Replication of a virtual distributed volume with virtual machine granualarity

Information

  • Patent Grant
  • 9189339
  • Patent Number
    9,189,339
  • Date Filed
    Friday, March 28, 2014
    10 years ago
  • Date Issued
    Tuesday, November 17, 2015
    9 years ago
  • CPC
    • G06F11/1412
  • Field of Search
    • US
    • 714 004110
    • 714 004100
  • International Classifications
    • G06F11/00
    • G06F11/14
    • Term Extension
      132
Abstract
In one aspect, a method includes intercepting an I/O sent by a virtual machine at a first site, sending the I/O to a first data protection appliance (DPA) at the first site, sending I/O metadata to a first service layer at the first site, sending I/O data down the I/O stack after receiving acknowledgement that the I/O metadata arrived at the first service layer, intercepting the I/O at the first service layer, sending the I/O metadata from the first service layer to a second service layer at a second site and sending I/O data to the second service layer at the second site by ensuring that I/O metadata mirroring between the first site and the second site is completed before I/O data mirroring occurs between the first site and the second site.
Description
BACKGROUND

Computer data is vital to today's organizations and a significant part of protection against disasters is focused on data protection. As solid-state memory has advanced to the point where cost of memory has become a relatively insignificant factor, organizations can afford to operate with systems that store and process terabytes of data.


Conventional data protection systems include tape backup drives, for storing organizational production site data on a periodic basis. Another conventional data protection system uses data replication, by creating a copy of production site data of an organization on a secondary backup storage system, and updating the backup with changes. The backup storage system may be situated in the same physical location as the production storage system, or in a physically remote location. Data replication systems generally operate either at the application level, at the file system level, or at the data block level.


SUMMARY

In one aspect, a method includes intercepting an I/O sent by a virtual machine at a first site, sending the I/O to a first data protection appliance (DPA) at the first site, sending I/O metadata to a first service layer at the first site, sending I/O data down the I/O stack after receiving acknowledgement that the I/O metadata arrived at the first service layer, intercepting the I/O at the first service layer, sending the I/O metadata from the first service layer to a second service layer at a second site and sending I/O data to the second service layer at the second site by ensuring that I/O metadata mirroring between the first site and the second site is completed before I/O data mirroring occurs between the first site and the second site.


In another aspect, an apparatus includes electronic hardware circuitry configured to intercept an I/O sent by a virtual machine at a first site, send the I/O to a first data protection appliance (DPA) at the first site, send I/O metadata to a first service layer at the first site, send I/O data down the I/O stack after receiving acknowledgement that the I/O metadata arrived at the first service layer, intercept the I/O at the first service layer, send the I/O metadata from the first service layer to a second service layer at a second site and send I/O data to the second service layer at the second site by ensuring that I/O metadata mirroring between the first site and the second site is completed before I/O data mirroring occurs between the first site and the second site.


In a further aspect, an article includes a non-transitory computer-readable medium that stores computer-executable instructions. The instructions cause a machine to intercept an I/O sent by a virtual machine at a first site, send the I/O to a first data protection appliance (DPA) at the first site, send I/O metadata to a first service layer at the first site, send I/O data down the I/O stack after receiving acknowledgement that the I/O metadata arrived at the first service layer, intercept the I/O at the first service layer, send the I/O metadata from the first service layer to a second service layer at a second site and send I/O data to the second service layer at the second site by ensuring that I/O metadata mirroring between the first site and the second site is completed before I/O data mirroring occurs between the first site and the second site.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of an example of a data protection system.



FIG. 2 is an illustration of an example of a journal history of write transactions for a storage system.



FIG. 3 is a block diagram of another example of the data protection system in a virtual environment.



FIG. 4 is a block diagram of the data protection system in FIG. 3 after failure at a site.



FIG. 5 is a flowchart of an example of a process to replicate data in a virtual environment.



FIG. 6 is a flowchart of an example of a process to manage a backlog.



FIG. 7 is a flowchart of an example of a process to recover from a failure of a site.



FIG. 8 is a computer on which any of the processes of FIGS. 5 to 7 may be implemented.





DETAILED DESCRIPTION

Described herein are techniques to have a splitter in a hypervisor perform replication and send I/Os to the DPAs in their “VMDK form.” The splitter signals to the underlying service layer (virtual or physical) about the I/O metadata of these I/Os through a special command, but not sending the actual data. Other techniques describe using the service layer as a tracker to track I/O metadata in a backlog. By utilizing the techniques, replication is done in a per-VMDK granularity, since the DPA gets I/Os from a splitter in a hypervisor. Services layers with backlogs on both sites keep the same backlog of the changes that were applied, thus allowing for failovers from one site to the other, while using this backlog to perform re-synchronization.


The following definitions may be useful in understanding the specification and claims.


BACKUP SITE—a facility where replicated production site data is stored; the backup site may be located in a remote site or at the same location as the production site;


BOOKMARK—a bookmark is metadata information stored in a replication journal which indicates a point in time.


DATA PROTECTION APPLIANCE (DPA)—a computer or a cluster of computers responsible for data protection services including inter alia data replication of a storage system, and journaling of I/O requests issued by a host computer to the storage system;


HOST—at least one computer or networks of computers that runs at least one data processing application that issues I/O requests to one or more storage systems; a host is an initiator with a SAN;


HOST DEVICE—an internal interface in a host, to a logical storage unit;


IMAGE—a copy of a logical storage unit at a specific point in time;


INITIATOR—a node in a SAN that issues I/O requests;


I/O REQUEST—an input/output request (sometimes referred to as an I/O), which may be a read I/O request (sometimes referred to as a read request or a read) or a write I/O request (sometimes referred to as a write request or a write);


JOURNAL—a record of write transactions issued to a storage system; used to maintain a duplicate storage system, and to roll back the duplicate storage system to a previous point in time;


LOGICAL UNIT—a logical entity provided by a storage system for accessing data from the storage system. The logical disk may be a physical logical unit or a virtual logical unit;


LUN—a logical unit number for identifying a logical unit;


PHYSICAL LOGICAL UNIT—a physical entity, such as a disk or an array of disks, for storing data in storage locations that can be accessed by address;


PRODUCTION SITE—a facility where one or more host computers run data processing applications that write data to a storage system and read data from the storage system;


REMOTE ACKNOWLEDGEMENTS—an acknowledgement from remote DPA to the local DPA that data arrived at the remote DPA (either to the appliance or the journal)


SPLITTER ACKNOWLEDGEMENT—an acknowledgement from a DPA to the protection agent (splitter) that data has been received at the DPA; this may be achieved by an SCSI status command.


