Replacement prosthetic heart valves

Information

  • Patent Grant
  • 10130468
  • Patent Number
    10,130,468
  • Date Filed
    Wednesday, January 11, 2017
    8 years ago
  • Date Issued
    Tuesday, November 20, 2018
    6 years ago
Abstract
A two-stage or component-based valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve comprises a support structure that is deployed at a treatment site. The prosthetic valve further comprises a valve member configured to be quickly connected to the support structure. The support structure may take the form of a stent that is expanded at the site of a native valve. If desired, the native leaflets may remain and the stent may be used to hold the native valve open. In this case, the stent may be balloon expandable and configured to resist the powerful recoil force of the native leaflets. The support structure is provided with a coupling means for attachment to the valve member, thereby fixing the position of the valve member in the body. The valve member may be a non-expandable type, or may be expandable from a compressed state to an expanded state. The system is particularly suited for rapid deployment of heart valves in a conventional open-heart surgical environment.
Description
FIELD OF THE INVENTION

The present invention generally relates to prosthetic valves for implantation in body channels. More particularly, the present invention relates to prosthetic heart valves configured to be surgically implanted in less time than current valves.


BACKGROUND OF THE INVENTION

Due to aortic stenosis and other heart valve diseases, thousands of patients undergo surgery each year wherein the defective native heart valve is replaced by a prosthetic valve, either bioprosthetic or mechanical. When the valve is replaced, surgical implantation of the prosthetic valve typically requires an open-chest surgery during which the heart is stopped and patient placed on cardiopulmonary bypass (a so-called “heart-lung machine”). In one common surgical procedure, the diseased native valve leaflets are excised and a prosthetic valve is sutured to the surrounding tissue at the valve annulus. Because of the trauma associated with the procedure and the attendant duration of extracorporeal blood circulation, some patients do not survive the surgical procedure or die shortly thereafter. It is well known that the risk to the patient increases with the amount of time required on extracorporeal circulation. Due to these risks, a substantial number of patients with defective valves are deemed inoperable because their condition is too frail to withstand the procedure. By some estimates, about 30 to 50% of the subjects suffering from aortic stenosis who are older than 80 years cannot be operated on for aortic valve replacement.


Because of the drawbacks associated with conventional open-heart surgery, percutaneous and minimally-invasive surgical approaches are garnering intense attention. In one technique, a prosthetic valve is configured to be implanted in a much less invasive procedure by way of catheterization. For instance, U.S. Pat. No. 5,411,552 to Andersen et al. describes a collapsible valve percutaneously introduced in a compressed state through a catheter and expanded in the desired position by balloon inflation. Although these remote implantation techniques have shown great promise for treating certain patients, replacing a valve via surgical intervention is still the preferred treatment procedure. One hurdle to the acceptance of remote implantation is resistance from doctors who are understandably anxious about converting from an effective, if imperfect, regimen to a novel approach that promises great outcomes but is relatively foreign. In conjunction with the understandable caution exercised by surgeons in switching to new regimens of heart valve replacement, regulatory bodies around the world are moving slowly as well. Numerous successful clinical trials and follow-up studies are in process, but much more experience with these new technologies will be required before they are completely accepted. One question that remains unanswered is whether the new expandable valves will have the same durability as conventional prosthetic heart valves.


Accordingly, there is a need for an improved device and associated method of use wherein a prosthetic valve can be surgically implanted in a body channel in a more efficient procedure that reduces the time required on extracorporeal circulation. It is desirable that such a device and method be capable of helping patients with defective valves that are deemed inoperable because their condition is too frail to withstand a lengthy conventional surgical procedure. The present invention addresses this need.


SUMMARY OF THE INVENTION

Various embodiments of the present invention provide prosthetic valves and methods of use for replacing a defective native valve in a human heart. Certain embodiments are particularly well adapted for use in a surgical procedure for quickly and easily replacing a heart valve while minimizing time using extracorporeal circulation (i.e., bypass pump).


In one embodiment, a method for treating a native aortic valve in a human heart, comprises: 1) accessing a native valve through an opening in a chest; 2) advancing an expandable support structure to the site of a native aortic valve, the support structure being radially compressed during the advancement; 3) radially expanding the support structure at the site of the native aortic valve; and 4) mechanically coupling a valve member to the expanded support structure, wherein the valve member replaces the function of the native aortic valve. A further understanding of the nature and advantages of the present invention are set forth in the following description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numerals.


In one variation, the support structure is a stent, which may comprise a metallic frame. In one embodiment, at least a portion of the metallic frame is made of stainless steel. In another embodiment, at least a portion of the metallic frame is made of a shape memory material. The valve member may take a variety of forms. In one preferred embodiment, the valve member comprises biological tissue. The valve member further comprises a coupling portion configured to be connected to the support structure in a quick and efficient manner. In another variation of this method, the metallic frame is viewed under fluoroscopy during advancement of the prosthetic valve toward the native aortic valve.


The native valve leaflets may be removed before delivering the prosthetic valve. Alternatively, the native leaflets may be left in place to reduce surgery time and to provide a stable base for fixing the support structure within the native valve. In one advantage of this method, the native leaflets recoil inward to enhance the fixation of the metallic frame in the body channel. When the native leaflets are left in place, a balloon or other expansion member may be used to push the valve leaflets out of the way and thereby dilate the native valve before implantation of the support structure.


In another preferred embodiment, a method for treating a native aortic valve in a human heart, comprises accessing a native valve through an opening in a chest; advancing an expandable member to a position within the native aortic valve, the native aortic valve having at least two valvular leaflets; dilating the native aortic valve by expanding the expandable member to push aside the valvular leaflets of the native aortic valve; collapsing the expandable member and withdrawing the expandable member from the native aortic valve; advancing an expandable support structure to a position within the dilated native aortic valve, the support structure being radially compressed during the advancement; radially expanding the support structure within the dilated aortic valve, wherein the expanded support structure maintains the native aortic valve in the dilated condition; and coupling a valve member to the expanded support structure, wherein the valve member replaces the function of the native aortic valve.


In another aspect, an improved prosthetic valve comprises an expandable stent sized for implantation at the site of a native aortic valve, the stent having a coupling means (e.g., a plurality of tines extending from a first end thereof); and a valve member comprising three leaflets mounted on a base portion. The coupling means is configured for attachment to the valve member. Alternatively, the coupling means may be provided on the valve member or on both the stent and valve member.


A particularly useful configuration of the present invention is a two-stage prosthetic heart valve, comprising an expandable anchoring member sized to contact a heart valve annulus in an expanded state and a substantially non-expandable valve member configured for connection to the anchoring member. Desirably, the valve member includes a base ring surrounding an inflow end thereof, and the anchoring member comprises a tubular structure having connectors adapted to engage the base ring. The connectors may comprise prongs that change shape and engage the base ring. For example, the base ring may be made of a suture-permeable material, and the prongs are configured to pierce the base ring, or the prongs are shaped to wrap around the base ring.


In an exemplary embodiment, the valve member includes a plurality of discrete connectors spaced around a peripheral inflow end thereof, and the anchoring member comprises a tubular structure having a plurality of mating connectors spaced around a peripheral outflow end thereof. The connectors on the valve member and anchoring member engage one another by displacing the valve member toward the anchoring member. For instance, the connectors on either the valve member or anchoring member comprise latches, and the connectors on the other of the valve member or anchoring member comprise brackets, the latches configured to engage and lock to the brackets upon axial movement of the latches and brackets toward one another. Additionally, a plurality of guide filaments may be provided, at least one for each of the connectors on the anchoring member and slidingly received by the associated connector on the valve member. The guide filaments guide the valve member in proper orientation with respect to the anchoring member to ensure engagement of the mating connectors.


Desirably, the anchoring member comprises a stent having a wider outflow end than an inflow end thereof, wherein the valve member comprises a base ring surrounding an inflow end thereof that fits within the outflow end of the stent. In one embodiment, the valve member includes a suture-permeable base ring surrounding an inflow end thereof, and the anchoring member comprises a tubular structure having a suture-permeable fixation ring attached thereto, wherein the valve member connects to the anchoring member via sutures looped between the base ring and the fixation ring.


Another embodiment of the present invention comprises a two-stage prosthetic heart valve, having an expandable anchoring member sized to contact a heart valve annulus in an expanded state, a valve member, and an adapter sized to surround the valve member and engage the anchoring member, to connect the valve member and anchoring member. The adapter may be an annular ring or a wireform-shaped member that closely surrounds and conforms to cusps and commissures of a flexible leaflet valve member.


Whatever its shape, the adapter desirably includes a plurality of discrete connectors, and the anchoring member comprises a tubular structure having a plurality of mating connectors spaced around a peripheral outflow end thereof. The connectors on the adapter and anchoring member are configured to engage one another by displacing the adapter toward the anchoring member. For example, the connectors on either the adapter or anchoring member comprise latches, and the connectors on the other of the adapter or anchoring member comprise brackets, the latches being configured to engage and lock to the brackets upon axial movement of the latches and brackets toward one another. In addition, the valve member preferably has a base ring surrounding an inflow end thereof, and the adapter further includes a plurality of connectors adapted to engage and couple the adapter directly to the base ring.


Another aspect of the present invention is a system for retrofitting a conventional prosthetic heart valve, comprising an off-the-shelf, non-expandable prosthetic heart valve having a sewing ring capable of being implanted using sutures through the sewing ring in an open-heart procedure. An expandable anchoring member contacts and anchors to a heart valve annulus in an expanded state. Coupling means connects the prosthetic heart valve to the anchoring member, the prosthetic heart valve thus being attached to the heart valve annulus via the anchoring member.


In the system for retrofitting a conventional prosthetic heart valve, the anchoring member may comprise a tubular structure having a suture-permeable fixation ring attached thereto, wherein the coupling means comprises sutures looped between the base ring and the fixation ring. An adapter sized to surround the heart valve engages the anchoring member, to connect the heart valve and anchoring member. The adapter may be annular or wireform-shaped. Desirably, the adapter includes a plurality of discrete connectors, and the anchoring member comprises a tubular structure having a plurality of mating connectors spaced around a peripheral outflow end thereof, the connectors on the adapter and anchoring member being configured to engage one another by displacing the adapter toward the anchoring member.


