers et al. | Jan 2004 | B2 |
6689144 | Gerberding | Feb 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6692512 | Jang | Feb 2004 | B2 |
6695864 | Macoviak et al. | Feb 2004 | B2 |
6695865 | Boyle et al. | Feb 2004 | B2 |
6702851 | Chinn et al. | Mar 2004 | B1 |
6712836 | Berg et al. | Mar 2004 | B1 |
6712842 | Gifford et al. | Mar 2004 | B1 |
6712843 | Elliott | Mar 2004 | B2 |
6714842 | Ito | Mar 2004 | B1 |
6723122 | Yang et al. | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6730377 | Wang | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6752828 | Thornton | Jun 2004 | B2 |
6758855 | Fulton et al. | Jul 2004 | B2 |
6764503 | Ishimaru | Jul 2004 | B1 |
6764509 | Chinn et al. | Jul 2004 | B2 |
6767345 | St. Germain et al. | Jul 2004 | B2 |
6773454 | Wholey et al. | Aug 2004 | B2 |
6776791 | Stallings et al. | Aug 2004 | B1 |
6790218 | Jayaraman | Sep 2004 | B2 |
6790229 | Berreklouw | Sep 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6790237 | Stinson | Sep 2004 | B2 |
6792979 | Konya et al. | Sep 2004 | B2 |
6814746 | Thompson et al. | Nov 2004 | B2 |
6821297 | Snyders | Nov 2004 | B2 |
6837901 | Rabkin et al. | Jan 2005 | B2 |
6843802 | Villalobos et al. | Jan 2005 | B1 |
6849085 | Marton | Feb 2005 | B2 |
6863668 | Gillespie et al. | Mar 2005 | B2 |
6872223 | Roberts et al. | Mar 2005 | B2 |
6872226 | Cali et al. | Mar 2005 | B2 |
6875231 | Anduiza et al. | Apr 2005 | B2 |
6881220 | Edwin et al. | Apr 2005 | B2 |
6887266 | Williams et al. | May 2005 | B2 |
6890340 | Duane | May 2005 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6893460 | Spenser et al. | May 2005 | B2 |
6905743 | Chen et al. | Jun 2005 | B1 |
6908481 | Cribier | Jun 2005 | B2 |
6911036 | Douk et al. | Jun 2005 | B2 |
6911037 | Gainor et al. | Jun 2005 | B2 |
6913614 | Marino et al. | Jul 2005 | B2 |
6921397 | Corcoran et al. | Jul 2005 | B2 |
6936058 | Forde et al. | Aug 2005 | B2 |
6936067 | Buchanan | Aug 2005 | B2 |
6945997 | Huynh et al. | Sep 2005 | B2 |
6951571 | Srivastava | Oct 2005 | B1 |
6953332 | Kurk et al. | Oct 2005 | B1 |
6960220 | Marino et al. | Nov 2005 | B2 |
6960224 | Marino et al. | Nov 2005 | B2 |
6974464 | Quijano et al. | Dec 2005 | B2 |
6974476 | McGuckin et al. | Dec 2005 | B2 |
6979350 | Moll et al. | Dec 2005 | B2 |
6984242 | Campbell et al. | Jan 2006 | B2 |
7011681 | Vesely | Mar 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7025791 | Levine et al. | Apr 2006 | B2 |
7037331 | Mitelberg et al. | May 2006 | B2 |
7077861 | Spence | Jul 2006 | B2 |
7087072 | Marino et al. | Aug 2006 | B2 |
7115135 | Corcoran et al. | Oct 2006 | B2 |
7122020 | Mogul | Oct 2006 | B2 |
7144410 | Marino et al. | Dec 2006 | B2 |
7166097 | Barbut | Jan 2007 | B2 |
7175653 | Gaber | Feb 2007 | B2 |
7175654 | Bonsignore et al. | Feb 2007 | B2 |
7189258 | Johnson et al. | Mar 2007 | B2 |
7191018 | Gielen et al. | Mar 2007 | B2 |
7192435 | Corcoran et al. | Mar 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7235093 | Gregorich | Jun 2007 | B2 |
7261732 | Justino | Aug 2007 | B2 |
7320704 | Lashinski et al. | Jan 2008 | B2 |
7329279 | Haug et al. | Feb 2008 | B2 |
7374560 | Ressemann et al. | May 2008 | B2 |
7381219 | Salahieh et al. | Jun 2008 | B2 |
7402171 | Osborne et al. | Jul 2008 | B2 |
7413563 | Corcoran et al. | Aug 2008 | B2 |
7445631 | Salahieh et al. | Nov 2008 | B2 |
7455689 | Johnson | Nov 2008 | B2 |
