1. Technical Field
The present invention relates to a replacement unit and an image forming device.
2. Related Art
Related art image forming devices include, for example, plural process cartridges (replacement units) that are detachably retained in an image forming device are described.
Each process cartridge includes a photoreceptor and at least one electrophotographic processing means that acts on the photoreceptor.
The plural process cartridges are arrayed in a horizontal direction. Circular rod-form pin members that extend in a mounting direction are formed at side portions of the process cartridges. When a process cartridge is being inserted into the body of the device, a pin member formed at the process cartridge that is being inserted slides into a positioning hole provided at a process cartridge that is already mounted in the device body.
An aspect of the present invention is a replacement unit including: a bottom member supported at one of plural support members; and a guide groove provided at the bottom member, is guided by plural protrusions provided at the support member and disposed in a row, and that extends in an installation direction along which the replacement unit is installed in a device body from sideward of the device body.
Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
As illustrated in
Toner cartridges 11Y, 11M, 11C and 11K that accommodate toners of the colors yellow (Y), magenta (M), cyan (C) and black (K) are replaceably provided at the top of the interior of the image forming device 10. In the subsequent descriptions, Y, M, C and K are appended to reference numerals to distinguish between members corresponding to the colors yellow, magenta, cyan and black.
One ends of toner supply paths 13Y, 13M, 13C and 13K are connected to the toner cartridges 11Y, 11M, 11C and 11K, respectively.
Image formation units 12 (12Y, 12M, 12C and 12K), which serve as four replacement units corresponding to developers of Y, M, C and K, are disposed at the middle of the interior of the image forming device 10 in a state in which portions thereof overlap with one another diagonally downward to the right in a front view (see
The developers are agents in which magnetic carriers are mixed with non-magnetic types of toner. The other ends of the toner supply paths 13Y, 13M, 13C and 13K are connected to the four image formation units 12Y, 12M, 12C and 12K, respectively, and supply toners of the respective colors to the image formation units 12.
A transfer section 14 is provided above the image formation units 12Y, 12M, 12C and 12K. The transfer section 14 includes an intermediate transfer belt 16, first transfer rollers 18Y, 18M, 18C and 18K and a second transfer roller 20. The intermediate transfer belt 16 is an example of an intermediate transfer body. The first transfer rollers 18Y, 18M, 18C and 18K are four first transfer members that multiplexingly transfer toner images from the image formation units 12Y, 12M, 12C and 12K onto the intermediate transfer belt 16. The second transfer roller 20 transfers the superposed toner images on the intermediate transfer belt 16 onto a sheet member P that serves as a recording medium.
The intermediate transfer belt 16 is wound round a driving roller 22 that is driven by an unillustrated motor, a tension roller 24 that adjusts tension of the intermediate transfer belt 16, and a backup roller 26 that is disposed to oppose the second transfer roller 20. The intermediate transfer belt 16 is driven to circulate in the direction of arrow X in
The intermediate transfer belt 16 is formed using a belt in which a suitable amount of an antistatic agent such as carbon black or the like is contained in a resin, such as a polyimide, polycarbonate, polyester, polypropylene or the like, or one of various rubbers, such that the volume resistivity is 106 to 1014 Ω·cm.
The first transfer rollers 18 (18Y, 18M, 18C and 18K) are disposed to oppose photoreceptors 28 (28Y, 28M, 28C and 28K), which serve as image-holding members that are provided at the image formation units 12Y, 12M, 12C and 12K, respectively, to sandwich the intermediate transfer belt 16 between the first transfer rollers 18 and the photoreceptors 28. At the first transfer rollers 18Y, 18M, 18C and 18K, transfer bias voltages of the opposite polarity to a polarity of the toners are applied by a power supply unit (not shown). At the second transfer roller 20, a transfer bias voltage of the opposite polarity to the toner polarity is applied by the power supply unit.
A cleaning device 30 is provided at the outer face of the intermediate transfer belt 16 at a position at which the driving roller 22 is provided. The cleaning device 30 is provided with a cleaning brush 32 and a cleaning blade 34, and removes residual toner, paper dust and the like on the intermediate transfer belt 16 with the cleaning brush 32 and the cleaning blade 34.