A surgical method of implanting a prosthetic heart valve of the present invention in a patient involves providing a two-stage prosthetic heart valve comprising an expandable anchoring member and a valve member, the anchoring member being sized to contact a heart valve annulus in an expanded state and the valve member being configured to connect to the anchoring member. The patient is prepared for surgery by placing him/her on cardiopulmonary bypass. The surgeon creates a direct access pathway to the heart valve annulus that preferably permits direct (i.e., naked eye) visualization of the heart valve annulus. The anchoring member is delivered and expanded to contact the valve annulus, and the valve member is delivered and connected to the anchoring member. Preferably, the direct access pathway is created by performing open-heart surgery. The method may include balloon-expanding the anchoring member. Further, the valve member may be expandable and the method includes delivering the valve member in a compressed state and expanding it prior to connecting it to the anchoring member.


In one embodiment, the valve member and the anchoring member are provided with mating connectors, and the step of delivering and connecting the valve member to the anchoring member comprises axially displacing the valve member toward the anchoring member so that the mating connectors engage. In another embodiment, the anchoring member comprises a stent having an outflow end larger than an inflow end thereof, and the valve member comprises a non-expandable valve member having a base ring on an inflow end thereof sized to fit within the outflow end of the stent. The anchoring member may be provided with bendable connectors on an outflow end thereof, and the method includes causing the connectors to bend inward and engage a peripheral base ring of the valve member. For example, a bending tool may be used to bend connectors inward.


Another surgical method of implanting a two-stage prosthetic heart valve in a patient of the present invention includes providing an expandable anchoring member sized to contact a heart valve annulus in an expanded state, delivering and attaching the anchoring member to the heart valve annulus, providing a non-expandable valve member, and delivering and connecting the valve member to the anchoring member. The valve member and the anchoring member may be provided with mating connectors, and the step of delivering and connecting the valve member to the anchoring member comprises axially displacing the valve member toward the anchoring member so that the mating connectors engage. Desirably, the anchoring member comprises a stent having an outflow end larger than an inflow end thereof, and wherein the valve member comprises a base ring on an inflow end thereof sized to fit within the outflow end of the stent. The anchoring member may be provided with bendable connectors on an outflow end thereof, and the method includes causing the connectors to bend inward and engage a peripheral base ring of the valve member, such as by using a bending tool.


In an exemplary embodiment, the valve member includes a base ring on an inflow end thereof, and the method further includes providing an adapter sized to surround the valve member and seat on the base ring. The method therefore includes the step of delivering and connecting the valve member and coupling the adapter to the anchoring member. For instance, the adapter includes a plurality of discrete connectors, and the anchoring member comprises a tubular structure having a plurality of mating connectors spaced around a peripheral outflow end thereof. The step of coupling the adapter to the anchoring member comprises displacing the adapter toward the anchoring member to engage the mating connectors thereon. Additionally, the adapter may further have a plurality of connectors adapted to engage and couple the adapter directly to the base ring, and the method includes causing the connectors to engage the base ring.


In a still further surgical method of implanting a prosthetic heart valve in a patient, a prosthetic heart valve and a separate expandable anchoring member are provided. The prosthetic heart valve and anchoring member are positioned within a valve dilator/delivery tube having an exterior diameter sized to dilate a heart valve annulus. The valve dilator/delivery tube advances to the heart valve annulus, and the annulus is dilated using the valve dilator/delivery tube. The anchoring member is expulsed from the tube and expanded to contact the heart valve annulus. The prosthetic heart valve is then expulsed from the valve dilator/delivery tube, and connected to the anchoring member.


Another method of the present invention comprises retrofitting and rapidly implanting a conventional prosthetic heart valve in a patient. The method includes providing an off-the-shelf non-expandable prosthetic heart valve having a sewing ring capable of being implanted using sutures through the sewing ring in an open-heart procedure. An expandable tissue anchoring member sized to contact a heart valve annulus in an expanded state is delivered and expanded into contact with the heart valve annulus. Finally, the prosthetic heart valve is delivered and connected to the tissue anchoring member.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be explained and other advantages and features will appear with reference to the accompanying schematical drawings wherein:



FIG. 1 is an exploded perspective view illustrating a preferred embodiment of a two-stage prosthetic valve comprising a stent portion and a valve member, wherein the valve member may be quickly and easily connected to the stent portion.



FIG. 2 illustrates the valve embodiment of FIG. 1 after the valve member has been attached to the stent portion by crimping portions of the stent over the commissural points of the valve member.



FIG. 3 is an exploded perspective view of an alternative embodiment wherein the stent is provided with a plurality of tines configured to be crimped to a ring along the base of the valve member.



FIG. 4 illustrates the valve embodiment of FIG. 3 after the valve member has been attached to the stent portion by crimping the tines on to the valve member.



FIG. 4A is a sectional view through one side of the prosthetic heart valve of FIG. 4 taken along line 4A-4A and showing one configuration of tines connecting through a sewing ring portion of the valve member.



FIG. 5 is an exploded perspective view of an alternative embodiment wherein slotted posts are provided on the stent for coupling to protruding members on the valve member.



FIG. 5A is an enlarged view of one of the slotted posts provided on the stent of FIG. 5.



FIGS. 6 and 6A illustrate another alternative embodiment similar to FIGS. 5 and 5A wherein the posts are configured with L-shaped slots for locking the valve member to the stent.



FIG. 7 is a sectional view through a body channel that illustrates an alternative embodiment of prosthetic heart valves wherein first and second stents are provided for anchoring a valve member within the body channel.



FIG. 8 is an exploded perspective view of an alternative embodiment wherein the stent has a small diameter and a large diameter and wherein an expandable valve member is deployed within the large diameter.



FIG. 9A is an exploded perspective view of another alternative embodiment of a two part prosthetic valve wherein a ring portion along the base of the valve member snaps into a groove formed in the stent.



FIG. 9B illustrates the embodiment of FIG. 9A with the valve member connected to the stent.



FIG. 10 is an exploded perspective view of another alternative embodiment wherein the valve member and the stent are provided with corresponding threaded portions for threadably engaging the valve member to the stent.



FIG. 11 is an exploded perspective view of an alternative prosthetic heart valve of the present invention having a valve member, stent, and a threaded locking ring for coupling the two together.



FIGS. 12A and 12B are exploded and assembled perspective views of an alternative two-stage prosthetic heart valve having a valve member and tubular, expandable stent with tabs on an outflow end for coupling to the valve member.



FIGS. 12C and 12D are sectional views through one side of the prosthetic heart valve of FIG. 12B schematically illustrating an exemplary tool that may be used to bend the tabs on the outflow end of the stent around a sewing ring of the valve member.



FIGS. 13A and 13B are exploded and assembled perspective views of an alternative prosthetic heart valve of the present invention wherein a valve member and stent with tabs are coupled together in conjunction with a locking ring.



FIGS. 14A and 14B are exploded and assembled perspective views of a still further prosthetic heart valve wherein a valve member and tubular, expandable stent are coupled together using a wireform-shaped adapter having tabs.



FIGS. 15A and 15B are exploded and assembled perspective views of a prosthetic heart valve having a valve member and stent with locking bands on an outflow end.



FIGS. 16A and 16B are exploded and assembled perspective views of an alternative prosthetic heart valve wherein a stent exhibits locking clips on an outflow end that are guided through mating slits on a locking ring to join the stent to a valve member.



FIGS. 17A and 17B are exploded and assembled perspective views of an alternative prosthetic heart valve wherein a stent has brackets on an outflow end that receive guided locking clips on a locking ring to join the stent to a valve member.



FIG. 18 is a perspective view of an alternative stent for use in a prosthetic heart valve of the present invention.



FIG. 19 is a detailed sectional view through an inflow side of a prosthetic heart valve utilizing the stent of FIG. 18 and showing a valve member base ring captured between two sets of prongs.



FIG. 20 is a perspective exploded view of a prosthetic heart valve having a tubular stent with upstanding tines and a valve member with an additional adapter ring arranged around a base ring.



FIG. 21 is an exploded perspective view of an exemplary prosthetic heart valve having an expandable stent and non-expandable valve member connected by an array of parachute sutures being removed from a storage jar.



FIGS. 22A-22C are several views of the implantation of the prosthetic heart valve of FIG. 21 assisted by a tubular valve dilator/delivery tube.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention attempts to overcome drawbacks associated with conventional, open-heart surgery, while also adopting some of the techniques of newer technologies which decrease the duration of the treatment procedure. The prosthetic heart valves of the present invention are primarily intended to be delivered and implanted using conventional surgical techniques, including the aforementioned open-heart surgery. There are a number of approaches in such surgeries, all of which result in the formation of a direct access pathway to the particular heart valve annulus. For clarification, a direct access pathway is one that permits direct (i.e., naked eye) visualization of the heart valve annulus. In addition, it will be recognized that embodiments of the two-stage prosthetic heart valves described herein may also be configured for delivery using percutaneous approaches, and those minimally-invasive surgical approaches that require remote implantation of the valve using indirect visualization.


One primary aspect of the present invention is a two-stage prosthetic heart valve wherein the tasks of implanting a tissue anchor and a valve member are somewhat separated and certain advantages result. For example, a two-stage prosthetic heart valve of the present invention may have an expandable tissue anchoring member that is secured in the appropriate location using a balloon or other expansion technique. A valve member is then coupled to the tissue anchoring member in a separate or sequential operation. By utilizing an expandable anchoring member, the duration of the initial anchoring operation is greatly reduced as compared with a conventional sewing procedure utilizing an array of sutures. The expandable anchoring member may simply be radially expanded outward into contact with the implantation site, or may be provided with additional anchoring means, such as barbs. The operation may be carried out using a conventional open-heart approach and cardiopulmonary bypass. In one advantageous feature, the time on bypass is greatly reduced due to the relative speed of implanting the expandable anchoring member.


For definitional purposes, the term “tissue anchoring member,” or simply “anchoring member” refers to a structural component of a heart valve that is capable of attaching to tissue of a heart valve annulus. The anchoring members described herein are most typically tubular stents, or stents having varying diameters. A stent is normally formed of a biocompatible metal wire frame, such as stainless steel or Nitinol. Other anchoring members that could be used with valves of the present invention include rigid rings, spirally-wound tubes, and other such tubes that fit tightly within a valve annulus and define an orifice therethrough for the passage of blood, or within which a valve member is mounted. It is entirely conceivable, however, that the anchoring member could be separate clamps or hooks that do not define a continuous periphery. Although such devices sacrifice some dynamic stability, these devices can be configured to work well in conjunction with a particular valve member.


