Computer data is vital to today's organizations and a significant part of protection against disasters is focused on data protection. As solid-state memory has advanced to the point where cost of memory has become a relatively insignificant factor, organizations can afford to operate with systems that store and process terabytes of data.
Conventional data protection systems include tape backup drives, for storing organizational production site data on a periodic basis. Another conventional data protection system uses data replication, by generating a copy of production site data of an organization on a secondary backup storage system, and updating the backup with changes. The backup storage system may be situated in the same physical location as the production storage system, or in a physically remote location. Data replication systems generally operate either at the application level, at the file system level, or at the data block level.
In one aspect, a method includes replicating a first volume to a consistency group (CG) file on a backup device. The method also includes replicating a second volume to the CG file concurrently with the replicating of the first volume, the first and second volumes being in a consistency group.
In another aspect, an apparatus includes electronic hardware circuitry configured to replicate a first volume to a consistency group (CG) file on a backup device and replicate a second volume to the CG file concurrently with the replicating of the first volume, the first and second volumes being in a consistency group.
In a further aspect, an article includes a non-transitory computer-readable medium that stores computer-executable instructions. The instructions cause a machine to replicate a first volume to a consistency group (CG) file on a backup device and replicate a second volume to the CG file concurrently with the replicating of the first volume, the first and second volumes being in a consistency group.
Described herein are techniques to perform continuous data protection using volume multiplexing.
The following definitions may be useful in understanding the specification and claims.
BACKUP SITE—a facility where replicated production site data is stored; the backup site may be located in a remote site or at the same location as the production site; a backup site may be a virtual or physical site.
BOOKMARK—a bookmark is metadata information stored in a replication journal which indicates a point in time.
CDP—Continuous Data Protection, a full replica of a volume or a set of volumes along with a journal which allows any point in time access, the CDP copy is at the same site, and maybe the same storage array of the production site.
DATA PROTECTION APPLIANCE (DPA)—a computer or a cluster of computers, or a set of processes that serve as a data protection appliance, responsible for data protection services including inter alia data replication of a storage system, and journaling of I/O requests issued by a host computer to the storage system. The DPA may be a physical device, a virtual device running, or may be a combination of a virtual and physical device.
DEDUPLICATED STORAGE SYSTEM—any storage system capable of storing deduplicated or space reduced data, and in some examples, is an EMC® DataDomain® system. Deduplicated data may also be any data that is processed to remove redundant data.
HOST—at least one computer or networks of computers that runs at least one data processing application that issues I/O requests to one or more storage systems; a host is an initiator with a SAN.
HOST DEVICE—an internal interface in a host, to a logical storage unit.
IMAGE—a copy of a logical storage unit at a specific point in time.
INITIATOR—a node in a SAN that issues I/O requests.
I/O REQUEST—an input/output request (sometimes referred to as an I/O or IO), which may be a read I/O request (sometimes referred to as a read request or a read) or a write I/O request (sometimes referred to as a write request or a write).
JOURNAL—a record of write transactions issued to a storage system; used to maintain a duplicate storage system, and to roll back the duplicate storage system to a previous point in time.
LOGICAL UNIT—a logical entity provided by a storage system for accessing data from the storage system. The logical disk may be a physical logical unit or a virtual logical unit.
LUN—a logical unit number for identifying a logical unit.
PHYSICAL LOGICAL UNIT—a physical entity, such as a disk or an array of disks, for storing data in storage locations that can be accessed by address.
PRODUCTION SITE—a facility where one or more host computers run data processing applications that write data to a storage system and read data from the storage system.
REMOTE ACKNOWLEDGEMENTS—an acknowledgement from remote DPA to the local DPA that data arrived at the remote DPA (either to the appliance or the journal).
SNAPSHOT—a snapshot is an image or differential representations of an image, i.e., the snapshot may have pointers to the original volume, and may point to log volumes for changed locations. Snapshots may be combined into a snapshot array, which may represent different images over a time period.
SPLITTER/PROTECTION AGENT—is an agent running either on a production host a switch or a storage array which can intercept Ms and split them to a DPA and to the storage array, fail Ms, redirect I/Os or do any other manipulation to the I/O; the splitter or protection agent may be used in both physical and virtual systems. The splitter may be in the I/O stack of a system and may be located in the hypervisor for virtual machines. In some examples, a splitter may be referred to as an Open Replicator Splitter (ORS).
SPLITTER ACKNOWLEDGEMENT—an acknowledgement from a DPA to the protection agent (splitter) that data has been received at the DPA; this may be achieved by an SCSI status command.
SAN—a storage area network of nodes that send and receive an I/O and other requests, each node in the network being an initiator or a target, or both an initiator and a target.
SOURCE SIDE—a transmitter of data within a data replication workflow, during normal operation a production site is the source side; and during data recovery a backup site is the source side, sometimes called a primary side. Source side may be a virtual or physical site.
STORAGE SYSTEM—a SAN entity that provides multiple logical units for access by multiple SAN initiators.
STREAMING—transmitting data in real time, from a source to a destination, as the data is read or generated.
SYNTHESIZE—generating a new file, for example, using pointers from existing files, without actually copying the referenced data. In one particular example, a new file representing a volume at a points-in-time may be generated using pointers to a file representing a previous point-in-time, as well pointers to journal representing changes to the volume.
TARGET—a node in a SAN that replies to I/O requests.
TARGET SIDE—a receiver of data within a data replication workflow; during normal operation a back site is the target side, and during data recovery a production site is the target side, sometimes called a secondary side. The target side may be a virtual or physical site.
THIN PROVISIONING—thin provisioning involves the allocation of physical storage when it is needed rather than allocating the entire physical storage in the beginning Thus, use of thin provisioning is known to improve storage utilization.
THIN LOGICAL UNIT—a thin logical unit is a logical unit that uses thin provisioning.
VIRTUAL LOGICAL UNIT—a virtual storage entity which is treated as a logical unit by virtual machines.
WAN—a wide area network that connects local networks and enables them to communicate with one another, such as the Internet.
A description of journaling and some techniques associated with journaling may be described in the patent titled “METHODS AND APPARATUS FOR OPTIMAL JOURNALING FOR CONTINUOUS DATA REPLICATION” and with U.S. Pat. No. 7,516,287, which is hereby incorporated by reference.
Referring to
During normal operations, the direction of replicate data flow goes from source side to target side. It is possible, however, for a user to reverse the direction of replicate data flow, in which case Site I starts to behave as a target backup site, and Site II starts to behave as a source production site. Such change of replication direction is referred to as a “failover”. A failover may be performed in the event of a disaster at the production site, or for other reasons. In some data architectures, Site I or Site II behaves as a production site for a portion of stored data, and behaves simultaneously as a backup site for another portion of stored data. In some data architectures, a portion of stored data is replicated to a backup site, and another portion is not.
The production site and the backup site may be remote from one another, or they may both be situated at a common site, local to one another. Local data protection has the advantage of minimizing data lag between target and source, and remote data protection has the advantage is being robust in the event that a disaster occurs at the source side.