7566336 | Corcoran et al. | Jul 2009 | B2 |
7582104 | Corcoran et al. | Sep 2009 | B2 |
7591848 | Allen | Sep 2009 | B2 |
7625364 | Corcoran et al. | Dec 2009 | B2 |
7632298 | Hijlkema et al. | Dec 2009 | B2 |
7658748 | Marino et al. | Feb 2010 | B2 |
7691115 | Corcoran et al. | Apr 2010 | B2 |
7712606 | Salahieh et al. | May 2010 | B2 |
7722666 | LaFontaine | May 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7749238 | Corcoran et al. | Jul 2010 | B2 |
7780725 | Haug et al. | Aug 2010 | B2 |
7803184 | McGuckin et al. | Sep 2010 | B2 |
7803186 | Li et al. | Sep 2010 | B1 |
7824442 | Salahieh et al. | Nov 2010 | B2 |
7824443 | Salahieh et al. | Nov 2010 | B2 |
7896915 | Guyenot et al. | Mar 2011 | B2 |
7905901 | Corcoran et al. | Mar 2011 | B2 |
7927351 | Corcoran et al. | Apr 2011 | B2 |
7972361 | Corcoran et al. | Jul 2011 | B2 |
8043368 | Crabtree | Oct 2011 | B2 |
8057540 | Letac et al. | Nov 2011 | B2 |
8092520 | Quadri | Jan 2012 | B2 |
8167935 | McGuckin et al. | May 2012 | B2 |
8236049 | Rowe et al. | Aug 2012 | B2 |
8317858 | Straubinger et al. | Nov 2012 | B2 |
8366741 | Chin et al. | Feb 2013 | B2 |
8398708 | Meiri et al. | Mar 2013 | B2 |
8425593 | Braido et al. | Apr 2013 | B2 |
8444689 | Zhang | May 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8551132 | Eskridge et al. | Oct 2013 | B2 |
8551161 | Dolan | Oct 2013 | B2 |
8562672 | Bonhoeffer et al. | Oct 2013 | B2 |
8568475 | Nguyen et al. | Oct 2013 | B2 |
8579964 | Lane et al. | Nov 2013 | B2 |
8579966 | Seguin et al. | Nov 2013 | B2 |
8623074 | Ryan | Jan 2014 | B2 |
8628566 | Eberhardt et al. | Jan 2014 | B2 |
8673000 | Tabor et al. | Mar 2014 | B2 |
8685080 | White | Apr 2014 | B2 |
8721708 | Sèguin et al. | May 2014 | B2 |
8728155 | Montorfano et al. | May 2014 | B2 |
8740962 | Finch et al. | Jun 2014 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8801779 | Seguin et al. | Aug 2014 | B2 |
8845722 | Gabbay | Sep 2014 | B2 |
8852272 | Gross et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8894702 | Quadri et al. | Nov 2014 | B2 |
8911455 | Quadri et al. | Dec 2014 | B2 |
8956404 | Börtlein et al. | Feb 2015 | B2 |
8986375 | Garde et al. | Mar 2015 | B2 |
8998976 | Gregg et al. | Apr 2015 | B2 |
9011527 | Li et al. | Apr 2015 | B2 |
9017399 | Gross et al. | Apr 2015 | B2 |
9023074 | Theobald et al. | May 2015 | B2 |
9023100 | Quadri et al. | May 2015 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9039757 | McLean et al. | May 2015 | B2 |
9060857 | Nguyen et al. | Jun 2015 | B2 |
9101467 | Eberhardt et al. | Aug 2015 | B2 |
9125740 | Morriss et al. | Sep 2015 | B2 |
9132009 | Hacohen et al. | Sep 2015 | B2 |
9155617 | Carpentier et al. | Oct 2015 | B2 |
9168130 | Straubinger et al. | Oct 2015 | B2 |
9168131 | Yohanan et al. | Oct 2015 | B2 |
9232994 | Miller | Jan 2016 | B2 |
9387071 | Tuval et al. | Jul 2016 | B2 |
9393110 | Levi et al. | Jul 2016 | B2 |
9393112 | Tuval et al. | Jul 2016 | B2 |
9414852 | Gifford et al. | Aug 2016 | B2 |
9414913 | Beith et al. | Aug 2016 | B2 |
9421083 | Eidenschink et al. | Aug 2016 | B2 |
9421098 | Gifford et al. | Aug 2016 | B2 |
9439757 | Granada et al. | Sep 2016 | B2 |
9474605 | Rowe et al. | Oct 2016 | B2 |
9474609 | Haverkost et al. | Oct 2016 | B2 |
9480556 | Revuelta et al. | Nov 2016 | B2 |
9480558 | Destefano | Nov 2016 | B2 |
9480563 | Li | Nov 2016 | B2 |
9486306 | Tegels et al. | Nov 2016 | B2 |