The term “valve member” refers to that component of a heart valve that possesses the fluid occluding surfaces to prevent blood flow in one direction while permitting it in another. As mentioned above, various constructions of valve numbers are available, including those with flexible leaflets and those with rigid leaflets or a ball and cage arrangement. The leaflets may be bioprosthetic, synthetic, or metallic.


A primary focus of the present invention is the two-stage prosthetic heart valve having a first stage in which an anchoring member secures to a valve annulus, and a subsequent second stage in which a valve member connects to the anchoring member. It should be noted that these stages can be done almost simultaneously, such as if the two components were mounted on the same delivery device, or can be done in two separate clinical steps, with the anchoring member deployed using a first delivery device, and then the valve member using another delivery device. It should also be noted that the term “two-stage” does not necessarily limit the valve to just two parts, as will be seen below.


Another potential benefit of a two-stage prosthetic heart valve, including an anchoring member and a valve member, is that the valve member may be replaced after implantation without replacing the anchoring member. That is, an easily detachable means for coupling the valve member and anchoring member may be used that permits a new valve member to be implanted with relative ease. Various configurations for coupling the valve member and anchoring member are described herein.


It should be understood, therefore, that certain benefits of the invention are independent of whether the anchoring member or valve member are expandable or not. That is, various embodiments illustrate an expandable anchoring member coupled to a conventional valve member. However, the same coupling structure may be utilized for a non-expandable anchoring member and conventional valve member. Additionally, although a primary embodiment of the present invention is an expandable anchoring member coupled with a conventional valve member, both could be expandable and introduced percutaneously or through a minimally-invasive approach. Therefore, the invention should not be construed as being limited in these regards, but instead should be interpreted via the appended claims.


As a point of further definition, the term “expandable” is used herein to refer to a component of the heart valve capable of expanding from a first, delivery diameter to a second, implantation diameter. An expandable structure, therefore, does not mean one that might undergo slight expansion from a rise in temperature, or other such incidental cause. Conversely, “non-expandable” should not be interpreted to mean completely rigid or a dimensionally stable, as some slight expansion of conventional “non-expandable” heart valves, for example, may be observed.


In the description that follows, the term “body channel” is used to define a blood conduit or vessel within the body. Of course, the particular application of the prosthetic heart valve determines the body channel at issue. An aortic valve replacement, for example, would be implanted in, or adjacent to, the aortic annulus. Likewise, a mitral valve replacement will be implanted at the mitral annulus. Certain features of the present invention are particularly advantageous for one implantation site or the other. However, unless the combination is structurally impossible, or excluded by claim language, any of the heart valve embodiments described herein could be implanted in any body channel.


With reference now to FIG. 1, one preferred embodiment of an improved prosthetic valve 10 generally includes an expandable anchoring member or stent 20 and a valve member 30. The stent provides a support structure for anchoring the valve member within a body lumen. Although a stent is described for purposes of illustration, any support structure capable of anchoring the valve member to the body lumen may be used. As will be described in more detail below, the prosthetic valve is configured such that the valve member may be quickly and easily connected to the stent. It should be noted here, that the anchoring members or stents described herein can be a variety of designs, including having the diamond-shaped openings shown or other configurations detailed below. The material depends on the mode of delivery (i.e., balloon- or self-expanding), and the stent can be bare strut material or covered to promote in-growth and/or to reduce paravalvular leakage. For example, a suitable cover that is often used is a sleeve of fabric such as Dacron.


The stent may be securely deployed in the body channel using an expandable member, such as, for example, a balloon. Because the stent is expanded before the valve member is attached, the valve member will not be damaged or otherwise adversely affected during the stent deployment. After the stent has been deployed in the body channel, the valve member may be connected to the stent. In one preferred application, the two-stage prosthetic valve is well-suited for use in heart valve replacement. In this application, the stent may be advantageously used to push the native leaflets aside such that the valve member can replace the function of the native valve. The anchoring members or stents described herein could include barbs or other such tissue anchors to further secure the stent to the tissue. In one preferred embodiment, the barbs are deployable (e.g., configured to extend or be pushed radially outward) by the expansion of a balloon.


In another advantageous feature, the two-stage prosthetic valve illustrated in FIG. 1 provides a device and method for substantially reducing the time of the surgical procedure. This reduces the time required on extracorporeal circulation and thereby substantially reduces the risk to the patient. The surgical time is reduced because the stent may be deployed quickly and the valve member may be attached to the stent quickly. This simplifies and reduces the surgical time as compared with replacement valves that are sutured to the tissue after removing the native leaflets.


When used for aortic valve replacement, the valve member 30 preferably has three leaflets 36 which provide the valvular function for replacing the function of the native valve. In various preferred embodiments, the valve leaflets may be taken from another human heart (cadaver), a cow (bovine), a pig (porcine valve) or a horse (equine). In other preferred variations, the valve member may comprise mechanical components rather than biological tissue. In one preferred embodiment, the valve is compressible in diameter. Accordingly, the valve may be reduced in diameter for delivery into the stent and then expanded. The three leaflets are supported by three commissural posts 34. A ring 32 is provided along the base portion of the valve member.


With continued reference to FIG. 1, the stent 20 is provided with two diameters. A lower portion 22 has a small diameter and an upper portion 24 has a large diameter. The lower portion 22 is preferably sized to be deployed at the location of the native valve (e.g., along the aortic annulus). The upper portion 24 expands outwardly into the perspective cavity adjacent the native valve. For example, in an aortic valve replacement, the upper portion 24 expands into the area of the sinus cavities just downstream from the aortic annulus. Of course, care should be taken to orient the stent 20 so as not to block the coronary openings. The stent body is preferably configured with sufficient radial strength for pushing aside the native leaflets and holding the native leaflets open in a dilated condition. The native leaflets provide a stable base for holding the stent, thereby helping to securely anchor the stent in the body. To further secure the stent to the surrounding tissue, the lower portion may be configured with anchoring members, such as, for example, hooks or barbs (not shown).


The upper portion 24 of the stent 20 has a larger diameter sized for receiving the valve member 30. A transition region 28 between the upper and lower portions of the stent body may be advantageously used to provide a seat for the bottom end of the valve member. The stent may further comprise a ridge (not shown) along an inner wall for providing a more definite seat portion within the stent.


With continued reference to FIG. 1, the prosthetic valve 10 is provided with a coupling mechanism for securing the valve member 30 to the stent 20. The coupling mechanism may take a variety of different forms. However, in the illustrated embodiment, the stent body comprises three posts 26 which correspond to the three commissural points 34 on the valve member. The three posts 26 are preferably formed of a malleable material such that the posts 26 may be crimped over the commissural points on the valve member. A bending tool (not shown) may be provided for crimping the posts 26 over the commissures of the valve member, or the posts 26 may be hinged or made of the shape memory material so as to curl once implanted in the body. With reference to FIG. 2, the prosthetic valve 10 is illustrated in the assembled condition with the posts 26 crimped over the commissural points 34 of the valve member. In one variation, the three posts on the stent are formed with a recess for receiving the commissural points, such as in a snap-fit relationship.


In a preferred embodiment, the stent 20 is expandable, but the valve member 30 is a conventional, non-expandable prosthetic heart valve, such as the Carpentier-Edwards PERIMOUNT Magna® Aortic Heart Valve available from Edwards Lifesciences of Irvine, Calif. In this sense, a “conventional” prosthetic heart valve is an off-the-shelf (i.e., suitable for stand-alone sale and use) non-expandable prosthetic heart valve having a sewing ring capable of being implanted using sutures through the sewing ring in an open-heart procedure. An implant procedure therefore involves first delivering and expanding the stent 20 and the aortic annulus, and then coupling the valve member 30 thereto. Because the valve member 30 is non-expandable, the entire procedure is typically done using the conventional open-heart technique. However, because the stent 20 is delivered and implanted by simple expansion, the entire operation takes less time. This hybrid approach will also be much more comfortable to surgeons familiar with the open-heart procedures and conventional heart valves. Moreover, the relatively small change in procedure coupled with the use of proven heart valves should create a much easier regulatory path than strictly expandable, remote procedures.


A variation of the embodiment described in FIGS. 1 and 2 may incorporate an expandable stent 20 and an expandable valve member 30. Although not shown, the valve member 30 may be capable of expansion within the body, such as the Cribier-Edwards Aortic Percutaneous Heart Valve, also available from Edwards Lifesciences. Therefore, the valve 10 may be implanted without an open-heart procedure, and even without stopping heart. In such a remote procedure, the three posts 26 on the stent 20 may be made of a shape memory material having a temperature-induced shape change once implanted. Alternatively, a tool for bending the posts 26 may be delivered along with the valve 10 and utilized when the valve member 30 seats within the stent 20.


With reference now to FIG. 3, an alternative prosthetic valve 10A comprises a stent 40 provided with a bottom portion 42 and an upper flared portion 44. A plurality of prongs or tines 46 is disposed along a top end of the flared portion 44. The tines 46 are preferably bendable members configured to engage the ring portion 32 along the base of the valve member 30. In one preferred embodiment, the tines 46 are crimped over the ring as shown in FIG. 4. If desired, the tines 46 may have pointed tips for passing through a fabric or other similar material along the ring portion of the valve member, such as seen in FIG. 4A.


Once again, the stent 40 is desirably an expandable member that can be easily delivered and implanted at the body channel. The valve member 30 may be conventional, or may also be expandable. The illustrated embodiment shows a conventional valve 30 having the sewing ring portion 32 surrounding an inflow end. Sewing rings are typically made of suture-permeable material covered with cloth. The tines 46 may be sharp enough to pierce the material of the sewing ring portion 32 (FIG. 4A). In this regard, a conventional valve member 30 may be utilized without modification. In the alternative, the sewing ring portion 30 may be replaced with a more rigid peripheral band or ring, and the tines 46 are simply bent inward so as to fold over the ring and capture the valve member 31 on the top of the stent 40. Desirably, a seat or rim of some sort is provided within the interior of the stent 40 so that the valve member 30 can easily be positioned therein. The tines 46 may be mechanically bent using a deployment tool (not shown), or they may be hinged or made of a shape memory material so as to curl inward upon reaching a certain temperature.