The source and target sides communicate via a wide area network (WAN) 128, although other types of networks may be used.
Each side of system 100 includes three major components coupled via a storage area network (SAN); namely, (i) a storage system, (ii) a host computer, and (iii) a data protection appliance (DPA). Specifically with reference to
Generally, a SAN includes one or more devices, referred to as “nodes”. A node in a SAN may be an “initiator” or a “target”, or both. An initiator node is a device that is able to initiate requests to one or more other devices; and a target node is a device that is able to reply to requests, such as SCSI commands, sent by an initiator node. A SAN may also include network switches, such as fiber channel switches. The communication links between each host computer and its corresponding storage system may be any appropriate medium suitable for data transfer, such as fiber communication channel links.
The host communicates with its corresponding storage system using small computer system interface (SCSI) commands.
System 100 includes source storage system 108 and target storage system 120. Each storage system includes physical storage units for storing data, such as disks or arrays of disks. Typically, storage systems 108 and 120 are target nodes. In order to enable initiators to send requests to storage system 108, storage system 108 exposes one or more logical units (LU) to which commands are issued. Thus, storage systems 108 and 120 are SAN entities that provide multiple logical units for access by multiple SAN initiators.
Logical units are a logical entity provided by a storage system, for accessing data stored in the storage system. The logical unit may be a physical logical unit or a virtual logical unit. A logical unit is identified by a unique logical unit number (LUN). Storage system 108 exposes a logical unit 136, designated as LU A, and storage system 120 exposes a logical unit 156, designated as LU B.
LU B is used for replicating LU A. As such, LU B is generated as a copy of LU A. In one example, LU B is configured so that its size is identical to the size of LU A. Thus, for LU A, storage system 120 serves as a backup for source side storage system 108. Alternatively, as mentioned hereinabove, some logical units of storage system 120 may be used to back up logical units of storage system 108, and other logical units of storage system 120 may be used for other purposes. Moreover, there is symmetric replication whereby some logical units of storage system 108 are used for replicating logical units of storage system 120, and other logical units of storage system 120 are used for replicating other logical units of storage system 108.
System 100 includes a source side host computer 104 and a target side host computer 116. A host computer may be one computer, or a plurality of computers, or a network of distributed computers, each computer may include inter alia a conventional CPU, volatile and non-volatile memory, a data bus, an I/O interface, a display interface and a network interface. Generally a host computer runs at least one data processing application, such as a database application and an e-mail server.
Generally, an operating system of a host computer generates a host device for each logical unit exposed by a storage system in the host computer SAN. A host device is a logical entity in a host computer, through which a host computer may access a logical unit. Host device 104 identifies LU A and generates a corresponding host device 140, designated as Device A, through which it can access LU A. Similarly, host computer 116 identifies LU B and generates a corresponding device 160, designated as Device B.
In the course of continuous operation, host computer 104 is a SAN initiator that issues I/O requests (write/read operations) through host device 140 to LU A using, for example, SCSI commands. Such requests are generally transmitted to LU A with an address that includes a specific device identifier, an offset within the device, and a data size. Offsets are generally aligned to 512 byte blocks. The average size of a write operation issued by host computer 104 may be, for example, 10 kilobytes (KB); i.e., 20 blocks. For an I/O rate of 50 megabytes (MB) per second, this corresponds to approximately 5,000 write transactions per second.
System 100 includes two data protection appliances, a source side DPA 112 and a target side DPA 124. A DPA performs various data protection services, such as data replication of a storage system, and journaling of I/O requests issued by a host computer to source side storage system data. As explained in detail herein, when acting as a target side DPA, a DPA may also enable roll back of data to an earlier point in time, and processing of rolled back data at the target site. Each DPA 112 and 124 is a computer that includes inter alia one or more conventional CPUs and internal memory.
For additional safety precaution, each DPA is a cluster of such computers. Use of a cluster ensures that if a DPA computer is down, then the DPA functionality switches over to another computer. The DPA computers within a DPA cluster communicate with one another using at least one communication link suitable for data transfer via fiber channel or IP based protocols, or such other transfer protocol. One computer from the DPA cluster serves as the DPA leader. The DPA cluster leader coordinates between the computers in the cluster, and may also perform other tasks that require coordination between the computers, such as load balancing.
In the architecture illustrated in
DPAs 112 and 124 are configured to act as initiators in the SAN; i.e., they can issue I/O requests using, for example, SCSI commands, to access logical units on their respective storage systems. DPA 112 and DPA 124 are also configured with the necessary functionality to act as targets; i.e., to reply to I/O requests, such as SCSI commands, issued by other initiators in the SAN, including inter alia their respective host computers 104 and 116. Being target nodes, DPA 112 and DPA 124 may dynamically expose or remove one or more logical units.
As described hereinabove, Site I and Site II may each behave simultaneously as a production site and a backup site for different logical units. As such, DPA 112 and DPA 124 may each behave as a source DPA for some logical units, and as a target DPA for other logical units, at the same time.
Host computer 104 and host computer 116 include protection agents 144 and 164, respectively. Protection agents 144 and 164 intercept SCSI commands issued by their respective host computers, via host devices to logical units that are accessible to the host computers. A data protection agent may act on an intercepted SCSI commands issued to a logical unit, in one of the following ways: send the SCSI commands to its intended logical unit; redirect the SCSI command to another logical unit; split the SCSI command by sending it first to the respective DPA; after the DPA returns an acknowledgement, send the SCSI command to its intended logical unit; fail a SCSI command by returning an error return code; and delay a SCSI command by not returning an acknowledgement to the respective host computer.
A protection agent may handle different SCSI commands, differently, according to the type of the command. For example, a SCSI command inquiring about the size of a certain logical unit may be sent directly to that logical unit, while a SCSI write command may be split and sent first to a DPA associated with the agent. A protection agent may also change its behavior for handling SCSI commands, for example as a result of an instruction received from the DPA.
Specifically, the behavior of a protection agent for a certain host device generally corresponds to the behavior of its associated DPA with respect to the logical unit of the host device. When a DPA behaves as a source site DPA for a certain logical unit, then during normal course of operation, the associated protection agent splits I/O requests issued by a host computer to the host device corresponding to that logical unit. Similarly, when a DPA behaves as a target device for a certain logical unit, then during normal course of operation, the associated protection agent fails I/O requests issued by host computer to the host device corresponding to that logical unit.
Communication between protection agents and their respective DPAs may use any protocol suitable for data transfer within a SAN, such as fiber channel, or SCSI over fiber channel. The communication may be direct, or via a logical unit exposed by the DPA. Protection agents communicate with their respective DPAs by sending SCSI commands over fiber channel.
Protection agents 144 and 164 are drivers located in their respective host computers 104 and 116. Alternatively, a protection agent may also be located in a fiber channel switch, or in any other device situated in a data path between a host computer and a storage system or on the storage system itself. In a virtualized environment, the protection agent may run at the hypervisor layer or in a virtual machine providing a virtualization layer.