9492273 | Granada et al. | Nov 2016 | B2 |
9498330 | Solem | Nov 2016 | B2 |
9504564 | Nguyen et al. | Nov 2016 | B2 |
9504568 | Ryan et al. | Nov 2016 | B2 |
9510943 | Mesana et al. | Dec 2016 | B2 |
9554899 | Granada et al. | Jan 2017 | B2 |
9561103 | Granada et al. | Feb 2017 | B2 |
9579198 | Deem et al. | Feb 2017 | B2 |
9655722 | Morriss et al. | May 2017 | B2 |
9883941 | Hastings et al. | Feb 2018 | B2 |
9949824 | Bonhoeffer et al. | Apr 2018 | B2 |
10004601 | Tuval et al. | Jun 2018 | B2 |
10143552 | Wallace et al. | Dec 2018 | B2 |
20010007956 | Letac et al. | Jul 2001 | A1 |
20010039450 | Pavcnik et al. | Nov 2001 | A1 |
20010041928 | Pavcnik et al. | Nov 2001 | A1 |
20010041930 | Globerman et al. | Nov 2001 | A1 |
20010044652 | Moore | Nov 2001 | A1 |
20010044656 | Williamson et al. | Nov 2001 | A1 |
20020002396 | Fulkerson | Jan 2002 | A1 |
20020010489 | Grayzel et al. | Jan 2002 | A1 |
20020026233 | Shaknovich | Feb 2002 | A1 |
20020029981 | Nigam | Mar 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020055769 | Wang | May 2002 | A1 |
20020062135 | Mazzocchi et al. | May 2002 | A1 |
20020082609 | Green | Jun 2002 | A1 |
20020095173 | Mazzocchi et al. | Jul 2002 | A1 |
20020120328 | Pathak et al. | Aug 2002 | A1 |
20020161392 | Dubrul | Oct 2002 | A1 |
20020161394 | Macoviak et al. | Oct 2002 | A1 |
20020177766 | Mogul | Nov 2002 | A1 |
20020183781 | Casey et al. | Dec 2002 | A1 |
20020188341 | Elliott | Dec 2002 | A1 |
20020188344 | Bolea et al. | Dec 2002 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030036791 | Philipp et al. | Feb 2003 | A1 |
20030040771 | Hyodoh et al. | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030040791 | Oktay | Feb 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030055495 | Pease et al. | Mar 2003 | A1 |
20030060844 | Borillo et al. | Mar 2003 | A1 |
20030070944 | Nigam | Apr 2003 | A1 |
20030074011 | Gilboa et al. | Apr 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030109930 | Bluni et al. | Jun 2003 | A1 |
20030114912 | Sequin et al. | Jun 2003 | A1 |
20030114913 | Spenser | Jun 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030135257 | Taheri | Jul 2003 | A1 |
20030144732 | Cosgrove et al. | Jul 2003 | A1 |
20030149476 | Damm et al. | Aug 2003 | A1 |
20030149477 | Gabbay | Aug 2003 | A1 |
20030149478 | Figulla et al. | Aug 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030181850 | Diamond et al. | Sep 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030199971 | Tower et al. | Oct 2003 | A1 |
20030208224 | Broome | Nov 2003 | A1 |
20030212429 | Keegan et al. | Nov 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20030216774 | Larson | Nov 2003 | A1 |
20030225421 | Peavey et al. | Dec 2003 | A1 |
20030225445 | Derus et al. | Dec 2003 | A1 |
20030229390 | Ashton et al. | Dec 2003 | A1 |
20030233117 | Adams et al. | Dec 2003 | A1 |
20040034411 | Quijano et al. | Feb 2004 | A1 |
20040049224 | Buehlmann et al. | Mar 2004 | A1 |
20040049226 | Keegan et al. | Mar 2004 | A1 |
20040049262 | Obermiller et al. | Mar 2004 | A1 |
20040060563 | Rapacki et al. | Apr 2004 | A1 |
20040082904 | Houde et al. | Apr 2004 | A1 |
20040082967 | Broome et al. | Apr 2004 | A1 |
20040087982 | Eskuri | May 2004 | A1 |
20040093016 | Root et al. | May 2004 | A1 |
20040098022 | Barone | May 2004 | A1 |
20040098099 | McCullagh et al. | May 2004 | A1 |
20040111096 | Tu et al. | Jun 2004 | A1 |