SAN—a storage area network of nodes that send and receive an I/O and other requests, each node in the network being an initiator or a target, or both an initiator and a target;


SOURCE SIDE—a transmitter of data within a data replication workflow, during normal operation a production site is the source side; and during data recovery a backup site is the source side, sometimes called a primary side;


STORAGE SYSTEM—a SAN entity that provides multiple logical units for access by multiple SAN initiators


TARGET—a node in a SAN that replies to I/O requests;


TARGET SIDE—a receiver of data within a data replication workflow; during normal operation a back site is the target side, and during data recovery a production site is the target side, sometimes called a secondary side;


THIN PROVISIONING—thin provisioning involves the allocation of physical storage when it is needed rather than allocating the entire physical storage in the beginning. Thus, use of thin provisioning is known to improve storage utilization.


THIN LOGICAL UNIT—a thin logical unit is a logical unit that uses thin provisioning;


VIRTUAL LOGICAL UNIT—a virtual storage entity which is treated as a logical unit by virtual machines;


WAN—a wide area network that connects local networks and enables them to communicate with one another, such as the Internet.


A description of journaling and some techniques associated with journaling may be described in the patent titled “METHODS AND APPARATUS FOR OPTIMAL JOURNALING FOR CONTINUOUS DATA REPLICATION” and with U.S. Pat. No. 7,516,287, which is hereby incorporated by reference.


Referring to FIG. 1, a data protection system 100 includes two sites; Site I, which is a production site, and Site II, which is a backup site or replica site. Under normal operation the production site is the source side of system 100, and the backup site is the target side of the system. The backup site is responsible for replicating production site data. Additionally, the backup site enables roll back of Site I data to an earlier pointing time, which may be used in the event of data corruption of a disaster, or alternatively in order to view or to access data from an earlier point in time.



FIG. 1 is an overview of a system for data replication of either physical or virtual logical units. Thus, one of ordinary skill in the art would appreciate that in a virtual environment a hypervisor, in one example, would consume logical units and generate a distributed file system on them such as VMFS creates files in the file system and expose the files as logical units to the virtual machines (each VMDK is seen as a SCSI device by virtual hosts). In another example, the hypervisor consumes a network based file system and exposes files in the NFS as SCSI devices to virtual hosts.


During normal operations, the direction of replicate data flow goes from source side to target side. It is possible, however, for a user to reverse the direction of replicate data flow, in which case Site I starts to behave as a target backup site, and Site II starts to behave as a source production site. Such change of replication direction is referred to as a “failover”. A failover may be performed in the event of a disaster at the production site, or for other reasons. In some data architectures, Site I or Site II behaves as a production site for a portion of stored data, and behaves simultaneously as a backup site for another portion of stored data. In some data architectures, a portion of stored data is replicated to a backup site, and another portion is not.


The production site and the backup site may be remote from one another, or they may both be situated at a common site, local to one another. Local data protection has the advantage of minimizing data lag between target and source, and remote data protection has the advantage is being robust in the event that a disaster occurs at the source side.


The source and target sides communicate via a wide area network (WAN) 128, although other types of networks may be used.


Each side of system 100 includes three major components coupled via a storage area network (SAN); namely, (i) a storage system, (ii) a host computer, and (iii) a data protection appliance (DPA). Specifically with reference to FIG. 1, the source side SAN includes a source host computer 104, a source storage system 108, and a source DPA 112. Similarly, the target side SAN includes a target host computer 116, a target storage system 120, and a target DPA 124. As well, the protection agent (sometimes referred to as a splitter) may run on the host, or on the storage, or in the network or at a hypervisor level, and that DPAs are optional and DPA code may run on the storage array too, or the DPA 124 may run as a virtual machine.


Generally, a SAN includes one or more devices, referred to as “nodes”. A node in a SAN may be an “initiator” or a “target”, or both. An initiator node is a device that is able to initiate requests to one or more other devices; and a target node is a device that is able to reply to requests, such as SCSI commands, sent by an initiator node. A SAN may also include network switches, such as fiber channel switches. The communication links between each host computer and its corresponding storage system may be any appropriate medium suitable for data transfer, such as fiber communication channel links.


The host communicates with its corresponding storage system using small computer system interface (SCSI) commands.


System 100 includes source storage system 108 and target storage system 120. Each storage system includes physical storage units for storing data, such as disks or arrays of disks. Typically, storage systems 108 and 120 are target nodes. In order to enable initiators to send requests to storage system 108, storage system 108 exposes one or more logical units (LU) to which commands are issued. Thus, storage systems 108 and 120 are SAN entities that provide multiple logical units for access by multiple SAN initiators.


Logical units are a logical entity provided by a storage system, for accessing data stored in the storage system. The logical unit may be a physical logical unit or a virtual logical unit. A logical unit is identified by a unique logical unit number (LUN). Storage system 108 exposes a logical unit 136, designated as LU A, and storage system 120 exposes a logical unit 156, designated as LU B.


LU B is used for replicating LU A. As such, LU B is generated as a copy of LU A. In one embodiment, LU B is configured so that its size is identical to the size of LU A. Thus, for LU A, storage system 120 serves as a backup for source side storage system 108. Alternatively, as mentioned hereinabove, some logical units of storage system 120 may be used to back up logical units of storage system 108, and other logical units of storage system 120 may be used for other purposes. Moreover, there is symmetric replication whereby some logical units of storage system 108 are used for replicating logical units of storage system 120, and other logical units of storage system 120 are used for replicating other logical units of storage system 108.