What follows is a detailed description of system behavior under normal production mode, and under recovery mode.
In production mode DPA 112 acts as a source site DPA for LU A. Thus, protection agent 144 is configured to act as a source side protection agent; i.e., as a splitter for host device A. Specifically, protection agent 144 replicates SCSI I/O write requests. A replicated SCSI I/O write request is sent to DPA 112. After receiving an acknowledgement from DPA 124, protection agent 144 then sends the SCSI I/O write request to LU A. After receiving a second acknowledgement from storage system 108 host computer 104 acknowledges that an I/O command complete.
When DPA 112 receives a replicated SCSI write request from data protection agent 144, DPA 112 transmits certain I/O information characterizing the write request, packaged as a “write transaction”, over WAN 128 to DPA 124 on the target side, for journaling and for incorporation within target storage system 120.
DPA 112 may send its write transactions to DPA 124 using a variety of modes of transmission, including inter alia (i) a synchronous mode, (ii) an asynchronous mode, and (iii) a snapshot mode. In synchronous mode, DPA 112 sends each write transaction to DPA 124, receives back an acknowledgement from DPA 124, and in turns sends an acknowledgement back to protection agent 144. Protection agent 144 waits until receipt of such acknowledgement before sending the SCSI write request to LU A.
In asynchronous mode, DPA 112 sends an acknowledgement to protection agent 144 upon receipt of each I/O request, before receiving an acknowledgement back from DPA 124.
In snapshot mode, DPA 112 receives several I/O requests and combines them into an aggregate “snapshot” of all write activity performed in the multiple I/O requests, and sends the snapshot to DPA 124, for journaling and for incorporation in target storage system 120. In snapshot mode DPA 112 also sends an acknowledgement to protection agent 144 upon receipt of each I/O request, before receiving an acknowledgement back from DPA 124.
For the sake of clarity, the ensuing discussion assumes that information is transmitted at write-by-write granularity.
While in production mode, DPA 124 receives replicated data of LU A from DPA 112, and performs journaling and writing to storage system 120. When applying write operations to storage system 120, DPA 124 acts as an initiator, and sends SCSI commands to LU B.
During a recovery mode, DPA 124 undoes the write transactions in the journal, so as to restore storage system 120 to the state it was at, at an earlier time.
As described hereinabove, LU B is used as a backup of LU A. As such, during normal production mode, while data written to LU A by host computer 104 is replicated from LU A to LU B, host computer 116 should not be sending I/O requests to LU B. To prevent such I/O requests from being sent, protection agent 164 acts as a target site protection agent for host Device B and fails I/O requests sent from host computer 116 to LU B through host Device B.
Target storage system 120 exposes a logical unit 176, referred to as a “journal LU”, for maintaining a history of write transactions made to LU B, referred to as a “journal”. Alternatively, journal LU 176 may be striped over several logical units, or may reside within all of or a portion of another logical unit. DPA 124 includes a journal processor 180 for managing the journal.
Journal processor 180 functions generally to manage the journal entries of LU B. Specifically, journal processor 180 enters write transactions received by DPA 124 from DPA 112 into the journal, by writing them into the journal LU, reads the undo information for the transaction from LU B. updates the journal entries in the journal LU with undo information, applies the journal transactions to LU B, and removes already-applied transactions from the journal.
Referring to
Write transaction 200 generally includes the following fields: one or more identifiers; a time stamp, which is the date & time at which the transaction was received by source side DPA 112; a write size, which is the size of the data block; a location in journal LU 176 where the data is entered; a location in LU B where the data is to be written; and the data itself.
Write transaction 200 is transmitted from source side DPA 112 to target side DPA 124. As shown in
In practice each of the four streams holds a plurality of write transaction data. As write transactions are received dynamically by target DPA 124, they are recorded at the end of the DO stream and the end of the DO METADATA stream, prior to committing the transaction. During transaction application, when the various write transactions are applied to LU B, prior to writing the new DO data into addresses within the storage system, the older data currently located in such addresses is recorded into the UNDO stream. In some examples, the metadata stream (e.g., UNDO METADATA stream or the DO METADATA stream) and the data stream (e.g., UNDO stream or DO stream) may be kept in a single stream each (i.e., one UNDO data and UNDO METADATA stream and one DO data and DO METADATA stream) by interleaving the metadata into the data stream.
In one example, a source storage system may be scanned and individual offsets may be streamed to data protection appliance 300. The offsets streamed from the scanned system may be referred to as initialization I/Os, and may be streamed sequentially to data protection appliance 300. For example, the scanned system may include offsets 0, 1, 2, and 3, comprising data A, B, C, and D. The initial scan may start at the beginning of the system, and transmit offset 0, followed by offset 1, and so forth.
As data protection appliance 300 receives the initialization I/Os, journal processor 302 may identify the offset data and metadata, and may stream the I/Os to metadata journal 306 and/or data journal 308 residing on deduplicated storage 304. Data journal 308 may include data stored within an offset, and metadata 306 may include metadata associated with that offset. Metadata could include, for example, an offset identifier, size, write time, and device ID. These journals may then be used to synthesize a backup snapshot on deduplicated storage 304, as described herein.
In some examples, a scanned storage system may operate in a live environment. As a result, applications may be writing to the storage concurrently with the scan process. If an application writes to a location that has already been streamed, the journal files and ultimately the synthesized snapshot may be out of date. To address this issue, application I/Os may be streamed concurrently with the initialization I/Os if the application I/Os are to an offset that has already been scanned. For example, consider Table 1:
Table 1 depicts four different offsets, denoted as 0, 1, 2, and 3, and four times, t0, t1, t2, and t3. Letters A, B, C, and D may represent the data stored at the offsets. Time t0 may represent the offsets as they exist when the scan begins. These offsets may be streamed to data protection appliance 300 sequentially from 0 to 3. At time t1, however, the data at offset 1 is modified by an application from B to B′. Similarly, at t2 the data at offset 3 changes from D to D′, and at t3 the data at offset 0 changes from A to A′. If the scan transmits the data at offset 1 before t1, B′ may be missed since the change occurred after offset 1 was scanned and B was transmitted. Similarly, if the scan has not reached offset 3 before t2, only D′ will be transmitted since D no longer exists. It may therefore be beneficial to transmit application I/Os to data protection appliance 300 if those I/Os write to an offset that has already been scanned. If the offset has not been scanned, it may not be necessary to transmit the application I/Os because the change will be transmitted when the scan reaches that offset.
Referring back to
Metadata journal entries 310 and data journal entries 312 may include all of the data necessary to synthesize a backup snapshot of the scanned storage system. Data journal entries 312 may include the actual data from the storage system: A, B, B′ C, A′ and D′. Note that data D is not in the data journal 308 since it was modified on the storage system before its offset was scanned and transmitted. Metadata journal entries 310 may include metadata about the offsets. For example, metadata journal entries 310 may include an offset identifier, offset length, and write time, and volume/device ID. In the present example, metadata journal entries may include the entries shown in Table 2:
Table 2's metadata entries may correspond to the states shown in Table 1. The offset at location 0 may be offset 0, the offset at 8 kb may be offset 1, the offset at 16 kb may be offset 2, and the offset at 24 kb may be offset 3. The subscript of each journal entries 310 also identifies the offset associated with that metadata entry.