With reference now to FIG. 5, another alternative prosthetic valve 10B comprises an anchoring member or stent 50 provided with a cylindrical portion 52 and three posts 54 extending upward from the cylindrical portion. Each post 54 may be slotted, as illustrated in the enlarged view of FIG. 5B, or formed with an orifice. Radially protruding members 38 are provided along the ring portion 32 of the valve member 30 for mating with the posts on the stent. The exemplary slot has a thin neck portion 58 wherein engagement members, such as angled teeth, are provided. The teeth are angled such that the slot widens as the protruding member 38 is pushed downward into the slot. After passing through the teeth into the capture portion 59, the protruding member 38 is securely captured. Because the teeth are angled in only one direction, an upward force will not cause the slot to widen, thereby capturing the protruding member.


With reference now to FIG. 6, yet another alternative embodiment of a component prosthetic valve 10C is illustrated. The embodiment of FIG. 6 is similar to the embodiment illustrated and described above with respect to FIG. 5. However, in this variation, the posts or connecting members 55 are provided with L-shaped slots 57 for receiving the protruding member disposed along the valve member. With reference to FIG. 6A, an enlarged view of one preferred connecting member 55 is shown. The slot 57 of the connecting member 55 is shaped such that the protruding member 38 moves longitudinally into the slot and then rotationally to enter the capture portion. One or more teeth 58 may be provided for holding the protruding member in the capture portion. Alternatively, the protruding member 38 may be held in the slot 57 using friction or a mechanical locking member. In another alternative, a key lock system or “bayonet” attachment mechanism may be provided for coupling the valve member to the stent.


With reference now to FIG. 7, another alternative prosthetic valve 10D is illustrated wherein the valve member 30 is captured and held between first and second stents 60, 62. In use, the first stent 60 is expanded within a body channel such that the outer surface of the stent is in contact with the vessel wall 64. The valve member 30 is then advanced through the body channel and into contact with the first stent. A ring 32 is preferably provided along the base portion of the valve member for contacting the outflow end of the first stent. The second stent is then advanced through the body channel and is deployed such that an inflow end of the second stent contacts a top surface of the ring 32 of the valve member for anchoring the valve member between the first and second stents.


The embodiment of FIG. 7 employs a slightly different means for connecting the valve member 30 the anchoring member. Primarily, stents 60, 62 capture the ring 32 of the valve member 30 therebetween simply by providing upper and lower barriers to movement. The valve member 30 is desirably a non-expandable type, therefore the ring 32 is not overly susceptible to compression. By providing sufficient of the thickness of the stents 60, 62, the valve member 30 remains sandwiched therebetween. In this regard, the outflow end of the first stent 60 and the inflow end of the upper stent 62 are preferably flat or blunt so as not to dig into the ring 32. Because of the anchoring function of the stents 60, 62, there is no need to suture the valve member 30, and thus the ring 32 may be made relatively firm or rigid. Alternatively, the facing edges of the stents 60, 62 may be provided with barbs or other such piercing devices, and the ring 32 provided as a conventional suture-permeable sewing ring.


As noted above, the anchoring members or stents described herein could include barbs or other anchors to further secure the stent to the tissue. Further, the barbs could be deployable (e.g., configured to extend or be pushed radially outward) by the expansion of a balloon. Likewise, the stent can be covered to promote in-growth and/or to reduce paravalvular leakage. The cover would be similar to those on other valves, e.g., a Dacron tube or the like.


Alternatively, the valve member may be constructed with a tubular frame or cage for engaging one or both stents 60, 62. In various preferred embodiments, the stents may be self-expanding or balloon-expandable. In one advantageous feature, the valve member 30 of this embodiment is not required to be mounted within a cylindrical frame or stent. Accordingly, the flow through area of the valve member may be maximized to improve valve function. In another variation, the first and second stents may be integrated as a single unit forming a chamber therebetween. In this variation, the valve member may be expanded within the chamber for securely deploying the valve member in the body channel.


With reference now to FIG. 8, another alternative embodiment of a two-stage prosthetic valve 10E is illustrated wherein the anchoring member or stent 70 is provided with a varying diameter. More particularly, a lower portion 72 of the stent has a small diameter sized for implantation at a native valve annulus. In one preferred configuration, the small diameter is about 23 mm. The stent also has an upper portion 74 with a larger diameter for receiving an expandable valve member 30A. In one preferred configuration, the larger diameter is about 29 mm. In this embodiment, the valve member 30A is provided as a tubular body that is radially expandable. The valve leaflets are disposed along the interior of the valve member.


The stent 70 preferably includes a circular ridge 76 formed along the transition region between the large and small diameters. The ridge provides a seat for the base of the valve member 30A. In one preferred embodiment, the ridge 76 incorporates a support wire 78 that extends at least partially through the ridge for strength and may be used to provide a radiopaque marker. The remaining portion of the ridge may be formed of Dacron or any other suitable material. The stent 70 may be comprised of a screen or mesh. A cover 75, such as a polymer sheet, may be provided along at least a portion of the stent to help prevent leakage and enhance sealing. In addition, a sponge or cloth may be provided along the exterior portion of the stent for further enhancing sealing.


The stent 70 of FIG. 8 may be self-expanding or balloon-expandable. When provided as a balloon-expandable stent, a expandable tapered (i.e., two diameter) balloon may be provided for deploying the stent. When configured for use with a stent having diameters of 23 mm and 29 mm, the balloon may have diameters of 22 mm and 28 mm, respectively.


With reference now to FIGS. 9A and 9B, another alternative embodiment of a component prosthetic valve 10F is provided wherein a valve member 30 is configured for connection with an anchoring member or stent 90. In this embodiment, the stent 90 is provided with a groove 94 formed in an inwardly-directed circumferential member 92. The groove extends at least partially around the inner portion of the stent and is sized to receive the ring portion 32 of the valve member 30. In one preferred embodiment, the ring is configured to snap fit into the groove, as seen in FIG. 9B. In another variation, the ring is made of a shape memory material configured to expand after deployment in the body. In this variation, the ring is configured to radially expand for securely anchoring itself within the groove.


With reference now to FIG. 10, yet another alternative embodiment of a component prosthetic valve 10G is illustrated wherein the valve member 30 is configured for threadable engagement with an anchoring member or stent 100. In this embodiment, the stent is provided on one end with a threaded region 102 along an inner wall configured for receiving a threaded flange portion 33 on the valve member 30. The threaded flange portion is preferably provided along the ring 32 at the base of the valve member. During use, the stent is first deployed in the body channel. The stent may be deployed in a manner wherein the diameter of the threaded region remains substantially constant so as to not affect the threads. In one embodiment, the stent is substantially non-expandable and is delivered into the lumen in its fully expanded condition. This can be achieved by first stretching or dilating the delivery site for receiving the stent. In another embodiment, only the lower portion of the stent is expanded for engaging the tissue. In either embodiment, the valve member is threadably attached to the threaded flange on the stent after the stent has been firmly anchored in the body channel. This attachment means is configured such that the valve member advantageously connects to the stent through rotational movement. Accordingly, longitudinal forces applied to the valve member after implantation will have little or no effect on the integrity of the connection between the stent and valve.


With reference now to FIG. 11, an alternative prosthetic heart valve 10H comprises a valve member 30, an anchoring member or stent 110, and a locking ring 112. As before, the stent 110 desirably expands first at the implantation site, after which a conventional valve member 30 couples to the stent through the use of the locking ring 112. However, the valve member 30 may also be expandable, and the stent 110 can take a variety of forms. In a preferred embodiment, the stent 110 comprises a latticework of balloon-expandable members adapted to be delivered to the implantation site in a collapsed or compressed state, and then expanded from within using a balloon. Of course, a self-expanding stent 110 could also be used, and additional anchoring means of such as exterior barbs may be provided to help prevent the stent from migrating after implantation.


A series of tabs or flanges 114 project slightly inwardly from an outflow end of the stent 110. The flanges 114 are configured to mate with exterior threading 116 on a downwardly-projecting shoulder of the locking ring 112. The number and configuration of the flanges 114 is selected to avoid interfering with radial expansion of the stent 110, and also to mate with the threads 116 of the locking ring 112. Desirably, a series of space-apart flanges 114, for example eight, evenly spaced around the outflow rim of the stent 110 project inward therefrom a distance of between 1-3 mm.


An inner bore 118 of the locking ring 112 possesses a diameter large enough to pass over the entire valve member 30 except for the base ring 32, which could be a sewing ring of a conventional heart valve. When coupled together, the locking ring 112 surrounds the valve member 30 and desirably includes an inner ledge that rests on the base ring 32 thereof. The inner diameter of the shoulder having the exterior threading 116 is sized larger than the base ring 32 and extends downwardly into engagement with the flanges 114. By screwing down the locking ring 112, the components can be easily and rapidly assembled. After implantation, removal and replacement of the valve member 30 merely requires releasing the locking ring 112 from any tissue ingrowth, unscrewing and removing it, and releasing the valve member 30 from the stent 110 by cutting away any tissue ingrowth therebetween.



FIGS. 12A and 12B illustrate another prosthetic heart valve 10I of the present invention having an expandable anchoring member or stent 120 coupled to a valve member 30. Much like the valve 10A of FIGS. 3 and 4, the outflow end of the stent 120 exhibits a series of spaced-apart tabs 122 that curl around the base ring 32 of the valve member 30. In this embodiment, the stent 120 is a straight tube, and there are fewer tabs 122 (e.g., eight) than there are tines 46 in the valve 10A. The tabs 122 may be bent using an auxiliary tool (not shown), or may possess a property permitting autonomous bending, such as temperature-induced movement.



FIGS. 12C and 12D are sectional views through one side of the prosthetic heart valve 10I of FIG. 12B schematically illustrating an exemplary tool that may be used to bend the tabs 122 on the outflow end of the stent 120 around the base ring 32 of the valve member 30. It should be noted that the section is taken radially through one side of the system, and the tool will typically be annular or at least peripherally arranged to bend each one of the tabs 122. The tool comprises a forming member 124 having a forming surface 125. The forming member 124 slides within and relative to an outer anvil 126 having an inwardly angled portion 128 that directly surrounds and engages each of the tabs 122. The forming surface 125 is curved such that axial displacement of the forming member 124 in the direction shown in FIG. 12C curls each of the tabs 122 inward to the shape of FIG. 12D. In this embodiment, the tabs 122 wrap over the top of and restrain the base ring 32. In other embodiments, the tool may be used to bend prongs so that they pierce the base ring 32. It should be noted that the outer anvil 126 is primarily used for centering purposes to guide the forming member 124 toward the tabs 122.