System 100 includes a source side host computer 104 and a target side host computer 116. A host computer may be one computer, or a plurality of computers, or a network of distributed computers, each computer may include inter alia a conventional CPU, volatile and non-volatile memory, a data bus, an I/O interface, a display interface and a network interface. Generally a host computer runs at least one data processing application, such as a database application and an e-mail server.


Generally, an operating system of a host computer creates a host device for each logical unit exposed by a storage system in the host computer SAN. A host device is a logical entity in a host computer, through which a host computer may access a logical unit. Host device 104 identifies LU A and generates a corresponding host device 140, designated as Device A, through which it can access LU A. Similarly, host computer 116 identifies LU B and generates a corresponding device 160, designated as Device B.


In the course of continuous operation, host computer 104 is a SAN initiator that issues I/O requests (write/read operations) through host device 140 to LU A using, for example, SCSI commands. Such requests are generally transmitted to LU A with an address that includes a specific device identifier, an offset within the device, and a data size. Offsets are generally aligned to 512 byte blocks. The average size of a write operation issued by host computer 104 may be, for example, 10 kilobytes (KB); i.e., 20 blocks. For an I/O rate of 50 megabytes (MB) per second, this corresponds to approximately 5,000 write transactions per second.


System 100 includes two data protection appliances, a source side DPA 112 and a target side DPA 124. A DPA performs various data protection services, such as data replication of a storage system, and journaling of I/O requests issued by a host computer to source side storage system data. As explained in detail herein, when acting as a target side DPA, a DPA may also enable roll back of data to an earlier point in time, and processing of rolled back data at the target site. Each DPA 112 and 124 is a computer that includes inter alia one or more conventional CPUs and internal memory.


For additional safety precaution, each DPA is a cluster of such computers. Use of a cluster ensures that if a DPA computer is down, then the DPA functionality switches over to another computer. The DPA computers within a DPA cluster communicate with one another using at least one communication link suitable for data transfer via fiber channel or IP based protocols, or such other transfer protocol. One computer from the DPA cluster serves as the DPA leader. The DPA cluster leader coordinates between the computers in the cluster, and may also perform other tasks that require coordination between the computers, such as load balancing.


In the architecture illustrated in FIG. 1, DPA 112 and DPA 124 are standalone devices integrated within a SAN. Alternatively, each of DPA 112 and DPA 124 may be integrated into storage system 108 and storage system 120, respectively, or integrated into host computer 104 and host computer 116, respectively. Both DPAs communicate with their respective host computers through communication lines such as fiber channels using, for example, SCSI commands or any other protocol.


DPAs 112 and 124 are configured to act as initiators in the SAN; i.e., they can issue I/O requests using, for example, SCSI commands, to access logical units on their respective storage systems. DPA 112 and DPA 124 are also configured with the necessary functionality to act as targets; i.e., to reply to I/O requests, such as SCSI commands, issued by other initiators in the SAN, including inter alia their respective host computers 104 and 116. Being target nodes, DPA 112 and DPA 124 may dynamically expose or remove one or more logical units.


As described hereinabove, Site I and Site II may each behave simultaneously as a production site and a backup site for different logical units. As such, DPA 112 and DPA 124 may each behave as a source DPA for some logical units, and as a target DPA for other logical units, at the same time.


Host computer 104 and host computer 116 include protection agents 144 and 164, respectively. Protection agents 144 and 164 intercept SCSI commands issued by their respective host computers, via host devices to logical units that are accessible to the host computers. A data protection agent may act on an intercepted SCSI commands issued to a logical unit, in one of the following ways: send the SCSI commands to its intended logical unit; redirect the SCSI command to another logical unit; split the SCSI command by sending it first to the respective DPA; after the DPA returns an acknowledgement, send the SCSI command to its intended logical unit; fail a SCSI command by returning an error return code; and delay a SCSI command by not returning an acknowledgement to the respective host computer.


A protection agent may handle different SCSI commands, differently, according to the type of the command. For example, a SCSI command inquiring about the size of a certain logical unit may be sent directly to that logical unit, while a SCSI write command may be split and sent first to a DPA associated with the agent. A protection agent may also change its behavior for handling SCSI commands, for example as a result of an instruction received from the DPA.


Specifically, the behavior of a protection agent for a certain host device generally corresponds to the behavior of its associated DPA with respect to the logical unit of the host device. When a DPA behaves as a source site DPA for a certain logical unit, then during normal course of operation, the associated protection agent splits I/O requests issued by a host computer to the host device corresponding to that logical unit. Similarly, when a DPA behaves as a target device for a certain logical unit, then during normal course of operation, the associated protection agent fails I/O requests issued by host computer to the host device corresponding to that logical unit.


Communication between protection agents and their respective DPAs may use any protocol suitable for data transfer within a SAN, such as fiber channel, or SCSI over fiber channel. The communication may be direct, or via a logical unit exposed by the DPA. Protection agents communicate with their respective DPAs by sending SCSI commands over fiber channel.


Protection agents 144 and 164 are drivers located in their respective host computers 104 and 116. Alternatively, a protection agent may also be located in a fiber channel switch, or in any other device situated in a data path between a host computer and a storage system or on the storage system itself. In a virtualized environment, the protection agent may run at the hypervisor layer or in a virtual machine providing a virtualization layer.


What follows is a detailed description of system behavior under normal production mode, and under recovery mode.


In production mode DPA 112 acts as a source site DPA for LU A. Thus, protection agent 144 is configured to act as a source side protection agent; i.e., as a splitter for host device A. Specifically, protection agent 144 replicates SCSI I/O write requests. A replicated SCSI I/O write request is sent to DPA 112. After receiving an acknowledgement from DPA 124, protection agent 144 then sends the SCSI I/O write request to LU A. After receiving a second acknowledgement from storage system 108 host computer 104 acknowledges that an I/O command complete.