Deduplicated storage may use metadata journal 306 and data journal 308 to synthesize initial backup snapshot 314. First, metadata journal 306 may be queried to identify the most recent data associated with each offset. Next, the data may be retrieved from journal data file 308 and synthesized into backup snapshot 314. In some examples, synthesizing the backup snapshot may include generating and/or copying pointers rather than copying entire data blocks. This could be, for example, using a product such as EMC® Data Domain® Boost™
For example, once the initial scan is complete, data journal 308 includes data A, B, B′, C, A′, and D′. A′ and B′ are the result of application I/Os occurring during the scan process, and therefore represent the present state of offsets 0 and 1. To generate backup snapshot 314, deduplicated storage may therefore retrieve A′, B′, C, and D′ from the data journal 308 and synthesize them together.
Once initial backup snapshot 314 is synthesized, journal entries 310 and 312 may no longer be needed. In some examples, they may be removed from deduplicated storage 304 in order to conserve space. Alternatively, they may remain in the journals.
The systems and processes described in reference to
Referring to
At block 402, the initialization I/Os are streamed to a deduplicated storage. In an example, the deduplicated storage may be substantially similar to deduplicated storage 304. In some examples, the initialization I/Os are streamed to a data journal using a data stream, and to a metadata journal using a metadata stream. Each stream may be a file in the deduplicated storage. Additionally or alternatively, writes to the journal files may be performed through the EMC® Data Domain® Boost™ API or any other API.
At block 404, the initialization I/Os may be written to a journal on the deduplicated storage. This journal may be, for example, similar to metadata journal 306 and/or data journal 308. In an example, these journals may be in the same journal files. Alternatively, these may be separate files on the deduplicated storage system.
At block 406, application I/Os comprising writes to offsets on the scanned storage volume may be received. These application I/Os may also be received at a data protection appliance, such as data protection appliance 300.
At block 408, an offset associated with a specific application I/O is identified, and at block 410 it is determined whether the offset has already been streamed to the deduplicated storage.
This determination could be made on data protection appliance 300 using journal processor 302. If the offset has already been streamed, it must have already been scanned and included in an initialization I/O. If the offset has not been streamed, the storage volume scan may not have reached the offset on the storage volume.
At block 412, the application I/O is streamed to the deduplicated storage if its offset was included in a previously streamed initialization I/O. In an example, the application I/O is only streamed when its offset was included a previously streamed initialization I/O. Streaming the application I/O when its offset was included in a previous initialization I/O ensures that writes to the scanned volume are not missed during the initialization processes. In some examples, the application I/Os are streamed to a data journal using a data stream, and to a metadata journal using a metadata stream.
In an example, application Ms are not streamed if they comprise writes to an offset that has not yet been scanned and streamed in an initialization I/O. This is because the data generated by the write will be included in the initialization I/O once the scan reaches that offset. This may reduce traffic between the data protection appliance and the deduplicated storage, and may reduce the workload on the deduplicated because the data will only be processed once.
At block 414, the application I/O is written to the journal. This journal may be the same journal as the initialization I/Os, or it may be a separate journal. In an example, the journal is data journal 308 and/or metadata journal 306.
At block 416, a backup snapshot is synthesized from the initialization I/Os and the application I/Os. This snapshot may be substantially similar to snapshot 314. In an example, the snapshot is synthesized by generating data pointers in a new file on the deduplicated storage. Additionally or alternatively, the pointers may be copied from the data journal. These pointers may point to the data referenced and/or included in the journal. Synthesizing the snapshot using pointers may improve performance, as the data may not need to be replicated.
Data protection appliance 500 may take a snapshot of a storage system and transmit that snapshot to deduplicated storage 504 for storage as a file. In an example, this is different than streaming initialization I/Os and synthesizing a snapshot from journal files.
Rather than generating the snapshot on the deduplicated storage, the backup snapshot is generated using the data protection appliance and transmitted to deduplicated storage to be stored as backup snapshot 514.
In an example, journal processor 502 may stream application I/Os to deduplicated storage, and those application Ms may be stored in metadata journal 506 and data journal 508. Like the journals of
The systems and processes described in reference to
Referring to
The system of
As users, applications, and other processes access and use the source storage system, data on that system may change and/or new data may be generated. As a result, initial backup snapshot 614 may become stale. If the source storage system should fail, there is a chance that any new or modified data may be lost. To address this concern, data protection appliance 600 may receive and stream application I/Os to deduplicated storage system 604 on a continuous basis, even after initial backup snapshot 614 is synthesized. Streaming the application I/Os allows the backups on deduplicated storage 604 to remain up-to-date, without needing to perform additional backups of large datasets. This may reduce network traffic, reduce workloads, and conserve space on deduplicated storage 604.
For example, new metadata entries 611 and new data journal entries 613 represent I/Os made after initial backup snapshot 614 was synthesized. These entries may be written to metadata journal 606 and data journal 608, as shown in
Periodically, new backup snapshots may be synthesized from a previous backup snapshot and new journal entries. For example, second backup snapshot 616 may be synthesized from initial backup snapshot 614, new metadata journal entries 611, and new data journal entries 613. Second backup snapshot 616 may be used to restore source storage system up to the point-in-time the last journal entry was received. That is, backup snapshot 616 represents a backup of the source storage system at a later timestamp than initial backup snapshot 614.
In one example, synthesizing second backup journal entry 616 may be substantially similar to synthesizing the initial backup snapshot 614. Rather than synthesizing all of the data from data journal 608, however, unchanged data may be synthesized from initial backup snapshot 614. In one example, this synthesis may include copying and/or generating a data pointer. For example, in
Additionally or alternatively, second backup snapshot 616 may be synthesized entirely from journal entries. Rather than synthesizing unchanged data from initial backup 614, deduplicated storage 604 may retrieve the unchanged data from data journal entries 612. For example, B′ and D′ may be synthesized from data journal entries 612 rather than from initial backup snapshot 614.
Additional backup snapshots, such as second backup snapshot 616, may be generated periodically or on demand. For example, a user policy may specify that new snapshots should be generated every week. Additionally or alternatively, a user may be preparing to perform some risky operations on the source storage system, and may demand that a snapshot be generated in case something goes wrong. These policies may be maintained and applied using data protection appliance 600, deduplicated storage 604, and/or an external system.
Referring to
At block 702, application I/Os comprising writes to the source storage system may be received. These writes may update existing data or generate new data. In some examples, the application I/Os may be received by a data protection appliance, such as data protection appliance 600.
At block 704, the application I/Os may be written to a journal file. This journal file may be substantially similar to metadata journal file 606 and/or data journal file 608. In some examples, the application I/Os may be written to one or more existing journals. Alternatively, application I/Os arriving after a snapshot is synthesized may be written to their own unique journals. This may be beneficial, for example, when maintaining different levels of backup granularity, as described below.