20040116951 | Rosengart | Jun 2004 | A1 |
20040117004 | Osborne et al. | Jun 2004 | A1 |
20040122468 | Yodfat et al. | Jun 2004 | A1 |
20040127849 | Kantor | Jul 2004 | A1 |
20040127936 | Salahieh et al. | Jul 2004 | A1 |
20040127979 | Wilson et al. | Jul 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040133274 | Webler et al. | Jul 2004 | A1 |
20040138694 | Tran et al. | Jul 2004 | A1 |
20040143294 | Corcoran et al. | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040153094 | Dunfee et al. | Aug 2004 | A1 |
20040158277 | Lowe et al. | Aug 2004 | A1 |
20040167565 | Beulke et al. | Aug 2004 | A1 |
20040181140 | Falwell et al. | Sep 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040204755 | Robin | Oct 2004 | A1 |
20040215331 | Chew et al. | Oct 2004 | A1 |
20040215339 | Drasler et al. | Oct 2004 | A1 |
20040220655 | Swanson et al. | Nov 2004 | A1 |
20040225321 | Krolik et al. | Nov 2004 | A1 |
20040225354 | Allen et al. | Nov 2004 | A1 |
20040254636 | Flagle et al. | Dec 2004 | A1 |
20050033402 | Cully et al. | Feb 2005 | A1 |
20050038383 | Kelley et al. | Feb 2005 | A1 |
20050070934 | Tanaka et al. | Mar 2005 | A1 |
20050075662 | Pedersen et al. | Apr 2005 | A1 |
20050085841 | Eversull et al. | Apr 2005 | A1 |
20050085842 | Eversull et al. | Apr 2005 | A1 |
20050085843 | Opolski et al. | Apr 2005 | A1 |
20050085890 | Rasmussen et al. | Apr 2005 | A1 |
20050090846 | Pedersen et al. | Apr 2005 | A1 |
20050096692 | Linder et al. | May 2005 | A1 |
20050096734 | Majercak et al. | May 2005 | A1 |
20050096735 | Hojeibane et al. | May 2005 | A1 |
20050096736 | Osse et al. | May 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050100580 | Osborne et al. | May 2005 | A1 |
20050107822 | WasDyke | May 2005 | A1 |
20050113910 | Paniagua et al. | May 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137689 | Salahieh et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug et al. | Jun 2005 | A1 |
20050137694 | Haug et al. | Jun 2005 | A1 |
20050137696 | Salahieh et al. | Jun 2005 | A1 |
20050137697 | Salahieh et al. | Jun 2005 | A1 |
20050137701 | Salahieh et al. | Jun 2005 | A1 |
20050143809 | Salahieh et al. | Jun 2005 | A1 |
20050165352 | Henry et al. | Jul 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203615 | Forster et al. | Sep 2005 | A1 |
20050203616 | Cribier | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050209580 | Freyman | Sep 2005 | A1 |
20050228472 | Case et al. | Oct 2005 | A1 |
20050251250 | Verhoeven et al. | Nov 2005 | A1 |
20050251251 | Cribier | Nov 2005 | A1 |
20050261759 | Lambrecht et al. | Nov 2005 | A1 |
20050267560 | Bates | Dec 2005 | A1 |
20050283962 | Boudjemline | Dec 2005 | A1 |
20050288766 | Plain et al. | Dec 2005 | A1 |
20060004439 | Spenser et al. | Jan 2006 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20060015168 | Gunderson | Jan 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060116717 | Marino et al. | Jun 2006 | A1 |
20060155312 | Levine et al. | Jul 2006 | A1 |
20060161249 | Realyvasquez et al. | Jul 2006 | A1 |
20060190030 | To et al. | Aug 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060235510 | Johnson et al. | Oct 2006 | A1 |
20060247680 | Amplatz et al. | Nov 2006 | A1 |
20060253191 | Salahieh et al. | Nov 2006 | A1 |
20060259134 | Schwammenthal et al. | Nov 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060265045 | Shiu et al. | Nov 2006 | A1 |