When DPA 112 receives a replicated SCSI write request from data protection agent 144, DPA 112 transmits certain I/O information characterizing the write request, packaged as a “write transaction”, over WAN 128 to DPA 124 on the target side, for journaling and for incorporation within target storage system 120.


DPA 112 may send its write transactions to DPA 124 using a variety of modes of transmission, including inter alia (i) a synchronous mode, (ii) an asynchronous mode, and (iii) a snapshot mode. In synchronous mode, DPA 112 sends each write transaction to DPA 124, receives back an acknowledgement from DPA 124, and in turns sends an acknowledgement back to protection agent 144. Protection agent 144 waits until receipt of such acknowledgement before sending the SCSI write request to LU A.


In asynchronous mode, DPA 112 sends an acknowledgement to protection agent 144 upon receipt of each I/O request, before receiving an acknowledgement back from DPA 124.


In snapshot mode, DPA 112 receives several I/O requests and combines them into an aggregate “snapshot” of all write activity performed in the multiple I/O requests, and sends the snapshot to DPA 124, for journaling and for incorporation in target storage system 120. In snapshot mode DPA 112 also sends an acknowledgement to protection agent 144 upon receipt of each I/O request, before receiving an acknowledgement back from DPA 124.


For the sake of clarity, the ensuing discussion assumes that information is transmitted at write-by-write granularity.


While in production mode, DPA 124 receives replicated data of LU A from DPA 112, and performs journaling and writing to storage system 120. When applying write operations to storage system 120, DPA 124 acts as an initiator, and sends SCSI commands to LU B.


During a recovery mode, DPA 124 undoes the write transactions in the journal, so as to restore storage system 120 to the state it was at, at an earlier time.


As described hereinabove, LU B is used as a backup of LU A. As such, during normal production mode, while data written to LU A by host computer 104 is replicated from LU A to LU B, host computer 116 should not be sending I/O requests to LU B. To prevent such I/O requests from being sent, protection agent 164 acts as a target site protection agent for host Device B and fails I/O requests sent from host computer 116 to LU B through host Device B.


Target storage system 120 exposes a logical unit 176, referred to as a “journal LU”, for maintaining a history of write transactions made to LU B, referred to as a “journal”. Alternatively, journal LU 176 may be striped over several logical units, or may reside within all of or a portion of another logical unit. DPA 124 includes a journal processor 180 for managing the journal.


Journal processor 180 functions generally to manage the journal entries of LU B. Specifically, journal processor 180 enters write transactions received by DPA 124 from DPA 112 into the journal, by writing them into the journal LU, reads the undo information for the transaction from LU B. updates the journal entries in the journal LU with undo information, applies the journal transactions to LU B, and removes already-applied transactions from the journal.


Referring to FIG. 2, which is an illustration of a write transaction 200 for a journal. The journal may be used to provide an adaptor for access to storage 120 at the state it was in at any specified point in time. Since the journal contains the “undo” information necessary to roll back storage system 120, data that was stored in specific memory locations at the specified point in time may be obtained by undoing write transactions that occurred subsequent to such point in time.


Write transaction 200 generally includes the following fields: one or more identifiers; a time stamp, which is the date & time at which the transaction was received by source side DPA 112; a write size, which is the size of the data block; a location in journal LU 176 where the data is entered; a location in LU B where the data is to be written; and the data itself.


Write transaction 200 is transmitted from source side DPA 112 to target side DPA 124. As shown in FIG. 2, DPA 124 records the write transaction 200 in the journal that includes four streams. A first stream, referred to as a DO stream, includes new data for writing in LU B. A second stream, referred to as an DO METADATA stream, includes metadata for the write transaction, such as an identifier, a date & time, a write size, a beginning address in LU B for writing the new data in, and a pointer to the offset in the DO stream where the corresponding data is located. Similarly, a third stream, referred to as an UNDO stream, includes old data that was overwritten in LU B; and a fourth stream, referred to as an UNDO METADATA, include an identifier, a date & time, a write size, a beginning address in LU B where data was to be overwritten, and a pointer to the offset in the UNDO stream where the corresponding old data is located.


In practice each of the four streams holds a plurality of write transaction data. As write transactions are received dynamically by target DPA 124, they are recorded at the end of the DO stream and the end of the DO METADATA stream, prior to committing the transaction. During transaction application, when the various write transactions are applied to LU B, prior to writing the new DO data into addresses within the storage system, the older data currently located in such addresses is recorded into the UNDO stream. In some examples, the metadata stream (e.g., UNDO METADATA stream or the DO METADATA stream) and the data stream (e.g., UNDO stream or DO stream) may be kept in a single stream each (i.e., one UNDO data and UNDO METADATA stream and one DO data and DO METADATA stream) by interleaving the metadata into the data stream.


Referring to FIG. 3, an example of the data protection system used in a virtual environment is a data protection system 300. The system 300 is spread over three sites: site A, site B and site C.


Site A includes a hypervisor 402a, a virtual file management system (VFMS) 430, a logical unit (LU) 440 and a service layer 460a. The hypervisor 402a includes a data protection appliance 410a, a virtual machine (VM) 412a and a splitter 422a. The VMFS 430 includes a first virtual machine disk 432a which is accessed by the VM 112a. The service layer includes a backlog 462a.


Site B includes a hypervisor 402b, the VFMS 430, the LU 440 and a service layer 460b. The hypervisor 402b includes a data protection appliance 410b, a VM 412b and a splitter 422b. The VMFS 430 includes a second virtual machine disk 432b which is accessed by the VM 112b. The service layer includes a backlog 462b.


Site C includes a hypervisor 402c, a VFMS 450a and a VMFS 450b. The VMFS 450a includes a replica 452a of the first virtual machine disk 432a and a journal 456a and the VMFS 450b includes a replica 452b of the second virtual machine disk 432b and a journal 456b.


In the system 300, the service layers 460a, 460b are depicted as physical devices. One of ordinary skill in the art would recognize that the service layers 460a, 460b may be virtual service layers, for example, within hypervisors 402a, 402b respectively. In one example, the service layers are an EMC® VPLEX®.