In some examples, the application I/Os are sequentially written to the journal as they are received. For example, if application I/Os arrive in order B, C, A, their corresponding entries in the journal will also be B, C, A.
At block 706, a second snapshot may be synthesized from the initial backup snapshot and the journal. The second snapshot may be substantially similar to second backup snapshot 616, and the synthesis process may be similar to that depicted by the solid and dashed lines. In some examples, the second snapshot may be synthesized entirely from journal files rather than use the initial backup snapshot.
During and/or after the synthesis process, additional application I/Os may be received at block 708. These application I/Os could be used, for example, to generate the third backup snapshot in the future, and may be processed in a manner similar to all the other application I/Os described herein.
At block 710 the additional application I/Os may be written to a journal file. They may be written to the same journal as the previous I/Os, or they may be written to a new journal file.
Referring to
At block 714, the latest I/Os for each offset may be identified. For example, metadata journal file 606 includes journal entries 610 and 611. The latest entry for offset 0 is A″, 1 is B′, 2 is C′, and 3 is D′. In some examples, journal entries 610 and 611 may be written to different journals. In such some examples, the only I/Os identified would be A″ and C′ since we are synthesizing a snapshot from initial backup snapshot 614.
At block 716, a synthesis plan may be generated. This plan may identify where each I/O should be synthesized from. For example, the synthesis plan may only identify A″ and C′ for synthesis from data journal 608. The B′ and D′, in contrast, may be obtained from initial backup snapshot 614 since they have not changed.
At block 718, the backup snapshot may be synthesized. This backup snapshot could be, for example, substantially similar to backup snapshot 616.
The system and processes described herein may enable additional backup snapshots to be synthesized from journal entries and existing snapshots. In some examples, the journal entries may be application I/Os which are continuously streamed to a data protection appliance. While these snapshots may provide additional data protection, they may only allow data that exists in the snapshots to be recovered. Combining snapshots and journal files may, however, allow any point-in-time recovery.
When datasets are backed-up on a periodic rather than continuous basis, data recovery may only be available for specific time intervals. For example, if a dataset is backed up at the end of every business day, the only data that is available for recovery is the data as it exists at the end of the day. Continuous backups, however, may allow recovery of data at any, or nearly any, point-in-time. By transmitting application I/Os to a backup location as they occur, an interim snapshot may be synthesized between scheduled snapshots and data may be recovered.
Data protection appliance 800 may receive application I/Os as they are made to a source storage system. In some examples, journal processor 802 may write those I/Os to metadata journal file 806 and data journal file 808. Initialization journal entries 810 and 812 may be used to synthesize initial backup snapshot 814. Metadata entries 811 and data journal file entries 813 may be application I/Os made to the source storage volume after or while initial backup snapshot 814 was synthesized. These elements may be substantially similar to those described in reference to
In one example, metadata journal entries 811 and data journal entries 813 may be used to synthesize interim snapshot 816. Interim snapshot 816 may then be used as a source for point-in-time recovery. For example, application I/Os A″ and C′ may be streamed to deduplicated storage as they are made to the source storage system. A user may then decide they wish recover data from the point-in-time immediately after application I/O A″ was streamed. When the user's request arrives, the most recent snapshot may be initial backup snapshot 814, which does not include A″ or C′. To respond to the user's request, deduplicated storage 804 may synthesize interim snapshot 816. This snapshot may include unchanged data from initial backup snapshot 814, as shown by the solid black arrows, and application I/O A″ synthesized from data journal file 808, as shown by the dashed arrow. Note that interim snapshot 816 does not include C′. This is because the user requested data recovery at a point-in-time before C′ may made.
In one example, the data from interim snapshot 816 may be transmitted back to the source storage system and recovered. Additionally or alternatively, it may be exposed to a host as LUN, as described in reference to
Referring to
At block 902, a snapshot nearest the point-in-time may be identified. The snapshot could be, for example, initial backup snapshot 814.
At block 906, a recovery snapshot may be synthesized. This recovery snapshot could be, for example, substantially similar to interim snapshot 816. If the recovery snapshot is synthesized using a snapshot from an earlier point-in-time, I/Os stored in a journal file may be applied to synthesize the recovery snapshot.
At block 908 the recovery snapshot may be provided in response to the request. For example, the recovery snapshot may be exposed as a LUN and mounted on a host computer, or exposed as a network file system share. Additionally or alternatively, the recovery snapshot may be transmitted back to the source storage system. In some examples, only a portion of the snapshot, such as a specific file, may be provided.
Combining backup snapshots, journals, and continuous data replication may provide point-in-time recovery capabilities. As more data is written to and/or modified on a source storage system, however, the number of journals and snapshots may increase. In some examples, data protection windows may be used to manage this data growth.
As the number of snapshots and journals on the deduplicated storage grows, more space may be required. Deleting snapshots and journals may result in important information being lost, and adding to space to the deduplicated storage may be expensive. To address these concerns, backup windows and policies may be defined. Backup windows may be defined intervals designating which snapshot and journals should be stored, and for how long.
Short-term protection window 1000 may be defined to protect both snapshots and journal files allowing for point-in-time recovery. This window may be particularly beneficial for snapshots that were generated recently and/or were generated on demand by a user. On demand generation may signify that the snapshot is more important than a scheduled snapshot because a user must go out of their way to generate it. Further, it may be more likely that a user needs to recover data which was modified or generated recently.
Mid-term protection window 1002 may include only snapshot files. As time progresses and journal files move from short-term protection window 1000 into mid-term protection window 1002, they may be deleted. While deleting journal files may prevent most point-in-time recovery, the snapshots may be maintained in mid-term protection window. As a result, some level of point-in-time recovery is preserved. Specifically, any data included in one of the maintained snapshots may be recovered. Mid-term protection window therefore balances storage needs with recovery needs.
As snapshots move from mid-term protection 1002 window into long-term protection window 1004, certain snapshots may be deleted. Point-in-time recovery may be less important for long-term backups because of their age. The deleted snapshots may be chosen based on a policy, such as size or a user assigned priority. Additionally or alternatively, they may be arbitrarily chosen (for example, only retaining every fifth snapshot).
In some examples, data protection windows may be defined and maintained using a data protection appliance, a deduplicated storage device, and/or an external system. For example, if the data protection window is defined using a deduplicated storage device, that device may delete the journals and/or snapshots as the move from one data protection window into another. In some examples, the data protection windows may change dynamically based on available space on the deduplicated storage device. For example, if there is a large amount of available space the short-term protection window may be very large, and/or the mid-term and long-term protection windows may not exist. Similarly, if there is not much available space the long-term protection window may be very long. In further examples the short term protection may not exist at all and the system may use snapshot shipping in order to generate mid- and long-term snapshots on the deduplicated storage device.
In some examples, a backup system has a limited amount of resources and the number of files or stream the system can manage is limited. In such examples, keeping a file open for each replicated volume is problematic, and thus multiplexing multiple volumes into one file may be required.