FIGS. 13A and 13B illustrate another embodiment of a prosthetic valve 10J having multiple components joined together. An anchoring member or stent 130 includes a plurality of tangs or flanges 132 on an outflow end. A valve member 30 seats adjacent the outflow end of the stent 130, and a fixation ring 134 extends therearound. Additionally, a plurality of tabs 136 project downward from the fixation ring 34. Although not shown, the tabs 136 enable the fixation ring 34 to be coupled to the base ring 32 of the valve member 30 by mechanically bending the tabs, or configuring the tabs to curl upon reaching a certain temperature. As seen in FIG. 13B, the flanges 132 extend around the outside of the fixation ring 134 and bend around the upper or outflow end thereof. Again, this can be accomplished using an auxiliary tool or through temperature-induced movement. Alternatively, the flanges 132 may be formed of a resilient polymer or metal having the shape seen in FIG. 13B such that they can be flexed outward around the fixation ring 134 and then snapped back into place to secure the ring around the valve member 30. Although not shown, the interior of the fixation ring 134 is desirably contoured to mate with the base ring 32 of the valve member 30. The fixation ring 134 can be made of any number of materials, including rigid, flexible, metallic, polymer, bioabsorbable, etc. One preferred configuration is a Teflon ring coated with anti-thrombogenic or anti-microbial compositions.



FIG. 14A illustrates a still further prosthetic heart valve 10K having an expandable anchoring member or stent 140, a valve member 30, and a wireform-shaped adapter 142. The stent 140 and valve member 30 have been previously described. The adapter 142 has a shape similar to a so-called “wireform” used in the internal construction of many prior art bioprosthetic tissue valves. Indeed, the valve member 30 is desirably a Carpentier-Edwards PERIMOUNT Magna® Aortic Heart Valve made by Edwards Lifesciences, and including therewithin an Elgiloy wireform. The adapter 142 may be formed of biocompatible polymers or metals, preferably an alloy such as Nitinol.


The adapter 142 carries a plurality of securing tabs 144, 146. In the illustrated embodiment, three lower securing tabs 144 are located at the apex of the three cusps of the wireform-shape, and two upper securing tabs 146 are located at each of the upstanding commissures of the wireform-shape, for a total of six at the commissures. FIG. 14B is a detailed illustration of the assembly of the stent 140, valve member 30, and adapter 142. The base ring 32 of the valve member 30 seats on or just within the outflow end of the stent 140, and the adapter 142 fits over the valve member and couples to it, as well as to the stent. In this regard, the cusps of the adapter 142 seat on or slightly outside the base ring 32 with the commissures surrounding and conforming to the commissures of the valve member 30. The cusp securing tabs 144 bend up over the base ring 32 and down into engagement with the stent 140. The two securing tabs 146 at each commissure of the adapter 142 bend or wrap around the corresponding valve member commissure.


Again, a supplemental tool may be used to accomplish the bending of the securing members 144, 146, or they may exhibit temperature-changing properties. In the illustrated embodiment, the securing tabs 144, 146 are malleable, though other configurations are within the scope of the invention. For example, the lower securing tabs 144 may be barbs or tangs which pierce the base ring 32 and hook around the stent 140, while the upper securing tabs 146 may be resilient straps that wrap around each one of the commissures of the valve member 30.


To further secure the valve member 30 to the stent 140, the stent includes a plurality of upstanding barbs 147 comprising spaced apart posts having teeth 140. The adapter 142 possesses a plurality of outwardly projecting brackets 149 defining slots therethrough. As seen in FIG. 14B, the barbs 147 pass through the base ring 32 and through the slots of the brackets 149 in the adapter 142. The teeth 148 prevent removal of the barbs 147 from the slots. In this way, the stent 140 and adapter 142 are securely connected together, sandwiching the valve member 30 therebetween.


Another possibility is that the securing tabs 144, 146 are not initially carried by the adapter 142, but instead are added after the assembly of the three components. For instance, staples or even sutures may be used after the valve member 30 seats on the stent 140, and the adapter 142 is lowered around the valve member. Even if sutures are used, the time required relative to a conventional sewing operation is greatly reduced. Moreover, the structural support and anchoring properties of the wireform-shaped adapter 142 greatly enhances the overall integrity of the assembly. In this regard, securing tabs such as those shown may be placed more continuously around the adapter 142 so as to provide more uniform contact with the valve member 30. One possible configuration is a series of small hooks or brackets extending along the undulating adapter 142 that loop over the corresponding undulating shape on the valve member 30. The valve member 30 is therefore restrained from upward movement relative to the adapter simply by lowering the adapter 142 over the valve member. In such an arrangement, only the lower securing members need be actively attached, such as by causing their shape to change and bend into engagement with the stent 140, as seen in FIG. 14B.


A further prosthetic valve embodiment 10L seen in FIG. 15A includes an expandable anchoring member or stent 150 and a valve member 30. A plurality of fixation straps 152 ring the outflow end of the stent 150. Four such straps 152 are shown, but more or less made be utilized. For example, three straps extending farther around the periphery of the outflow end of the stent 150 may be substituted. Conversely, four or more straps that overlap one another may be used.



FIG. 15B illustrates the valve member 30 seated on top of the stent 150 with one of the straps 152 securing the two components together. Straps 152 may be attached at both of their ends to the stent 150, and may comprise a resilient biocompatible material that stretches over the base ring 32 of the valve member 30. Alternatively, the straps may be bent or folded over the base ring. In one variation, one end of each strap 152 may be initially free, and after the strap is looped over the base ring 32 is then attached to the stent 150, somewhat like a belt configuration. The straps 152 may be formed of a variety of materials, typically cloth-covered so as to permit tissue ingrowth over a cloth-covered base ring 32 for enhanced long-term anchorage. One possible variation is to incorporate small barbs or Velcro-style hooks in each of the straps 152 so as to gain better purchase on the base ring 32.



FIGS. 16A and 16B illustrate a still further embodiment, wherein the prosthetic heart valve 10M comprises a valve member 30, expandable anchoring member or stent 160, and coupling ring 162. The coupling ring 162 defines a series of circumferentially-spaced apertures or slots 164 that receive upstanding hooks or latches 166 on the stent 160. As seen in FIG. 16B, the coupling ring 162 surrounds the commissures of the valve member 30 and seats on the base ring 32, and the latches 166 extend through the slots 164 and are secured therein by outwardly directed teeth 168. In the illustrated embodiment, the latches 166 each comprise a pair of parallel, spaced apart upstanding members, each with an outwardly directed tooth 168, which may be cammed inward toward one another as they pass through the slots 164. As the teeth 168 clear the slot 164, the parallel members resiliently spring outward thus latching the stent 160 to the coupling ring 162. The coupling ring 162 may further include a plurality of outwardly projecting tabs 172 that are bent or curl around the base ring 32.


To aid in guiding the latches 166 through the slots 164, one or more guide members may be used to direct the coupling ring toward the stent such that the slots are aligned with the latch members. For example, in the illustrated embodiment, a plurality of guide filaments 170 are attached to each one of the upstanding latch members and passed through the corresponding slots. FIG. 16A illustrates the pre-assembled valve 10M with the guide filaments 170 extending up through each of the slots 164. The implantation procedure comprises first delivering and expanding the stent 160, and then advancing the valve member 30 to the position shown in FIG. 16B. The coupling ring 162 is then parachuted down the array of guide filaments 170, ultimately facilitating passage of the latches 166 through the slots 164. The final assembly is seen in FIG. 16B. in a preferred embodiment, each two guide filaments 170 comprises a strand of a single looped passing through small holes in each of the latch members. Removal of the guide filaments 170 is thus a simple matter of just pulling one of the strands, or severing the loop in between the latch members. Note that guide filaments could be used on any of the embodiments described herein to facilitate coupling of the separate components of the prosthetic heart valves. For example, in another variation, a wireform similar to the embodiment illustrated in FIG. 14A may also be used with a guiding filament.


The exemplary embodiment shows the latches 166 extending around the outside of the base ring 32 of the valve member 30. It is entirely feasible, on the other hand, to design the latches 166 to pierce through the base ring 32. Inclusion of the coupling ring 162 is suggested, because of its washer-like function in holding the assembly together. However, the latches 166 may be designed to pierce through and securely fasten to stent 160 to the base ring 32 without the use of the coupling ring 162. In this regard, the latches 166 may be configured differently, or more than the number shown may be provided. For example, 4, 6, 8, or more single latch members having a configuration such as shown with a leading sharp point and rearwardly directed barb (much like a fish hook) could fight adequate anchorage through a conventional base ring 32 made of a silicone sponge covered with cloth. Those of skill in the art will understand that there are numerous alternatives available.


The stent 160 in FIGS. 16A and 16B has an outflow end that is preferably sized larger than its inflow end. More particularly, the outflow end is flared so as to receive therein the base ring 32 of the valve member 30. In this way, a larger orifice valve member can be utilized than with a straight tubular stent. The reader is also reminded that at least the flared portion of the stent 160 is desirably provided with a sleeve of Dacron or other such fabric to help prevent paravalvular leaking between the base ring 32 and the surrounding native valve annulus.


With reference to FIGS. 17A and 17B, yet another two part prosthetic valve 10N is configured for rapid deployment in a heart for replacing a defective native valve. In this version, an expandable anchoring member or stent 180 couples to a valve member 30 through the use of a coupling ring 182 in a manner similar to the last-described embodiment. The coupling ring 182 carries a plurality of latches 184 which mate with brackets 186 provided on the stent 180. In the illustrated embodiment, the latches 184 again comprise a pair of spaced-apart latch members having outwardly directed teeth 188, and the brackets 186 are simply apertures or slots in material loops that extend outward from the stent 180 adjacent its outflow end. Bringing the three components together, the latches 184 extend through the brackets 186 as seen in FIG. 17B. To facilitate proper and rapid passage of the latches 184 through the brackets 186, a plurality of guide filaments 190 loop through the brackets 186 and through holes provided in the latches 184. Simply parachuting the coupling ring 182 down the filaments 190 aims the latches 184 through the brackets 186.


At this stage, it is important to note that any of the fixation rings (i.e., locking ring 112, fixation ring 134, adapter 142, coupling ring 162, or coupling ring 182) described above could be designed to engage the surrounding tissue (annulus) and provide additional protection again paravalvular leakage. For example, a tissue growth factor or fibrin glue or the like may be coated on the exterior of any of these fixation rings for a better seal. Alternatively, the fixation rings might have an outer rim of fabric for encouraging tissue ingrowth. Moreover, the various fixation rings described and the base ring 32 of the valve member 32 may be constructed as a single component. For example, the base ring 32 could be configured to have slots (or any coupling member) in lieu of a separate fixation ring.