The service layers 460a, 460b mirror the data between site A and site B and allow the VMFS 430 to spread across the two sites. At the replica site each VM may be replicated to a separate VMFS (e.g., VMFS 450a and VMFS 450b), but they may also be replicated to the same VMFS (e.g., VMFS) 450a.


A link 490 between the service layers 460a, 460b, ensures that the backlog 462b and the backlog 462b are synchronized. As will be described further herein, this is important during a site failure.


Referring to FIG. 4, the system 400 is depicted after site A fails. The VM 412a is transferred over to the hypervisor 402b at site B. Since the VMFS 430 is mirrored data of VMDK 432a is accessible at site B. The system 400 then resumes replication from VM 412b at site B to replica VMFS 450a at site C.


Referring to FIG. 5, an example of a process to replicate data in system 400 is a process 500. Process 500 intercepts an I/O (502) and sends it to the DPA (508). For example, the splitter 422a intercepts (splits) an I/O sent by the virtual machine 412a and sends the I/O to the DPA 410a.


Process 500 sends I/O metadata to a service layer (514) and waits for acknowledgment (518). For example the splitter 422a sends I/O metadata to the service layer 460a and waits for acknowledgment from the service layer 460a that the I/O metadata arrived and waits for acknowledgement from the DPA 410a that the I/O arrived. In one example, the I/O metadata includes the ID of the virtual machine and the offset (address) where data in the I/O is going.


Process 500 sends I/O data down the I/O stack to the VMDK (522). For example, the splitter 422a sends the I/O to VMDK 432a. Process 500 intercepts the I/O at the service layer (526). For example, the I/O to VMDK 432a is split by the hypervisor 402a and sent to the VMFS 430, which resides on the distributed logical unit 440.


Process 500 sends the I/O metadata to the service layer at the second site (530) and sends I/O data to the service layer at the second site (538). For example, the I/O metadata and the I/O data are sent to service layer 460b at site B by the service layer 460a, which is exposed by the logical unit 440. In particular, the I/O metadata is sent to the backlog 462b through mirroring of the backlog 462a and the I/O data is mirrored to second layer 460b through the logical unit 440.


Process 500 ensures that processing block 530 is performed first before processing block 538 is completed (i.e., the I/O metadata mirroring is completed before I/O data mirroring occurs between site A and site B).


Process 500 tracks I/O metadata in the backlog (542). For example, the service layers 460a, 460b track the I/O metadata using the backlog 462a, 464b, respectively. Process 500 sends acknowledgment to the splitter (548), for example, returns an SCSI acknowledgement to the splitter 422a (e.g., the acknowledgement is received from the I/O stack which receives the acknowledgement from the service layer). Process 500 sends acknowledgement to the virtual machine that the I/O is complete (552). For example, the splitter 422a once it receives the acknowledgement returns the acknowledgement up the I/O stack to the VM 412a.


Referring to FIG. 6, an example of a process to manage a backlog is a process 600. Process 600 receives I/O metadata at a mirrored site (e.g., the metadata handling is between site A and site B) (602) and adds the I/O metadata to backlog (608). For example, the I/O metadata for the first VM 432a is received at the service layer 460a, which is mirrored to the service layer 460b, so that the I/O metadata is added to backlog 462b as well as backlog 462a.


Process 600 sends I/O data to remote DPA (614). For example, the DPA 410a sends the I/O data to the DPA 410c.


Process 600 receives I/O data at the replica journal (618). For example, the journal 456a receives the I/O data.


Process 600 sends a notification to remove I/O metadata received by the journal from backlog (622) and the I/O metadata received by the journal is removed from the backlog (630). For example, the DPA 410c notifies DPA 410a which notifies the service layer 460a (which notifies the service layer 460b) to remove the I/O metadata received by the journal from the backlog 462a, 462b and the I/O metadata received by the journal is removed from the backlog 462a, 462b.


Referring to FIG. 7, an example of a process to recover from a failure of a site is a process 600. For example, a first site (site A) has failed and a second site (site B) takes over. Process 700 detects failure (702) and initiates running of the virtual machine previously running at the first site, at the second site. For example, the VM 412a is now running at site B. In some examples, the detection may be done by a witness machine running at a third site. In other examples the failure may be detected by a hypervisor or a service layer.


Process 700 reads backlog from the service layer (714) and adds backlog to delta marking stream (716). For example, the backlog 462b is read by the service layer 460b and added to the delta marking stream in the journal 456a. A delta marking stream (DMS) is a stream of differences between the replica volume (site C) and the production volume (original volume). In this case, the DMS is a stream of differences between VMDK 432a and the replica 452a.


Process 700 starts replication of virtual machine 412a from the second site to the third site (722). For example, replication is done from site B to site C.


Referring to FIG. 8, in one example, a computer 800 includes a processor 802, a volatile memory 804, a non-volatile memory 806 (e.g., hard disk) and the user interface (UI) 808 (e.g., a graphical user interface, a mouse, a keyboard, a display, touch screen and so forth). The non-volatile memory 806 stores computer instructions 812, an operating system 816 and data 818. In one example, the computer instructions 812 are executed by the processor 802 out of volatile memory 804 to perform all or part of the processes described herein (e.g., processes 500, 600 and 700).


The processes described herein (e.g., processes 500, 600 and 700) are not limited to use with the hardware and software of FIG. 8; they may find applicability in any computing or processing environment and with any type of machine or set of machines that is capable of running a computer program. The processes described herein may be implemented in hardware, software, or a combination of the two. The processes described herein may be implemented in computer programs executed on programmable computers/machines that each includes a processor, a non-transitory machine-readable medium or other article of manufacture that is readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and one or more output devices. Program code may be applied to data entered using an input device to perform any of the processes described herein and to generate output information.