Referring to
The backup storage 1116 includes a consistency group (CG) file 1122, which is a single, concatenated, file that holds data for LUNs (volumes) in a given consistency group. For example, the CG file 1122 includes a replica of the first, second and third storage 1108a-1108c. The volumes 1108a-1108c are replicated to the CG file concurrently. Using this approach, resource requirements are reduced to a single write-stream per CG (rather than per replicated LUN (volume)) to the backup device 1116, which gives an order-of-magnitude reduction in the requirements. That is, volume multiplexing provides a better approach than copying a file for each volume, which would require a large number of open files when replicating, as each source LUN maps to a file. For example, thousands of LUNs being replicated concurrently would lead to thousands of write-streams to the backup device 1116, which typically exceeds the resource requirements of backup devices.
The backup storage 1116 may also include point-in-time (PIT) copies of the CG file 1122 (e.g., a first copy of the CG file 1132, a second copy of the CG file 1133 and a third copy of the CG file 1134). In one example, a PIT copy is generated periodically.
Each of the PIT copies 1132, 1133, 1134 includes metadata (e.g., the first copy of CG file 1132 includes metadata 1144, the second copy of CG file 1133 includes metadata 1145 and the third copy of CG file 1134 includes metadata 1146). In one example, each metadata 1144, 1145, 1146 includes a timestamp when the copy of the CG file was generated, a list of volumes that are included in the copy of the CG file and the sizes of the volumes.
As further described herein the copies 1132, 1133, 1134 may be used to extract copies of the first, second and third volumes 1108a-1108c (e.g., from the first copy of the CG File 1132, a copy of the first storage volume 1108a (i.e., volume 1142a may be extracted) as well as volumes 1142b, 1142c, which are copies of volume 1108b, 1108c respectively.
Referring to
Referring to
Referring to
Referring to
Process 1400 determines if there are additional volumes to replicate and if there are, process 1400 copies the volumes to the CG file (1406). For example, the DPA 1104 replicates the second storage volume 1108b to the CG file 1122 and the DPA 1104 replicates the third storage volume 1108c to the CG file 1122.
Referring to
Process 1500 extracts a volume using synthesis (1506). For example, the process in
Process 1500 exposes the extracted volume to the user (1510). For example the extracted volume is exposed as a logical unit for a user to access.
Referring to
Referring to
Process 1700 copies all the volumes back to a new CG file except the deleted volume (1708). For example, if the second storage volume is deleted then copies of the first and third volumes 1142a, 1142c are copied to a CG file 1122′″ (see
Referring to
Process 1800 copies all the volumes back to a new CG file accommodating the new volume size (1808). For example, if the third storage volume is increased by 1 GB, then the first, second third volumes from copies 1142a-1142c are copied to a new CG file 1122″″ (see
Referring to
The processes described herein (e.g., processes 400, 700, 712, 900, 1200, 1400, 1500, 1600, 1700 and 1800) are not limited to use with the hardware and software of
The system may be implemented, at least in part, via a computer program product, (e.g., in a non-transitory machine-readable storage medium such as, for example, a non-transitory computer-readable medium), for execution by, or to control the operation of, data processing apparatus (e.g., a programmable processor, a computer, or multiple computers). Each such program may be implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs may be implemented in assembly or machine language. The language may be a compiled or an interpreted language and it may be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program may be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network. A computer program may be stored on a non-transitory machine-readable medium that is readable by a general or special purpose programmable computer for configuring and operating the computer when the non-transitory machine-readable medium is read by the computer to perform the processes described herein. For example, the processes described herein may also be implemented as a non-transitory machine-readable storage medium, configured with a computer program, where upon execution, instructions in the computer program cause the computer to operate in accordance with the processes. A non-transitory machine-readable medium may include but is not limited to a hard drive, compact disc, flash memory, non-volatile memory, volatile memory, magnetic diskette and so forth but does not include a transitory signal per se.
The processes described herein are not limited to the specific examples described. For example, the processes 400, 700, 712, 900, 1200, 1400, 1500, 1600, 1700 and 1800 are not limited to the specific processing order of
The processing blocks (for example, in the processes 400, 700, 712, 900, 1200, 1400, 1500, 1600, 1700 and 1800) associated with implementing the system may be performed by one or more programmable processors executing one or more computer programs to perform the functions of the system. All or part of the system may be implemented as, special purpose logic circuitry (e.g., an FPGA (field-programmable gate array) and/or an ASIC (application-specific integrated circuit)). All or part of the system may be implemented using electronic hardware circuitry that include electronic devices such as, for example, at least one of a processor, a memory, a programmable logic device or a logic gate.