With reference now to FIG. 18, an alternative expandable anchoring member or stent 200 is illustrated wherein the anchoring member is configured to receive a valve member 30 to form a prosthetic heart valve. As illustrated in FIG. 19, a portion of the valve member is gripped between inwardly extending members located within the stent. More particularly, the stent 200 comprises a plurality of axial struts 202 connected by a number of rows of circumferential crown-shaped struts 204 to form a generally tubular structure. A lower or inflow end of the stent 200 includes a circumferential row of crown-shaped struts 206 that is larger than the others such that the inflow end of the stent flares outward. The upper rows 204 of circumferential struts define valleys (pointing downward) at the axial struts 202 and peaks (pointing upward) midway between each two adjacent axial struts. As seen from FIG. 18, therefore, the spaces defined between adjacent axial struts 202 and adjacent rows of circumferential struts 204 are preferably chevron-shaped, pointed upward. Conversely, the lower circumferential row of struts 206 has upper peaks at the axial struts 202 and lower valleys therebetween, resulting in elongated hexagon-shaped spaces between the lower two circumferential rows of struts.


The stent 200 possesses a plurality of prongs that extend inward therefrom to capture the valve member 30. As seen in FIG. 19, the base ring 32 of the valve member 30 seats on a plurality of lower prongs 208. FIG. 18 shows the lower prongs 208 extending inward from the lower row of struts 206 at the valleys between adjacent axial struts 202. The lower prongs 208 terminate in enlarged heads 210 to prevent damage to the base ring 32. As seen in FIG. 19, the lower prongs 208 project inward farther than the expanded to defined by the upper portion of the stent 200. Additionally, a plurality of upper prongs 212 extend inward from one of the upper rows of circumferential struts 204. In the illustrated embodiment, there are four rows of circumferential struts 204, and the upper prongs 212 project inward from the second lowest row. As seen in FIG. 19, the upper prongs 212 contact the base ring 32 of the valve member 30. In this manner, the valve member 30 is captured between the lower prongs 208 and upper prongs 212.


In the illustrated embodiment, the stent 200 includes twelve axial struts 202, and one of each of the prongs 208, 212 between each adjacent pair of axial struts, resulting in twelve each of the lower and upper prongs. Of course, the number of prongs could be more or less depending on the configuration of the stent 200. Further, there may be more than one prong between adjacent pairs of axial struts 202, or the prongs may be provided only between every other pair. The prongs 208, 212 may be initially flat within the profile of the surrounding struts to prevent interference with an expansion-balloon. After stent deployment they may be bent inward into the angles shown using a tool (not shown). Alternatively, the balloon wall could be relatively thick and able to withstand puncture by the round heads of the prongs 208, 212 such that they are at all times biased inward and automatically assume the angles shown after balloon removal.


To deploy the prosthetic heart valve of FIGS. 18 and 19, the user advances the stent 200 in a collapsed state through the vasculature or a chest port into the target implantation site. Through self-expansion or balloon-expansion, the stent 200 expands into contact with the surrounding valve annulus. The valve member 30 then advances into position adjacent the outflow or upper end of the stent 200. Desirably, the valve member 30 is a conventional non-expandable design, but could also be expandable, in which case it is then expanded prior to assembly with the stent 200.


The outer diameter of the base ring 32 of the valve member 30 is sized approximately the same as the inner diameter of the tubular upper portion of the stent 200. The valve member 30 advances from the outflow end of the stent 200 toward the inflow end until the base ring 32 contacts the circular row of upper prongs 212. The upper prongs 212 are flexible, hinged, or otherwise capable of being displaced outward by the base ring 32 as the valve member 30 passes. Ultimately, the base ring 32 seats on the circular row of relatively non-flexible lower prongs 28 and the valve member 30 cannot be advanced farther. The spacing between the lower prongs 208 and the upper prongs 212 is such that the upper prongs 212 spring inward at the point that the base ring 32 seats on the lower prongs 208. The upper prongs 212 may be formed with blunt heads like the lower prongs 208, or may be straight or even sharp-pointed to pierce the base ring 32 and provided enhanced anchorage. In a preferred embodiment, both the lower prongs 208 and upper prongs 212 possess enlarged, blunt heads such that the base ring 32 is merely trapped between the two sets of prongs.


The design of the stent 200 of FIG. 18 thus enables rapid deployment of a valve member therewithin, as well as positive tactile feedback to the user with valve member 30 is completely installed. Because the base ring 32 is sized closely within the stent 200, good peripheral sealing is provided. To better enhance sealing, a peripheral skirt or layer of graft material may be added on the interior or exterior of the stent 200.


With reference to FIG. 20, another embodiment of a prosthetic heart valve 220 comprises a tubular, expandable anchoring member or stent 222, a valve member 30, and an adapter ring 224 for coupling the two components together. The stent 222 and manner of connecting the stent to the valve member 30 is similar to embodiment of FIGS. 3 and 4, and also the embodiment of FIG. 12, in that a plurality of tines 226 project upward from the stent 222. However, instead of the tines 226 piercing or curling around the base ring 32 of the valve member 30, the tines interact with the adapter ring 224. In particular, the adapter ring 224 attaches around the lower periphery of the base ring 32, preferably via a secure stitch line formed during assembly of the valve member 30. The tines 226 pierce or otherwise engage the adapter ring 224 instead of the base ring 32 to couple the valve member 30 to the stent 222. The supplemental adapter ring 224 provides an added margin of safety that helps prevent damage to the valve member 30 by the tines 226. For instance, if the tines 226 are configured to pierce and curl inward, they are farther away from the inner flexible leaflets 36 of the valve member which are susceptible to puncture or tearing.


With reference to FIG. 21, yet another embodiment of a prosthetic heart valve 230 comprises an anchoring member or stent 232 coupled to a valve member 30 via a plurality of sutures 234. The components of the valve 230 are shown exploded above a container or jar 236 used to store the components. In this regard, the entire assembly, including the attachment sutures 234, may be stored together in the jar 236 so as to be ready for deployment. Alternatively, only the stent 232 and valve member 30 may be stored in the jar 236, and the sutures 234 added just prior to deployment but before the actual operation. Still further, the stent 232 can be stored dry in a sterile container, while the valve member 30 having bioprosthetic leaflets may be stored separately in a suitable preservative fluid such as glutaraldehyde. In any event, details of the prosthetic heart valve 230 will be described below with reference to FIGS. 22A through 22C.



FIGS. 22A through 22C show the components of the prosthetic heart valve 230 in conjunction with a valve dilator/delivery tube 240. The usage of the delivery tube 240 will be described below. The stent 232 comprises an expandable, tubular structure formed of a plurality of axial struts 242 joined by a plurality of angled circumferential struts 244. In this embodiment, there are four rows of circumferential struts 244, the upper two pointing upward, and the lower to pointing downward. The result is a series of both diamond-shaped and chevron-shaped openings. Three axial bars 246 substitute for the more narrow struts 242 at three evenly-spaced positions around the stent 232. As seen in the view of FIG. 22B, the commissures 34 of the valve member 30 align with the axial bars 246.


With reference now to the sectional view of FIG. 22C, the stent 232 additionally comprises an inner fixation ring 250 and an outer sealing ring 252. Both these rings 250, 252 attach to the struts of the stent 232 independently, or to each other through the struts. For example, a series of sutures (not shown) can be used to join the inner ring 250 and outer ring 252 in a relatively continuous circumferential line around the stent 232. These rings are desirably made of suture-permeable, typically compressible material such as silicone rubber, or may be rolled up fabric cuffs. In any event, the inner fixation ring 250 couples to the valve member 30, while the outer sealing ring 252 help prevent leakage around the stent 232.


As seen in FIG. 22A, the attachment sutures 234 extend upward within the stent 232 from the inner fixation ring 250. In this regard, each two strands of the attachment sutures 234 may be defined by looping a single length of suture downward and back upward through the fixation ring 250. The circular array of sutures 234 then passes through corresponding sectors of the base ring 32 of the valve member 30. Again, this can be done at the time of valve assembly, just prior to the valve replacement procedure, or after the stent 232 has been implanted. Those of skill in the art will understand the process of lining up the circular array of attachment sutures 234 into the appropriate locations around the base ring 32 to permit the valve member 32 to parachute down the sutures until it contacts the fixation ring 250.


The entire procedure will now be described in conjunction with use of the valve dilator/delivery tube 240. As mentioned above, the valve replacement procedures described herein are sometimes done without removing the existing native valve. The annulus and valve leaflets are often heavily calcified, and sometimes provide a serious impediment to passage and implant of a replacement valve, even a valve that is initially quite small and balloon expanded. To help widened the orifice in which the prosthetic valve 230 will be implanted, the delivery tube 240 receives all of the valve components therein and acts as a protective sleeve and dilator. In a preferred embodiment, just the sealing ring 252 extends out of the delivery tube 240 at an inflow or leading end thereof.


First, the attachment sutures 234 are preinstalled within the fixation ring 250 and, while maintaining a non-crossing circular array, are passed through the delivery tube 240 to be accessible out the upper end. The sutures 234 are then passed through the appropriate locations within the base ring 32 of the valve member 30. Of course, this can be done during fabrication of the prosthetic heart valve 230, though some structure for maintaining the relative position and orientation of two components is required. In any event, a holder (not shown) attached to the valve member 30 is used to advance the valve member along the array of sutures 234 and within the delivery tube 240, into the approximate position seen in FIG. 22A.


When the patient has been prepared, and an access opening to the target implantation site created, the assembly of the prosthetic heart valve 230 within the delivery tube 240 advances into the body. The leading end comprises the sealing ring 252 and an outwardly bulged portion 254 in the delivery tube 240. For installation in the aortic annulus, the delivery tube 240 advances down the ascending aorta until the stent 232 lines up with the annulus (with the help of radiopaque markers or the like). The outwardly bulged portion 254 in the delivery tube 240 helps open up the calcified annulus. Even if the native valve is resected, sometimes the annulus will shrink a little prior to implant of the valve. The valve dilator/delivery tube 240 thus helps open up the annulus to permit implant of a desired diameter valve. The contour of the bulged portion 254 is relatively smooth, and the material may be Teflon or other such highly lubricated surface so that the tube easily slips through the annulus. A slight back-and-forth movement may be required to fully open the annulus.