20060271166 | Thill et al. | Nov 2006 | A1 |
20060287668 | Fawzi et al. | Dec 2006 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070055340 | Pryor | Mar 2007 | A1 |
20070088431 | Bourang et al. | Apr 2007 | A1 |
20070100440 | Figulla et al. | May 2007 | A1 |
20070112355 | Salahieh et al. | May 2007 | A1 |
20070118214 | Salahieh et al. | May 2007 | A1 |
20070203503 | Salahieh et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070244552 | Salahieh et al. | Oct 2007 | A1 |
20070255389 | Oberti et al. | Nov 2007 | A1 |
20070265656 | Amplatz et al. | Nov 2007 | A1 |
20070276324 | Laduca et al. | Nov 2007 | A1 |
20070288089 | Gurskis et al. | Dec 2007 | A1 |
20080015619 | Figulla et al. | Jan 2008 | A1 |
20080033543 | Gurskis et al. | Feb 2008 | A1 |
20080082165 | Wilson et al. | Apr 2008 | A1 |
20080140189 | Nguyen et al. | Jun 2008 | A1 |
20080140191 | Mathis et al. | Jun 2008 | A1 |
20080167682 | Corcoran et al. | Jul 2008 | A1 |
20080177381 | Navia et al. | Jul 2008 | A1 |
20080188928 | Salahieh et al. | Aug 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080208332 | Lamphere et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080234797 | Styrc | Sep 2008 | A1 |
20080288054 | Pulnev et al. | Nov 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090036768 | Seehusen et al. | Feb 2009 | A1 |
20090062841 | Amplatz et al. | Mar 2009 | A1 |
20090082803 | Adams et al. | Mar 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090182405 | Arnault De La Menardiere et al. | Jul 2009 | A1 |
20090192585 | Bloom et al. | Jul 2009 | A1 |
20090222076 | Figulla et al. | Sep 2009 | A1 |
20090254165 | Tabor et al. | Oct 2009 | A1 |
20090264759 | Byrd | Oct 2009 | A1 |
20090287290 | Macaulay et al. | Nov 2009 | A1 |
20090306768 | Quadri | Dec 2009 | A1 |
20100036479 | Hill et al. | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100094314 | Hernlund et al. | Apr 2010 | A1 |
20100114308 | Maschke | May 2010 | A1 |
20100121434 | Paul et al. | May 2010 | A1 |
20100161036 | Pintor et al. | Jun 2010 | A1 |
20100185277 | Braido et al. | Jul 2010 | A1 |
20100219092 | Salahieh et al. | Sep 2010 | A1 |
20100268204 | Tieu et al. | Oct 2010 | A1 |
20100280495 | Paul et al. | Nov 2010 | A1 |
20100284724 | Cardia | Nov 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20100312333 | Navia et al. | Dec 2010 | A1 |
20110004296 | Lutter et al. | Jan 2011 | A1 |
20110022157 | Essinger et al. | Jan 2011 | A1 |
20110034987 | Kennedy | Feb 2011 | A1 |
20110166636 | Rowe | Jul 2011 | A1 |
20110218619 | Benichou et al. | Sep 2011 | A1 |
20110245911 | Quill et al. | Oct 2011 | A1 |
20110257723 | McNamara | Oct 2011 | A1 |
20110264198 | Murray et al. | Oct 2011 | A1 |
20110295363 | Girard et al. | Dec 2011 | A1 |
20110301702 | Rust et al. | Dec 2011 | A1 |
20120016464 | Seguin | Jan 2012 | A1 |
20120059458 | Buchbinder et al. | Mar 2012 | A1 |
20120078360 | Rafiee | Mar 2012 | A1 |
20120101572 | Kovalsky et al. | Apr 2012 | A1 |
20120158129 | Duffy et al. | Jun 2012 | A1 |
20120197283 | Marchand et al. | Aug 2012 | A1 |
20120197391 | Alkhatib et al. | Aug 2012 | A1 |
20130041447 | Erb et al. | Feb 2013 | A1 |
20130041458 | Lashinski et al. | Feb 2013 | A1 |
20130253643 | Rolando et al. | Sep 2013 | A1 |
20130261737 | Costello | Oct 2013 | A1 |
20130282110 | Schweich, Jr. et al. | Oct 2013 | A1 |
20130282114 | Schweich, Jr. et al. | Oct 2013 | A1 |