Elements of different embodiments described herein may be combined to form other embodiments not specifically set forth above. Various elements, which are described in the context of a single embodiment, may also be provided separately or in any suitable subcombination. Other embodiments not specifically described herein are also within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5170480 | Mohan et al. | Dec 1992 | A |
5249053 | Jain | Sep 1993 | A |
5388254 | Betz et al. | Feb 1995 | A |
5499367 | Bamford et al. | Mar 1996 | A |
5526397 | Lohman | Jun 1996 | A |
5864837 | Maimone | Jan 1999 | A |
5879459 | Gadgil et al. | Mar 1999 | A |
5990899 | Whitten | Nov 1999 | A |
6042652 | Hyun et al. | Mar 2000 | A |
6065018 | Beier et al. | May 2000 | A |
6143659 | Leem | Nov 2000 | A |
6148340 | Bittinger et al. | Nov 2000 | A |
6174377 | Doering et al. | Jan 2001 | B1 |
6174809 | Kang et al. | Jan 2001 | B1 |
6203613 | Gates et al. | Mar 2001 | B1 |
6260125 | McDowell | Jul 2001 | B1 |
6270572 | Kim et al. | Aug 2001 | B1 |
6272534 | Guha | Aug 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6467023 | DeKoning et al. | Oct 2002 | B1 |
6574657 | Dickinson | Jun 2003 | B1 |
6621493 | Whitten | Sep 2003 | B1 |
6804676 | Bains, II | Oct 2004 | B1 |
6947981 | Lubbers et al. | Sep 2005 | B2 |
7043610 | Horn et al. | May 2006 | B2 |
7051126 | Franklin | May 2006 | B1 |
7076620 | Takeda et al. | Jul 2006 | B2 |
7111197 | Kingsbury et al. | Sep 2006 | B2 |
7117327 | Hirakawa et al. | Oct 2006 | B2 |
7120768 | Mizuno et al. | Oct 2006 | B2 |
7130975 | Suishu et al. | Oct 2006 | B2 |
7139927 | Park et al. | Nov 2006 | B2 |
7159088 | Hirakawa et al. | Jan 2007 | B2 |
7167963 | Hirakawa et al. | Jan 2007 | B2 |
7203741 | Marco et al. | Apr 2007 | B2 |
7222136 | Brown et al. | May 2007 | B1 |
7296008 | Passerini et al. | Nov 2007 | B2 |
7328373 | Kawamura et al. | Feb 2008 | B2 |
7353335 | Kawamura | Apr 2008 | B2 |
7360113 | Anderson et al. | Apr 2008 | B2 |
7426618 | Vu et al. | Sep 2008 | B2 |
7516287 | Ahal et al. | Apr 2009 | B2 |
7519625 | Honami et al. | Apr 2009 | B2 |
7519628 | Leverett | Apr 2009 | B1 |
7546485 | Cochran et al. | Jun 2009 | B2 |
7577867 | Lewin et al. | Aug 2009 | B2 |
7590887 | Kano | Sep 2009 | B2 |
7606940 | Yamagami | Oct 2009 | B2 |
7627612 | Ahal et al. | Dec 2009 | B2 |
7627687 | Ahal et al. | Dec 2009 | B2 |
7719443 | Natanzon | May 2010 | B1 |
7757057 | Sangapu et al. | Jul 2010 | B2 |
7774565 | Lewin et al. | Aug 2010 | B2 |
7797358 | Ahal et al. | Sep 2010 | B1 |
7840536 | Ahal et al. | Nov 2010 | B1 |
7840662 | Natanzon | Nov 2010 | B1 |
7844856 | Ahal et al. | Nov 2010 | B1 |
7849361 | Ahal et al. | Dec 2010 | B2 |
7860836 | Natanzon et al. | Dec 2010 | B1 |
7882286 | Natanzon et al. | Feb 2011 | B1 |
7934262 | Natanzon et al. | Apr 2011 | B1 |
7958372 | Natanzon | Jun 2011 | B1 |
8037162 | Marco et al. | Oct 2011 | B2 |
8041940 | Natanzon et al. | Oct 2011 | B1 |
8060713 | Natanzon | Nov 2011 | B1 |
8060714 | Natanzon | Nov 2011 | B1 |
8103937 | Natanzon et al. | Jan 2012 | B1 |
8108634 | Natanzon et al. | Jan 2012 | B1 |
8205009 | Hellen et al. | Jun 2012 | B2 |
8214612 | Natanzon | Jul 2012 | B1 |
8250149 | Marco et al. | Aug 2012 | B2 |
8271441 | Natanzon et al. | Sep 2012 | B1 |
8271447 | Natanzon et al. | Sep 2012 | B1 |
8332687 | Natanzon et al. | Dec 2012 | B1 |
8335761 | Natanzon | Dec 2012 | B1 |
8335771 | Natanzon et al. | Dec 2012 | B1 |
8341115 | Natanzon et al. | Dec 2012 | B1 |
8370648 | Natanzon | Feb 2013 | B1 |
8380885 | Natanzon | Feb 2013 | B1 |
8392680 | Natanzon et al. | Mar 2013 | B1 |
8429362 | Natanzon et al. | Apr 2013 | B1 |
8433869 | Natanzon et al. | Apr 2013 | B1 |
8438135 | Natanzon et al. | May 2013 | B1 |
8464101 | Natanzon et al. | Jun 2013 | B1 |
8478955 | Natanzon et al. | Jul 2013 | B1 |
8495304 | Natanzon et al. | Jul 2013 | B1 |
8510279 | Natanzon et al. | Aug 2013 | B1 |
8521691 | Natanzon | Aug 2013 | B1 |
8521694 | Natanzon | Aug 2013 | B1 |
8543609 | Natanzon | Sep 2013 | B1 |
8583885 | Natanzon | Nov 2013 | B1 |
8589350 | Lalonde | Nov 2013 | B1 |
8600945 | Natanzon et al. | Dec 2013 | B1 |
8601085 | Ives et al. | Dec 2013 | B1 |
8627012 | Derbeko et al. | Jan 2014 | B1 |
8683592 | Dotan et al. | Mar 2014 | B1 |
8694700 | Natanzon et al. | Apr 2014 | B1 |
8706700 | Natanzon et al. | Apr 2014 | B1 |
8712962 | Natanzon et al. | Apr 2014 | B1 |
8719497 | Don et al. | May 2014 | B1 |
8725691 | Natanzon | May 2014 | B1 |
8725692 | Natanzon et al. | May 2014 | B1 |
8726066 | Natanzon et al. | May 2014 | B1 |
8738813 | Natanzon et al. | May 2014 | B1 |
8745004 | Natanzon et al. | Jun 2014 | B1 |
8751828 | Raizen et al. | Jun 2014 | B1 |
8769336 | Natanzon et al. | Jul 2014 | B1 |
8805786 | Natanzon | Aug 2014 | B1 |
8806161 | Natanzon | Aug 2014 | B1 |
8825848 | Dotan et al. | Sep 2014 | B1 |
8832399 | Natanzon et al. | Sep 2014 | B1 |
8850143 | Natanzon | Sep 2014 | B1 |
8850144 | Natanzon et al. | Sep 2014 | B1 |
8862546 | Natanzon et al. | Oct 2014 | B1 |
8892835 | Natanzon et al. | Nov 2014 | B1 |
8898112 | Natanzon et al. | Nov 2014 | B1 |
8898409 | Natanzon et al. | Nov 2014 | B1 |
8898515 | Natanzon | Nov 2014 | B1 |
8898519 | Natanzon et al. | Nov 2014 | B1 |
5914595 | Natanzon | Dec 2014 | A1 |
8924668 | Natanzon | Dec 2014 | B1 |
8930500 | Marco et al. | Jan 2015 | B2 |
8930947 | Derbeko et al. | Jan 2015 | B1 |
8977593 | Natanzon et al. | Mar 2015 | B1 |
8977826 | Meiri et al. | Mar 2015 | B1 |
8996460 | Frank et al. | Mar 2015 | B1 |
8996461 | Natanzon et al. | Mar 2015 | B1 |
8996827 | Natanzon | Mar 2015 | B1 |