At this stage, the delivery tube 250 retracts relative to the stent 232, through the use of a pusher (not shown) for example, such that the stent 232 may fully expand into the annulus. The stent 232 may be self-expanding and thus be only partially expanded within the delivery tube 240. When the delivery tube 240 is removed, the stent 232 springs outward into firm engagement with the annulus. Alternatively, a balloon (not shown) may be used to accomplish the final expansion of the stent 232, which configuration would require a catheter passing through the center of the valve leaflets 34. If the stent 232 is balloon expandable, consideration must be taken of the continual attachment of the valve to the guide sutures 234. On the other hand, if the stent 232 is self-expanding, then typically an auxiliary sheath would be provided to hold the stent in the contracted condition.


When the user is satisfied that the stent 232 is properly positioned, the valve member 30 is advanced using the aforementioned holder (not shown). As the valve member 30 advances, care is taken to ensure that the attachment sutures 234 remain untangled and taut. Ultimately, the valve member 30 seats on the fixation ring 250 as seen in FIGS. 22B and 22C. At this point, the user ties off and severs the attachment sutures 234 in a conventional manner. The provision of the sealing ring 252 directly adjacent and surrounding the fixation ring 250 greatly enhances the ability of the prosthetic valve 230 to resist paravalvular leaking.


In one advantageous feature, preferred embodiments of the component based prosthetic valves described herein may be used with existing technology. For example, certain stent embodiments may be configured for attachment to sewing rings provided on existing prosthetic valves. In other cases, valve member require only small variations in order to be used with the component based system. Not only will this contribute to a lower price for the final valve, but also learned familiarity to the system for surgeons who might be hesitant to adopt a completely new system.


It will be appreciated by those skilled in the art that embodiments of the present invention provide important new devices and methods wherein a valve may be securely anchored to a body lumen in a quick and efficient manner. Embodiments of the present invention provide a means for implanting a prosthetic valve in a surgical procedure without requiring the surgeon to suture the valve to the tissue. Accordingly, the surgical procedure time is substantially decreased. Furthermore, in addition to providing an anchoring member for the valve, the stent may be used to maintain the native valve in a dilated condition. As a result, it is not necessary for the surgeon to remove the native leaflets, thereby further reducing the procedure time.


It will also be appreciated that the present invention provides an improved system wherein a valve member may be replaced in a more quick and efficient manner. More particularly, it is not necessary to cut any sutures in order to remove the valve. Rather, the valve member may be disconnected from the stent (or other support structure) and a new valve member may be connected in its place. This is an important advantage when using biological tissue valves or other valves having limited design lives. Still further, it will be appreciated that the devices and methods of the present invention may be configured for use in a minimally invasive approach (e.g., through a small incision between the ribs) or in a percutaneous procedure while still remaining within the scope of the invention.


While the invention has been described in its preferred embodiments, it is to be understood that the words which have been used are words of description and not of limitation. Therefore, changes may be made within the appended claims without departing from the true scope of the invention.

Claims
  • 1. A replacement prosthetic heart valve, comprising: an expandable anchoring member sized to contact a heart valve annulus in an expanded state and defining a lumen having an inner diameter, the anchoring member having a circular cross-section and a length such that the anchoring member may be expanded within a native valve annulus to the push aside valvular leaflets of the native valve; anda one-way valve member comprising a non-expandable/non-collapsible support frame and defining an exterior dimension sized to fit within the lumen of the anchoring member, the valve member and anchoring member being configured to engage each other and hold the valve member within the lumen.
  • 2. The heart valve of claim 1, wherein the anchoring member comprises a stent having a wider outflow end than an inflow end, and wherein the valve member comprises a base ring surrounding an inflow end thereof, the base ring being sized to fit within the outflow end of the stent.
  • 3. The heart valve of claim 2, wherein the anchoring member further has a circular ridge formed along a transition region between the wider outflow end and inflow end, the ridge being smaller than the valve member exterior dimension so that the valve member seats on the ridge.
  • 4. The heart valve of claim 3, wherein the ridge incorporates a support wire for strength.
  • 5. The heart valve of claim 4, wherein the support wire has a radiopaque marker.
  • 6. The heart valve of claim 1, wherein the anchoring member is provided with a groove formed in an inwardly-directed circumferential member that extends at least partially around the lumen of the anchoring member and is sized to receive a ring portion of the valve member.
  • 7. The heart valve of claim 6, wherein the valve member comprises a non-expandable support frame from which the ring portion extends, and the ring portion forms a snap-fit with the groove.
  • 8. The heart valve of claim 6, wherein the ring portion is configured to expand into the groove after deployment within the anchoring member.
  • 9. The heart valve of claim 1, wherein the valve member comprises a peripheral ring portion and the anchoring member has a plurality of prongs that extend inward therefrom into the lumen to capture the ring portion of the valve member.
  • 10. The heart valve of claim 9, wherein there are two rows of spaced-apart prongs that are each angled inward and toward the other row of prongs, and wherein the prongs are flexible to permit passage of the ring portion of the valve member into the space between the rows.
  • 11. The heart valve of claim 10, wherein each of the prongs terminates in an enlarged head to prevent damage to the base ring.
  • 12. The heart valve of claim 1, wherein the anchoring member comprises an outer sealing ring to help prevent leakage around the anchoring member.
  • 13. The heart valve of claim 12, wherein the valve member includes a suture-permeable base ring surrounding an inflow end thereof, and the anchoring member comprises a suture-permeable fixation ring attached within the lumen.
  • 14. The heart valve of claim 13, wherein the valve member connects to the anchoring member via sutures looped between the base ring and the fixation ring.
  • 15. The heart valve of claim 1, wherein the valve member includes a suture-permeable base ring surrounding an inflow end thereof, and the anchoring member comprises a suture-permeable fixation ring attached within the lumen, wherein the valve member connects to the anchoring member via sutures looped between the base ring and the fixation ring.
  • 16. The heart valve of claim 15, wherein the base ring and the fixation ring comprise silicone rubber.
  • 17. The heart valve of claim 15, wherein the base ring and the fixation ring comprise rolled up fabric cuffs.
  • 18. The heart valve of claim 1, wherein the support frame defines a plurality of alternating cusps and upstanding commissures that support flexible leaflets.
  • 19. The heart valve of claim 18, wherein the flexible leaflets are bovine pericardial leaflets.
  • 20. The heart valve of claim 1, wherein the valve member is configured to be detached from within the anchoring member while implanted and replaced with another valve member.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/571,141, filed Dec. 15, 2014, now U.S. Pat. No. 9,554,903, which is a continuation of U.S. patent application Ser. No. 13/954,822, filed Jul. 30, 2013, now U.S. Pat. No. 8,911,493, which is a continuation of U.S. patent application Ser. No. 11/441,406, filed May 24, 2006, now U.S. Pat. No. 8,500,798, which claims priority to Provisional Application No. 60/684,443, filed on May 24, 2005, entitled “Prosthetic Valve for Implantation in a Body Channel.”