A control unit 36, which controls driving of the various sections of the image forming device 10, is provided inside the image forming device 10. An exposure unit 40 is provided below the image formation unit 12. The exposure unit 40 illuminates exposure lights L corresponding to the respective colors (LY, LM, LC and LK) at surfaces of the photoreceptors 28, which have been electrostatically charged, and forms electrostatic latent images.
An f-θ lens (not shown) and a polygon mirror 42 are provided inside the exposure unit 40, for scanning the exposure lights L in a main scanning direction. Glass windows 44Y, 44M, 44C and 44K are also provided, for emitting the four exposure lights LY, LM, LC and LK towards the photoreceptors 28 of the image formation units 12Y, 12M, 12C and 12K.
A paper supply cassette 46 in which sheet members P are accommodated is disposed below the exposure unit 40. A paper supply path 50, along which the sheet members P are conveyed, is provided from an end of the paper supply cassette 46 to upward in the vertical direction.
A paper supply roller 48, a roller pair 52 and rollers 54 are provided on the paper supply path 50. The paper supply roller 48 feeds out a sheet member P from the paper supply cassette 46. The roller pair 52 is for paper separation and conveyance, supplying the sheet members P one sheet at a time. The rollers 54 position leading ends of the paper to match conveyance timings of the sheet members P with movement timings of images on the intermediate transfer belt 16.
A fixing device 60 is provided above the second transfer roller 20. The fixing device 60 is provided with a heating roller 62, which is heated, and a pressure roller 64, which is pressed against the heating roller 62. Toner images of the respective colors that have been transferred by the second transfer roller 20 to a sheet member P are fixed by heat and pressure at a portion of abutting between the heating roller 62 and the pressure roller 64. This sheet member P is ejected by ejection rollers 66, which are provided at the downstream side in the conveyance direction of the sheet member P, to an ejection section 68 provided at a top portion of the image forming device 10. At the surface of the intermediate transfer belt 16 at which the second transfer process of the toner images has been completed, residual toner, paper dust and the like are removed by the cleaning device 30.
Next, the image formation units 12 are described.
Here, the image formation unit 12M will be described as an example. The image formation units 12Y, 12C and 12K corresponding to the other colors have structures the same as the image formation unit 12M, so descriptions thereof are not given. The structural members of the image formation unit 12M are indicated with M being omitted from the reference numerals.
The image formation unit 12 is attachable/detachable with respect to a device body (casing) 10A from sideward of the device body 10A, and may be replaced with a new one of the image formation unit 12. In the present exemplary embodiment, as an example, the image formation unit 12 is replaceable from a front face direction of the image forming device 10 in which the image formation unit 12 is disposed. Herein, the meaning of the term sideward includes directions orthogonal with respect to upward and downward of the image forming device 10 in which the image formation unit 12 is disposed, and is not to be particularly limited by the front face direction of the image forming device 10 in which the image formation unit 12 is disposed.
As illustrated in
The charging roller 72, the developing section 70, the erasure lamp 74 and the cleaning blade 76 are arranged, opposing the surface of the photoreceptor 28, in this order from an upstream side to a downstream side of a direction of rotation of the photoreceptor 28.
A cleaning roller 79 is rotatably provided at the opposite side of the outer peripheral face of the charging roller 72 from the side thereof at which the photoreceptor 28 is disposed. The cleaning roller 79 serves as a charging cleaning member that removes toner and the like adhering to the surface of the charging roller 72.
The developing section 70 includes a developer accommodation chamber 80, a developing chamber 82, and an agitation/conveyance chamber 84. The developer accommodation chamber 80 is disposed at a left end of the image formation unit 12M and is charged with developer G. The developing chamber 82 is disposed between the developer accommodation chamber 80 and the photoreceptor 28. The agitation/conveyance chamber 84 is provided below the developer accommodation chamber 80 and the developing chamber 82, agitates (mixes) the developer G that is supplied thereto from the developer accommodation chamber 80 and conveys the same to the developing chamber 82.