9003138 | Natanzon et al. | Apr 2015 | B1 |
9026696 | Natanzon et al. | May 2015 | B1 |
9031913 | Natanzon | May 2015 | B1 |
9032160 | Natanzon et al. | May 2015 | B1 |
9037818 | Natanzon et al. | May 2015 | B1 |
9063994 | Natanzon et al. | Jun 2015 | B1 |
9069479 | Natanzon | Jun 2015 | B1 |
9069709 | Natanzon et al. | Jun 2015 | B1 |
9075810 | Banerjee | Jul 2015 | B2 |
9081754 | Natanzon et al. | Jul 2015 | B1 |
9081842 | Natanzon et al. | Jul 2015 | B1 |
9087008 | Natanzon | Jul 2015 | B1 |
9087112 | Natanzon et al. | Jul 2015 | B1 |
9104529 | Derbeko et al. | Aug 2015 | B1 |
9110914 | Frank et al. | Aug 2015 | B1 |
9116811 | Derbeko et al. | Aug 2015 | B1 |
9128628 | Natanzon et al. | Sep 2015 | B1 |
9128855 | Natanzon et al. | Sep 2015 | B1 |
9134914 | Derbeko et al. | Sep 2015 | B1 |
9135119 | Natanzon et al. | Sep 2015 | B1 |
9135120 | Natanzon | Sep 2015 | B1 |
9146878 | Cohen et al. | Sep 2015 | B1 |
9152339 | Cohen et al. | Oct 2015 | B1 |
9152578 | Saad et al. | Oct 2015 | B1 |
9152814 | Natanzon | Oct 2015 | B1 |
9158578 | Derbeko et al. | Oct 2015 | B1 |
9158630 | Natanzon | Oct 2015 | B1 |
9160526 | Raizen et al. | Oct 2015 | B1 |
9177670 | Derbeko et al. | Nov 2015 | B1 |
9189339 | Cohen et al. | Nov 2015 | B1 |
9189341 | Natanzon et al. | Nov 2015 | B1 |
9201736 | Moore et al. | Dec 2015 | B1 |
9223659 | Natanzon et al. | Dec 2015 | B1 |
9225529 | Natanzon et al. | Dec 2015 | B1 |
9235481 | Natanzon et al. | Jan 2016 | B1 |
9235524 | Derbeko et al. | Jan 2016 | B1 |
9235632 | Natanzon | Jan 2016 | B1 |
9244997 | Natanzon et al. | Jan 2016 | B1 |
9256605 | Natanzon | Feb 2016 | B1 |
9274718 | Natanzon et al. | Mar 2016 | B1 |
9275063 | Natanzon | Mar 2016 | B1 |
9286052 | Solan et al. | Mar 2016 | B1 |
9305009 | Bono et al. | Apr 2016 | B1 |
9323750 | Natanzon et al. | Apr 2016 | B2 |
9330155 | Bono et al. | May 2016 | B1 |
9336094 | Wolfson et al. | May 2016 | B1 |
9336230 | Natanzon | May 2016 | B1 |
20020129168 | Kanai et al. | Sep 2002 | A1 |
20030048842 | Fourquin et al. | Mar 2003 | A1 |
20030061537 | Cha et al. | Mar 2003 | A1 |
20030110278 | Anderson | Jun 2003 | A1 |
20030145317 | Chamberlain | Jul 2003 | A1 |
20030196147 | Hirata et al. | Oct 2003 | A1 |
20040205092 | Longo et al. | Oct 2004 | A1 |
20040250032 | Ji et al. | Dec 2004 | A1 |
20040254964 | Kodama et al. | Dec 2004 | A1 |
20050015663 | Armangau et al. | Jan 2005 | A1 |
20050028022 | Amano | Feb 2005 | A1 |
20050049924 | DeBettencourt et al. | Mar 2005 | A1 |
20050172092 | Lam et al. | Aug 2005 | A1 |
20050273655 | Chow et al. | Dec 2005 | A1 |
20060031647 | Hirakawa et al. | Feb 2006 | A1 |
20060047996 | Anderson et al. | Mar 2006 | A1 |
20060064416 | Sim-Tang | Mar 2006 | A1 |
20060107007 | Hirakawa et al. | May 2006 | A1 |
20060117211 | Matsunami et al. | Jun 2006 | A1 |
20060161810 | Bao | Jul 2006 | A1 |
20060179343 | Kitamura | Aug 2006 | A1 |
20060195670 | Iwamura et al. | Aug 2006 | A1 |
20060212462 | Hellen et al. | Sep 2006 | A1 |
20070055833 | Vu et al. | Mar 2007 | A1 |
20070162513 | Lewin et al. | Jul 2007 | A1 |
20070180304 | Kano | Aug 2007 | A1 |
20070198602 | Ngo et al. | Aug 2007 | A1 |
20070198791 | Iwamura et al. | Aug 2007 | A1 |
20070220311 | Lewin et al. | Sep 2007 | A1 |
20070266053 | Ahal et al. | Nov 2007 | A1 |
20080082591 | Ahal et al. | Apr 2008 | A1 |
20080082592 | Ahal et al. | Apr 2008 | A1 |
20080082770 | Ahal et al. | Apr 2008 | A1 |
20130304788 | DeLuca | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
1154356 | Nov 2001 | EP |
WO 00 45581 | Aug 2000 | WO |
Entry |
---|
Gibson, “Five Point Plan Lies at the Heart of Compression Technology;” Apr. 29, 1991; p. 1. |
Soules, “Metadata Efficiency in Versioning File Systems:” 2003; pp. 1-16. |
AIX System Management Concepts: Operating Systems and Devices; May 2000; pp. 1-280. |
Soules at al.; “Metadata Efficiency in a Comprehensive Versioning File System:” May 2002; CMU-CS-02-145: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213; 33 pages. |
Linux Filesystems; Sams Publishing; 2002; pp. 17-22 and 67-71. |
Bunyan, “Muitiplexing in a BrightStor® ARCserve® Backup Release 11:” Mar. 2004; pp, 1-4. |
Marks, “Network Computing:” Feb. 2, 2006; pp. 1-8. |
Hill, “Network Computing;” Jun. 8, 2006; pp. 1-9. |
Microsoft Computer Dictionary; 2002; Press Fifth Edition; 2 pages. |
Retrieved from http://en.wikipedia.org/wiki/DEFLATE; DEFLATE; Jun. 19, 2008; pp. 1-6. |
Retrieved from http://en.wikipedia.org/wiki/Huffman—coding; Huffman Coding; Jun. 8, 2008; pp. 1-11. |
Retrieved from http:///en.wikipedia.org/wiki/LZ77; LZ77 and LZ78; Jun. 17, 2008; pp. 1-2. |
Saar Cohen, at al.; “Providing Data Protection Using Point-In-Time Images From Multiple Types of Storage Devices,” U.S. Appl. No. 14/559,031, filed Dec. 3, 2014 51 pages. |
Assaf Natanzon, et al.; “Storing Snapshot Changes with Shapshots,” U.S. Appl. No. 14/559,036, filed Dec. 3, 2014 31 pages. |
U.S. Appl. No. 11/609,560 downloaded Jan. 7, 2015 265 pages. |
U.S. Appl. No. 12/057,652 downloaded Jan. 7, 2015 296 pages. |
U.S. Appl. No. 11/609,561 downloaded Jan. 7, 2015 219 pages. |
U.S. Appl. No. 11/356,920 downloaded Jan. 7, 2015 272 pages. |
U.S. Appl. No. 10/512,687 downloaded Jan. 7, 2015 Part 1 of 2; 300 pages. |
U.S. Appl. No. 10/512,687 downloaded Jan. 7, 2015 Part 2 of 2; 254 pages. |
U.S. Appl. No. 11/536,233 downloaded Jan. 7, 2015 256 pages. |
U.S. Appl. No. 11/536,215 downloaded Jan. 7, 2015 172 pages. |
U.S. Appl. No. 11/536,160 downloaded Jan. 7, 2015 230 pages. |
U.S. Appl. No. 11/965,168 downloaded Jan. 7, 2015 222 pages. |
U.S. Appl. No. 14/559,036 downloaded Jan. 12, 2015 82 pages. |
U.S. Appl. No. 14/559,031 downloaded Jan. 12, 2015 122 pages. |