20130304197 | Buchbinder et al. | Nov 2013 | A1 |
20130310923 | Kheradvar et al. | Nov 2013 | A1 |
20130331931 | Gregg et al. | Dec 2013 | A1 |
20140005771 | Braido et al. | Jan 2014 | A1 |
20140005775 | Alkhatib et al. | Jan 2014 | A1 |
20140005778 | Buchbinder et al. | Jan 2014 | A1 |
20140012368 | Sugimoto et al. | Jan 2014 | A1 |
20140012374 | Rankin | Jan 2014 | A1 |
20140052237 | Lane et al. | Feb 2014 | A1 |
20140052241 | Harks et al. | Feb 2014 | A1 |
20140052244 | Rolando et al. | Feb 2014 | A1 |
20140067048 | Chau et al. | Mar 2014 | A1 |
20140081383 | Eberhardt et al. | Mar 2014 | A1 |
20140107665 | Shellenberger et al. | Apr 2014 | A1 |
20140128726 | Quill et al. | May 2014 | A1 |
20140180391 | Dagan et al. | Jun 2014 | A1 |
20140214157 | Bortlein et al. | Jul 2014 | A1 |
20140214159 | Vidlund et al. | Jul 2014 | A1 |
20140222136 | Geist et al. | Aug 2014 | A1 |
20140236278 | Argentine et al. | Aug 2014 | A1 |
20140243954 | Shannon | Aug 2014 | A1 |
20140249622 | Carmi et al. | Sep 2014 | A1 |
20140257476 | Montorfano et al. | Sep 2014 | A1 |
20140277390 | Ratz et al. | Sep 2014 | A1 |
20140277563 | White | Sep 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140330368 | Gloss et al. | Nov 2014 | A1 |
20140379076 | Vidlund et al. | Dec 2014 | A1 |
20150039083 | Rafiee | Feb 2015 | A1 |
20150045881 | Lim | Feb 2015 | A1 |
20150066141 | Braido et al. | Mar 2015 | A1 |
20150094802 | Buchbinder et al. | Apr 2015 | A1 |
20150112430 | Creaven et al. | Apr 2015 | A1 |
20150119637 | Alvarez et al. | Apr 2015 | A1 |
20150135506 | White | May 2015 | A1 |
20150142100 | Morriss et al. | May 2015 | A1 |
20150157457 | Hacohen | Jun 2015 | A1 |
20150173897 | Raanani et al. | Jun 2015 | A1 |
20150223773 | John et al. | Aug 2015 | A1 |
20150302634 | Florent et al. | Oct 2015 | A1 |
20150351903 | Morriss et al. | Dec 2015 | A1 |
20150351904 | Cooper et al. | Dec 2015 | A1 |
20160038280 | Morriss et al. | Feb 2016 | A1 |
20160089234 | Gifford | Mar 2016 | A1 |
20160151153 | Sandstrom et al. | Jun 2016 | A1 |
20160158000 | Granada et al. | Jun 2016 | A1 |
20160158003 | Wallace et al. | Jun 2016 | A1 |
20160166384 | Olson et al. | Jun 2016 | A1 |
20160310267 | Zeng et al. | Oct 2016 | A1 |
20160310269 | Braido et al. | Oct 2016 | A1 |
20170035569 | Deem et al. | Feb 2017 | A1 |
20170042675 | Freudenthal | Feb 2017 | A1 |
20170049571 | Gifford | Feb 2017 | A1 |
20170209261 | Bortlein et al. | Jul 2017 | A1 |
20170209269 | Conklin | Jul 2017 | A1 |
20170231762 | Quadri et al. | Aug 2017 | A1 |
20170245991 | Granada et al. | Aug 2017 | A1 |
20170325941 | Wallace et al. | Nov 2017 | A1 |
20170325948 | Wallace et al. | Nov 2017 | A1 |
20170354499 | Granada et al. | Dec 2017 | A1 |
20180000580 | Wallace et al. | Jan 2018 | A1 |
20180056043 | von Oepen et al. | Mar 2018 | A1 |
20180092744 | von Oepen et al. | Apr 2018 | A1 |
20180110622 | Gregg et al. | Apr 2018 | A1 |
20180206983 | Noe et al. | Jul 2018 | A1 |
20180206985 | Noe et al. | Jul 2018 | A1 |
20180206986 | Noe et al. | Jul 2018 | A1 |
20180296325 | McLean | Oct 2018 | A1 |
20180296335 | Miyashiro | Oct 2018 | A1 |
20180296339 | McLean | Oct 2018 | A1 |
20180296341 | Noe et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
2859666 | Jun 2013 | CA |
1338951 | Mar 2002 | CN |
0409929 | Apr 1997 | EP |
1057459 | Dec 2000 | EP |
1057460 | Dec 2000 | EP |
0937439 | Sep 2003 | EP |