A rectangular first aperture 83 is formed at a top portion of the developer accommodation chamber 80. The developer G flows in through the first aperture 83 from the outside to be charged into the developer accommodation chamber 80.
A rectangular second aperture 87 is formed at a bottom portion of the developer accommodation chamber 80. The developer accommodation chamber 80 and the agitation/conveyance chamber 84 are in fluid communication through the second aperture 87. The developer G that is charged into the developer accommodation chamber 80 and flows down inside the developer accommodation chamber 80 flows through the second aperture 87 into the agitation/conveyance chamber 84.
The second aperture 87 is sealed in advance by a sealing member 85B. Before installation of the image formation unit 12 into the image forming device 10, the second aperture 87 is opened by the sealing member 85B being pulled off through one of the side faces of the image formation unit 12.
The agitation/conveyance chamber 84 is divided by a dividing wall 93, and a two-stage agitation path, of a first agitation path 84A and a second agitation path 84B, is provided. Communication apertures (not shown) are formed at positions at two ends of the dividing wall 93, and the first agitation path 84A and second agitation path 84B are in fluid communication through the communication apertures.
An upper face of the second agitation path 84B is open, and is in fluid communication with the developing chamber 82, upward of which a developing roller 78 is disposed.
A first agitation/conveyance member 91 is disposed in the first agitation path 84A. Similarly, a second agitation/conveyance member 92 is disposed in the second agitation path 84B. The developer G in the agitation/conveyance chamber 84 is mixed with supplied toner by the first agitation/conveyance member 91 being turned in the direction of arrow C and the second agitation/conveyance member 92 being turned in the direction of arrow D, is conveyed while being agitated and mixed both in the first agitation path 84A and in the second agitation path 84B, and is circulated between the first agitation path 84A and the second agitation path 84B.
The developing roller 78 is provided in the developing chamber 82. The developing roller 78 rotates in the direction of arrow B (the anticlockwise direction) about a length direction of the photoreceptor 28, moves the toner in the developer G toward a latent image on the photoreceptor 28 at a time of development, and forms a toner image. In the developing chamber 82, a thin layer-forming roller 97 is also provided. The thin layer-forming roller 97 serves as a layer regulation member.
A shutter member 86 (see
Next, an image forming process of the image forming device 10 is described.
As illustrated in
The electrostatic latent images formed on the photoreceptors 28 are manifested and developed as toner images of the respective colors by the developing sections 70. The toner images of the respective colors that are sequentially formed on the photoreceptors 28 of the image formation units 12Y, 12M, 12C and 12K are then sequentially overlapped and transferred onto the intermediate transfer belt 16 by the four first transfer rollers 18Y, 18M, 18C and 18K.
The toner images of the respective colors that have been overlapped and transferred onto the intermediate transfer belt 16 are secondly transferred by the second transfer roller 20 onto the sheet member P that has been conveyed thereto. The toner images of the respective colors on the sheet member P are fixed by the fixing device 60, and after fixing, the sheet member P is ejected to the ejection section 68.
At the surface of the photoreceptor 28 after the toner image transfer process has ended, residual toner, paper dust and the like are removed by the cleaning blade 76. Furthermore, residual toner, paper dust and the like on the intermediate transfer belt 16 are removed by the cleaning device 30.
Structure of Principal Elements
As illustrated in
As illustrated in
On the other hand, when the image formation unit 12 is viewed from the other end thereof as illustrated in
With this structure, a predetermined positional relationship of the developing unit 112 and the photoreceptor unit 110 is preserved by the urging force of the coil springs 116 and 118.
As illustrated in
More specifically, plural (three in the present exemplary embodiment) guide pins 128 are provided along an installation direction of each image formation unit 12 (direction G shown in the drawing). A spacing between the first guide pin 128 from an outer end (near side) of the installation direction of the image formation unit 12 and the second guide pin 128 is set to be narrower than a spacing between the second guide pin 128 and the third guide pin 128.
Meanwhile, as illustrated in
More specifically, when the image formation unit 12 is being installed, the guide groove 134 is guided by the guide pins 128 provided in the device body 10A, such that the image formation unit 12 is attached/detached from the image forming device 10 in the direction of arrow G.