The system may be implemented, at least in part, via a computer program product, (e.g., in a non-transitory machine-readable storage medium such as, for example, a non-transitory computer-readable medium), for execution by, or to control the operation of, data processing apparatus (e.g., a programmable processor, a computer, or multiple computers)). Each such program may be implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs may be implemented in assembly or machine language. The language may be a compiled or an interpreted language and it may be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program may be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network. A computer program may be stored on a non-transitory machine-readable medium that is readable by a general or special purpose programmable computer for configuring and operating the computer when the non-transitory machine-readable medium is read by the computer to perform the processes described herein. For example, the processes described herein may also be implemented as a non-transitory machine-readable storage medium, configured with a computer program, where upon execution, instructions in the computer program cause the computer to operate in accordance with the processes. A non-transitory machine-readable medium may include but is not limited to a hard drive, compact disc, flash memory, non-volatile memory, volatile memory, magnetic diskette and so forth but does not include a transitory signal per se.


The processes described herein are not limited to the specific examples described. For example, the processes 500, 600 and 700 are not limited to the specific processing order of FIGS. 5 to 7, respectively. Rather, any of the processing blocks of FIGS. 5 to 7 may be re-ordered, combined or removed, performed in parallel or in serial, as necessary, to achieve the results set forth above.


The processing blocks (for example, in the processes 500, 600 and 700) associated with implementing the system may be performed by one or more programmable processors executing one or more computer programs to perform the functions of the system. All or part of the system may be implemented as, special purpose logic circuitry (e.g., an FPGA (field-programmable gate array) and/or an ASIC (application-specific integrated circuit)). All or part of the system may be implemented using electronic hardware circuitry that include electronic devices such as, for example, at least one of a processor, a memory, a programmable logic device or a logic gate.


Elements of different embodiments described herein may be combined to form other embodiments not specifically set forth above. Other embodiments not specifically described herein are also within the scope of the following claims.