1340473 | Sep 2003 | EP |
1356793 | Oct 2003 | EP |
1042045 | May 2004 | EP |
0819013 | Jun 2004 | EP |
1229864 | Apr 2005 | EP |
1430853 | Jun 2005 | EP |
1059894 | Jul 2005 | EP |
1078610 | Aug 2005 | EP |
1469797 | Nov 2005 | EP |
1600121 | Nov 2005 | EP |
1616531 | Jan 2006 | EP |
1819304 | Jun 2006 | EP |
1849440 | Oct 2007 | EP |
2654624 | Oct 2013 | EP |
2124826 | Jul 2014 | EP |
WO9504556 | Feb 1995 | WO |
WO9529640 | Nov 1995 | WO |
WO9614032 | May 1996 | WO |
WO9624306 | Aug 1996 | WO |
WO9836790 | Aug 1998 | WO |
WO9857599 | Dec 1998 | WO |
WO9944542 | Sep 1999 | WO |
WO0009059 | Feb 2000 | WO |
WO0044308 | Aug 2000 | WO |
WO0044313 | Aug 2000 | WO |
WO0067661 | Nov 2000 | WO |
WO0105331 | Jan 2001 | WO |
WO0135870 | May 2001 | WO |
WO0164137 | Sep 2001 | WO |
WO0236048 | May 2002 | WO |
WO0241789 | May 2002 | WO |
WO02100297 | Dec 2002 | WO |
WO03003943 | Jan 2003 | WO |
WO03003949 | Jan 2003 | WO |
WO03011195 | Feb 2003 | WO |
WO03030776 | Apr 2003 | WO |
WO03015851 | Nov 2003 | WO |
WO03094797 | Nov 2003 | WO |
WO2004014256 | Feb 2004 | WO |
WO2004019811 | Mar 2004 | WO |
WO2004026117 | Apr 2004 | WO |
WO2004041126 | May 2004 | WO |
WO2004047681 | Jun 2004 | WO |
WO2004066876 | Aug 2004 | WO |
WO2004082536 | Sep 2004 | WO |
WO2005037361 | Apr 2005 | WO |
WO2005084595 | Sep 2005 | WO |
WO2005087140 | Sep 2005 | WO |
WO2009072122 | Jun 2009 | WO |
WO2009108615 | Sep 2009 | WO |
WO2009132187 | Oct 2009 | WO |
WO2009137755 | Nov 2009 | WO |
WO2010057262 | May 2010 | WO |
WO2010141847 | Dec 2010 | WO |
WO2011057087 | May 2011 | WO |
WO2011081997 | Jul 2011 | WO |
WO2012161786 | Nov 2012 | WO |
WO2013158608 | Oct 2013 | WO |
WO2013158613 | Oct 2013 | WO |
WO2014121280 | Aug 2014 | WO |
WO2014144247 | Sep 2014 | WO |
WO2015127283 | Aug 2015 | WO |
WO2016168609 | Oct 2016 | WO |
WO2016183523 | Nov 2016 | WO |
WO2017035002 | Mar 2017 | WO |
WO2017035434 | Mar 2017 | WO |
WO2017122109 | Jul 2017 | WO |
WO2017167759 | Oct 2017 | WO |
WO2017218877 | Dec 2017 | WO |
2019023385 | Jan 2019 | WO |
Entry |
---|
Andersen et al.; Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs; Euro. Heart J.; 13(5): 704-708; May 1992. |
Atwood et al.; Insertion of Heart Valves by Catheterization; Project Supervised by Prof. S. Muftu of Northeastern University, May 2002: pp. 36-40. |
Bodnar et al. Replacement Cardiac Valves; (Chapter 13) Extinct cardiac valve prostheses. Pergamon Publishing Corporation. New York, Aug. 1991: pp. 307-322. |
Boudjemline et al. Percutaneous implantation of a biological valve in the aorta to treat aortic valve insufficiency—a sheep study.f Med Sci. Monit; Apr. 2002; vol. 8, No. 4: BR113-116. |
Boudjemline et al. “Percutaneous implantation of a valve in the descending aorta in lambs.” Euro. Heart J; Jul. 2002; 23: 1045-1049. |
Boudjemline et al. “Percutaneous pulmonary valve replacement in a large right ventricular outflow tract: an experimental study.” Journal of the Americal College of Cardiology; Mar. 2004; vol. 43(6): 1082-1087. |
Boudjemline et al. “Percutaneous valve insertion: A new approach?” J. of Thoracic and Cardio. Surg; Mar. 2003; 125(3): 741-743. |
Boudjemline et al. “Steps Toward Percutaneous Aortic Valve Replacement.” Circulation; Feb. 2002; 105: 775-778. |
Cribier et al. “Early Experience with Percutaneous Transcatheter Implantation of Heart Valve Prosthesis for the Treatment of End-Stage Inoperable Patients with Calcific Aortic Stenosis.” J. of Am. Coll. of Cardio; Feb. 2004; 43(4): 698-703. |