A tapering portion 136 is provided at the guide groove 134. The tapering portion 136 serves as a guiding-in portion that guides in the guide pins 128 when the image formation unit 12 is installed in the device body 10A.
Notches 138 are also provided at the guide groove 134. The notches 138 serve as allowance portions that, in the state in which the image formation unit 12 has been installed in the device body 10A, allow movement of the developing unit 112 relative to the guide pins 128 at a time when the developing unit 112 is pulled toward the photoreceptor unit 110 by a reaction force when the gear member 120, which turns the developing roller 78, first agitation/conveyance member 91 and second agitation/conveyance member 92 disposed in the developing unit 112 (see
That is, when the developing unit 112 is pulled toward the photoreceptor unit 110 and the developing unit 112 acts so as to move in a direction orthogonal to the installation direction of the image formation unit 12 (direction H shown in the drawings), the developing unit 112 moves without the guide groove 134 abutting against the guide pins 128.
Positions of the shutter member 90 and shutter member 86 (see
As illustrated in
As illustrated in
Now, as mentioned above, the spacing between the first guide pin 128 and the second guide pin 128 is set to be narrower than the spacing between the second guide pin 128 and the third guide pin 128. That is, a structure is formed in which the first and second guide pins 128 are guided into the guide groove 134 with a quick timing.
Furthermore, because the spacings of the neighboring guide pins 128 are different, the guide pins 128 will not disengage from the guide groove 134 through the notches 138 during the operation of installation of the image formation unit 12.
As illustrated in
Furthermore, when the image formation unit 12 is being installed in the device body 10A, the only means for guiding the image formation unit 12 is the guide pins 128 protruding from the support plate 126. That is, there is no need to provide guide means between neighboring image formation units 12.
Moreover, because the guide groove 134 is guided by the guide pins 128, tuning for correcting the guiding direction or the like is easier than in a case in which the guide groove 134 is guided by a rail-type protrusion portion that extends in the installation direction of the image formation unit 12.
Herebelow, portions of the second exemplary embodiment that are common with the first exemplary embodiment are indicated with the same reference numbers and are not described; only portions that are different are described.
In
The receiving portion 211 includes a guide portion 212, which is provided at a bottom face of the receiving portion 211 and guides the image formation unit 12 along an insertion/removal direction of the image formation unit 12, and a positioning portion 113, which is provided at a guiding direction inner end of the guide portion 212.
The image formation unit 12 includes a unit container 2, a guided portion 213, a positioned portion 4, and an insertion attitude adjustment portion 5. The unit container 2 accommodates structural elements that form images and is inserted into the receiving portion 211 of the device body 10A. The guided portion 213 is provided at a bottom portion of the unit container 2, and engages with and is guided by the guide portion 212 provided at a floor face of the receiving portion 211. The positioned portion 4 is provided protruding from one end of the unit container 2 at the insertion side of the insertion/removal direction, and is positioned at the positioning portion 113 when the image formation unit 12 has been inserted to the pre-specified mounting position in the receiving portion 211. The insertion attitude adjustment portion 5 is provided at the bottom portion of the unit container 2, touches against and moves along the floor face of the receiving portion 211 when the unit container 2 is inserted toward the mounting position of the receiving portion 211, and makes the positioned portion 4 insertable with respect to the positioning portion 113 in a state in which an attitude of the unit container 2 is adjusted such that the positioned portion 4 side of the unit container 2 is lifted up.
The receiving portion 211 of the device body 10A may have any suitable structure as long as it includes the floor face guide portion 212 and the positioning portion 113.
The floor face guide portion 212 may have any suitable structure as long as it is provided at a bottom face of the receiving portion 211 and guides the image formation unit 12.
In the present embodiment, the positioning portion 113 is located at the guide direction inner side of the floor face guide portion 212. However, an alternative system that performs positioning at the guide direction outer side of the floor face guide portion 212 when the image formation unit 12 is mounted at the mounting position of the receiving portion 211 may also be employed.