Claims
  • 1. A method comprising: intercepting an I/O sent by a virtual machine at a first site;sending the I/O to a first data protection appliance (DPA) at the first site;sending I/O metadata to a first service layer at the first site;sending I/O data down the I/O stack after receiving acknowledgement that the I/O metadata arrived at the first service layer;intercepting the I/O at the first service layer;sending the I/O metadata from the first service layer to a second service layer at a second site; andsending I/O data to the second service layer at the second site by ensuring that I/O metadata mirroring between the first site and the second site is completed before I/O data mirroring occurs between the first site and the second site.
  • 2. The method of claim 1, further comprising replicating the I/O at a replica site.
  • 3. The method of claim 1, further comprising tracking the I/O metadata in a first backlog at the first service layer.
  • 4. The method of claim 3, further comprising: receiving I/O data at the second service layer of the second site;adding I/O metadata to a second backlog at the second service layer, the second backlog being a mirror of the first backlog;sending I/O data to a second DPA at a replica site; andreceiving I/O data at a journal at the replica site.
  • 5. The method of claim 4, further comprising: sending a notification to remove the I/O metadata received by the journal from the first backlog; andremoving the I/O metadata received by the journal from the first backlog after receiving the notification.
  • 6. The method of claim 4, further comprising: detecting failure at the first site;running the virtual machine at the second site;reading the second backlog from the second service layer at the second site;adding the second backlog to a delta marking stream at the journal; andreplicating the second site to the replica site.
  • 7. An apparatus, comprising: electronic hardware circuitry configured to: intercept an I/O sent by a virtual machine at a first site;send the I/O to a first data protection appliance (DPA) at the first site;send I/O metadata to a first service layer at the first site;send I/O data down the I/O stack after receiving acknowledgement that the I/O metadata arrived at the first service layer;intercept the I/O at the first service layer;send the I/O metadata from the first service layer to a second service layer at a second site; andsend I/O data to the second service layer at the second site by ensuring that I/O metadata mirroring between the first site and the second site is completed before I/O data mirroring occurs between the first site and the second site.
  • 8. The apparatus of claim 7, wherein the circuitry comprises at least one of a processor, a memory, a programmable logic device or a logic gate.
  • 9. The apparatus of claim 7, further comprising circuitry configured to replicate the I/O at a replica site.
  • 10. The apparatus of claim 7, further comprising circuitry configured to track the I/O metadata in a first backlog at the first service layer.
  • 11. The apparatus of claim 10, further comprising circuitry configured to: receive I/O data at the second service layer of the second site;add I/O metadata to a second backlog at the second service layer, the second backlog being a mirror of the first backlog;send I/O data to a second DPA at a replica site; andreceive I/O data at a journal at the replica site.
  • 12. The apparatus of claim 11, further comprising circuitry configured to: send a notification to remove the I/O metadata received by the journal from the first backlog; andremove the I/O metadata received by the journal from the first backlog after receiving the notification.
  • 13. The apparatus of claim 11, further comprising circuitry configured to: detect failure at the first site;run the virtual machine at the second site;read the second backlog from the second service layer at the second site;add the second backlog to a delta marking stream at the journal; andreplicate the second site to the replica site.
  • 14. An article comprising: a non-transitory computer-readable medium that stores computer-executable instructions, the instructions causing a machine to: intercept an I/O sent by a virtual machine at a first site;send the I/O to a first data protection appliance (DPA) at the first site;send I/O metadata to a first service layer at the first site;send I/O data down the I/O stack after receiving acknowledgement that the I/O metadata arrived at the first service layer;intercept the I/O at the first service layer;send the I/O metadata from the first service layer to a second service layer at a second site; andsend I/O data to the second service layer at the second site by ensuring that I/O metadata mirroring between the first site and the second site is completed before I/O data mirroring occurs between the first site and the second site.
  • 15. The article of claim 14, further comprising instructions causing the machine to replicate the I/O at a replica site.
  • 16. The article of claim 14, further comprising instructions causing the machine to track the I/O metadata in a first backlog at the first service layer.
  • 17. The article of claim 16, further comprising instructions causing the machine to: receive I/O data at the second service layer of the second site;add I/O metadata to a second backlog at the second service layer, the second backlog being a mirror of the first backlog;send I/O data to a second DPA at a replica site; andreceive I/O data at a journal at the replica site.
  • 18. The article of claim 17, further comprising instructions causing the machine to: send a notification to remove the I/O metadata received by the journal from the first backlog; andremove the I/O metadata received by the journal from the first backlog after receiving the notification.
  • 19. The article of claim 17, further comprising instructions causing the machine to: detect failure at the first site;run the virtual machine at the second site;read the second backlog from the second service layer at the second site;add the second backlog to a delta marking stream at the journal; andreplicate the second site to the replica site.
US Referenced Citations (187)
Number Name Date Kind
5170480 Mohan et al. Dec 1992 A
5249053 Jain Sep 1993 A
5388254 Betz et al. Feb 1995 A
5499367 Bamford et al. Mar 1996 A
5526397 Lohman Jun 1996 A
5864837 Maimone Jan 1999 A
5879459 Gadgil et al. Mar 1999 A
5990899 Whitten Nov 1999 A
6042652 Hyun et al. Mar 2000 A
6065018 Beier et al. May 2000 A
6143659 Leem Nov 2000 A
6148340 Bittinger et al. Nov 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6203613 Gates et al. Mar 2001 B1
6260125 McDowell Jul 2001 B1
6270572 Kim et al. Aug 2001 B1
6272534 Guha Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6467023 DeKoning et al. Oct 2002 B1
6574657 Dickinson Jun 2003 B1
6621493 Whitten Sep 2003 B1
6804676 Bains, II Oct 2004 B1