Cribier et al. “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description.” Circulation; Dec. 2002; 106: 3006-3008. |
Cribier et al. “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case.” (slide presentation); TCT 2002 (conference); 16 pgs.; Washington D.C.; Sep. 24-28, 2002. |
Ferrari et al. “Percutaneous transvascular aortic valve replacement with self expanding stent-valve device.” Poster from the presentation given at SMIT 2000, 12th International Conference. 1 pg. Sep. 5, 2000. |
Hijazi “Transcatheter Valve Replacement: A New Era of Percutaneous Cardiac Intervention Begins.” J. of Am. College of Cardio; Mar. 2004; 43(6): 1088-1089. |
Huber et al. “Do valved stents compromise coronary flow?” European Journal of Cardio-thoracic Surgery; May 2004; vol. 25: 754-759. |
Knudsen et al. “Catheter-implanted prosthetic heart valves.” Int'l J. of Art. Organs; May 1993; 16(5): 253-262. |
Kort et al. “Minimally invasive aortic valve replacement: Echocardiographic and clinical results.” Am. Heart J; Sep. 2001; 142(3): 476-481. |
Love et al. fThe Autogenous Tissue Heart Valve: Current Stat.f Journal of Cardiac Surgery; Dec. 1991; 6(4): 499-507. |
Lutter et al. “Percutaneous aortic valve replacement: An experimental study. I. Studies on implantation.” J. of Thoracic and Cardio. Surg; Apr. 2002; 123(4): 768-776. |
Moulopoulos et al. “Catheter-Mounted Aortic Valves.” Annals of Thoracic Surg; May 1971; 11(5): 423-430. |
Paniagua et al. “Percutaneous heart valve in the chronic in vitro testing model.” Circulation; Sep. 2002; 106: e51-e52. |
Paniagua et al. Heart Watch (2004). Texas Heart Institute. Spring Mar. 2004 Edition: 8 pages. |
Pavcnik et al. “Percutaneous bioprosthetic veno valve: A long-term study in sheep.” J. of Vascular Surg; Mar. 2002; 35(3): 598-603. |
Phillips et al. “A Temporary Catheter-Tip Aortic Valve: Hemodynamic Effects on Experimental Acute Aortic Insufficiency.” Annals of Thoracic Surg; Feb. 1976; 21(2): 134-136. |
Sochman et al. “Percutaneous Transcatheter Aortic Disc Valve Prosthesis Implantation: A Feasibility Study.” Cardiovasc. Intervent. Radiol; Sep.-Oct. 2000; 23: 384-388. |
Solvay; Novel revivent(tm) Myocardial anchoring system from bioVentrix uses solvay's zeniva® PEEK in tether component; 3 pages retrieved from the internet (http://www.solvay.com/en/media/press_release/20131205-novel-revivent-myocardial-anchoring-system-bioventrix-uses-zenivapeek.html); (Press Release); on Aug. 10, 2017. |
Stuart, M. “In Heart Valves, A Brave, New Non-Surgical World.” Start-Up; Feb. 2004: 9-17. |
Vahanian et al. “Percutaneous Approaches to Valvular Disease.” Circulation; Apr. 2004; 109: 1572-1579. |
Van Herwerden et al., “Percutaneous valve implantation: back to the future?” Euro. Heart J; Sep. 2002; 23(18): 1415-1416. |
Zhou et al. “Self-expandable valved stent of large size: off-bypass implantation in pulmonary position.” Eur. J. Cardiothorac; Aug. 2003; 24: 212-216. |
Gregg et al.; U.S. Appl. No. 15/573,555 entitled “Cardiac valve delivery devices and systems,” filed Nov. 13, 2017. |
Number | Date | Country | |
---|---|---|---|
20180206984 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62513877 | Jun 2017 | US | |
62449498 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/014902 | Jan 2018 | US |
Child | 15909610 | US |