The image formation unit 12 requires the unit container 2 that accommodates at least structural elements 6 that form images (for example, if an electrophotography system is taken as an example, this includes an image-holding member 6a such as a photoreceptor or the like, a charging device that charges up the image-holding member 6a, a developing device that manifests an electrostatic latent image formed on the image-holding member 6a with toner, a recovery device that recovers waste toner and so forth). There may be one of this unit container 2 or it may be plurally divided (for example, into an image-holding member unit and a developing unit).
The guided portion 213 may have any suitable structure in accordance with the structure of the floor face guide portion 212 ((a) guide protrusion(s) or guide groove(s)) as long as the guided portion 213 keeps engagement with the floor face guide portion 212 of the receiving portion 211.
The positioned portion 4 may have any suitable structure as long as it is positioned by the positioning portion 113, but must be provided to at least protrude from the insertion side end of the unit container 2.
The insertion attitude adjustment portion 5 may be provided at a single location, at a different location from the guide mechanism formed by the floor face guide portion 212 and the guided portion 213, but there is no reason for it not to be plurally provided. The insertion attitude adjustment portion 5 may have any suitable structure as long as it adjusts so as to lift up the insertion attitude of the unit container 2, but a protrusion is typical.
An example of a typical structure of the image formation unit 12 is a structure in which the unit container 2 accommodates the rotatable image-holding member 6a that bears an image, which serves as the structural elements 6 that form images, and in which the positioned portion 4 is a support member (a bearing member) that rotatably supports the image-holding member 6a. In this case, the support member is combined with the positioned portion 4. Therefore, there is no need to provide the positioned portion 4 separately from the unit container 2.
With a view to more greatly adjusting the insertion attitude of the unit container 2, the protrusion that is a typical structure of the insertion attitude adjustment portion 5 may be provided at a bottom portion of the unit container 2 toward the positioned portion 4 (at the positioned portion 4 side relative to the middle of the image formation unit 12 along the insertion direction).
The unit container 2 may accommodate a recovery device into which residual matter may be recovered after image formation with the material that forms images, and may include an opening/closing cover that is provided at a discharge aperture in the bottom portion of the unit container 2, at which the residual material recovered by the recovery device may be discharged, and that covers the discharge aperture.
In this structure, the insertion attitude adjustment portion 5 may be provided at the bottom portion of the unit container 2 in the vicinity of the opening/closing cover, with a view to effectively preventing interference with the opening/closing cover when the image formation unit 12 is being mounted into the receiving portion 211 of the device body 10A.
With a view to excellently preserving positioning of the positioned portion 4 of the image formation unit 12 relative to the positioning portion 113, the receiving portion 211 may include a concavity (not shown) into which the insertion attitude adjustment portion 5 can be fit in, at a location that corresponds with the insertion attitude adjustment portion 5 in the state in which the image formation unit 12 is mounted at the mounting position of the receiving portion 211, and may set the attitude in which the image formation unit 12 is disposed to an attitude that is positioned at the positioning portion 113.
The term ‘concavity’ here may of course be a recess with a floor, but also includes penetrating holes.
When the concavity is provided in the receiving portion 211, one or both of the insertion attitude adjustment portion 5 and an edge portion of the concavity may include a guide incline portion (not shown), for removing the insertion attitude adjustment portion 5 from the state in which the insertion attitude adjustment portion 5 is fit into the concavity when the image formation unit 12 is being removed from the mounting position.
The guide incline portion guides the insertion attitude adjustment portion 5 so as to remove from the concavity when the image formation unit 12 is removed from the receiving portion 211.
The positioning portion 113 may include a lower side positioning member that catches on the positioned portion 4 of the image formation unit 12 from below in the positioned state, and an upper side positioning member that resiliently positions the positioned portion 4 from above.
For example, a substantially V-shaped positioning plate may be an example of the lower side positioning member and a spring member may be an example of the upper side positioning member.
In the guide mechanism (the floor face guide portion 212 and the guided portion 213), the floor face guide portion 212 may be constituted by guide protrusions that are plurally arrayed along the insertion/removal direction of the image formation unit 12, and the guided portion 213 may be constituted by a guide groove that extends along the direction of arrangement of the plural guide protrusions and is relatively movably guided by the guide protrusions.