6947981 Lubbers et al. Sep 2005 B2
7043610 Horn et al. May 2006 B2
7051126 Franklin May 2006 B1
7076620 Takeda et al. Jul 2006 B2
7111197 Kingsbury et al. Sep 2006 B2
7117327 Hirakawa et al. Oct 2006 B2
7120768 Mizuno et al. Oct 2006 B2
7130975 Suishu et al. Oct 2006 B2
7139927 Park et al. Nov 2006 B2
7159088 Hirakawa et al. Jan 2007 B2
7167963 Hirakawa et al. Jan 2007 B2
7203741 Marco et al. Apr 2007 B2
7222136 Brown et al. May 2007 B1
7296008 Passerini et al. Nov 2007 B2
7328373 Kawamura et al. Feb 2008 B2
7353335 Kawamura Apr 2008 B2
7360113 Anderson et al. Apr 2008 B2
7426618 Vu et al. Sep 2008 B2
7516287 Ahal et al. Apr 2009 B2
7519625 Honami et al. Apr 2009 B2
7519628 Leverett Apr 2009 B1
7546485 Cochran et al. Jun 2009 B2
7577867 Lewin et al. Aug 2009 B2
7590887 Kano Sep 2009 B2
7606940 Yamagami Oct 2009 B2
7627612 Ahal et al. Dec 2009 B2
7627687 Ahal et al. Dec 2009 B2
7719443 Natanzon May 2010 B1
7757057 Sangapu et al. Jul 2010 B2
7774565 Lewin et al. Aug 2010 B2
7797358 Ahal et al. Sep 2010 B1
7840536 Ahal et al. Nov 2010 B1
7840662 Natanzon Nov 2010 B1
7844856 Ahal et al. Nov 2010 B1
7849361 Ahal et al. Dec 2010 B2
7860836 Natanzon et al. Dec 2010 B1
7882286 Natanzon et al. Feb 2011 B1
7934262 Natanzon et al. Apr 2011 B1
7958372 Natanzon Jun 2011 B1
8037162 Marco et al. Oct 2011 B2
8041940 Natanzon et al. Oct 2011 B1
8060713 Natanzon Nov 2011 B1
8060714 Natanzon Nov 2011 B1
8103937 Natanzon et al. Jan 2012 B1
8108634 Natanzon et al. Jan 2012 B1
8205009 Hellen et al. Jun 2012 B2
8214612 Natanzon Jul 2012 B1
8250149 Marco et al. Aug 2012 B2
8271441 Natanzon et al. Sep 2012 B1
8271447 Natanzon et al. Sep 2012 B1
8281071 Vohra Oct 2012 B1
8332687 Natanzon et al. Dec 2012 B1
8335761 Natanzon Dec 2012 B1
8335771 Natanzon Dec 2012 B1
8341115 Natanzon et al. Dec 2012 B1
8370648 Natanzon Feb 2013 B1
8380885 Natanzon Feb 2013 B1
8392680 Natanzon et al. Mar 2013 B1
8429362 Natanzon et al. Apr 2013 B1
8433869 Natanzon et al. Apr 2013 B1
8438135 Natanzon et al. May 2013 B1
8464101 Natanzon et al. Jun 2013 B1
8478955 Natanzon et al. Jul 2013 B1
8495304 Natanzon et al. Jul 2013 B1
8510279 Natanzon et al. Aug 2013 B1
8521691 Natanzon Aug 2013 B1
8521694 Natanzon Aug 2013 B1
8543609 Natanzon Sep 2013 B1
8583885 Natanzon Nov 2013 B1
8600945 Natanzon et al. Dec 2013 B1
8601085 Ives et al. Dec 2013 B1
8627012 Derbeko et al. Jan 2014 B1
8683592 Dotan et al. Mar 2014 B1
8694700 Natanzon et al. Apr 2014 B1
8706700 Natanzon et al. Apr 2014 B1
8712962 Natanzon et al. Apr 2014 B1
8719497 Don et al. May 2014 B1
8725691 Natanzon May 2014 B1
8725692 Natanzon et al. May 2014 B1
8726066 Natanzon et al. May 2014 B1
8738813 Natanzon et al. May 2014 B1
8745004 Natanzon et al. Jun 2014 B1
8751828 Raizen et al. Jun 2014 B1
8769336 Natanzon et al. Jul 2014 B1
8805786 Natanzon Aug 2014 B1
8806161 Natanzon Aug 2014 B1
8825848 Dotan et al. Sep 2014 B1
8832399 Natanzon et al. Sep 2014 B1
8850143 Natanzon Sep 2014 B1
8850144 Natanzon et al. Sep 2014 B1
8862546 Natanzon et al. Oct 2014 B1
8892835 Natanzon et al. Nov 2014 B1
8898112 Natanzon et al. Nov 2014 B1
8898409 Natanzon et al. Nov 2014 B1
8898515 Natanzon Nov 2014 B1
8898519 Natanzon et al. Nov 2014 B1
8914595 Natanzon Dec 2014 B1
8924668 Natanzon Dec 2014 B1
8930500 Marco et al. Jan 2015 B2
8930947 Derbeko et al. Jan 2015 B1
8935498 Natanzon Jan 2015 B1
8949180 Natanzon et al. Feb 2015 B1
8954673 Natanzon et al. Feb 2015 B1
8954796 Cohen et al. Feb 2015 B1
8959054 Natanzon Feb 2015 B1
8977593 Natanzon et al. Mar 2015 B1
8977826 Meiri et al. Mar 2015 B1
8996460 Frank et al. Mar 2015 B1
8996461 Natanzon et al. Mar 2015 B1
8996827 Natanzon Mar 2015 B1
9003138 Natanzon et al. Apr 2015 B1
9026696 Natanzon et al. May 2015 B1
9031913 Natanzon May 2015 B1
9032160 Natanzon et al. May 2015 B1
9037818 Natanzon et al. May 2015 B1
9063994 Natanzon et al. Jun 2015 B1
9069479 Natanzon Jun 2015 B1
9069709 Natanzon et al. Jun 2015 B1
9081754 Natanzon et al. Jul 2015 B1
9081842 Natanzon et al. Jul 2015 B1
9087008 Natanzon Jul 2015 B1
9087112 Natanzon et al. Jul 2015 B1
9104529 Derbeko et al. Aug 2015 B1
9110914 Frank et al. Aug 2015 B1
9116811 Derbeko et al. Aug 2015 B1
9128628 Natanzon et al. Sep 2015 B1
9128855 Natanzon et al. Sep 2015 B1
9134914 Derbeko et al. Sep 2015 B1
9135119 Natanzon et al. Sep 2015 B1
9135120 Natanzon Sep 2015 B1
20020129168 Kanai et al. Sep 2002 A1
20030048842 Fourquin et al. Mar 2003 A1
20030061537 Cha et al. Mar 2003 A1
20030110278 Anderson Jun 2003 A1
20030145317 Chamberlain Jul 2003 A1
20030196147 Hirata et al. Oct 2003 A1
20040205092 Longo et al. Oct 2004 A1
20040250032 Ji et al. Dec 2004 A1
20040254964 Kodama et al. Dec 2004 A1
20050015663 Armangau et al. Jan 2005 A1
20050028022 Amano Feb 2005 A1
20050049924 DeBettencourt et al. Mar 2005 A1
20050172092 Lam et al. Aug 2005 A1
20050273655 Chow et al. Dec 2005 A1
20060031647 Hirakawa et al. Feb 2006 A1
20060047996 Anderson et al. Mar 2006 A1
20060064416 Sim-Tang Mar 2006 A1
20060107007 Hirakawa et al. May 2006 A1
20060117211 Matsunami et al. Jun 2006 A1
20060149793 Kushwah Jul 2006 A1
20060161810 Bao Jul 2006 A1
20060179343 Kitamura Aug 2006 A1
20060195670 Iwamura et al. Aug 2006 A1
20060212462 Hellen et al. Sep 2006 A1
20070055833 Vu et al. Mar 2007 A1
20070162513 Lewin et al. Jul 2007 A1
20070180304 Kano Aug 2007 A1
20070198602 Ngo et al. Aug 2007 A1
20070198791 Iwamura et al. Aug 2007 A1
20070220311 Lewin Sep 2007 A1
20070266053 Ahal et al. Nov 2007 A1
20080082591 Ahal et al. Apr 2008 A1
20080082592 Ahal et al. Apr 2008 A1
20080082770 Ahal et al. Apr 2008 A1
Foreign Referenced Citations (2)
Number Date Country
1154356 Nov 2001 EP
WO 00 45581 Aug 2000 WO
Non-Patent Literature Citations (21)
Entry
Gibson, “Five Point Pan Lies at the Heart of Compression Technology;” Apr. 29, 1991; p. 1.
Soules, “Metadata Efficiency in Versioning File Systems;” 2003; pp. 1-16.
AIX System Management Concepts: Operating Systems and Devices; May 2000; pp. 1-280.
Souies et al.; “Metadata Efficiency in a Comprehensive Versioning File System;” May 2002; CMU-CS-02-145; School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213; 33 pages.
Linux Fiiesystems; Sams Publishing; 2002; pp. 17-22 and 67-71.
Bunyan, “Multiplexing in a BrightStor® ARCserve® Backup Release 11;” Mar. 2004; pp. 1-4.
Marks, “Network Computing;” Feb. 2, 2006; pp. 1-8.
Hill, “Network Computing;” Jun. 8, 2006; pp. 1-9.
Microsoft Computer Dictionary; 2002; Press Fifth Edition; 2 pages.
Retrieved from http://en.wikipedia.org/wiki/DEFLATE; DEFLATE; Jun. 19, 2008; pp. 1-6.
Retrieved from http://en.wikipedia.org/wiki/Huffman—coding; Huffman Coding; Jun. 8, 2008; pp. 1-11.
Retrieved from http:///en.wikipedia.org/wiki/LZ77; LZ77 and LZ78; Jun. 17, 2008; pp. 1-2.
U.S. Appl. No. 11/609,560.
U.S. Appl. No. 12/057,652.
U.S. Appl. No. 11/609,561.
U.S. Appl. No. 11/356,920.
U.S. Appl. No. 10/512,687.
U.S. Appl. No. 11/536,233.
U.S. Appl. No. 11/536,215.
U.S. Appl. No. 11/536,160.
U.S. Appl. No. 11/964,168.