US Referenced Citations (420)
Number Name Date Kind
3143742 Cromie Aug 1964 A
3320972 High et al. May 1967 A
3371352 Siposs et al. Mar 1968 A
3409013 Berry Nov 1968 A
3546710 Shumakov et al. Dec 1970 A
3574865 Hamaker Apr 1971 A
3628535 Ostrowsky et al. Dec 1971 A
3657744 Ersek Apr 1972 A
3686740 Shiley Aug 1972 A
3755823 Hancock Sep 1973 A
3839741 Haller Oct 1974 A
3997923 Possis Dec 1976 A
4035849 Angell et al. Jul 1977 A
4078468 Civitello Mar 1978 A
4079468 Liotta et al. Mar 1978 A
4084268 Ionescu et al. Apr 1978 A
4106129 Carpentier et al. Aug 1978 A
4172295 Batten Oct 1979 A
4211325 Wright Jul 1980 A
4217665 Bex et al. Aug 1980 A
4218782 Rygg Aug 1980 A
4259753 Liotta et al. Apr 1981 A
4340091 Skelton et al. Jul 1982 A
4343048 Ross et al. Aug 1982 A
4364126 Rosen et al. Dec 1982 A
4388735 Ionescu et al. Jun 1983 A
4441216 Ionescu et al. Apr 1984 A
4451936 Carpentier et al. Jun 1984 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4501030 Lane Feb 1985 A
4506394 Bedard Mar 1985 A
4535483 Klawitter et al. Aug 1985 A
4605407 Black et al. Aug 1986 A
4626255 Reichart et al. Dec 1986 A
4629459 Ionescu et al. Dec 1986 A
4680031 Alonso Jul 1987 A
4687483 Fisher et al. Aug 1987 A
4702250 Ovil et al. Oct 1987 A
4705516 Barone et al. Nov 1987 A
4725274 Lane et al. Feb 1988 A
4731074 Rousseau et al. Mar 1988 A
4778461 Pietsch et al. Oct 1988 A
4790843 Carpentier et al. Dec 1988 A
4851000 Gupta Jul 1989 A
4865600 Carpentier et al. Sep 1989 A
4888009 Lederman et al. Dec 1989 A
4914097 Oda et al. Apr 1990 A
4960424 Grooters Oct 1990 A
4993428 Arms Feb 1991 A
5010892 Colvin et al. Apr 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5147391 Lane Sep 1992 A
5163953 Vince Nov 1992 A
5163955 Love et al. Nov 1992 A
5258023 Reger Nov 1993 A
5316016 Adams et al. May 1994 A
5326370 Love et al. Jul 1994 A
5326371 Love et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5376112 Duran Dec 1994 A
5396887 Imran Mar 1995 A
5397351 Pavcnik et al. Mar 1995 A
5411522 Troll May 1995 A
5411552 Andersen et al. May 1995 A
5423887 Love et al. Jun 1995 A
5425741 Lemp et al. Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5449384 Johnson Sep 1995 A
5449385 Religa et al. Sep 1995 A
5469868 Reger Nov 1995 A
5476510 Eberhardt et al. Dec 1995 A
5488789 Religa et al. Feb 1996 A
5489297 Duran Feb 1996 A
5489298 Love et al. Feb 1996 A
5500016 Fisher Mar 1996 A
5533515 Coller et al. Jul 1996 A
5549665 Vesely et al. Aug 1996 A
5562729 Purdy et al. Oct 1996 A
5571215 Sterman et al. Nov 1996 A
5573007 Bobo, Sr. Nov 1996 A
5578076 Krueger et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5618307 Donlon et al. Apr 1997 A
5626607 Malecki et al. May 1997 A
5628789 Vanney et al. May 1997 A
5693090 Unsworth et al. Dec 1997 A
5695503 Krueger et al. Dec 1997 A
5713952 Vanney et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5728064 Bums et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735894 Krueger et al. Apr 1998 A
5752522 Murphy May 1998 A
5755782 Love et al. May 1998 A
5766240 Johnson Jun 1998 A
5776187 Krueger et al. Jul 1998 A
5776188 Shepherd et al. Jul 1998 A
5800527 Jansen et al. Sep 1998 A
5814097 Sterman et al. Sep 1998 A
5814098 Hinnenkamp et al. Sep 1998 A
5824064 Taheri Oct 1998 A
5824068 Bugge Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5848969 Panescu et al. Dec 1998 A
5855563 Kaplan et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5865801 Houser Feb 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5895420 Mirsch, II et al. Apr 1999 A
5902308 Murphy May 1999 A
5908450 Gross et al. Jun 1999 A
5919147 Jain Jul 1999 A
5921934 Teo Jul 1999 A
5921935 Hickey Jul 1999 A
5924984 Rao Jul 1999 A
5928281 Huynh et al. Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5984959 Robertson et al. Nov 1999 A
5984973 Girard et al. Nov 1999 A
6010531 Donlon et al. Jan 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6059827 Fenton, Jr. May 2000 A
6066160 Colvin et al. May 2000 A
6074418 Buchanan et al. Jun 2000 A
6081737 Shah Jun 2000 A
6083179 Oredsson Jul 2000 A
6099475 Seward et al. Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6117091 Young et al. Sep 2000 A
6126007 Kari et al. Oct 2000 A
6162233 Williamson, IV et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6176877 Buchanan et al. Jan 2001 B1
6197054 Hamblin, Jr. et al. Mar 2001 B1
6217611 Klostermeyer Apr 2001 B1
6231561 Frazier et al. May 2001 B1
6241765 Griffin et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6264611 Ishikawa et al. Jul 2001 B1
6264691 Gabbay Jul 2001 B1
6283127 Sterman et al. Sep 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6312447 Grimes Nov 2001 B1
6312465 Griffin et al. Nov 2001 B1
6322526 Rosenman et al. Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6350282 Eberhardt Feb 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6425916 Garrison et al. Jul 2002 B1
6440164 Di Matteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458100 Roue et al. Oct 2002 B2
6458153 Bailey et al. Oct 2002 B1
6468305 Otte Oct 2002 B1
6491624 Lotfi Dec 2002 B1
6530952 Vesely Mar 2003 B2
6569196 Vesely May 2003 B1
6582462 Andersen et al. Jun 2003 B1
6652578 Bailey et al. Nov 2003 B2
6685739 DiMatteo et al. Feb 2004 B2
6702825 Frazier et al. Mar 2004 B2
6712804 Roue et al. Mar 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6746472 Frazier et al. Jun 2004 B2
6764508 Roehe et al. Jul 2004 B1
6767362 Schreck Jul 2004 B2
6773457 Ivancev et al. Aug 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6805711 Quijano et al. Oct 2004 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6939365 Fogarty et al. Sep 2005 B1
7011681 Vesely Mar 2006 B2
7025780 Gabbay Apr 2006 B2
7037333 Myers et al. May 2006 B2
7070616 Majercak et al. Jul 2006 B2
7097659 Woolfson et al. Aug 2006 B2
7101396 Artof et al. Sep 2006 B2
7147663 Berg et al. Dec 2006 B1
7153324 Case et al. Dec 2006 B2
7186265 Sharkawy et al. Mar 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7252682 Seguin Aug 2007 B2
7261732 Justino Aug 2007 B2
7300463 Liddicoat Nov 2007 B2
7393360 Spenser et al. Jul 2008 B2
7422603 Lane Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7524330 Berreklouw Apr 2009 B2
7569072 Berg et al. Aug 2009 B2
7591848 Allen Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7625403 Krivoruchko Dec 2009 B2
7641687 Chinn et al. Jan 2010 B2
7704277 Zakay et al. Apr 2010 B2
7708773 Pinchuk et al. May 2010 B2
7708775 Rowe et al. May 2010 B2
7717955 Lane et al. May 2010 B2
7740655 Birdsall Jun 2010 B2
7799069 Bailey et al. Sep 2010 B2
7822414 Bender et al. Oct 2010 B2
7887583 Macoviak Feb 2011 B2
7896913 Damm et al. Mar 2011 B2
7947072 Yang et al. May 2011 B2
7967857 Lane Jun 2011 B2
7998151 St. Goar et al. Aug 2011 B2
8062355 Figulla et al. Nov 2011 B2
8246675 Zegdi Aug 2012 B2
8246678 Salahieh et al. Aug 2012 B2
8308798 Pintor et al. Nov 2012 B2
8323337 Gurskis et al. Dec 2012 B2
8348998 Pintor et al. Jan 2013 B2
8500798 Rowe et al. Aug 2013 B2
8911493 Rowe et al. Dec 2014 B2
20010007956 Letac et al. Jul 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010039435 Roue et al. Nov 2001 A1
20010039436 Frazier et al. Nov 2001 A1
20010041914 Frazier et al. Nov 2001 A1
20010041915 Roue et al. Nov 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020026238 Lane et al. Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020058995 Stevens May 2002 A1
20020077698 Peredo Jun 2002 A1
20020123802 Snyders Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020188348 DiMatteo et al. Dec 2002 A1
20020198594 Schreck Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030036795 Andersen et al. Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030109924 Cribier Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030149477 Gabbay Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030153974 Spenser et al. Aug 2003 A1
20030167089 Lane Sep 2003 A1
20030236568 Hojeibane et al. Dec 2003 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040044406 Woolfson et al. Mar 2004 A1
20040093075 Kuehne May 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040122526 Imran Jun 2004 A1
20040167573 Williamson et al. Aug 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040206363 McCarthy et al. Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210305 Shu et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040225355 Stevens Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050027348 Case et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050043760 Fogarty et al. Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050060029 Le et al. Mar 2005 A1
20050065594 DiMatteo et al. Mar 2005 A1
20050065614 Stinson Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075713 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075718 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050075728 Nguyen et al. Apr 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050096738 Cali et al. May 2005 A1
20050137682 Justino Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050159811 Lane Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050165479 Drews et al. Jul 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050182486 Gabbay Aug 2005 A1
20050192665 Spenser et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222674 Paine Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240259 Sisken et al. Oct 2005 A1
20050251252 Stobie Nov 2005 A1
20050261765 Liddicoat Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060025857 Bergheim et al. Feb 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060085060 Campbell Apr 2006 A1
20060095125 Chinn et al. May 2006 A1
20060122634 Ino et al. Jun 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060136054 Berg et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060154230 Cunanan et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060195184 Lane et al. Aug 2006 A1
20060195185 Lane et al. Aug 2006 A1
20060195186 Drews et al. Aug 2006 A1
20060207031 Cunanan et al. Sep 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060235508 Lane et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060246888 Bender et al. Nov 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060271172 Tehrani Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20060293745 Carpentier et al. Dec 2006 A1
20070005129 Damm et al. Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016285 Lane et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070078509 Lotfy Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070100440 Figulla et al. May 2007 A1
20070129794 Realyvasquez Jun 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070150053 Gurskis et al. Jun 2007 A1
20070156233 Kapadia et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070179604 Lane Aug 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070198097 Zegdi Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070225801 Drews et al. Sep 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070239266 Birdsall Oct 2007 A1
20070239269 Dolan et al. Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070244546 Francis Oct 2007 A1
20070244558 Machiraju Oct 2007 A1
20070255398 Yang et al. Nov 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265701 Gurskis et al. Nov 2007 A1
20070270944 Bergheim et al. Nov 2007 A1
20070282436 Pinchuk Dec 2007 A1
20070288089 Gurskis et al. Dec 2007 A1
20080021546 Patz et al. Jan 2008 A1
20080033543 Gurskis et al. Feb 2008 A1
20080065198 Quintessenza Mar 2008 A1
20080119875 Ino et al. May 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080319543 Lane Dec 2008 A1
20090036903 Ino et al. Feb 2009 A1
20090192599 Lane et al. Jul 2009 A1
20090192602 Kuehn Jul 2009 A1
20090192603 Ryan Jul 2009 A1
20090192604 Gloss Jul 2009 A1
20090192605 Gloss et al. Jul 2009 A1
20090192606 Gloss et al. Jul 2009 A1
20100161036 Pintor et al. Jun 2010 A1
20100249894 Oba et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100331972 Pintor et al. Dec 2010 A1
20110022165 Oba et al. Jan 2011 A1
20110147251 Hodshon et al. Jun 2011 A1
20120065729 Pintor et al. Mar 2012 A1
20120150288 Hodshon et al. Jun 2012 A1
20130053949 Pintor et al. Feb 2013 A1
20130116777 Pintor et al. May 2013 A1
Foreign Referenced Citations (9)
Number Date Country
2356656 Jan 2000 CN
0125393 Nov 1984 EP
0143246 Jun 1985 EP
2537487 Dec 2012 EP
1116573 Jul 1985 SU
1697790 Dec 1991 SU
9213502 Aug 1992 WO
9742871 Nov 1997 WO
2006029062 Mar 2006 WO
Non-Patent Literature Citations (2)
Entry
Krakow, “3F Therapeutics, Inc. Announces the First Clinical Implantation of the 3F Enable Aortic Heart Valve.TM., a Patented, Sutureless Implantation, Replacement Heart Valve Intended to Save Valuable Surgery Time and Reduce Time RelatedComplications . . . ” Healthcare Sales & Marketing Network News Feed, Jan. 18, 2005, pp. 1-2.
Sadowski, Jerzy; Kapelak, Boguslaw; Bartus, Krzysztof, “Sutureless Heart Valve Implantation—A Case Study,” Touch Briefings, 2005, pp. 48-50.
Related Publications (1)
Number Date Country
20170119525 A1 May 2017 US
Provisional Applications (1)
Number Date Country
60684443 May 2005 US
Continuations (3)
Number Date Country
Parent 14571141 Dec 2014 US
Child 15403458 US
Parent 13954822 Jul 2013 US
Child 14571141 US
Parent 11441406 May 2006 US
Child 13954822 US