Below, the second exemplary embodiment is described in more detail. Overall structure of the image forming device relating to the second exemplary embodiment is similar to the first exemplary embodiment, so will not be described.
Image Formation Unit
In the second exemplary embodiment, as illustrated in
The image formation unit 370 is provided with a photoreceptor unit 371, in which the photoreceptor 28 is incorporated, and a developing unit 372, which is swingably connected to the photoreceptor unit 371 and in which the developing device 334 is incorporated.
Photoreceptor Unit
As illustrated in
The photoreceptor 28 is rotatably supported, at two rotation axis ends thereof, at bearing members 421 and 422 that are provided at the two ends of the accommodation container 380. A coupling member 423, which is provided at one end of the rotation axis of the photoreceptor 28, is connected to an unillustrated driving mechanism when the image formation unit 370 is mounted.
The charging device 332 includes a charging container 381 at a portion of the accommodation container 380. A charging roller 382 and a cleaning roller 383 are disposed in the charging container 381. The charging roller 382 touches or is disposed close to the surface of the photoreceptor 28. The cleaning roller 383 cleans off toner adhering to the surface of the charging roller 382.
The cleaning device 335 includes a cleaning container 384 at a portion of the accommodation container 380. At an opening edge of the cleaning container 384, a cleaning member (cleaning blade) 385 is provided that scrapes off residual toner on the surface of the photoreceptor 28. The recovery conveyance member 386 (for example, in the form of a helical vane attached to the circumference of a rotating shaft) is provided in the cleaning container 384. The recovery conveyance member 386 conveys the residual toner scraped off by the cleaning member 385 toward a waste toner recovery device 560 (see
The charge removal device 336 includes a charge removal container 387 at a portion of the accommodation container 380. A charge removal illumination lens (erasure lamp) 388 is retained at the charge removal container 387. Charge removal light from an unillustrated charge removal lamp is guided to the charge removal illumination lens 388, and the charge removal light is illuminated onto the surface of the photoreceptor 28.
Developing Unit
As illustrated in
The developing container 390 includes a developer accommodation chamber 395 and an initial developer storage chamber 397. The developer accommodation chamber 395 accommodates developer when the image formation unit 370 is mounted, and the developing roller 391 and the developer-agitating members 392 and 393 are disposed in the developer accommodation chamber 395. The initial developer storage chamber 397 is adjacent to the developer accommodation chamber 395 via the aperture 396 (plural apertures 396a and 396b in the present example), and initial developer is stored in the initial developer storage chamber 397 before the image formation unit 370 is mounted. Before the image formation unit 370 is mounted, which is to say, when the developing unit 372 is not yet in use, the aperture 396 (396a and 396b) between the initial developer storage chamber 397 and the developer accommodation chamber 395 is closed off with a closing seal 398 (398a and 398b in the present example), which is removable at a time of use.
Installation Structure of Photoreceptor Unit and Developing Unit
In the present exemplary embodiment, for example, as illustrated in
The connecting mechanism 373 swingably connects, at a pivot axle, the accommodation container 380 of the photoreceptor unit 371 with installation pieces at each of two length direction ends of the developing container 390 of the developing unit 372.
The connecting mechanism 373 is provided at a region away from a region of opposition between the photoreceptor 28 and the developing roller 391.
Tracking rollers for position adjustment (not shown), which are slightly larger in diameter than the developing roller 391, are provided at the two ends of the developing roller 391. A gap between the developing roller 391 and the photoreceptor 28 is adjusted to a predetermined amount that is specified beforehand, by the tracking rollers touching against the surface of the photoreceptor 28.
As illustrated in
Drive Transmission System of the Image Formation Unit
A drive transmission system of the image formation unit 12 is described in accordance with
As mentioned above, the photoreceptor 28 of the photoreceptor unit 371 is driven from the coupling member 423, which is connected to an unillustrated driving mechanism, and driving force is transmitted from the photoreceptor 28 to the recovery conveyance member 386 of the cleaning device 335 via a drive transmission gear train 424.
A driving gear 430, which is driven by an unillustrated driving motor, transmits driving force to a drive transmission gear 432, for the developing roller 391 via a developing input gear 331, and to a drive transmission gear 433, for one of the developer-agitating members 392. The other of the developer-agitating members 393 is driven by driving force transmitted from the one developer-agitating member 392 via a drive transmission gear 434.
As illustrated in
At each unit holder portion 450, a support plate 452, at which a bottom portion of the image formation unit 370 is to be supported, is fixed to a support frame 451 of the device body 10A. Plural guide members 460 (461 to 463) are provided at the support plate 452. The guide members 460 are capable of guiding the image formation unit 370 in the insertion/removal direction. A positioning mechanism 480 is provided at a pre-specified mounting position of the support plate 452. The positioning mechanism 480 positions the bearing members 421 and 422 of the photoreceptor 28 of the image formation unit 370 when the image formation unit 370 is mounted.
Guide Members
As illustrated in
A pin insertion hole 456 and a positioning hole 457 are opened in the support plate 452. The guide pin 466 is inserted into the pin insertion hole 456, and the positioning protrusion 467 fits into the positioning hole 457 so as not to protrude from the surface of the support plate 452. A guide rail is provided at a lower side of the support plate 452. A cleaning member that cleans the exposure unit 40 (see
For the second exemplary embodiment, the guide member 460 (461 to 463) is disposed at the rear face side of the support plate 452, and the guide installation plate 465 is fixed to the support plate 452 by the guide pin 466 being inserted into the pin insertion hole 456 of the support plate 452 and then slightly moved so as to pull the guide pin 466 against the edge of the pin insertion hole 456, and the positioning protrusion 467 being inserted into the positioning hole 457.
Herein, an assembly structure of the guide members 460 is not limited thus. Unillustrated fastening fixtures may be used, and suitable structures in which resiliently deformable press-fastening portions are formed at portions of the guide installation plates 465 or the like are possible.
In the second exemplary embodiment, similarly to the first exemplary embodiment, spacings between the guide pins 466 of the guide members 460 (461 to 463) are specified to be non-uniform. For example, if a distance between the guide pins 466 of the guide members 461 and 462 is defined as e, and a distance between the guide pins 466 of the guide members 462 and 463 is defined as f, these are specified such that the relationship e<f is satisfied. Dimensional relationships herein are not to be limited thus. For example, they may be specified so as to satisfy the relationship e>f.
Positioning Mechanism
The positioning mechanism 480 is provided at the support frame 451 that is disposed at the insertion/removal direction inner side of the image formation unit 370 when the image formation unit 370 is mounted at the mounting position in the unit holder portion 450.
As illustrated in
At the lower side positioning member 481, a positioning plate 482 with a substantially V-shaped groove 483 is fixed to a portion of the support frame 451. The bearing member 421 of the image formation unit 370 is supported at two points by the substantially V-shaped groove 483 (see
At the upper side positioning member 485, a bracket 486 is fixed to the support frame 451, and a plate spring 487 is fixed to the bracket 486 by a stopper 488 to be swingable with a small margin of free play.
The plate spring 487 comes into contact with the coupling member 423 when the coupling member 423 passes the position of the lower side positioning member 481 in a non-contacting state. At this time, passage of the coupling member 423 is allowed with the margin of free play. When the bearing member 421 reaches the position of the lower side positioning member 481 and is positioned at the two points, the plate spring 487 presses on one point at the upper side of the bearing member 421 with a resilient urging force (see
In the present exemplary embodiment, an unillustrated positioning mechanism is also provided at the insertion direction outer side of the image formation unit 370. In the state in which the image formation unit 370 is disposed at the mounting position in the unit holder portion 450, the bearing member 422 at the insertion direction outer side of the image formation unit 370 is positioned by the unillustrated positioning mechanism, which is provided at an opening/closing door for positioning (not shown), by the opening/closing door being closed.
Image Formation Unit Guide Structure
As illustrated in
A region of the pair of guide plates 501 and 502 that form the guide groove 500, at the insertion distal end of the image formation unit 370, is formed as a spreading taper portion 505 that widens toward an entrance thereof. Thus, the guide pins 466 are guided into the guide groove 500.
Insertion Attitude Regulation
An insertion attitude regulation protrusion 520 is formed at the image formation unit 370, at the bottom portion of the accommodation container 380 of the photoreceptor unit 371.
The insertion attitude regulation protrusion 520 is singly provided at the insertion distal end side of the image formation unit 370. In the present exemplary embodiment, the insertion attitude regulation protrusion 520 is formed in a substantially trapezoid shape in cross section, with inclined portions 521 and 522 before and after in the insertion/removal direction of the image formation unit 370.
The insertion attitude regulation protrusion 520 regulates the insertion attitude of the image formation unit 370 such that the insertion distal end side of the image formation unit 370 is lifted up when the image formation unit 370 slidably moves along the insertion/removal direction of the support plate 452 of the unit holder portion 450. A height of the insertion attitude regulation protrusion 520 is set to a level such that the bearing member 421 at the insertion distal end side of the image formation unit 370 does not touch the lower side positioning member 481 of the positioning mechanism 480 when the bearing member 421 reaches the position of the lower side positioning member 481.
A recess hole 540 is provided at the support plate 452 of the unit holder portion 450. The insertion attitude regulation protrusion 520 fits into the recess hole 540 when the state in which the image formation unit 370 is disposed at the mounting position in the unit holder portion 450 is reached. (
A guide incline portion 541 is provided at an edge portion of the recess hole 540 at the removal direction side thereof in the insertion/removal direction of the image formation unit 370. As illustrated in
Relationship Between Image Formation Unit and Waste Toner Recovery Device
As illustrated in
The waste toner recovery device 560 includes the recovery collectors 561 at suitable positions of a recovery piping 562. A conveyance duct 563, through which waste toner is conveyed from the cleaning device 30, is connected to one end of the recovery pipe 562, and an unillustrated recovery container is connected to the other end of the recovery pipe 562. A helical conveyance member (not shown), at which a helical vane is formed around a rotating shaft, is disposed inside the recovery pipe 562.
The insertion attitude regulation protrusion 520 is provided in a vicinity of the shutter 550. When the insertion attitude regulation protrusion 520 is disposed so as to touch against the support plate 452 of the unit holder portion 450, the shutter 550 is not in contact with the support plate 452.
In the drawings, each shutter 550 of the cleaning device 335 is drawn as a schematic diagram at a position at which the aperture is opened. In practice however, the shutter 550 is opened at a position corresponding with the recovery collector 561 of the waste toner recovery device 560 when the image formation unit 370 is disposed at the mounting position of the unit holder portion 450.
As illustrated in
Here, the guide mechanism (the guide members 460 and the guide groove 500) is provided with spacings between the guide pins 466 being non-uniform. Therefore, while the guide groove 500 moves along the direction of arrangement of the guide pins 466, the image formation unit 370 is guided by the guiding mechanism until reaching the mounting position in the unit holder portion 450, without the guide pins 466 disengaging from the notches 510 of the guide groove 500.
When the image formation unit 370 reaches the mounting position of the unit holder portion 450, as illustrated in
Furthermore, as illustrated in
In this state, when the image formation unit 370 is inserted further, firstly, as illustrated in
Subsequently, when the bearing member 421 of the image formation unit 370 reaches the position corresponding with the lower side positioning member 481, as illustrated in
In this state, as illustrated by
At this stage, the image formation unit 370 is in a state of being positioned and mounted at the mounting position of the unit holder portion 450.
When the image formation unit 370 is to be removed from the unit holder portion 450, the unillustrated opening/closing cover is opened, positioning of the image formation unit 370 in the region of the opening/closing cover is released, and then the image formation unit 370 is pulled out in the removal direction.
At this time, as illustrated by the single dot chain line R in
The shutter 550 of the cleaning device 335 returns to the closed state during removal of the image formation unit 370. Therefore, there is no concern about waste toner leaking from the image formation unit 370.
Number | Date | Country | Kind |
---|---|---|---|
2009-068852 | Mar 2009 | JP | national |
2009-230588 | Oct 2009 | JP | national |
This application is based on and claims priority under 35 USC 119 from Japanese Patent Application Nos. 2009-068852 and 2009-230588, filed on Mar. 19, 2009 and Oct. 2, 2009.